当前位置:文档之家› 卡尔曼滤波数据融合算法

卡尔曼滤波数据融合算法

卡尔曼滤波数据融合算法
卡尔曼滤波数据融合算法

/*********************************************************

// 卡尔曼滤波

//*********************************************************

//在程序中利用Angle+=(Gyro - Q_bias) * dt计算出陀螺仪积分出的角度,其中Q_bias是陀螺仪偏差。

//此时利用陀螺仪积分求出的Angle相当于系统的估计值,得到系统的观测方程;而加速度计检测的角度Accel相当于系统中的测量值,得到系统状态方程。

//程序中Q_angle和Q_gyro分别表示系统对加速度计及陀螺仪的信任度。根据Pdot = A*P + P*A' + Q_angle计算出先验估计协方差的微分,用于将当前估计值进行线性化处理。其中A 为雅克比矩阵。

//随后计算系统预测角度的协方差矩阵P。计算估计值Accel与预测值Angle间的误差Angle_err。

//计算卡尔曼增益K_0,K_1,K_0用于最优估计值,K_1用于计算最优估计值的偏差并更新协方差矩阵P。

//通过卡尔曼增益计算出最优估计值Angle及预测值偏差Q_bias,此时得到最优角度值Angle 及角度值。

//Kalman滤波,20MHz的处理时间约0.77ms;

void Kalman_Filter(float Accel,float Gyro)

{

Angle+=(Gyro - Q_bias) * dt; //先验估计

Pdot[0]=Q_angle - PP[0][1] - PP[1][0]; // Pk-先验估计误差协方差的微分

Pdot[1]=- PP[1][1];

Pdot[2]=- PP[1][1];

Pdot[3]=Q_gyro;

PP[0][0] += Pdot[0] * dt; // Pk-先验估计误差协方差微分的积分

PP[0][1] += Pdot[1] * dt; // =先验估计误差协方差

PP[1][0] += Pdot[2] * dt;

PP[1][1] += Pdot[3] * dt;

Angle_err = Accel - Angle; //zk-先验估计

PCt_0 = C_0 * PP[0][0];

PCt_1 = C_0 * PP[1][0];

E = R_angle + C_0 * PCt_0;

K_0 = PCt_0 / E;

K_1 = PCt_1 / E;

t_0 = PCt_0;

t_1 = C_0 * PP[0][1];

PP[0][0] -= K_0 * t_0; //后验估计误差协方差

PP[0][1] -= K_0 * t_1;

PP[1][0] -= K_1 * t_0;

PP[1][1] -= K_1 * t_1;

Angle += K_0 * Angle_err; //后验估计

Q_bias += K_1 * Angle_err; //后验估计

Gyro_y = Gyro - Q_bias; //输出值(后验估计)的微分=角度}

卡尔曼滤波算法总结

Kalman_Filter(float Gyro,float Accel) { Angle+=(Gyro - Q_bias) * dt; Pdot[0]=Q_angle - PP[0][1] - PP[1][0]; Pdot[1]= - PP[1][1]; Pdot[2]= - PP[1][1]; Pdot[3]=Q_gyro; PP[0][0] += Pdot[0] * dt; PP[0][1] += Pdot[1] * dt; PP[1][0] += Pdot[2] * dt; PP[1][1] += Pdot[3] * dt; Angle_err = Accel - Angle; PCt_0 = C_0 * PP[0][0]; PCt_1 = C_0 * PP[1][0]; E = R_angle + C_0 * PCt_0; K_0 = PCt_0 / E; K_1 = PCt_1 / E; t_0 = PCt_0; t_1 = C_0 * PP[0][1]; PP[0][0] -= K_0 * t_0; PP[0][1] -= K_0 * t_1; PP[1][0] -= K_1 * t_0; PP[1][1] -= K_1 * t_1; Angle += K_0 * Angle_err; Q_bias += K_1 * Angle_err; Gyro_x = Gyro - Q_bias; } 首先是卡尔曼滤波的5个方程: -=--+(1)先验估计 X k k AX k k Bu k (|1)(1|1)() -=--+(2)协方差矩阵的预测(|1)(1|1)' P k k AP k k A Q

卡尔曼滤波算法与matlab实现

一个应用实例详解卡尔曼滤波及其算法实现 标签:算法filtermatlabalgorithm优化工作 2012-05-14 10:48 75511人阅读评论(25) 收藏举报分类: 数据结构及其算法(4) 为了可以更加容易的理解卡尔曼滤波器,这里会应用形象的描述方法来讲解,而不是像大多数参考书那样罗列一大堆的数学公式和数学符号。但是,他的5条公式是其核心内容。结合现代的计算机,其实卡尔曼的程序相当的简单,只要你理解了他的那5条公式。 在介绍他的5条公式之前,先让我们来根据下面的例子一步一步的探索。 假设我们要研究的对象是一个房间的温度。根据你的经验判断,这个房间的温度是恒定的,也就是下一分钟的温度等于现在这一分钟的温度(假设我们用一分钟来做时间单位)。假设你对你的经验不是100%的相信,可能会有上下偏差几度。 我们把这些偏差看成是高斯白噪声(White Gaussian Noise),也就是这些偏差跟前后时间是没有关系的而且符合高斯分配(Gaussian Distribution)。另外,我们在房间里放一个温度计,但是这个温度计也不准确的,测量值会比实际值偏差。我们也把这些偏差看成是高斯白噪声。 好了,现在对于某一分钟我们有两个有关于该房间的温度值:你根据经验的预测值(系统的预测值)和温度计的值(测量值)。下面我们要用这两个值结合他们各自的噪声来估算出房间的实际温度值。 假如我们要估算k时刻的是实际温度值。首先你要根据k-1时刻的温度值,来预测k时刻的温度。因为你相信温度是恒定的,所以你会得到k时刻的温度预测值是跟k-1时刻一样的,假设是23度,同时该值的高斯噪声的偏差是5度(5是这样得到的:如果k-1时刻估算出的最优温度值的偏差是3,你对自己预测的不确定度是4度,他们平方相加再开方,就是5)。然后,你从温度计那里得到了k时刻的温度值,假设是25度,同时该值的偏差是4度。 由于我们用于估算k时刻的实际温度有两个温度值,分别是23 度和25度。究竟实际温度是多少呢?相信自己还是相信温度计呢?究竟相信谁多一点,我们可以用他们的covariance(协方差)来判断。因为Kg^2=5^2/(5^2+4^2),所以Kg=0.78,我们可以估算出k时刻的实际温度值是:23+0.78*(25-23)=24.56度。 可以看出,因为温度计的covariance比较小(比较相信温度计),所以估算出的最优温度值偏向温度计的值。 现在我们已经得到k时刻的最优温度值了,下一步就是要进入k+1时刻,进行新的最优估算。到现在为止,好像还没看到什么自回归的东西出现。对了,在进入k+1时刻之前,我们还要算出k时刻那个最优值(24.56 度)的偏差。算法如下:((1-Kg)*5^2)^0.5=2.35。这里的5就是上面的k时刻你预测的那个23度

联合卡尔曼滤波器在数据融合中的应用_胡宏灿

文章编号:1008-8652(2005)01-001-004 联合卡尔曼滤波器在数据融合中的应用 胡宏灿1,2 郭 立1 朱俊株1 (1.中国科学技术大学 合肥 230026; 2.海军大连舰艇学院 大连 116018) 【摘要】 介绍多传感器数据融合中联合卡尔曼滤波器的设计步骤,并将此方法用于舰船组合导航系统,计算机仿真和理论分析表明,该滤波器可以做到全局最优,其结构遵循信息分配原则,提高了系统的数值稳定性和容错性,减小了数据传输的工作量与计算量,便于计算机实现,能够满足组合导航系统需要。 关键词:组合导航系统;数据融合;联合卡尔曼滤波 中图分类号:T P391.7 文献标识码:A The Application of Federal Kalman Filter in Data Fusion System Hu Ho ng can1,2 Guo Li1 Zhu Junzhu1 (1.University of Science and T echnology of China H ef ei230026; 2.Dalian N av al Vessels A cademy Dalian116018) Abstract:A new design o f Kalman filter based on data fusion is presented in the paper.Fistly,the fr ame Kalman filter is intr oduced.T hen,the algo rithm is given.T he simulatio n results show that the metho d is useful in integr ated navigation sy stem because it can impr ove accur acy and r eliability,and it has hig h fault-tolerant ability. Keywords:integ rated nav igatio n sy stem;data fusio n;feder al Kalman filter 1 引言 数据融合技术是近年来新兴的一门实践性较强的技术,它是对系统多个传感器的数据进行处理的过程。众所周知,由于任何传感器都有自身的不足之处,所以单一传感器具有误报风险大,可靠性和容错能力低等缺点。为了对测量环境或对象的特征有个全面、正确的认识,克服单一传感器的上述缺点,多传感器数据融合技术应运而生。简单的说,多传感器融合技术就是融合多个传感器的信息,以产生比单个传感器更可靠、更准确的信息。常用方法有贝叶斯估计法和DS证据理论法及经典推算法等,神经网络、小波分析等智能方法近年来也是研究数据融合的重要方法和手段。卡尔曼滤波器自上世纪六十年代被提出以后,作为一种新型的滤波手段在控制、跟踪、测量领域得到广泛应用。由于卡尔曼滤波器对数据的估计是无偏最优估计,滤波器结构简单等特点,使得卡尔曼滤波器在多传感器数据融合中应用极为广泛。过去使用的集中式卡尔曼滤波器要集中处理所有传感器的数据,计算量大,实时性差,并且不具备容错性。本文基于Car lson提出的联合卡尔曼滤波算法,介绍了利用信息分配原则实现多传感器信息最优融合的滤波器的设计,不仅使系统具备了一定的容错能力,实时性也有较大幅度的提高。最后给出了联合卡尔曼滤波器在舰船组合导航中的应用实例。 2 联合卡尔曼滤波器的设计步骤 联合卡尔曼滤波器的设计主要围绕两个方面,第一是对数据进行分散处理,第二是分散处理过的数据X收稿日期:2004-11-26

几种非线性滤波算法的研究-内附程序

2017 年秋季学期研究生课程考核 (读书报告、研究报告) 考核科目:雷达系统导论 学生所在(系):电子与信息工程学院 学生所在学科:电子与同学工程 学生姓名: 学号: 学生类别: 考核结果阅卷人 第 1 页(共页)

几种非线性滤波算法的介绍与性能分析 作者姓名:学号: 专业院系:电信学院电子工程系 电子邮件: 摘要—非线性滤波算法在雷达目标跟踪中有着重要的应用,对雷达的跟踪性能有着至关重要的影响。好的滤波算法有利于目标航迹的建立及保持,能够得到较精确的目标位置,为发现目标后的后续工作提供可靠的数据依据。本文重点介绍了雷达数据处理中的几种非线性滤波算法:扩展卡尔曼滤波(EKF)、不敏卡尔曼滤波(UKF)、粒子滤波(PF),并且给出了一个利用这三种算法进行数据处理的一个实例,通过这个实例对比分析了这三种算法的性能以及优劣。 关键字—非线性滤波算法;扩展卡尔曼滤波;不敏卡尔曼滤波;粒子滤波; I.概述(一级表题格式) 在雷达对目标进行跟踪前要先对目标进行检测。对于满足检测条件的目标就需要进行跟踪,在跟踪的过程中可以利用新获得的数据完成对目标的进一步检测比如去除虚假目标等,同时利用跟踪获得数据可以进一步完成对目标动态特性的检测和识别。因此对目标进行准确的跟踪是雷达性能的一个重要指标。在检测到满足条件的目标后,根据目标运动状态建立目标运动模型,然后对目标跟踪算法进行设计,这是雷达目标跟踪中的核心部分。 目前主要的跟踪算法包括线性自回归滤波,两点外推滤波、维纳滤波、- αβ滤波、加权最小二乘滤波、维纳滤波和卡尔曼滤波[1]。对于线性系统而言最优滤波的方法就是卡尔曼滤波,卡尔曼滤波是线性高斯模型下的最优状态估计算法。但是实际问题中目标的运动模型往往不是线性的,因此卡尔曼滤波具有很大的局限性。目前主要用的非线性滤波算法可以分为高斯滤波和粒子滤波[2]。不敏卡尔曼滤波和扩展卡尔曼滤波就是高斯滤波中的典型代表,也是应用相对较为广泛的。粒子滤波的应用范围比高斯滤波的适用范围要广,对于系统状态非线性,观测模型非高斯等问题都有很好的适用性。本文具体分析阐述了扩展卡尔曼滤波算法,不敏卡尔曼滤波算法,粒子滤波算法,并且通过一个实例利用仿真的方法分析了这三种算法在滤波性能上的优劣,最后对这三种算法做了一定的总结。 我本科毕业设计题目为《基于历史数据的路径生成算法研究》,由于我是跨专业保研到电信学院,该课题所研究内容不属于雷达系统研究范围,是一种城市路网最快路径生成算法。 II.几种非线性滤波算法 A.扩展卡尔曼滤波 扩展卡尔曼滤波是将非线性系统转换为近似的线性系统的一种方法,其核心思想是围绕滤波值将非线性函数展开成泰勒级数并略去二阶及以上的项,得到一个近似的线性化模型,然后应用卡尔曼滤波完成状态估计。 扩展卡尔曼滤波状态空间模型: k k k w x f+ = + ) ( x 1 状态方程 k k k v x h+ =) ( z观测方程 其中(.) f和(.) h为非线性函数 在扩展卡尔曼滤波中,状态的预测以及观测值的预测由非线性函数计算得出,线性卡尔曼滤波中的状态转移矩阵A阵和观测矩阵H阵由f和h函数的雅克比矩阵代替。 对 (.) f和(.) h Taylor展开,只保留一次项有: ) ? ( ) ?( ) ( k k k k k x x A x f x f- + ≈ ) ? ( ) ?( ) ( k k k k k x x H x h x h- + ≈ 其中: k k x x k k dx df A ?= =为f对 1- k x求导的雅克比矩阵 k k x x k k dx dh H ?= =为h对 1- k x求导的雅克比矩阵 ) ?( ? 1-k k x f x=,于是可以得出: k k k k k k k w x A x f x A x+ - + ≈ + ) ? ) ?( ( 1 k k k k k k k v x H x h x H z+ - + ≈ + ) ? ) ?( ( 1 通过以上变换,将非线性问题线性化。接下来EKF 滤波过程同线性卡尔曼滤波相同,公式如下: )) | (?( ) |1 ( X?k k X f k k= + ) ( ) ( ) | ( ) ( ) |1 (P k Q k k k P k k k+ Φ' Φ = + )1 ( )1 ( ) |1 ( )1 ( )1 (S+ + + ' + + = +k R k H k k P k H k )1 ( )1 ( ) |1 ( )1 ( K1+ + ' + = +-k S k H k k P k

卡尔曼滤波数据融合算法

/********************************************************* // 卡尔曼滤波 //********************************************************* //在程序中利用Angle+=(Gyro - Q_bias) * dt计算出陀螺仪积分出的角度,其中Q_bias是陀螺仪偏差。 //此时利用陀螺仪积分求出的Angle相当于系统的估计值,得到系统的观测方程;而加速度计检测的角度Accel相当于系统中的测量值,得到系统状态方程。 //程序中Q_angle和Q_gyro分别表示系统对加速度计及陀螺仪的信任度。根据Pdot = A*P + P*A' + Q_angle计算出先验估计协方差的微分,用于将当前估计值进行线性化处理。其中A 为雅克比矩阵。 //随后计算系统预测角度的协方差矩阵P。计算估计值Accel与预测值Angle间的误差Angle_err。 //计算卡尔曼增益K_0,K_1,K_0用于最优估计值,K_1用于计算最优估计值的偏差并更新协方差矩阵P。 //通过卡尔曼增益计算出最优估计值Angle及预测值偏差Q_bias,此时得到最优角度值Angle 及角度值。 //Kalman滤波,20MHz的处理时间约0.77ms; void Kalman_Filter(float Accel,float Gyro) { Angle+=(Gyro - Q_bias) * dt; //先验估计 Pdot[0]=Q_angle - PP[0][1] - PP[1][0]; // Pk-先验估计误差协方差的微分 Pdot[1]=- PP[1][1]; Pdot[2]=- PP[1][1]; Pdot[3]=Q_gyro; PP[0][0] += Pdot[0] * dt; // Pk-先验估计误差协方差微分的积分 PP[0][1] += Pdot[1] * dt; // =先验估计误差协方差 PP[1][0] += Pdot[2] * dt; PP[1][1] += Pdot[3] * dt; Angle_err = Accel - Angle; //zk-先验估计 PCt_0 = C_0 * PP[0][0]; PCt_1 = C_0 * PP[1][0]; E = R_angle + C_0 * PCt_0; K_0 = PCt_0 / E;

几种卡尔曼滤波算法理论

自适应卡尔曼滤波 卡尔曼滤波发散的原因 如果卡尔曼滤波是稳定的,随着滤波的推进,卡尔曼滤波估计的精度应该越来越高,滤波误差方差阵也应趋于稳定值或有界值。但在实际应用中,随着量测值数目的增加,由于估计误差的均值和估计误差协方差可能越来越大,使滤波逐渐失去准确估计的作用,这种现象称为卡尔曼滤波发散。 引起滤波器发散的主要原因有两点: (1)描述系统动力学特性的数学模型和噪声估计模型不准确,不能直接真实地反映物理过程,使得模型与获得的量测值不匹配而导致滤波发散。这种由于模型建立过于粗糙或失真所引起的发散称为滤波发散。 (2)由于卡尔曼滤波是递推过程,随着滤波步数的增加,舍入误差将逐渐积累。如果计算机字长不够长,这种积累误差很有可能使估计误差方差阵失去非负定性甚至失去对称性,使滤波增益矩阵逐渐失去合适的加权作用而导致发散。这种由于计算舍入误差所引起的发散称为计算发散。 针对上述卡尔曼滤波发散的原因,目前已经出现了几种有效抑制滤波发散的方法,常用的有衰减记忆滤波、限定记忆滤波、扩充状态滤波、有限下界滤波、平方根滤波、和自适应滤波等。这些方法本质上都是以牺牲滤波器的最优性为代价来抑制滤波发散,也就是说,多数都是次优滤波方法。 自适应滤波 在很多实际系统中,系统过程噪声方差矩阵Q和量测误差方差阵R事先是不知道的,有时甚至连状态转移矩阵 或量测矩阵H也不能确切建立。如果所建立的模型与实际模型不符可能回引起滤波发散。自适应滤波就是这样一种具有抑制滤波发散作用的滤波方法。在滤波过程中,自适应滤波一方面利用量测值修正预测值,同时也对未知的或不确切的系统模型参数和噪声统计参数进行估计修正。自适应滤波的方法很多,包括贝叶斯法、极大似然法、相关法与协方差匹配法,其中最基本也是最重要的是相关法,而相关法可分为输出相关法和新息相关法。

卡尔曼滤波算法(C--C++两种实现代码)

卡尔曼滤波算法实现代码 C++实现代码如下: ============================kalman.h================= =============== // kalman.h: interface for the kalman class. // ////////////////////////////////////////////////////////////////////// #if !defined(AFX_KALMAN_H__ED3D740F_01D2_4616_8B74_8BF57636F2C0__IN CLUDED_) #define AFX_KALMAN_H__ED3D740F_01D2_4616_8B74_8BF57636F2C0__INCLU DED_ #if _MSC_VER > 1000 #pragma once #endif// _MSC_VER > 1000 #include #include "cv.h" class kalman { public: void init_kalman(int x,int xv,int y,int yv); CvKalman* cvkalman; CvMat* state; CvMat* process_noise; CvMat* measurement; const CvMat* prediction; CvPoint2D32f get_predict(float x, float y);

kalman(int x=0,int xv=0,int y=0,int yv=0); //virtual ~kalman(); }; #endif// !defined(AFX_KALMAN_H__ED3D740F_01D2_4616_8B74_8BF57636F2C 0__INCLUDED_) ============================kalman.cpp=============== ================= #include "kalman.h" #include /* tester de printer toutes les valeurs des vecteurs*/ /* tester de changer les matrices du noises */ /* replace state by cvkalman->state_post ??? */ CvRandState rng; const double T = 0.1; kalman::kalman(int x,int xv,int y,int yv) { cvkalman = cvCreateKalman( 4, 4, 0 ); state = cvCreateMat( 4, 1, CV_32FC1 ); process_noise = cvCreateMat( 4, 1, CV_32FC1 ); measurement = cvCreateMat( 4, 1, CV_32FC1 ); int code = -1;

多传感器融合中的卡尔曼滤波应用

多传感器融合中的卡尔曼滤波探讨 1 引言 目前靠单一的信息源很难保证获取环境信息的快速性和准确性的要求,会给系统对周围环境的理解及系统的决策带来影响,另外,单一传感器获得的仅仅是环境特征的局部、片面的信息,它的信息量是十分有限的。而且每个传感器采集到的信息还受到自身品质、性能噪声的影响,采集到的信息往往是不完整的,带有较大的不确定性,偶尔甚至是错误的。而且在传统方式中,各传感器采集的信息单独、孤立的进行加工处理,不仅会导致处理工作量增加,而且割断了各传感器信息的联系丢失了信息的有机组合蕴涵的信息特征,也造成信息资 源的浪费[3-7]。在运动控制系统中,传统上就往往将速度传感器测量到的速度和加速度计测量到的加速度进行单独处理,没有将两者的信息进行数据融合。由物理定律可知,加速度与速度成导数关系,所以两者的数据是存在内在联系的,完全可以根据信息融合理论对两者数据进行综合处理,从而得到更加准确的结果。卡尔曼滤波器是常用的一种数据融合技术,它利用迭代递推计算的方式,对存贮空间要求很小,适合于存贮空间和计算速度受限的场合 [1,2]。本文分析了数度传感器和加速度计各自的优缺点,给出了一种应用卡尔曼滤波器原理对两者进行数据融合的方法。 2 传感器简介 2.1 光电编码器 光电编码器通常用于角度、位移、或转速测量,通过对光脉冲的个数进行计数再经过计算而得到测量值。假设在周长为L 的圆盘上有M 个过光孔,离散系统中,在周期时间T 内对脉冲进行计数值为N ,则第k 次测量的线速度v 可表达为 MT k Le k v MT k Le MT k LN k e k N MT L k v )()()()())()(()(+=+=+=∧ (2-1) e 是随机误差,为光脉冲取整后的剩余值,取值范围为(-1, 1),可看作均匀分布。∧v 为实际的观测值,与真值v 之间相差MT Le 。可见,在固定长度的L 上,加大M 或T 的值,都可以减小误差。但是加大M 需要付出昂贵的成本,使传感器价格大幅提高,如光栅式光电传感器;而加大T 又会降低系统的动态响应性能,所以在实际应用中,这两者均难如愿。 在需要同时测量加速度的场合,理论上可以由对速度求差分方程得出,即 2 2))1(()(())1()(()1()()(MT k e k Le MT k N k N L T k v k v k a --+--=--= (2-2) 容易看出,相对误差显著提高,数据几乎不可用,所以需要专门的加速度计对加速度进行测量。 2.2 加速度计 加速度计用于测量物体的线性加速度,根据不同的测量原理,有很多种类,本文中使用的MMA7260是一款低成本、低功耗、小体积、功能完善的单芯片加速度计,主要用于运动检测、惯性导航、震动检测、交通安全等。MMA7260响应快、带宽可调整、可响应高频率输入,但是其测量数据噪声与带宽的平方根成正比,会随着带宽增加而增加。 5.1350)(?=BW g rms Noise μ (2-3) 式中BW 为传感器带宽(HZ)。因此在设计时,首先要确定被测加速度的频率范围,然后再

卡尔曼滤波算法总结

卡尔曼滤波算法总结-标准化文件发布号:(9556-EUATWK-MWUB-WUNN-INNUL-DDQTY-KII

2015.12.12 void Kalman_Filter(float Gyro,float Accel) { Angle+=(Gyro - Q_bias) * dt; Pdot[0]=Q_angle - PP[0][1] - PP[1][0]; Pdot[1]= - PP[1][1]; Pdot[2]= - PP[1][1]; Pdot[3]=Q_gyro; PP[0][0] += Pdot[0] * dt; PP[0][1] += Pdot[1] * dt; PP[1][0] += Pdot[2] * dt; PP[1][1] += Pdot[3] * dt; Angle_err = Accel - Angle; PCt_0 = C_0 * PP[0][0]; PCt_1 = C_0 * PP[1][0]; E = R_angle + C_0 * PCt_0; K_0 = PCt_0 / E; K_1 = PCt_1 / E; t_0 = PCt_0; t_1 = C_0 * PP[0][1]; PP[0][0] -= K_0 * t_0; PP[0][1] -= K_0 * t_1; PP[1][0] -= K_1 * t_0; PP[1][1] -= K_1 * t_1; Angle += K_0 * Angle_err; Q_bias += K_1 * Angle_err; Gyro_x = Gyro - Q_bias; }

首先是卡尔曼滤波的5个方程: (|1)(1|1)() X k k AX k k Bu k -=--+(1)先验估计 (|1)(1|1)'P k k AP k k A Q -=--+(2)协方差矩阵的预测 ()(|1)'/(|1)')Kg k P k k H HP k k H R =--+(3)计算卡尔曼增益 (|)(|1)()(()(|1))X k k X k k Kg k Z k HX k k =-+--(4)进行修正 5个式子比较抽象,现在直接用实例来说: 一、卡尔曼滤波第一个式子 对于角度来说,我们认为此时的角度可以近似认为是上一时刻的角度值加上上一时刻陀螺仪测得的角加速度值乘以时间,因为d dt θω=?,角度微分等于时间的微分乘以角速度。但是陀螺仪有个静态漂移(而且还是变化的),静态漂移就是静止了没有角速度然后陀螺仪也会输出一个值,这个值肯定是没有意义的,计算时要把它减去。 由此我们得到了当前角度的预测值Angle Angle=Angle+(Gyro - Q_bias) * dt; 其中等号左边Angle 为此时的角度,等号右边Angle 为上一时刻的角度,Gyro 为陀螺仪测的角速度的值,dt 是两次滤波之间的时间间隔,我们的运行周期是4ms 或者6ms 。 同时 Q_bias 也是一个变化的量。 但是就预测来说认为现在的漂移跟上一时刻是相同的,即 Q_bias=Q_bias 将上面两个式子写成矩阵的形式 1_0 1_0 Angle dt Angle dt Q bias Q bia o s Gyr -= + 得到上式,这个式子对应于卡尔曼滤波的第一个式子 (|1)(1|1)() X k k AX k k Bu k -=--+ (|)(|1) P k k I Kg k H P k k =--(())(5)更新协方差阵

卡尔曼滤波中文

处理线性滤波以及预测问题的一种新途径R.E.Kalman1引言通讯与控制中的理论与实际问题中有很重要的一类具有统计性质。 这样的问题有:(1)、随机信号的预测;(2)、从随机噪声中分离随机信 号;(3)、在有噪声的情况下探测已知形式的信号(脉冲、正弦波)。 在Wiener开拓性的工作中,他证明[1]从问题(1)和问题(2)可导 出所谓Wiener-Hopf积分方程;他同样给出了解决具有实际重要意义的特 殊情况——定态统计和有理数频谱——之积分方程的方法(频谱因式分解)。 在Wiener的基础性工作之后出现了许多延伸和推广。Zadeh与 Ragazzini给出了有限存储器情况的解[2]。Bode和Shannon[3]同时独 立的给出上述情况的解,并且给出了简化的求解方法。Booton讨论了非定 态统计Wiener-Hopf方程[4]。这些结果现在都写入了标准教科书中[5,6]。 最近Darlington[7]沿着这些主线给出了一种稍微有些不同的方法。对抽 样信号的延伸,参见Franklin[8]和Lees[9]的工作。基于Wiener-Hopf方 程(同样应用于非定态问题,尽管前述方法一般并非如此)特征函数的 方法由Davis[10]开创并被许多其他人应用,例如Shinbrot[11],Blum[12], Pugachev[13],Solodovnikov[14]. 在所有这些工作中,目标都是获取一个线性动力系统的明确说明 (Wiener滤波器),由此可以完成预测、分离或者探测随机信号。 现有求解Wiener问题的方法受制于若干限制,这样就使得它们的实际 用处收到削弱: 1.最佳的滤波器由其脉冲响应具体指定。由这些数据合成滤波器并非易 事。 2.数值确定最佳的脉冲响应往往十分复杂并且不很适合机器计算。这种 情况随着问题复杂度的增加而迅速变得更为糟糕。 11引言2 3.重要的推广(如增长存储器滤波器、非定态预测)需要新的推导过 程,经常给非专业人士带来相当大的困难。 4.这些推导过程的数学部分并不透明。基本假设及其后果趋于模糊。 本文回避上述困难,提出看待这些问题的整个集合的新方式。以下是 本文的亮点: 5.最佳估计和正交投影。Wiener问题是以条件分布与期望的观点处理 的。这样,Wiener理论的基本事实可以迅速获取;结果的范围以及基 本假设可以清楚的显现出来。可以看到所有的统计计算以及结果都基 于一阶和二阶平均;不需要其他的统计数据。这样一来困难(4)便被 排除。这种方法在概率论中为人们所熟知(见Doob[15]第148至155 页以及Lo`eve[16]第455至464页),但在工程上还没有大量的应用。 6.随机过程模型。继前人之后,尤其是Bode与Shannon[3],任意随机 信号可以被表示(直到二阶平均统计性质)为线性动力系统受独立或 不相关随机信号(“白噪声”)激励后的输出。这是工程上应用Wiener 理论的标准手法[2,3,4,5,6,7]。这里用到的方法与传统方法相比只 在线性动力系统的描述方法上不同。我们将强调状态以及状态过渡; 换言之,线性系统将以一阶差分(或微分)方程组来刻画。为了利用 (5)中提到的简化,这种观点是自然的,也是必要的。 7.求解Wiener问题。使用状态——过渡方法,单独一次推导即覆盖多

卡尔曼滤波简介及其算法实现代码

卡尔曼滤波简介及其算法实现代码 卡尔曼滤波算法实现代码(C,C++分别实现) 卡尔曼滤波器简介 近来发现有些问题很多人都很感兴趣。所以在这里希望能尽自己能力跟大家讨论一些力所能及的算法。现在先讨论一下卡尔曼滤波器,如果时间和能力允许,我还希望能够写写其他的算法,例如遗传算法,傅立叶变换,数字滤波,神经网络,图像处理等等。 因为这里不能写复杂的数学公式,所以也只能形象的描述。希望如果哪位是这方面的专家,欢迎讨论更正。 卡尔曼滤波器– Kalman Filter 1.什么是卡尔曼滤波器 (What is the Kalman Filter?) 在学习卡尔曼滤波器之前,首先看看为什么叫“卡尔曼”。跟其他著名的理论(例如傅立叶变换,泰勒级数等等)一样,卡尔曼也是一个人的名字,而跟他们不同的是,他是个现代人! 卡尔曼全名Rudolf Emil Kalman,匈牙利数学家,1930年出生于匈牙利首都布达佩斯。1953,1954年于麻省理工学院分别获得电机工程学士及硕士学位。1957年于哥伦比亚大学获得博士学位。我们现在要学习的卡尔曼滤波器,正是源于他的博士论文和1960年发表的论文《A New Approach to Linear Filtering and Prediction Problems》(线性滤波与预测问题的新方法)。如果对这编论文有兴趣,可以到这里的地址下载: https://www.doczj.com/doc/4513596556.html,/~welch/media/pdf/Kalman1960.pdf。 简单来说,卡尔曼滤波器是一个“optimal recursive data processing algorithm(最优化自回归数据处理算法)”。对于解决很大部分的问题,他是最优,效率最高甚至是最有用的。他的广泛应用已经超过30年,包括机器人导航,控制,传感器数据融合甚至在军事方面的雷达系统以及导弹追踪等等。近年来更被应用于计算机图像处理,例如头脸识别,图像分割,图像边缘检测等等。 2.卡尔曼滤波器的介绍 (Introduction to the Kalman Filter) 为了可以更加容易的理解卡尔曼滤波器,这里会应用形象的描述方法来讲解,而不是像大多数参考书那样罗列一大堆的数学公式和数学符号。但是,他的5条公式是其核心内容。结合现代的计算机,其实卡尔曼的程序相当的简单,只要你理解了他的那5条公式。 在介绍他的5条公式之前,先让我们来根据下面的例子一步一步的探索。 假设我们要研究的对象是一个房间的温度。根据你的经验判断,这个房间的温度是恒定的,也就

卡尔曼滤波基础知识

卡尔曼滤波 马尔可夫过程: 在随机理论中,把在某时刻的事件受在这之前事件的影响,其影响范围有限的随机过程,称为马尔可夫过程。一个事件受在它之前的事件的影响的深远程度,通常用在它之前的事件作为条件的概率来表达。受前一个事件的影响,简称为马尔可夫过程;受前两个事件的影响,称为二阶马尔可夫过程;受前三个事件的影响,称为三阶马尔可夫过程! 卡尔曼滤波简介+算法实现代码(转): 最佳线性滤波理论起源于40年代美国科学家Wiener和前苏联科学家Kолмогоров等人的研究工作,后人统称为维纳滤波理论。从理论上说,维纳滤波的最大缺点是必须用到无限过去的数据,不适用于实时处理。为了克服这一缺点,60年代Kalman把状态空间模型引入滤波理论,并导出了一套递推估计算法,后人称之为卡尔曼滤波理论。卡尔曼滤波是以最小均方误差为估计的最佳准则,来寻求一套递推估计的算法,其基本思想是:采用信号与噪声的状态空间模型,利用前一时刻地估计值和现时刻的观测值来更新对状态变量的估计,求出现时刻的估计值。它适合于实时处理和计算机运算。 现设线性时变系统的离散状态防城和观测方程为: X(k) = F(k,k-1)·X(k-1)+T(k,k-1)·U(k-1) Y(k) = H(k)·X(k)+N(k) 其中 X(k)和Y(k)分别是k时刻的状态矢量和观测矢量 F(k,k-1)为状态转移矩阵 U(k)为k时刻动态噪声

T(k,k-1)为系统控制矩阵 H(k)为k时刻观测矩阵 N(k)为k时刻观测噪声 则卡尔曼滤波的算法流程为: 1 2预估计X(k)^= F(k,k-1)·X(k-1) 3计算预估计协方差矩阵C(k)^=F(k,k-1)×C(k)×F(k,k-1)'+T(k,k-1)×Q(k)×T(k,k-1)' Q(k) = U(k)×U(k)' 4计算卡尔曼增益矩阵 K(k) = C(k)^×H(k)'×[H(k)×C(k)^×H(k)'+R(k)]^(-1) R(k) = N(k)×N(k)' 5更新估计 X(k)~=X(k)^+K(k)×[Y(k)-H(k)×X(k)^] 6计算更新后估计协防差矩阵 C(k)~ = [I-K(k)×H(k)]×C(k)^×[I-K(k)×H(k)]'+K(k)×R(k)×K(k)' 7X(k+1) = X(k)~ C(k+1) = C(k)~ 重复以上步骤 其c语言实现代码如下: #include "stdlib.h" #include "rinv.c" int lman(n,m,k,f,q,r,h,y,x,p,g) int n,m,k; double f[],q[],r[],h[],y[],x[],p[],g[]; { int i,j,kk,ii,l,jj,js; double *e,*a,*b; e=malloc(m*m*sizeof(double)); l=m;

时间序列分析方法之卡尔曼滤波

第十三章 卡尔曼滤波 在本章中,我们介绍一种被称为卡尔曼滤波的十分有用的工具。卡尔曼滤波的基本思想是将动态系统表示成为一种称为状态空间表示的特殊情形。卡尔曼滤波是对系统线性投影进行序列更新的算法。除了一般的优点以外,这种算法对计算确切的有限样本预测、计算Gauss ARMA 模型的确切似然函数、估计具有时变参数的自回归模型等,都提供了重要方法。 §13.1 动态系统的状态空间表示 我们已经介绍过一些随机过程的动态表示方法,下面我们在以前的假设基础上,继续分析动态系统的表示方法。 13.1.1 继续使用的假设 假设表示时刻观测到的n 维随机向量,一类非常丰富的描述动态性的模型可以利用一些可能无法观测的被称为状态向量(state vector)的r 维向量表示,因此表示动态性的状态空间表示(state-space representation)由下列方程系统给出: 状态方程(state model) (13.1) 量测方程(observation model) (13.2) 这里,和分别是阶数为,和的参数矩阵,是的外生或者前定变量。方程(13.1)被称为状态方程(state model),方程(13.2)被称为量测方程(observation model),维向量和维向量都是向量白噪声,满足: (13.3) (13.4) 这里和是和阶矩阵。假设扰动项和对于所有阶滞后都是不相关的,即对所有和,有: (13.5) t x 是外生或者前定变量的假定意味着,在除了包含在121,,,y y y t t 内的信息以外,t x 没有为s t ξ和s t w ( ,2,1,0 s )提供任何新的信息。例如,t x 可以包括t y 的滞后值,也可以包括与 ξ和 w (任意 )不相关的变量。 方程系统中方程(13.1)至方程(13.5)可以表示有限观测值的序列},,,{21T y y y ,这时需要状态向量初始值1ξ。假设1ξ与t v 和t w 的任何实现都不相关:

Kalman滤波算法

Kalman 滤波算法 姓名:刘金强 专业:控制理论与控制工程 学号:2007255 ◆实验目的: (1)、掌握klman 滤波实现的原理和方法 (2)、掌握状态向量预测公式的实现过程 (3)、了解Riccati 差分方程实现的过程和新息的基本性质和过程的计算 ◆实验要求: 问题: F=[a1,a2,a3],其中a1=[1.0 0 0]的转置,a2=[0.3 1.0 0]的转置,a3=[0.1 0.2 0.4]的转置,x(0)=[3,-1,2]的转置;C=[b1,b2,b3],其中b1=[0.3 0.5]的转置,b2=[1,0.4]的转置,b3=[0.8 -0.7]的转置;V1(n)=[0 0 n1(n)sin(0.1n)]的转置,V2(n)=[n2(n) n3(n)];n1(n)为均值为零,方差为1的均匀分布白噪声;n2(n),n3(n)为均值为0,方差为0.1的均匀分布白噪声,n1(n),n2(n),n3(n)相互独立,试用卡尔曼滤波器算法估计x^(n). ◆实验原理: 初始条件: 1?(1)x =E{x(1)} K(1,0)=E{[x(1)- (1)x ][x(1)- (1)H x ]},其中(1)x =E{x(1)} 输入观测向量过程: 观测向量序列={y(1),…………y(n)} 已知参数: 状态转移矩阵F(n+1,n) 观测矩阵C(n) 过程噪声向量的相关矩阵1()Q n 观测噪声向量的相关矩阵2()Q n 计算:n=1,2,3,………………. G(n)=F(n+1,n)K(n,n+1) ()H C n 12[()(,1)()()]H C n K n n C n Q n --+ Kalman 滤波器是一种线性的离散时间有限维系统。Kalman 滤波器的估计性能是:它使滤波后的状态估计误差的相关矩阵P(n)的迹最小化。这意味着,kalman 滤波器是状态向量x(n)的线性最小方差估计。 ◆实验结果: ◆程序代码: (1)主程序

卡尔曼滤波的原理说明(通俗易懂)

为了可以更加容易的理解卡尔曼滤波器,这里会应用形象的描述方法来讲解,而不是像大多数参考书那样罗列一大堆的数学公式和数学符号。但是,他的5条公式是其核心内容。结合现代的计算机,其实卡尔曼的程序相当的简单,只要你理解了他的那5条公式。 在介绍他的5条公式之前,先让我们来根据下面的例子一步一步的探索。 假设我们要研究的对象是一个房间的温度。根据你的经验判断,这个房间的温度是恒定的,也就是下一分钟的温度等于现在这一分钟的温度(假设我们用一分钟来做时间单位)。假设你对你的经验不是100%的相信,可能会有上下偏差几度。我们把这些偏差看成是高斯白噪声(White Gaussian Noise),也就是这些偏差跟前后时间是没有关系的而且符合高斯分配(Gaussian Distribution)。 另外,我们在房间里放一个温度计,但是这个温度计也不准确的,测量值会比实际值偏差。我们也把这些偏差看成是高斯白噪声。 好了,现在对于某一分钟我们有两个有关于该房间的温度值:你根据经验的预测值(系统的预测值)和温度计的值(测量值)。下面我们要用这两个值结合他们各自的噪声来估算出房间的实际温度值。 假如我们要估算k时刻的是实际温度值。 首先你要根据k-1时刻的温度值,来预测k时刻的温度。因为你相信温度是恒定的,所以你会得到k时刻的温度预测值是跟k-1时刻一样的,假设是23度,同时该值的高斯噪声的偏差是5度(5是这样得到的:如果k-1时刻估算出的最优温度值的偏差是3,你对自己预测的不确定度是4度,他们平方相加再开方,就是5)。 然后,你从温度计那里得到了k时刻的温度值,假设是25度,同时该值的偏差是4度。 由于我们用于估算k时刻的实际温度有两个温度值,分别是23度和25度。究竟实际温度是多少呢?相信自己还是相信温度计呢?究竟相信谁多一点,我们可以用他们的covariance 来判断。因为Kg^2=5^2/(5^2+4^2),所以Kg =0.78,我们可以估算出k时刻的实际温度值是:23+0.78*(25-23) =24.56度。可以看出,因为温度计的covariance比较小(比较相信温度计),所以估算出的最优温度值偏向温度计的值。 现在我们已经得到k时刻的最优温度值了,下一步就是要进入k+1时刻,进行新的最优估算。到现在为止,好像还没看到什么自回归的东西出现。对了,在进入k+1时刻之前,我们还要算出k时刻那个最优值(24.56度)的偏差。算法如下:((1-Kg)*5^2)^0.5 =2.35。这里的5就是上面的k时刻你预测的那个23度温度值的偏差,得出的2.35就是进入k+1时刻以后k时刻估算出的最优温度值的偏差(对应于上面的3)。 就是这样,卡尔曼滤波器就不断的把covariance递归,从而估算出最优的温度值。他运行的很快,而且它只保留了上一时刻的covariance。上面的Kg,就是卡尔曼增益(Kalman Gain)。他可以随不同的时刻而改变他自己的值,是不是很神奇! 下面就要言归正传,讨论真正工程系统上的卡尔曼。

两传感器分布式kalman滤波融合算法及其仿真研究

两传感器分布式kalman滤波融合算法及其仿真分析 摘要:讨论了基于两传感器kalman滤波的数据融合算法,对FAFSS算法机理进行了描述并融合算法进行了仿真,分析了融合结果。 关键字:kalman滤波;分布式传感器信息融合;分布式滤波数据融合算法 Abstract:In this paper six kinds of fusion algorithm based on two-translator using Kalman filter were discussed.According to the FAFSS fusion algorithm, the fusion tracks and square error were analysed through simulation. Key words:Kalman filtering;distribute-translator information fusion algorithm;fusionalgorithm of filtering step by step的最优融合算法,从结构上来看, 最优融合<位置融合级系统)算法主要有集中式、分布式、混合式和多级式。集中式结构因数据互联较困难,并且要求系统必须具备大容量的处理能力,计算负担重系统的生存能 力也相对较差等缺点。混合式体系结构是集中式和分布式两种形式的结合,这种结构比较复 杂一般用于大型融合系统。工程上多采用分布式结构,分布式滤波数据融合算法中是第i个传感器对目标状态的观测值,是测量

相关主题
文本预览
相关文档 最新文档