当前位置:文档之家› 高中数学同步讲义必修一——第三章 3.1 3.1.1 方程的根与函数的零点

高中数学同步讲义必修一——第三章 3.1 3.1.1 方程的根与函数的零点

高中数学同步讲义必修一——第三章 3.1 3.1.1 方程的根与函数的零点
高中数学同步讲义必修一——第三章 3.1 3.1.1 方程的根与函数的零点

§3.1函数与方程

3.1.1方程的根与函数的零点

学习目标

1.了解函数的零点、方程的根与图象交点三者之间的联系.

2.会借助零点存在性定理判断函数的零点所在的大致区间.

3.能借助函数单调性及图象判断零点个数.

知识点一函数的零点的概念

思考函数的“零点”是一个点吗?

答案不是,函数的“零点”是一个数,一个使f(x)=0的实数x.实际上是函数y=f(x)的图象与x轴交点的横坐标.

梳理对于函数y=f(x),我们把使f(x)=0的实数x叫做函数y=f(x)的零点.

方程、函数、图象之间的关系:

方程f(x)=0有实数根?函数y=f(x)的图象与x轴有交点?函数y=f(x)有零点.

知识点二零点存在性定理

如果函数y=f(x)在区间[a,b]上的图象是连续不断的一条曲线,并且有f(a)·f(b)<0,那么,函

数y=f(x)在区间(a,b)内有零点,即存在c∈(a,b),使得f(c)=0,这个c也就是方程f(x)=0的根.

1.f(x)=x2的零点是0.(√)

2.若f(a)·f(b)>0,则f(x)在[a,b]内无零点.(×)

3.若f(x)在[a,b]上为单调函数,且f(a)·f(b)<0,则f(x)在(a,b)内有且只有一个零点.(√) 4.若f(x)在(a,b)内有且只有一个零点,则f(a)·f(b)<0.(×)

类型一求函数的零点

例1函数f(x)=(lg x)2-lg x的零点为________.

考点函数零点的概念

题点求函数的零点

答案x=1或x=10

解析由(lg x)2-lg x=0,得lg x(lg x-1)=0,

∴lg x=0或lg x=1,∴x=1或x=10.

反思与感悟函数y=f(x)的零点就是方程f(x)=0的实数根,也就是函数y=f(x)的图象与x 轴交点的横坐标,所以函数的零点是一个数,而不是一个点.在写函数零点时,所写的一定是一个数字,而不是一个坐标.

跟踪训练1函数f(x)=(x2-1)(x+2)2(x2-2x-3)的零点个数是________.

考点函数零点的概念

题点求函数的零点

答案 4

解析f(x)=(x+1)(x-1)(x+2)2(x-3)(x+1)

=(x+1)2(x-1)(x+2)2(x-3).

可知零点为±1,-2,3,共4个.

类型二判断函数的零点所在的区间

例2根据表格中的数据,可以断定方程e x-(x+2)=0(e≈2.72)的一个根所在的区间是()

A.(-1,0) B.(0,1) C.(1,2) D.(2,3)

考点函数零点存在性定理

题点判断函数零点所在的区间

答案 C

解析令f(x)=e x-(x+2),则f(-1)=0.37-1<0,f(0)=1-2<0,f(1)=2.72-3<0,f(2)=7.40-4=3.40>0.由于f(1)·f(2)<0,∴方程e x-(x+2)=0的一个根在(1,2)内.

反思与感悟在函数图象连续的前提下,f(a)·f(b)<0,能判断在区间(a,b)内有零点,但不一定只有一个;而f(a)·f(b)>0,却不能判断在区间(a,b)内无零点.

跟踪训练2若函数f(x)=3x-7+ln x的零点位于区间(n,n+1)(n∈N)内,则n=________. 考点函数零点存在性定理

题点判断函数零点所在区间

答案 2

解析∵函数f(x)=3x-7+ln x在定义域上是增函数,

∴函数f(x)=3x-7+ln x在区间(n,n+1)上只有一个零点.

∵f(1)=3-7+ln 1=-4<0,f(2)=6-7+ln 2<0,f(3)=9-7+ln 3>0,

∴函数f(x)=3x-7+ln x的零点位于区间(2,3)内,

∴n=2.

类型三函数零点个数问题

命题角度1判断函数零点个数

例3求函数f(x)=2x+lg(x+1)-2的零点个数.

考点函数的零点与方程根的关系

题点判断函数零点的个数

解方法一∵f(0)=1+0-2=-1<0,f(1)=2+lg 2-2>0,∴f(x)在(0,1)上必定存在零点.又显然f(x)=2x+lg(x+1)-2在(-1,+∞)上为增函数.

故函数f(x)有且只有一个零点.

方法二在同一坐标系下作出h(x)=2-2x和g(x)=lg(x+1)的草图.

由图象知g(x)=lg(x+1)的图象和h(x)=2-2x的图象有且只有一个交点,即f(x)=2x+lg(x+1)-2有且只有一个零点.

反思与感悟判断函数零点个数的方法主要有:(1)可以利用零点存在性定理来确定零点的存在性,然后借助函数的单调性判断零点的个数.(2)利用函数图象交点的个数判定函数零点的个数.

跟踪训练3 求函数f (x )=ln x +2x -6零点的个数. 考点 函数的零点与方程根的关系 题点 判断函数零点的个数

解 方法一 由于f (2)=ln 2+4-6<0,f (3)=ln 3+6-6>0,即f (2)·f (3)<0,说明函数f (x )在区间(2,3)内有零点.又因为函数f (x )在定义域(0,+∞)内是增函数,所以它仅有一个零点. 方法二 通过作出函数y =ln x ,y =-2x +6的图象,观察两图象的交点个数得出结论.也就是将函数f (x )=ln x +2x -6的零点个数转化为函数y =ln x 与y =-2x +6的图象交点的个数.

由图象可知两函数有一个交点,即函数f (x )有一个零点. 命题角度2 根据零点情况求参数范围

例4 f (x )=2x ·(x -a )-1在(0,+∞)内有零点,则a 的取值范围是( ) A .(-∞,+∞) B .(-2,+∞) C .(0,+∞)

D .(-1,+∞)

考点 函数零点存在性定理 题点 函数零点有关的参数取值范围 答案 D

解析 由题意可得a =x -????12x (x >0).

令g (x )=x -????12x ,该函数在(0,+∞)上为增函数,可知g (x )的值域为(-1,+∞),故当a >-1时,f (x )在(0,+∞)内有零点.

反思与感悟 为了便于限制零点个数或零点所在区间,通常要对已知条件进行变形,变形的方向是:(1)化为常见的基本初等函数;(2)尽量使参数与变量分离,实在不能分离,也要使含参数的函数尽可能简单.

跟踪训练4 若函数f (x )=x 2+2mx +2m +1在区间(-1,0)和(1,2)内各有一个零点,则实数m 的取值范围是( )

A .(-∞,1-2]∪[1+2,+∞)

B .(-∞,1-2)∪(1+2,+∞) C.????-56

,-12

D.????-56

,-

12 考点 函数的零点与方程根的关系 题点 两根分别属于两区间 答案 D

解析 函数f (x )=x 2+2mx +2m +1的零点分别在区间(-1,0)和(1,2)内,

即函数f (x )=x

2+2mx +2m +1的图象与x 轴的交点一个在(-1,0)内,一个在(1,2)内,

根据图象列出不等式组?????

f (-1)=2>0,

f (0)=2m +1<0,f (1)=4m +2<0,

f (2)=6m +5>0,

解得???

m <-1

2,

m >-5

6

∴-56<m <-12

∴实数m 的取值范围是????-56

,-1

2.

1.函数y =ln x 的零点是( )

A .(0,0)

B .x =0

C .x =1

D .不存在 考点 函数零点的概念 题点 求函数的零点 答案 C

2.下列各图象表示的函数中没有零点的是( )

考点 函数零点的概念 题点 判断函数有无零点 答案 D

3.若函数f (x )的图象在R 上连续不断,且满足f (0)<0,f (1)>0,f (2)>0,则下列说法正确的是( )

A .f (x )在区间(0,1)上一定有零点,在区间(1,2)上一定没有零点

B .f (x )在区间(0,1)上一定没有零点,在区间(1,2)上一定有零点

C .f (x )在区间(0,1)上一定有零点,在区间(1,2)上可能有零点

D .f (x )在区间(0,1)上可能有零点,在区间(1,2)上一定有零点 考点 函数零点存在性定理 题点 判断函数在区间上是否有零点 答案 C

4.函数f (x )=x 3-????12x

的零点有______个. 考点 函数的零点与方程根的关系 题点 判断函数零点的个数 答案 1 5.若函数y =2

-|x |

-k 有零点,则实数k 的取值范围是________.

考点 函数零点存在性定理 题点 函数零点有关的参数取值范围 答案 (0,1]

解析 y =2-|x |-k 有零点,即k ∈y =2-|x |的值域. 而-|x |≤0,0<2-|x |≤20=1,∴y =2-|x |的值域为(0,1].

1.方程f (x )=g (x )的根是函数f (x )与g (x )的图象交点的横坐标,也是函数y =f (x )-g (x )的图象与x 轴交点的横坐标.

2.在函数零点存在性定理中,要注意三点:(1)函数是连续的;(2)定理不可逆;(3)至少存在一个零点.

3.解决函数的零点存在性问题常用的办法有三种:(1)用定理;(2)解方程;(3)用图象. 4.函数与方程有着密切的联系,有些方程问题可以转化为函数问题求解,同样,函数问题有时可以转化为方程问题,这正是函数与方程思想的基础.

一、选择题

1.下列图象表示的函数中没有零点的是( )

考点 函数零点的概念 题点 判断函数有无零点 答案 A

解析 B ,C ,D 的图象均与x 轴有交点,故函数均有零点,A 的图象与x 轴没有交点,故函数没有零点.

2.函数f (x )=ln x +x -1

x 的零点为( )

A .1 B.12 C .e D.1

e

考点 函数零点的概念 题点 求函数的零点 答案 A

解析 依次检验,使f (x )=0的即为零点.

3.已知函数f (x )在区间[a ,b ]上单调,且图象是连续不断的,若f (a )·f (b )<0,则方程f (x )=0在区间[a ,b ]上( ) A .至少有一实数根 B .至多有一实数根 C .没有实数根

D .必有唯一的实数根

考点 函数零点存在性定理 题点 判断函数在区间上是否有零点 答案 D

解析 由题意知函数f (x )为连续函数.∵f (a )·f (b )<0,∴函数f (x )在区间[a ,b ]上至少有一个

零点.又∵函数f (x )在区间[a ,b ]上是单调函数,∴函数f (x )在区间[a ,b ]上至多有一个零点.故函数f (x )在区间[a ,b ]上有且只有一个零点,即方程f (x )=0在区间[a ,b ]内必有唯一的实数根.故选D.

4.已知函数f (x )=6

x -log 2x ,在下列区间中,包含f (x )零点的区间是( )

A .(0,1)

B .(1,2)

C .(2,4)

D .(4,+∞) 考点 函数的零点与方程根的关系 题点 函数的零点与方程根的关系 答案 C

解析 由题意知,函数f (x )在(0,+∞)上为减函数.f (1)=6-0=6>0,f (2)=3-1=2>0,f (4)=64-log 24=32-2=-1

2<0.由零点存在性定理可知函数f (x )在区间(2,4)上必存在零点. 5.对于函数f (x )=x 2+mx +n ,若f (a )>0,f (b )>0,则函数f (x )在区间(a ,b )内( ) A .一定有零点 B .一定没有零点 C .可能有两个零点 D .至少有一个零点

考点 函数零点存在性定理 题点 判断函数在区间上是否有零点 答案 C

解析 若函数f (x )的图象及给定的区间(a ,b ),如图(1)或图(2)所示,可知A ,D 错,若如图(3)所示,可知B 错.

6.已知x 0是函数f (x )=2x +1

1-x

的一个零点.若x 1∈(1,x 0),x 2∈(x 0,+∞),则( ) A .f (x 1)<0,f (x 2)<0 B .f (x 1)<0,f (x 2)>0 C .f (x 1)>0,f (x 2)<0 D .f (x 1)>0,f (x 2)>0

考点 函数零点存在性定理 题点 函数零点与方程根的关系 答案 B

解析 方法一 由f (x )=0,得2x +

1

1-x

=0,

∴2x=

1

x-1

.

在同一直角坐标系中,作出函数y1=2x,y2=1

x-1

的图象(图略),观察图象可知,当x1∈(1,x0)时,y1

当x2∈(x0,+∞)时,y1>y2,

∴f(x1)<0,f(x2)>0.

方法二∵函数y=2x,y=

1

1-x

在(1,+∞)上均为增函数,∴函数f(x)在(1,+∞)上为增函

数,

∴由x1∈(1,x0),f(x0)=0,得f(x1)

由x2∈(x0,+∞),f(x0)=0,得f(x2)>f(x0)=0.

7.若函数f(x)在定义域{x|x∈R且x≠0}上是偶函数,且在(0,+∞)上是减函数,f(2)=0,则函数f(x)的零点有()

A.一个B.两个

C.至少两个D.无法判断

考点函数的零点与方程根的关系

题点判断函数零点的个数

答案 B

解析f(x)在(0,+∞)上是减函数,f(2)=0,

所以f(x)在(0,+∞)上有且仅有一个零点2.

又f(x)是偶函数,所以f(x)在(-∞,0)上有且仅有一个零点-2.

因此函数f(x)有两个零点-2与2.

8.函数f(x)=2x|log0.5x|-1的零点个数为()

A.1 B.2

C.3 D.4

考点函数的零点与方程根的关系

题点判断函数零点的个数

答案 B

解析 函数f (x )=2x |log 0.5x |-1的零点个数?方程|log 0.5x |=1

2x =????12x 的根的个数?函数y 1=

|log 0.5x |与y 2=????12x

的图象的交点个数.作出两个函数的图象如图所示,由图可知两个函数图象有两个交点,故选B. 二、填空题

9.若函数f (x )=mx -1在(0,1)内有零点,则实数m 的取值范围是________. 考点 函数零点存在性定理 题点 函数零点有关的参数取值范围 答案 m >1

解析 f (0)=-1,要使函数f (x )=mx -1在(0,1)内有零点,需f (1)=m -1>0,即m >1. 10.已知函数f (x )=ax 2+2ax +c (a ≠0)的一个零点为1,则它的另一个零点为________. 考点 函数零点的概念 题点 求函数的零点 答案 -3

解析 设函数f (x )的两个零点为x 1,x 2,根据函数解析式,由一元二次方程根与系数的关系,得x 1+x 2=-2a

a

=-2.又因为x 1=1,所以x 2=-3.

11.若函数f (x )=a x -x -a (a >0,且a ≠1)有两个零点,则实数a 的取值范围是__________. 考点 函数的零点与方程根的关系 题点 由函数零点个数求参数的取值范围 答案 (1,+∞)

解析 函数f (x )的零点的个数就是函数y =a x 与函数y =x +a 的图象的交点的个数,如图,当a >1时,两函数图象有两个交点;当01.

三、解答题

12.求函数f (x )=?

????

2-

x -4,x ≤0,

lg x ,x >0的零点.

考点 函数零点的概念 题点 求函数的零点

解 当x ≤0时,令2-x -4=0,得x =-2,满足要求;当x >0时,令lg x =0,得x =1,满足要求.所以函数f (x )的零点是-2,1.

13.已知y =f (x )是定义域为R 的奇函数,当x ∈[0,+∞)时,f (x )=x 2-2x . (1)写出函数y =f (x )的解析式;

(2)若方程f (x )=a 恰有3个不同的解,求a 的取值范围. 考点 函数的零点与方程根的关系 题点 由函数零点个数求参数的取值范围 解 (1)当x ∈(-∞,0)时,-x ∈(0,+∞), ∵y =f (x )是奇函数,

∴f (x )=-f (-x )=-[(-x )2-2(-x )]=-x 2-2x ,

∴f (x )=?

????

x 2-2x , x ≥0,

-x 2

-2x , x <0.

(2)当x ∈[0,+∞)时,f (x )=x 2-2x =(x -1)2-1,最小值为-1;当x ∈(-∞,0)时,f (x )=-x 2-2x =1-(x +1)2,最大值为1.

∴据此可作出函数y =f (x )的图象,如图所示,

根据图象得,若方程f (x )=a 恰有3个不同的解, 则a 的取值范围是(-1,1).

四、探究与拓展

14.若函数f (x )=3x 2-5x +a 的一个零点在区间(-2,0)内,另一个零点在区间(1,3)内,则实数a 的取值范围是________. 考点 函数的零点与方程根的关系

题点 两根分别属于两区间 答案 (-12,0)

解析 根据二次函数及其零点所在区间可画出大致图象,如图.

由图可知????? f (-2)>0,

f (0)<0,

f (1)<0,

f (3)>0,

即?????

12+10+a >0,

a <0,

3-5+a <0,27-15+a >0,

解得-12<a <0.

15.已知函数f (x )=|x -2|+1,g (x )=kx ,若方程f (x )=g (x )有两个不相等的实根,则实数k 的取值范围是________.

考点 函数的零点与方程根的关系 题点 由函数零点个数求参数的取值范围 答案 ?

???

12,1

解析 画出函数f (x )的图象,如图所示.若方程f (x )=g (x )有两个不相等的实根,则函数f (x ),g (x )的图象有两个交点,由图可知k >1

2

,且k <1.

【新教材】 新人教A版必修一 函数与方程 教案

2019-2020学年新人教A版必修一函数与方程教案 1.函数的零点 (1)函数零点的定义 对于函数y=f(x)(x∈D),把使f(x)=0的实数x叫做函数y=f(x)(x∈D)的零点.(2)三个等价关系 方程f(x)=0有实数根?函数y=f(x)的图象与x轴有交点?函数y=f(x)有零点.(3)函数零点的判定(零点存在性定理) 如果函数y=f(x)在区间[a,b]上的图象是连续不断的一条曲线,并且有f(a)·f(b)〈0,那么,函数y=f(x)在区间(a,b)内有零点,即存在c∈(a,b),使得f(c)=0,这个c也就是方程f(x)=0的根. 2.二次函数y=ax2+bx+c (a〉0)的图象与零点的关系 Δ>0Δ=0Δ〈0 二次函数y=ax2+bx +c(a〉0)的图象 与x轴的交点(x1,0),(x2,0)(x1,0)无交点 零点个数210 概念方法微思考 函数f(x)的图象连续不断,是否可得到函数f(x)只有一个零点? 提示不能. 题组一思考辨析 1.判断下列结论是否正确(请在括号中打“√”或“×”) (1)函数的零点就是函数的图象与x轴的交点.(×) (2)函数y=f(x)在区间(a,b)内有零点(函数图象连续不断),则f(a)·f(b)<0.(×) (3)二次函数y=ax2+bx+c(a≠0)在b2-4ac<0时没有零点.(√) (4)f(x)=x2,g(x)=2x,h(x)=log2x,当x∈(4,+∞)时,恒有h(x)〈f(x)

高一数学函数与方程知识点整理

高一数学函数与方程知识点整理在中国古代把数学叫算术,又称算学,最后才改为数学。数学分为两部分,一部分是几何,另一部分是代数。精品小编准备了高一语文函数与方程知识点,希望你喜欢。 1.设f(x)=x3+bx+c是[-1,1]上的增函数,且f(-12)f(12)0,则方程f(x)=0在[-1,1]内() A.可能有3个实数根 B.可能有2个实数根 C.有唯一的实数根 D.没有实数根 解析:由f -12f 120得f(x)在-12,12内有零点,又f(x)在[-1,1]上为增函数, f(x)在[-1,1]上只有一个零点,即方程f(x)=0在[-1,1]上有唯一的实根. 答案:C 2.(2019长沙模拟)已知函数f(x)的图象是连续不断的,x、f(x)的对应关系如下表: x123456 f(x)136.1315.552-3.9210.88-52.488-232.064 则函数f(x)存在零点的区间有 A.区间[1,2]和[2,3] B.区间[2,3]和[3,4] C.区间[2,3]、[3,4]和[4,5] D.区间[3,4]、[4,5]和[5,6]

解析:∵f(2)与f(3),f(3)与f(4),f(4)与f(5)异号, f(x)在区间[2,3],[3,4],[4,5]上都存在零点. 答案:C 3.若a1,设函数f(x)=ax+x-4的零点为m,g(x)=logax+x-4的零点为n,则1m+1n的取值范围是 A.(3.5,+) B.(1,+) C.(4,+) D.(4.5,+) 解析:令ax+x-4=0得ax=-x+4,令logax+x-4=0得logax=-x+4,在同一坐标系中画出函数y=ax,y=logax,y=-x+4的图象,结合图形可知,n+m为直线y=x与y=-x+4的交点的横坐标的2倍,由y=xy=-x+4,解得x=2,所以n+m=4,因为 (n+m)1n+1m=1+1+mn+nm4,又nm,故(n+m)1n+1m4,则 1n+1m1. 答案:B 4.(2019昌平模拟)已知函数f(x)=ln x,则函数g(x)=f(x)-f(x) 的零点所在的区间是 A.(0,1) B.(1,2) C.(2,3) D.(3,4) 解析:函数f(x)的导数为f(x)=1x,所以g(x)=f(x)-f(x)=ln x-1x.因为g(1)=ln 1-1=-10,g(2)=ln 2-120,所以函数g(x)=f(x)-f(x)的零点所在的区间为(1,2).故选B. 答案:B

方程的根与函数的零点

方程的根与函数的零点 教学重点:确定方程实数根的个数 教学难点:通过计算器或计算机做出函数的图象 教学方法:探讨法 教学过程: 引入问题 一元二次方程20(0)ax bx c a ++=≠的根与二次函数2 (0)y ax bx c a =++≠的图象有什么关系? 通过复习二者之间的关系引出新课(板书课题): 1.函数零点的定义: 对于函数()y f x =,我们把使()0f x =的实数x 叫做函数()y f x =的零点(zero point ).这样,函数()y f x =的零点就是方程()0f x =的实数根,也就是函数()y f x =的图象与x 轴的交点的横坐标,故有 2.一般结论 方程()0f x =有实数根?函数()y f x =的图象与x 轴有交点?函数()y f x =有零点 3.函数变号零点具有的性质 对于任意函数()y f x =,只要它的图象是连续不间断的,则有 (1)当它通过零点时(不是二重零点),函数值变号。如函数2()23f x x x =--的图象在零点1-的左边时,函数值取正号,当它通过第一个零点1-时,函数值由正变为负,再通过第二个零点3时,函数值又由负变成正(见教材第102页“探究”题)。 (2)在相邻两个零点之间所有的函数值保持同号。 4.注意点 (1)函数是否有零点是针对方程是否有实数根而言的,若方程没有实数根,则函数没有零点。 (2)如方程有二重实数根,可以称函数有二阶零点。 5.勘根定理 如果函数()y f x =在区间[,]a b 上的图象是连续不间断的一条曲线,并且有 ()()0f a f b ?<那么函数()y f x =在区间(,)a b 内有零点, 即存在(,)c a b ∈,使得()0f c =,这个c 也就是方程()0f x =的实数根。 例1.求函数()ln 26f x x x =+-的零点个数。 分析:求函数的零点个数实际上是判断方程有没有实数根,有几个实数根的方法,其步骤是:

高一数学必修一函数与方程知识梳理

高一数学必修一函数与方程知识梳理 函数的定义通常分为传统定义和近代定义,函数的两个定义本质是相同的,只是叙述概念的出发点不同,以下是函数与方程知识梳理,请大家学习。 1、函数零点的定义 (1)对于函数)(xfy,我们把方程0)(xf的实数根叫做函数)(xfy 的零点。 (2)方程0)(xf有实根函数()yfx的图像与x轴有交点函数()yfx 有零点。因此判断一个函数是否有零点,有几个零点,就是判断方程0)(xf是否有实数根,有几个实数根。函数零点的求法:解方程0)(xf,所得实数根就是()fx的零点(3)变号零点与不变号零点 ①若函数()fx在零点0x左右两侧的函数值异号,则称该零点为函数()fx的变号零点。②若函数()fx在零点0x左右两侧的函数值同号,则称该零点为函数()fx的不变号零点。 ③若函数()fx在区间,ab上的图像是一条连续的曲线,则 0)()(bfaf是()fx在区间,ab内有零点的充分不必要条件。 2、函数零点的判定 (1)零点存在性定理:如果函数)(xfy在区间],[ba上的图象是连续不断的曲线,并且有()()0fafb,那么,函数)(xfy在区间,ab 内有零点,即存在),(0bax,使得0)(0xf,这个0x也就是方程0)(xf的根。(2)函数)(xfy零点个数(或方程0)(xf实数根的个

数)确定方法 ①代数法:函数)(xfy的零点0)(xf的根; ②(几何法)对于不能用求根公式的方程,可以将它与函数)(xfy的图象联系起来,并利用函数的性质找出零点。(3)零点个数确定 0)(xfy有2个零点0)(xf有两个不等实根; 0)(xfy有1个零点0)(xf有两个相等实根; 0)(xfy无零点0)(xf无实根;对于二次函数在区间,ab上的零点个数,要结合图像进行确定. 3、二分法 (1)二分法的定义:对于在区间[,]ab上连续不断且()()0fafb的函数()yfx,通过不断地把函数()yfx的零点所在的区间一分为二,使区间的两个端点逐步逼近零点,进而得到零点的近似值的方法叫做二分法; (2)用二分法求方程的近似解的步骤: ①确定区间[,]ab,验证()()0fafb,给定精确度 ②求区间(,)ab的中点c; ③计算()fc; (ⅰ)若()0fc,则c就是函数的零点; (ⅱ) 若()()0fafc,则令bc(此时零点0(,)xac (ⅲ) 若()()0fcfb,则令ac(此时零点0(,)xcb 宋以后,京师所设小学馆和武学堂中的教师称谓皆称之为“教谕”。至元明清之县学一律循之不变。明朝入选翰林院的进士之师称“教习”。到清末,学堂兴起,各科教师仍沿用“教习”一称。其实“教谕”在明清时还有学官一意,即主管县一级的

高中数学 推理与证明 板块三 数学归纳法完整讲义(学生版).doc

学而思高中完整讲义:统计.板块一.随机抽样.学生版 题型一:数学归纳法基础 【例1】已知n 为正偶数,用数学归纳法证明1111111 12()234 124 2n n n n -+-+ +=+++ -++时,若已假设2(≥=k k n 为偶数)时命题为真,则还需要用归纳假设再证 ( ) A .1+=k n 时等式成立 B .2+=k n 时等式成立 C .22+=k n 时等式成立 D .)2(2+=k n 时等式成立 【例2】已知n 是正偶数,用数学归纳法证明时,若已假设n=k (2≥k 且为偶数)时命题 为真,,则还需证明( ) A.n=k+1时命题成立 B. n=k+2时命题成立 C. n=2k+2时命题成立 D. n=2(k+2)时命题成立 【例3】某个命题与正整数n 有关,如果当)(+∈=N k k n 时命题成立,那么可推得当 1+=k n 时命题也成立. 现已知当7=n 时该命题不成立,那么可推得 ( ) A .当n=6时该命题不成立 B .当n=6时该命题成立 C .当n=8时该命题不成立 D .当n=8时该命题成立 【例4】利用数学归纳法证明 “* ),12(312)()2)(1(N n n n n n n n ∈-???????=+???++ ”时,从“k n =”变到“1+=k n ”时,左边应增乘的因式是 ( ) A 12+k B 112++k k C 1)22)(12(+++k k k D 1 3 2++k k 【例5】用数学归纳法证明),1(1112 2 *+∈≠--= ++++N n a a a a a a n n ,在验证n=1时,左边计算所得的式子是( ) A. 1 B.a +1 C.2 1a a ++ D. 4 2 1a a a +++ 【例6】用数学归纳法证明n n n n n 2)()2)(1(=+++ ))(12(31*∈+????N n n ,从“k 到k+1”左端需乘的代数式是( ) 典例分析

高中数学同步讲义必修二——第一章 1.1 第1课时

§1.1空间几何体的结构 第1课时棱柱、棱锥、棱台的结构特征 学习目标 1.通过对实物模型的观察,归纳认知棱柱、棱锥、棱台的结构特征.2.理解棱柱、棱锥、棱台之间的关系.3.能运用棱柱、棱锥、棱台的结构特征描述现实生活中简单几何体的结构和有关计算. 知识点一空间几何体的定义、分类及相关概念 思考构成空间几何体的基本元素是什么?常见的几何体可以分成哪几类? 答案构成空间几何体的基本元素是:点、线、面.常见几何体可以分为多面体和旋转体.梳理 类别多面体旋转体 定义由若干个平面多边形围成的几何体由一个平面图形绕它所在平面内的一条定直线旋转所形成的封闭几何体 图形 相关概念面:围成多面体的各个多边形 棱:相邻两个面的公共边 顶点:棱与棱的公共点 轴:形成旋转体所绕的定直线

知识点二棱柱的结构特征 名称定义图形及表示相关概念分类 棱柱有两个面互相平 行,其余各面都是 四边形,并且每相 邻两个四边形的 公共边都互相平 行,由这些面所围 成的多面体叫做 棱柱 如图可记作:棱柱 ABCDEF— A′B′C′D′E′F′ 底面(底):两个互相平 行的面 侧面:其余各面 侧棱:相邻侧面的公共 边 顶点:侧面与底面的公 共顶点 按底面多 边形的边 数分:三 棱柱、四 棱 柱、…… 知识点三棱锥的结构特征 名称定义图形及表示相关概念分类 棱锥有一个面是多边 形,其余各面都 是有一个公共顶 点的三角形,由 这些面所围成的 多面体叫做棱锥 如图可记作:棱锥 S—ABCD 底面(底):多边形 面 侧面:有公共顶点 的各个三角形面 侧棱:相邻侧面的 公共边 顶点:各侧面的公 共顶点 按底面多边形的边 数分:三棱锥、四 棱锥、…… 知识点四棱台的结构特征及棱柱、棱锥、棱台之间的关系 1.棱台的结构特征 名称定义图形及表示相关概念分类 棱台用一个平行 于棱锥底面 的平面去截 棱锥,底面 与截面之间 的部分叫做 如图可记作:棱台 ABCD—A′B′C′D′ 上底面:平行于棱锥底 面的截面 下底面:原棱锥的底面 侧面:其余各面 侧棱:相邻侧面的公共 边 由三棱锥、四 棱锥、五棱 锥…… 截得的棱台 分别叫做三 棱台、四棱

高中数学--函数与方程

函数与方程 一、函数的零点概念 教材中具体的定义:对于函数)(x f y =,我们把使 0)(=x f 的实数x 叫做函数0)(=x f 的零点。 可以这样理解:① 函数)(x f y =的零点就是 方程0)(=x f 的实数根 ② 函数)(x f y =的零点就是 函数)(x f y =的图象与X 轴交点的横坐标 二、用二分法求方程的近似解 二分法 对于在区间[a ,b ]上连续不断且f (a )·f (b )<0的函数y =f (x ),通过不断地把函数f (x )的零点所在的区间一分为二使区间的两个端点逐步逼近零点,进而得到零点近似值的方法叫做二分法. 举例理解: 二次函数f (x )=x 2-2x -3的图象(如下图),函数f (x )=x 2-2x -3在区间[-2,1]上有零点. 计算f (-2)×f (1) (> 还是 < ) 0 在区间[2,4]的端点上,即f (2)·f (4)<0,函数f (x )=x 2-2x -3在(2,4)内有零点。

例1 下列函数中,不能用二分法求零点的是( ) 例2 下列函数图象与x 轴均有公共点,其中能用二分法求零点的是( ) 三、零点分类:不变号零点和变号零点 不变号零点 )(x f y ==函数2)(x x f =在下列区间是否存在零点?( ) (A )(-3,-1) (B )(-1,2) (C )(2,3) (D )(3,4) 变号零点 函数零点的存在性定理(仅适合变号零点):

应用:仅能判断零点的存在性,或者判断零点所在的区间命题方法判断零点的个数及所在的区间 典例(1)已知函数f(x)=6 x-log2 x,在下列区 间中,包含f(x)零点的区间是( ) A.(0,1) B.(1,2) C.(2,4) D.(4,+∞)(2)函数f(x)=2x- 2 x- a的一个零点在区间(1,2)内,则实数a的取值范围是( ) A.(1,3) B.(1,2) C.(0,3) D.(0,2) 【解题法总结】函数零点问题的解题方法 (1)判断函数在某个区间上是否存在零点的方法 ①解方程:当函数对应的方程易求解时,可通过解方程判断方程是否有根落在给定区间上. ②利用零点存在性定理进行判断. ③画出函数图象,通过观察图象与x轴在给定区间上是否有交点来判断. (2)判断函数零点个数的方法

方程的根与函数的零点题型及解析

方程的根与函数的零点 题型及解析 标准化管理部编码-[99968T-6889628-J68568-1689N]

方程的根与函数的零点题型及解析1.求下列函数的零点 (1)f(x)=x3+1;(2)f(x)=;(3)y=﹣x2+3x+4;(4)y=x2+4x+4. 分析:根据函数零点的定义解f(x)=0,即可得到结论. 解:(1)由f(x)=x3+1=0得x=﹣1,即函数的零点为﹣1;(2)由f(x)==0 得x2+2x+1=0得(x+1)2=0,得x=﹣1,即函数的零点为﹣1.(3)由y=﹣x2+3x+4=0,可得(x﹣4)(x+1)=0,所以函数的零点为4,﹣1;(4)y=x2+4x+4,可得(x+2)2=0,所以函数的零点为﹣2. 2.①求函数f(x)=2x+x﹣3的零点的个数;②求函数f(x)=log 2 x﹣x+2的零点的个数;③求函数的零点个数是多少? 分析:①由题意可判断f(x)是定义域上的增函数,从而求零点的个数;②由题意可 得,函数y=log 2 x 的图象和直线y=x﹣2的交点个数,数形结合可得结论.③由函数 y=lnx 的图象与函数y=的图 象只有一个交点,可得函数f(x)=lnx-(1/x)的零点个数. 解:①∵函数f(x)=2x+x﹣3单调递增,又∵f(1)=0,故函数f(x)=2x+x﹣3 有且只有一个零点 ②函数f(x)=log 2x﹣x+2的零点的个数,即函数y=log 2 x 的图象和直线y=x﹣2 的交点个数,如图所示:故函数y=log 2 x 的图象(红色部分)和直线y=x﹣2(蓝 色部分)的交点个数为2,即函数f(x)=log 2 x﹣x+2的零点的个数为2;③函数 f(x)=lnx-(1/x)的零点个数就是函数y=lnx的图象与函数y=1/x的图象 的 交点的个数,由函数y=lnx 的图象与函数y=1/x的图象只有一个交点,如图 所示, 可得函数f(x)=lnx-(1/x)的零点个数是1 3.①已知方程x2﹣3x+a=0在区间(2,3)内有一个零点,求实数a的取值范围 ②已知a是实数,函数f(x)=﹣x2+ax﹣3在区间(0,1)与(2,4)上各有一个 零点,求a的取值. ③已知函数f(x)=x2﹣2ax+4在区间(1,2)上有且只有一个零点,求a的取值范围 分析:①由已知,函数f(x)在区间(2,3)内有一个零点,它的对称轴为x=3/2,得出不等式组,解出即可; ②若函数f(x)=﹣x2+ax﹣3在区间(0,1)与(2,4)上各有一个零点,则f(0)<0,f(1)>0,f(2)>0,f(4)<0,解得答案;③若函数f(x)=x2﹣2ax+4只有一个零点,则△=0,经检验不符合条件;则函数f(x)=x2﹣2ax+4有两个零点,进而f (1)f(2)<0,解得答案 解:①若函数f(x)=﹣x2+ax﹣3在区间(0,1)与(2,4)上各有一个零点,则f (0)<0,f(1)>0,f(2)>0,f(4)<0,即-3<0,a-4>0,2a-7>0,4a-19<0,解得:a∈(4,19/4);②∵令f(x)=x2﹣3x+a,它的对称轴为x=3/2,∴函数f (x)在区间(2,3)单调递增,∵方程x2﹣3x+a=0在区间(2,3)内有一个零点,∴函数f(x)在区间(2,3)内与x轴有一个交点,根据零点存在性定理得出:f(2)<0,f(3)>0,即a-2<0,9-9+a>0,解得0<a<2;③解:若函数f(x)=x2﹣2ax+4只有

高一数学必修一公式

高一数学必修一公式 必修一 一、集合 一、集合有关概念 1.集合的含义 2.集合的中元素的三个特性: (1)元素的确定性如:世界上最高的山 (2)元素的互异性如:由HAPPY的字母组成的集合{H,A,P,Y} (3)元素的无序性: 如:{a,b,c}和{a,c,b}是表示同一个集 合 3.集合的表示:{ … } 如:{我校的篮球队员},{太平洋, 大西洋,印度洋,北冰洋} (1)用拉丁字母表示集合:A={我校的篮球队 员},B={1,2,3,4,5} (2)集合的表示方法:列举法与描述法。 注意:常用数集及其记法: 非负整数集(即自然数集)记作:N 正整数集 N*或 N+ 整数集Z 有理数集Q 实数集R 1)列举法:{a,b,c……} 2)描述法:将集合中的元素的公共属性描述出来,写在大括号内表示集合的方法。{x∈R| x-3>2} ,{x| x-3>2} 3)语言描述法:例:{不是直角三角形的三角形} 4)Venn图: 4、集合的分类: (1)有限集含有有限个元素的集合 (2)无限集含有无限个元素的集合 (3)空集不含任何元素的集合例:{x|x2=-5} 二、集合间的基本关系 1.“包含”关系—子集 注意:B A?有两种可能(1)A是B的一部分,;(2)A与 B是同一集合。 反之: 集合A不包含于集合B,或集合B不包含集合A,记作A?/B或B?/A 2.“相等”关系:A=B (5≥5,且5≤5,则5=5) 实例:设 A={x|x2-1=0} B={-1,1} “元素相同则两集合相等” 即:①任何一个集合是它本身的子集。A?A ②真子集:如果A?B,且A≠B那就说集合A是集合B的真子 集,记作A B(或B A) ③如果 A?B, B?C ,那么 A?C ④如果A?B 同时 B?A 那么A=B

高一数学讲义完整版

高一数学复习讲义09年版 函数部分(1) 重点:1把握函数基本知识(定义域、值域) x(a>0、<0) 主要是指数函数y=a x(a>0、<0),对数函数y=log a 2二次函数(重点)基本概念(思维方式)对称轴、 开口方向、判别式 考点1:单调函数的考查 2:函数的最值 3:函数恒成立问题一般函数恒成立问题(重点讲) 4:个数问题(结合函数图象) 3反函数(原函数与对应反函数的关系)特殊值的取舍 4单调函数的证明(注意一般解法) 简易逻辑(较容易) 1. 2. 3. 4.

启示:对此部分重点把握第3题、第4题的解法(与集合的关系) 问题1:恒成立问题解法及题型总结(必考) 一般有5类:1、一次函数型:形如:给定一次函数y=f(x)=ax+b(a≠0),若y=f(x)在[m, n]内恒有f(x)>0(<0) 练习:对于满足0-4x+p-3恒成立的x的取值范围 2、二次函数型:若二次函数y=ax2+bx+c=0(a≠0)大于0恒成立,则有a>0Δ<0若是二次函数在指定区间上的恒成立问题,还可以利用韦达定理以及根与系数的分布知识求解 练习:1设f(x)=x2-2ax+2,当x∈[-1, +∞)时,都有f(x)>a恒成立, a的取值范围 2关于x的方程9x+(4+a)3x+4=0恒有解,求a的范围。 3、变量分离型 若在等式或不等式中出现两个变量,其中一个变量的范围已知,另一个变量的范围为所求,且容易通过恒等变形将两个变量分别置于等号或不等号的两边,则可将恒成立问题转化成函数的最值问题求解 练习:若1-ax>1/(1+x),当对于x∈[0, 1]恒成立,求实数a的取值范围。 4利用图象 练习:当x∈(1, 2)时,不等式(x-1)2

高中数学函数与方程知识点总结、经典例题及解析、高考真题及答案

高中数学函数与方程知识点总结、经典例题及解析、高考真题及答案 -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

函数与方程 【知识梳理】 1、函数零点的定义 (1)对于函数)(x f y =,我们把方程0)(=x f 的实数根叫做函数)(x f y =的零点。 (2)方程0)(=x f 有实根?函数()y f x =的图像与x 轴有交点?函数()y f x =有零点。因此判断一个函数是否有零点,有几个零点,就是判断方程0)(=x f 是否有实数根,有几个实数根。函数零点的求法:解方程0)(=x f ,所得实数根就是()f x 的零点 (3)变号零点与不变号零点 ①若函数()f x 在零点0x 左右两侧的函数值异号,则称该零点为函数()f x 的变号零点。 ②若函数()f x 在零点0x 左右两侧的函数值同号,则称该零点为函数()f x 的不变号零点。 ③若函数()f x 在区间[],a b 上的图像是一条连续的曲线,则0)()(?)(x f y =有2个零点?0)(=x f 有两个不等实根; 0?=?)(x f y =有1个零点?0)(=x f 有两个相等实根; 0?

方程的根与函数的零点练习答案

方程的根与函数零点综合练习题答案 一、选择题 1.下列函数中在区间[1,2]上有零点的是( ) A .f (x )=3x 2-4x +5 B .f (x )=x 3-5x -5 C .f (x )=ln x -3x +6 D .f (x )=e x +3x -6 2.设函数f (x )=1 3 x -lnx (x >0)则y =f (x )( ) A .在区间????1e ,1,(1,e )内均有零点 B .在区间??? ?1 e ,1, (1,e )内均无零点 C .在区间????1e ,1内有零点;在区间(1,e )内无零点D .在区间????1 e ,1内无零点,在区间(1,e )内有零点 3.函数f (x )=e x +x -2的零点所在的一个区间是( ) A .(-2,-1) B .(-1,0) C .(0,1) D .(1,2) 4.函数y =3 x -1x 2的一个零点是( ) A .-1 B .1 C .(-1,0) D .(1,0) 5.若函数f (x )是奇函数,且有三个零点x 1、x 2、x 3,则x 1+x 2+x 3的值为( ) A .-1 B .0 C .3 D .不确定 6.已知f (x )=-x -x 3,x ∈[a ,b ],且f (a )·f (b )<0,则f (x )=0在[a ,b ]内( ) A .至少有一实数根 B .至多有一实数根 C .没有实数根 D .有惟一实数根 7.若函数)(x f y =在区间[a ,b ]上的图象为连续不断的一条曲线,则下列说法正确的是( ) A .若0)()(>b f a f ,不存在实数),(b a c ∈使得0)(=c f ; B .若0)()(b f a f ,有可能存在实数),(b a c ∈使得0)(=c f ; D .若0)()(0,f (2)<0,则f (x )在(1,2)上零点的个数为( ) A .至多有一个 B .有一个或两个 C .有且仅有一个 D .一个也没有 9.函数f (x )=2x -log 12 x 的零点所在的区间为( ) A.??? ?0,1 4 B.????14,12 C.??? ?1 2,1 D .(1,2) 10.根据表格中的数据,可以判定方程e x -x -2=0的一个根所在的区间为( ) A.(-1,0) B 11.若函数f (x )=ax +b 的零点是2,则函数g (x )=bx 2-ax 的零点是( )

高中数学完整讲义——复数

题型一:复数的概念 【例1】若复数()()2321a a a i -++-是纯虚数,则实数a 的值为( ) A.1?? B .2???C.1或2?? D .1- 【例2】若复数为纯虚数,则实数的值为( ) A . B. C. D .或 【例3】已知02a <<,复数z 的实部为a ,虚部为1,则z 的取值范围是( ) A.()15,? B .()13,??C.() 15, D.() 13, 【例4】若复数(2)i bi ?+是纯虚数,则实数b = . 【例5】设1z 是复数,211z z iz =-(其中1z 表示1z 的共轭复数),已知2z 的实部是1-,则2z 的虚部 为 . 【例6】复数3 2 1i +=( ) A.12i + ? ?B.12i - ???C .1- ? D.3 【例7】计算:0!1!2!100!i +i +i + +i = (i 表示虚数单位) 2 (1)(1)z x x i =-+-x 1-011-1典例分析 复数

【例8】设22(253)(22)i z t t t t =+-+-+,t ∈R ,则下列命题中一定正确的是( ) A .z 的对应点Z 在第一象限 B.z 的对应点Z 在第四象限 C.z 不是纯虚数 D .z 是虚数 【例9】在下列命题中,正确命题的个数为( ) ①两个复数不能比较大小; ①若22(1)(32)i x x x -+++是纯虚数,则实数1x =±; ①z 是虚数的一个充要条件是z z +∈R ; ①若a b ,是两个相等的实数,则()()i a b a b -++是纯虚数; ①z ∈R 的一个充要条件是z z =. ①1z =的充要条件是1 z z =. A .1 B.2? C .3? D.4 题型二:复数的几何意义 【例10】复数i i z -+=1)2(2 (i 是虚数单位)在复平面上对应的点位于( ) A .第一象限? B.第二象限 ?C.第三象限 D.第四象限 【例11】复数13i z =+,21i z =-,则复数 1 2 z z 在复平面内对应的点位于( ) A .第一象限? B .第二象限 C.第三象限?? D .第四象限 【例12】在复平面内,复数2009 2 1i (1i)+-对应的点位于( ) A .第一象限 ? B .第二象限 C .第三象限 D .第四象限 【例13】在复平面内,复数sin2cos2z i =+对应的点位于( ) A .第一象限?? B.第二象限?? C.第三象限? ?D .第四象限

2020届高中数学分册同步讲义(必修4) 第3章 微专题突破五

微专题突破五 应对三角恒等变换的几个小技巧 三角函数题是高考的热点,素以“小而活”著称.除了掌握基础知识之外,还要注意灵活运用几个常用的技巧.下面通过例题进行解析,希望对同学们有所帮助. 一、灵活降幂 例1 3-sin 70°2-cos 210° =________. 考点 利用简单的三角恒等变换化简求值 题点 利用降幂公式化简求值 答案 2 解析 3-sin 70°2-cos 210°=3-sin 70°2-1+cos 20°2=3-cos 20°3-cos 20°2 =2. 点评 常用的降幂技巧还有:因式分解降幂、用平方关系sin 2θ+cos 2θ=1进行降幂:如cos 4θ +sin 4θ=(cos 2θ+sin 2θ)2-2cos 2θsin 2θ=1-12 sin 22θ等. 二、化平方式 例2 化简求值: 12-12 12+12 cos 2α????α∈????3π2,2π. 考点 利用简单的三角恒等变换化简求值 题点 利用半角公式化简求值 解 因为α∈????3π2,2π,所以α2∈????3π4,π,所以cos α>0,sin α2 >0, 故原式=12-12 1+cos 2α2=12-12cos α=sin 2α2=sin α2 . 点评 一般地,在化简求值时,遇到1+cos 2α,1-cos 2α,1+sin 2α,1-sin 2α常常化为平方式:2cos 2α,2sin 2α,(sin α+cos α)2,(sin α-cos α)2. 三、灵活变角 例3 已知sin ????π6-α=13,则cos ??? ?2π3+2α=________. 考点 利用简单的三角恒等变换化简求值 题点 综合运用三角恒等变换公式化简求值 答案 -79

高中数学函数与方程知识点总结 经典例题及解析 高考真题及答案

函数与方程 【知识梳理】 1、函数零点的定义 (1)对于函数)(x f y =,我们把方程0)(=x f 的实数根叫做函数)(x f y =的零点。 (2)方程0)(=x f 有实根?函数()y f x =的图像与x 轴有交点?函数()y f x =有零点。因此判断一个函数是否有零点,有几个零点,就是判断方程0)(=x f 是否有实数根,有几个实数根。函数零点的求法:解方程0)(=x f ,所得实数根就是()f x 的零点 (3)变号零点与不变号零点 ①若函数()f x 在零点0x 左右两侧的函数值异号,则称该零点为函数()f x 的变号零点。 ②若函数()f x 在零点0x 左右两侧的函数值同号,则称该零点为函数()f x 的不变号零点。 ③若函数()f x 在区间[],a b 上的图像是一条连续的曲线,则0)()(?)(x f y =有2个零点?0)(=x f 有两个不等实根; 0?=?)(x f y =有 1个零点?0)(=x f 有两个相等实根; 0?

方程的根与函数的零点教案(新)

《方程的根与函数的零点》教案 一、课题:方程的根与函数的零点 二、课型:新授课 三、课时安排:1课时 四、教学目标:以一元二次函数的图象与对应的一元二次方程的 关系为突破口, 探究方程的根与函数的零点的关系式.发现并掌握在某区间上图象连续的函数存在零点的判定方法,探究过程中体验发现乐趣,体会数形结合的数学思想,从特殊到一般的归纳思想,培养学生分析问题、解决问题的能力. 五、教学重点:函数零点的概念与函数零点存在性. 六、教学难点:探究函数零点存在性. 七、教学内容分析: 函数与方程是中学数学的重要内容,既是 初等数学的 基础,又是初等数学与高等数学的连接纽带,也是中学数学四大数学思想之一,因此函数与方程便自然地成为了高考考查的焦点,在整个高中数学中占有非常重要的地位. 八、教学方法:启发诱导式. 九、教学工具:黑板与多媒体. 十、教学步骤: 1.导入新课 解方程比赛: (学生口答) (逐层加深) (无法解) 2.引入课题 以下一元二次方程的实数根与相应的二次函数的图像有什么关系? (1) (2) (3) 通过一元二次方程的实数根与相应的二次函数的图像可得出结论:一元二次方程的实数根就是与之相应的一元二次函数的图像与X 轴的交点的横坐标. 从而引出函数零点的概念:对于函数y=f(x), 使f(x)=0的实数x 叫做函数 y=f(x)的零点. 注意:(1)“零点”不是一个点; (2)函数零点的意义:就是一元二次方程的实数根,亦是一元二 (3)等价关系:方程y=f(x)的图象与x 函数y=f(x)有零点. 通过上面的关系式的探讨,求函数零点主要方法有:(1)定义法(求方程的实数根);(2)图象法(利用函数图象确定). ()1320 x +=求下列方程的根: 032)2(2 =--x x 0 2)3(3=-+x x (4)ln 260 x x +-=0 322=--x x 322--=x x y 0122=+-x x 122+-=x x y 0322=+-x x 322+-=x x y

高中数学完整讲义——复数

高中数学讲义 题型一:复数的概念 【例1】若复数()()2321a a a i -++-是纯虚数,则实数a 的值为( ) A .1 B .2 C .1或2 D .1- 【例2】若复数为纯虚数,则实数的值为( ) A . B . C . D .或 【例3】已知02a <<,复数z 的实部为a ,虚部为1,则z 的取值范围是( ) A .()15, B .()13, C .(1 D .(1 【例4】若复数(2)i bi ?+是纯虚数,则实数b = . 【例5】设1z 是复数,211z z iz =-(其中1z 表示1z 的共轭复数),已知2z 的实部是1-,则2z 的虚部 为 . 【例6】复数3 2 1i +=( ) A .12i + B .12i - C .1- D .3 【例7】计算:0!1!2! 100!i +i +i + +i = (i 表示虚数单位) 2(1)(1)z x x i =-+-x 1-011-1典例分析 复数

高中数学讲义 【例8】设22(253)(22)i z t t t t =+-+-+,t ∈R ,则下列命题中一定正确的是( ) A .z 的对应点Z 在第一象限 B .z 的对应点Z 在第四象限 C .z 不是纯虚数 D .z 是虚数 【例9】在下列命题中,正确命题的个数为( ) ①两个复数不能比较大小; ②若22(1)(32)i x x x -+++是纯虚数,则实数1x =±; ③z 是虚数的一个充要条件是z z +∈R ; ④若a b , 是两个相等的实数,则()()i a b a b -++是纯虚数; ⑤z ∈R 的一个充要条件是z z =. ⑥1z =的充要条件是1 z z =. A .1 B .2 C .3 D .4 题型二:复数的几何意义 【例10】复数i i z -+=1)2(2 (i 是虚数单位)在复平面上对应的点位于( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限 【例11】复数13i z =+,21i z =-,则复数 1 2 z z 在复平面内对应的点位于( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限 【例12】在复平面内,复数2009 2 1i (1i)+-对应的点位于( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限 【例13】在复平面内,复数sin 2cos 2z i =+对应的点位于( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限

高中数学同步练习讲义(必修4全部视频)

江西省南昌市2015-2016学年度第一学期期末试卷 (江西师大附中使用)高三理科数学分析 一、整体解读 试卷紧扣教材和考试说明,从考生熟悉的基础知识入手,多角度、多层次地考查了学生的数学理性思维能力及对数学本质的理解能力,立足基础,先易后难,难易适中,强调应用,不偏不怪,达到了“考基础、考能力、考素质”的目标。试卷所涉及的知识内容都在考试大纲的范围内,几乎覆盖了高中所学知识的全部重要内容,体现了“重点知识重点考查”的原则。 1.回归教材,注重基础 试卷遵循了考查基础知识为主体的原则,尤其是考试说明中的大部分知识点均有涉及,其中应用题与抗战胜利70周年为背景,把爱国主义教育渗透到试题当中,使学生感受到了数学的育才价值,所有这些题目的设计都回归教材和中学教学实际,操作性强。 2.适当设置题目难度与区分度 选择题第12题和填空题第16题以及解答题的第21题,都是综合性问题,难度较大,学生不仅要有较强的分析问题和解决问题的能力,以及扎实深厚的数学基本功,而且还要掌握必须的数学思想与方法,否则在有限的时间内,很难完成。 3.布局合理,考查全面,着重数学方法和数学思想的考察 在选择题,填空题,解答题和三选一问题中,试卷均对高中数学中的重点内容进行了反复考查。包括函数,三角函数,数列、立体几何、概率统计、解析几何、导数等几大版块问题。这些问题都是以知识为载体,立意于能力,让数学思想方法和数学思维方式贯穿于整个试题的解答过程之中。 二、亮点试题分析 1.【试卷原题】11.已知,,A B C 是单位圆上互不相同的三点,且满足AB AC → → =,则A BA C →→ ?的最小值为( ) A .1 4- B .12- C .34- D .1-

《方程的根与函数的零点》测试题

《3.1.1 方程的根与函数的零点》测试题 一、选择题 1.(2012天津)函数在区间(0,1)内的零点个数是( ). A.0 B.1 C.2 D.3 考查目的:考查函数零点的概念与零点存在性定理的应用. 答案:B. 解析:∵函数在区间(0,1)上连续且单调递增,又∵,,∴根据零点存在性定理可知,在区间内函数零点的个数有1个,答案选B. 2.(2010浙江)已知是函数的一个零点.若,,则( ). A. B. C. D. 考查目的:考查函数零点的概念、函数的性质和数形结合思想. 答案:B. 解析:(方法1)由得,∴.在同一直角坐标系中,作出函数,的图象,观察图象可知,当时,;当时,,∴,. (方法2)∵函数、在上均为增函数,∴函数在上为增函数,∴由,得,由,得. 3.若是方程的解,则属于区间( ).

A. B. C. D. 考查目的:考查函数零点的存在性定理. 答案:D. 解析:构造函数,由,知,属于区间(1.75,2). 二、填空题 4.若函数的零点位于区间内,则 . 考查目的:考查函数零点的存在性定理. 答案:2. 解析:∵函数在定义域上是增函数,∴函数在区间上只有一个零点. ∵,,,∴函数的零点位于区间内,∴. 5.若函数在区间(-2,0)与(1,2)内各有一个零点,则实数的取值范围. 考查目的:考查函数零点的概念,函数零点的存在性定理和数形结合思想. 答案:. 解析:由题意画出函数的草图,易得,即,解得. 6.已知函数,设函数有两个不同的零点,则实数 的取值范围是. 考查目的:考查函数零点的概念、函数与方程的关系和数形结合思想. 答案:.

解析:函数有两个不同的零点,即方程有两个不同的实数根,画出函数图象与直线,观察图象可得满足题意的实数的取值范围是. 三、解答题 7.利用函数图象判断下列方程有没有根,有几个根? ⑴; ⑵. 考查目的:考查方程有实数根等价于函数的图象与轴交点的情况. 解析:⑴方程可化为,作出函数的图象,与轴有两个交点,故原方程有两个实数根; ⑵方程可化为,作出函数的图象,开口向上,顶点坐标为,与轴没有交点,故原方程没有实数根. 8.求出下列函数零点所在的区间. ⑴;⑵. 考查目的:考查函数零点的存在性定理. 解析:⑴∵函数的定义域为,且在定义域上单调递增,在 上最多只有一个零点.又∵,, ,∴函数的零点所在的区间为. ⑵∵函数的定义域为R,且在定义域上单调递减,∴函数在R上最多只有一个零点,又∵,,,∴函数零点所在的区间为.

文本预览
相关文档 最新文档