当前位置:文档之家› 从光子气体微观模型计算光子平均波长-黄鹏辉

从光子气体微观模型计算光子平均波长-黄鹏辉

从光子气体微观模型计算光子平均波长-黄鹏辉
从光子气体微观模型计算光子平均波长-黄鹏辉

目 录

从光子气体微观模型计算光子平均波长[1] (1)

1 摘要 (1)

2 光子气体是一种理想气体 (1)

3 光子气体压强的微观解释 (1)

4 光子气体温度的微观解释 (4)

5 光子平均波长λ与温度的关系 (4)

6 讨 论 (4)

从光子气体微观模型计算光子平均波长[1]

黄鹏辉中国北京

QQ及邮箱644537151@https://www.doczj.com/doc/453667193.html,, QQ群69657010

1 摘要

根据经典理想气体的定义,本文把宇宙背景辐射看成一种理想的光子气体模型并推导其平均波长,得到的结果与从普朗克黑体辐射公式所推导的结果非常接近,然而却有一个不容忽视的系数差别。这一方面表明光子气体模型有其合理性,另一方面也表明现有经典理想气体计算模型仍有较大误差,可能需要从数学上进行修改和完善。

2 光子气体是一种理想气体

类比于经典理想气体理论,宇宙背景辐射可以看成一种光子气体,而且根据经典理想气体的定义,光子气体也是一种理想气体。基于光子气体模型,我们做如下假设[1, 2, 3]:

1) 光子气体单位体积中的光子数目巨大,这是统计规律发生作用的条件。

2) 单个光子遵守狭义相对论,即光速不变。

3) 在整体上,巨大数量的光子都是做无规则的随机运动。

4) 光子之间的距离要比光子本身的尺寸大得多。即光子本身的尺寸可以忽略不计。

5) 光子之间、以及光子与容器壁之间都是完全弹性碰撞。在平衡态时,假设光子与容器壁发生碰撞后能量不发生改变。

6) 光子只在弹性碰撞瞬间才产生接触相互作用力。无碰撞则无相互作用力。

7) 光子气体被看成是一种纯净物质,也就是说,所有的光子都是相同的。

3 光子气体压强的微观解释

对于光子气体理论的第一个应用,我们根据微观模型来推导在一个边长为d 、体积为V=d3的立方体容器中包含N个光子所产生的光子气体压强公式。如图.1所示。

假设我们考察其中的第i个光子,这个光子的质量为m = hf/c2,光子的速度始终为c(假设2),那么如图1所示,这个光子沿X轴方向的速度分量为c xi 。这个光子碰到容器壁后,将做弹性碰撞而被反射(假设5),如图2所示。

因为容器壁的质量远大于光子质量,光子被反射后,沿X轴方向的速度分量变成 -c xi 。

反射前,光子沿X 轴方向的动量为P xi = mc xi = hfc xi /c 2 ,反射后,光子动量变成 -P xi = -mc xi = -hfc xi /c 2 。这样,光子沿X 轴方向的动量变化就是

ΔP xi = -hfc xi /c 2 - (hfc xi /c 2) = -2hfc xi /c 2

(1)

图.1 立方体容器和第i 个光子图.2 第i 个光子与立方体容器壁做弹性碰撞 对这个光子应用冲量定理,可以给出 [1]

xi, 光子t Δ碰撞=ΔP xi = -2hfc xi /c 2 (2) 其中xi, F 光子是作用在光子上的、沿X 轴方向的、垂直于容器壁的平均力的分量,是碰撞持续的时间间隔。

t Δ碰撞我们也可以定义两次碰撞之间的时间间隔:这个光子要与同一个容器壁做下一次碰撞,它就必须要在X 轴方向走过2d 距离(穿过容器然后返回),两次与同一个容器壁碰撞之间的时间间隔为Δt ,因此

Δt = 2d / c xi (3)

与容器壁碰撞引起动量改变的作用力其实只发生在碰撞瞬间(假设6)。然而,我们可以用光子两次碰撞之间的时间间隔Δt (穿过立方体容器并返回)来计算平均力的大小。在这个时间间隔内的某个时候,发生了碰撞,碰撞持续的时间间隔为t Δ碰撞,显然,Δt >。但在较长时间间隔Δt 内的动量改变,与发生碰撞瞬间t Δ碰撞t Δ碰撞内的动量改变却是相同的。因此,我们可以把冲量定理写成

xi F Δt = -2hfc xi /c 2 (4) 注意,这里F xi 是光子穿过立方体容器然后返回这段时间间隔Δt 内的平均力的分量,与(2)式中的xi, F 光子有所区别:F xi 对应着时间间隔Δt ,而xi, F 光子对应着时间间隔。因为在每一个时间间隔Δt 中正好只发生一次碰撞,所以我们可以做这种平均处理。

t Δ碰撞由(3)式和(4)式就能够得到容器壁作用在第i 个光子上的平均力的分量

xi = t c / 2hfc -2xi Δ = 2xi xi

-2hfc / c 2d/c = 22

xi dc hfc - (5) 根据牛顿第三定律,第i 个光子作用在容器壁上的力与xi F 应该大小相等、方向相反

xi, F 壁 = -xi F = 22xi dc

hfc (6) 这是单个光子对容器壁的平均力,要得到光子气体作用在容器壁上总的平均力F x ,可以对所有光子作用在容器壁上的平均力求和,也就是把(6)式对所有的光子求和

F x = ∑=N 1i 22

xi dc hfc = ∑=N 1i 2xi 2c

dc f h (7)

我们把其中的普朗克常数、光子的平均频率、立方体容器的边长以及光速作为公因数提出来了,因为前面的假设7已经说明了所有的光子都是相同的。注意,提出来的光子频率必须是平均频率,因为对每个光子而言,其频率并不相同。

现在我们来考虑假设1,即单位体积中的光子数目巨大。对于小数目的光子,实际作用在容器壁上的力可能是会随着时间而改变的:当有光子碰撞容器壁时,实际作用力就不是0;当没有光子碰撞容器壁时,实际作用力就是0。

然而,对于很大数目的光子,因为光子都做无规则的随机运动(假设3),碰撞容器壁的光子数目就大致是恒定的。这时作用力的变化就很平缓,平均作用力在任何时间间隔都是相同的,从宏观看,实际上就表现为持续而恒定的作用力。所以,由于光子碰撞容器壁而产生的作用力就是

F x =∑=N 1i 2xi 2c

dc f h (8)

注意此处的力已经是恒定的力了,所以去掉了平均符号。

为了进一步处理,我们来看看N 个光子、沿X 轴方向的速度分量平方的平均值怎么表示:其实就是求所有速度分量平方的总和,然后除以光子数N

2x c = N

c N 1i 2xi

∑= (9) 注意(9)式等号右边的分子正好包含在(8)式中。这样,对墙的总的作用力就可以写成 F x =

2x 2c N dc

f h (10) 现在我们再来考虑一个具有速度分量c xi 、c yi 和c zi 的光子。根据矢量规则,有 Zi Yi 22

22xi c =c c c ++ (11)

如果我们对(11)式两边都取平均值(对所有光子求和然后除以光子数N ),那么容器中所有光子速度平方的平均值2c 仍然是、 和的平均值相加(注意c 是常数)

2

x c 2Y c 2Z c 2c ==2c 2

x c +2Y c +2Z c (12)

因为已经假设光子的运动是完全随机的(假设2),这意味着没有任何一个方向是优先的或特殊的。求速度平方的平均值时,X 、Y 和Z 三个方向都是等价的,于是

2X c =2Y c =2Z

c (13) 这样(12)式就可以写成

2c = 32

X

c (14) 所以,作用在容器壁上总的压强就是 P =x 2F

d =223X c N c d f h =)3c N(c

d f h 223=f h d N 313=)f (h V N 31 (15) 这个结果显示出压强正比于单位体积内的光子数N/V (即光子数密度)和光子的平均能量E =f h 。这样,对于光子气体模型来说,我们就得到了一个重要的结果:把可测量的宏观量压强和微观量光子的平均能量联系起来了。

4 光子气体温度的微观解释

得到宏观量压强和微观量光子的平均能量之间的关系后,我们还可以继续得到宏观量温度和光子微观量之间的关系。首先我们可以把(15)式写成如下形式 PV = )f N(h 3

1 (16) 因为光子气体也是一种理想气体,我们可以写出理想气体的状态方程[3]

PV = N k B T (17)

其中k B 是玻尔兹曼常数。比较(16)式和(17)式,可以得到 T =B

hf 3k (18) (18)式说明光子气体的温度(可测量的宏观量)是对光子平均能量的直接测量。因此,当温度升高时,光子具有更高的平均能量或更高的平均频率。

5 光子平均波长λ与温度的关系 把公式f =λc/代入(18)式,即可得到光子的平均波长与温度的关系

λ=T 3hc B k =B hc 0.333T

k (19) (19)式中λ和T 都是可实验测量的宏观量,这就为实验验证提供了理论基础。

注意,从普朗克公式计算得到的光子平均波长公式为[4]

λ =

T hc π36.060B 4k = T hc 370.0B k (20) 比较(19)式和(20)式发现,两者相当接近,这说明宇宙背景辐射的光子气体模型是成功的。但是两个公式的系数一个为0.333,一个为0.370,两者为何会有一个不容忽视的差别,这是一个需要深入探讨的问题。

6 讨 论

通过本文的计算,有如下一些启发性的观点值得探讨:

1、本文的创新点在于:把光子气体看作是理想气体,然后把理想气体的微观粒子模型应用于光子气体。这是一种类比研究方法,也是一个全新的尝试。

2、注意理解物理思想和数学模型的概念和方法。在本文中,把宇宙背景辐射看成理想的光子气体就是一种物理思想;而把经典理想气体的立方体模型用于光子气体的计算可以看成是一种数学模型。两者的关系是:物理思想是数学模型的基础,数学模型是对物理思想的定量计算和验证。

3、本文用到的物理原理主要有:力学原理(如冲量定理、牛顿第三定律等)和统计力学原理(如统计平均概念和方法、统计求和方法等)。

4、本文采用的研究方法类似于公理法思路,即先根据理想气体的要求提出几条假设条件,然后在后面的推导过程中逐渐应用这些假设条件。

5、注意,本文中数学计算的前提条件是光子气体处于平衡态。

6、本文的重要发现在于:从光子气体微观模型和普朗克公式得到的宇宙背景辐射光子

平均波长,虽然很接近,但是却有一个显著的差别。这个差别可能具有重要的物理价值。

普朗克公式可以用多种方法推导出来,并且也与实验结果非常符合,因此,从普朗克公式得到的结果应该是更加可靠的。如果我们确信这一点,那么问题很可能出在本文所采用的立方体模型上,可能立方体模型的误差较大,也许我们需要一种更精确的微观模型来描述宇宙背景辐射光子气体。

当然我们也要关注前面提出的假设条件是否完善和合理,或者数学推导过程是否有纰漏,误差也可能来自于这些方面。

7、这个发现深入一层的意义还在于:如果立方体模型的误差较大,那么用它来描述经典理想气体也一定会带来较大误差。这样,原来经典理想气体中的立方体微观模型也得进行修改。

8、更深入一层的类比是:既然光子气体存在一个普朗克公式,那么经典理想气体中应该也存在一个与普朗克公式对应的公式,这个公式如何得到?

9、再类比于光子气体,在量子力学中通常也用电子气体的模型来研究问题,那么电子气体是否可以看成理想气体?电子气体中是否也存在一个与普朗克公式对应的公式?不过要注意的是,在量子力学中,光子气体服从玻色-爱因斯坦统计规律,电子气体服从狄拉克-费米统计规律,这是两种气体的差别。

10、既然光子气体服从玻色-爱因斯坦统计规律,那么我们能不能从玻色-爱因斯坦统计规律得到光子的平均波长呢?历史已经回答了这个问题,因为玻色就曾经按照他们的统计规律推导出了普朗克公式,而从普朗克公式就可以求出光子的平均波长[4]。这也从一个侧面印证了普朗克公式是非常可靠的。

[1] Serway & Jewett, Principles of Physics,563–568 (2003 Third Edition, A Calculus-Based Text), Harcourt College Publishers, a division of Thomson Learning (EISBN: 0-03-027157-6). 冲量定理,248-249。

[2] 李椿、章立源、钱尚武,热学,50-59,高等教育出版社,1978年9月第1版。

[3] 泡利著,苑之方译,泡利物理学讲义(3) 热力学和气体分子运动论,82-86,人民教育出版社,1981年。(Pauli lecutures on physics )。

[4] 黄鹏辉,应用普朗克公式计算宇宙背景辐射的光子数密度,https://www.doczj.com/doc/453667193.html,/article/3192691.html。

气体流量和流速及与压力的关系

气体流量和流速及与压力的关系 流量以流量公式或者计量单位划分有三种形式: 体积流量:以体积/时间或者容积/时间表示的流量。如:m3/h ,l/h 体积流量(Q)=平均流速(v)×管道截面积(A) 质量流量:以质量/时间表示的流量。如:kg/h 质量流量(M)=介质密度(ρ)×体积流量(Q) =介质密度(ρ)×平均流速(v)×管道截面积(A) 重量流量:以力/时间表示的流量。如kgf/h 重量流量(G)=介质重度(γ)×体积流量(Q) =介质密度(ρ)×重力加速度(g)×体积流量(Q) =重力加速度(g)×质量流量(M) 气体流量与压力的关系 气体流量和压力是没有关系的。 所谓压力实际应该是节流装置或者流量测量元件得出的差压,而不是流体介质对于管道的静压。这点一定要弄清楚。举个最简单的反例:一根管道,彻底堵塞了,流量是0 ,那么压力能是0吗?好的,那么我们将这个堵塞部位开1个小孔,产生很小的流量,(孔很小啊),流量不是0了。然后我们加大入口压力使得管道压力保持原有量,此刻就矛盾了,压力还是那么多,但是流量已经不是0了。因此,气体流量和压力是没有关系的。 流体(包括气体和液体)的流量与压力的关系可以用流体力学里的-伯努利方程-来表达: p+ρgz+(1/2)*ρv^2=C 式中p、ρ、v分别为流体的压强、密度和速度.z 为垂直方向高度;g为重力加速度,C是不变的常数。 对于气体,可忽略重力,方程简化为: p+(1/2)*ρv ^2=C 那么对于你的问题,同一个管道水和水银,要求重量相同,那么水的重量是G1=Q1 *v1,Q1是水流量,v1是水速. 所以G1=G2 ->Q1*v1=Q2*v2->v1/v2=Q2/Q1 p1+(1 /2)*ρ1*v1 ^2=C p2+(1/2)*ρ2*v2 ^2=C ->(C-p1)/(C-p2)=ρ1*v1/ρ2*v2 -> (C-p1)/(C-p2)=ρ1*v1/ρ2*v2=Q2/Q1 ->(C-p1)/(C-p2)=Q2/Q1 因此对于你的问题要求最后流出的重量相同,根据推导可以发现这种情况下,流量是由压力决定的,因为p1如果很大的话,那么Q1可以很小,p1如果很小的话Q1就必须大.

流量系数的计算

1流量系数KV 的来历 调节阀同孔板一样,是一个局部阻力元件。前者,由于节流面积可以由阀芯的 移动来改变,因此 是一个可变的节流元件;后者只不过孔径不能改变而已。可是,我们 把调节阀模拟成孔板节流形式,见图 2- 1。对不可压流体,代入伯努利方程为: 再根据连续方程 Q = AV ,与上面公式连解可得: 这就是调节阀的流量方程,推导中代号及单位为: V1、V2 ――节流前后速度; V ――平均流速; P1、P2 ――节流前后压力,lOOKPa A ------ 节流面积,cm ; Q ――流量,cm / S; E ――阻力系数; r ------- 重度,Kgf / cm ; g------- 加速度,g = 981cm/s ; 3 如果将上述 Q 、P1、P2、r 采用工程单位,即:Q ――m/ h ; P1、P2 —— lOOKPa ; r ------- g f/cm 3。于是公式(2)变为: c A L / lOOrLP 3600 ,心 e __J 2.931x —.-^ = 5.04 这就是流量系数Kv 的来历。 2g r 2g (1) 2严 解出 r 命 (2) 再令流量 Q 的系数 为Kv ,即: Kv = (3) 图2-1调节阀节流模拟

从流量系数Kv 的来历及含义中,我们可以推论出: (2) 用Kv 公式可求阀的阻力系数 E = (5.04A/KV ) X( 5.04A/KV ); ,可见阀阻力越大 Kv 值越小; 4 ;所以,口径越大Kv 越大 2流量系数定义 在前面不可压流体的流量方程 (3)中,令流量Q 的系数 流量系数;另一方面,从公式(4)中知道:Kv *Q ,即Kv 的大小反映调节阀流量 Q 的大小。流量系数 Kv 国内习惯称为流通能力,现新国际已改称为流量系数。 2.1流量系数定义 对不可压流体,Kv 是Q >△ P 的函数。不同△ P 、r 时Kv 值不同。为反映不同调节阀 结构,不同口径流量系数的大小, 需要跟调节阀统一一个试验条件, 在相同试验条件下, Kv 的大小就反映了该调节阀的流量系数的大小。 于是调节阀流量系数 Kv 的定义为:当 调节阀全开,阀两端压差△ P 为lOOKPa ,流体重度r 为lgf/cm (即常温水)时,每小时 流经调节阀的流量 数(因为此时 ),以 m/h 或t /h 计。 例如:有一台Kv = 50的调节阀,则表示当阀两端压差为 lOOKPa 时,每小时的水量 是 50m /h o Kv = 0.1 ,阀两端压差为167—(— 83)= 2.50,气体重度约为1 .0X E (— 6),每小时流量大约为 158 /h o= 43L/s=4.3/0.1s Kv = 0.1,阀两端压差为1.6 7,气体重度约为1 2.2 Kv 与Cv 值的换算 国外,流量系数常以 Cv 表示,其定义的条件与国内不同。 Cv 的定义为:当调 节阀全开,阀两端压差△ P 为1磅/英寸2,介质为60°F 清水时每分钟流经调节 阀的流量数,以加仑/分计。 由于Kv 与Cv 定义不同,试验所测得的数值不同,它们之间的换算关系 :Cv = 1.167Kv (5) (1) Kv 值有两个表达式:Kv = 和 为Kv ,故Kv 称

流体力学复习要点(计算公式)

D D y S x e P gh2 gh1 h2 h1 b L y C C D D y x P hc 第一章 绪论 单位质量力: m F f B m = 密度值: 3 m kg 1000=水ρ, 3 m kg 13600=水银ρ, 3 m kg 29.1=空气ρ 牛顿内摩擦定律:剪切力: dy du μ τ=, 内摩擦力:dy du A T μ= 动力粘度: ρυ μ= 完全气体状态方程:RT P =ρ 压缩系数: dp d 1dp dV 1ρρκ= -=V (N m 2 ) 膨胀系数:T T V V V d d 1d d 1ρρα - == (1/C ?或1/K) 第二章 流体静力学+ 流体平衡微分方程: 01;01;01=??-=??-=??- z p z y p Y x p X ρρρ 液体平衡全微分方程:)(zdz ydy xdx dp ++=ρ 液体静力学基本方程:C =+ +=g p z gh p p 0ρρ或 绝对压强、相对压强与真空度:a abs P P P +=;v a abs P P P P -=-= 压强单位换算:水银柱水柱mm 73610/9800012 ===m m N at 2/101325 1m N atm = 注: h g P P →→ρ ; P N at →→2m /98000乘以 2/98000m N P a = 平面上的静水总压力:(1)图算法 Sb P = 作用点e h y D +=α sin 1 ) () 2(32121h h h h L e ++= ρ 若01 =h ,则压强为三角形分布,3 2L e y D == ρ 注:①图算法适合于矩形平面;②计算静水压力首先绘制压强分布图, α 且用相对压强绘制。 (2)解析法 A gh A p P c c ρ== 作用点A y I y y C xc C D + = 矩形12 3 bL I xc = 圆形 64 4 d I xc π= 曲面上的静水总压力: x c x c x A gh A p P ρ==;gV P z ρ= 总压力z x P P P += 与水平面的夹角 x z P P arct an =θ 潜体和浮体的总压力: 0=x P 排浮gV F P z ρ== 第三章 流体动力学基础 质点加速度的表达式??? ? ? ? ??? ??+??+??+??=??+??+??+??=??+??+??+??=z u u y u u x u u t u a z u u y u u x u u t u a z u u y u u x u u t u a z z z y z x z z y z y y y x y y x z x y x x x x A Q V Q Q Q Q Q G A = === ? 断面平均流速重量流量质量流量体积流量g udA m ρρ 流体的运动微分方程: t z t y t x d du z p z d du y p Y d du x p X = ??-=??-=??- ρρρ1;1;1 不可压缩流体的连续性微分方程 : 0z u y u x u z y x =??+??+?? 恒定元流的连续性方程: dQ A A ==2211d u d u 恒定总流的连续性方程:Q A A ==2211νν 无粘性流体元流伯努利方程:g 2u g p z g 2u g p z 2 2 222 111++=++ρρ 粘性流体元流伯努利方程: w 2 2222111'h g 2u g p z g 2u g p z +++=++ρρ

流量系数的计算

1 流量系数KV的来历 调节阀同孔板一样,是一个局部阻力元件。前者,由于节流面积可以由阀芯的移动来改变,因此是一个可变的节流元件;后者只不过孔径不能改变而已。可是,我们把调节阀模拟成孔板节流形式,见图2-1。对不可压流体,代入伯努利方程为: (1) 解出 命图2-1 调节阀节流模拟 再根据连续方程Q= AV,与上面公式连解可得: (2) 这就是调节阀的流量方程,推导中代号及单位为: V1 、V2 ——节流前后速度; V ——平均流速; P1 、P2 ——节流前后压力,100KPa; A ——节流面积,cm; Q ——流量,cm/S; ξ——阻力系数; r ——重度,Kgf/cm; g ——加速度,g = 981cm/s; 如果将上述Q、P1、P2 、r采用工程单位,即:Q ——m3/ h;P1 、P2 ——100KPa;r——gf/cm3。于是公式(2)变为: (3) 再令流量Q的系数为Kv,即:Kv = 或(4) 这就是流量系数Kv的来历。

从流量系数Kv的来历及含义中,我们可以推论出: (1)Kv值有两个表达式:Kv = 和 (2)用Kv公式可求阀的阻力系数ξ = (5.04A/Kv)×(5.04A/Kv); (3),可见阀阻力越大Kv值越小; (4);所以,口径越大Kv越大。 2 流量系数定义 在前面不可压流体的流量方程(3)中,令流量Q的系数为Kv,故Kv 称流量系数;另一方面,从公式(4)中知道:Kv∝Q ,即Kv 的大小反映调节阀流量Q 的大小。流量系数Kv国内习惯称为流通能力,现新国际已改称为流量系数。 2.1 流量系数定义 对不可压流体,Kv是Q、△P的函数。不同△P、r时Kv值不同。为反映不同调节阀结构,不同口径流量系数的大小,需要跟调节阀统一一个试验条件,在相同试验条件下,Kv的大小就反映了该调节阀的流量系数的大小。于是调节阀流量系数Kv的定义为:当 调节阀全开,阀两端压差△P为100KPa,流体重度r为lgf/cm(即常温水)时,每小时 流经调节阀的流量数(因为此时),以m/h 或t/h计。例如:有一台Kv =50的调节阀,则表示当阀两端压差为100KPa时,每小时的水量是50m/h。 Kv=0.1,阀两端压差为167-(-83)=2.50,气体重度约为1 .0×E(-6),每小时流量大约为158 m/h。=43L/s=4.3/0.1s Kv=0.1,阀两端压差为1.67,气体重度约为1 2.2 Kv与Cv值的换算 国外,流量系数常以Cv表示,其定义的条件与国内不同。Cv的定义为:当调节阀全开,阀两端压差△P为1磅/英寸2,介质为60°F清水时每分钟流经调节阀的流量数,以加仑/分计。 由于Kv与Cv定义不同,试验所测得的数值不同,它们之间的换算关系:Cv = 1.167Kv (5)

天然气流量计算公式

(1)差压式流量计 差压式流量计是以伯努利方程和流体连续性方程为依据,根据节流原理,当流体流经节流件时(如标准孔板、标准喷嘴、长径喷嘴、经典文丘利嘴、文丘利喷嘴等),在其前后产生压差,此差压值与该流量的平方成正比。在差压式流量计中,因标准孔板节流装置差压流量计结构简单、制造成本低、研究最充分、已标准化而得到最广泛的应用。孔板流量计理论流量计算公式为: 式中, qf 为工况下的体积流量, m3/s ; c 为流出系数, 无量钢; β =d/D , 无量钢; d 为工况下孔板内径, mm ; D 为工况下上游管道内径, mm ; ε 为可膨胀系数,无 量钢;

p 为孔板前后的差压值, Pa ; ρ 1 为工况下流体的密度, kg/m3 。 对于天然气而言,在标准状态下天然气积流量的实用计算公式为: 式中, qn 为标准状态下天然气体积流量, m3/s ; As 为秒计量系数,视采用计量 单位而定, 此式 As=3.1794×10 -6 ; c 为流出系数; E 为渐近速度系数; d 为工况 下孔板内径,

; FG 为相对密度系数, ε 为可膨胀系数; FZ 为超压缩因子; FT 为流动湿度系数; p1 为孔板上游侧取压孔气流绝对静压, MPa ; Δ p 为气流流经 孔板时产生的差压, Pa 。 差压式流量计一般由节流装置(节流件、测量管、直管段、流动调整器、取压管 路) 和差压计组成, 对工况变化、 准确度要求高的场合则需配置压力计 (传感器 或变送器)、温度计(传感器或变送器)流量计算机,组分不稳定时还需要配置 在线密度计(或色谱仪)等。 ( 2

气体流量计算公式

1、管道气体流量的计算是指气体的标准状态流量或是指指定工况下的气体流量。 未经温度压力工况修正的气体流量的公式为:流速*截面面积 经过温度压力工况修正的气体流量的公式为: 流速*截面面积*(压力*10+1)*(T+20)/(T+t) 压力:气体在载流截面处的压力,MPa; T:绝对温度,273.15 t:气体在载流截面处的实际温度 2、Q=Dn*Dn*V*(P1+1bar)/353 Q为标况流量; Dn为管径,如Dn65、Dn80等直接输数字,没必要转成内径; V为流速; P1为工况压力,单位取公斤bar吧; 标况Q流量有了,工况q就好算了,q≈Pb/Pm*Q,Pb为标准大气压, Pm=Pb+P1;我是做天然气调压设备这块的,也经常涉及到管径选型,这个公式是我们公司选型软件里面的,我是用的,具体怎么推算出来的,也不太清楚。你可以试试...3、空气高压罐的设计压力为40Pa(表压),进气的最大流量为1500m3(标)/h,进气管流速12m/s,求管道内径 管内流量Q=PoQo/P=100000*1500/100040=1499.4 m^3/h =0.4165m^3/s 管道内径d=[4Q/(3.1416V)]=[4*0.4165/(3.1416*12)]= 0.210m = 210mm4、在一个管道中,流动介质为蒸汽,已知管道的截面积F,以及两端的压力P1和 P2,如何求得该管道中的蒸汽流量 F=πr2求r

设该管类别此管阻力系数为ζ该蒸汽密度为ρ黏性阻力μ 根据(P1-P1)/ρ μ=τy/u F=mdu/dθ(du/dθ为加速度a) u=(-φΔP/2μl)(rr/2) 5、温度绝对可以达到200度。如果要保持200度的出口温度不变,就需要配一个电控柜。 要设计电加热器,就必须知道功率、进出口管道直径、电压、外部 s1xQk&L$Un 5%x 环境需不需要防爆 求功率,我们可以采用公式Q=CM(T1-T2)W=Q/t Q表示能量C表示介质比热M表示质量即每小时流过的气体质量T1表示最终温度即200度T2表示初始温度t表示时间即一小时,3600秒

气体流量换算公式

气体流量换算公式 Q:Actual Volumn Flow 实际体积流量 Q N:Standard Condition V olumn Flow 标准体积流量 T:Actual Temperature 实际温度 T N:Standard Condition Temperature 标准状况温度 P:Actual Pressure 实际压力 P N:Atm Under Standard Condition 标准大气压力 Z N:Thermal Expansion Factor Under Standard Condition 标况气体膨胀系数 Z:Thermal Expansion Factor Under Operate Condition 实际气体膨胀系数 温度需要转换为K氏单位: Q N = [(T N +273)/(T+273)]*[P/ P N]*[Z N/ Z]*Q 由于Z和Z N 变化很小,可以把这部分看成“1”。 气体密度的特性为:与温度成反比,与压力成正比,要特别注意。 实例: 用户的设计参数:空气,150摄氏度,压力105KPa(A),在0.3KPa(最大差压下)设计流量为12000Nm3/h 我们组态后,实际状况如下:压力103KPa(A),差压0.3KPa,温度为28摄氏度,输出值应该大于12000Nm3/h,因为实际温度很低导致空气密度比运行时密度大,质量流量的比工况要大,转换标况体积流量只需要除以标况密度就是标况体积流量。 理想气体状态方程(标况干燥空气密度1.2928Kg/m3) 标准密度为Un,工况密度U 标准大气压Pn,工况压力P,标准温度Tn,工况温度T;温度单位必须是K氏温度(摄氏度+273) 压力单位以绝对压力为基准. Un*(Tn/Pn)=U*(T/P) U=Un*(Tn/T)*(P/Pn) 可得出密度,应当还有一个压缩系数(几乎是1) 流量公式可能有点问题,我也查到一个带根号的.

流量计算公式大全

流量计算公式大全 (1)差压式流量计 差压式流量计是以伯努利方程和流体连续性方程为依据,根据节流原理,当流体流经节流件时(如标准孔板、标准喷嘴、长径喷嘴、经典文丘利嘴、文丘利喷嘴等),在其前后产生压差,此差压值与该流量的平方成正比。在差压式流量计仪表中,因标准孔板节流装置差压流量计结构简单、制造成本低、研究最充分、已标准化而得到最广泛的应用。孔板流量计理论流量计算公式为: 式中,qf为工况下的体积流量,m3/s;c为流出系数,无量钢;β=d/D,无量钢;d 为工况下孔板内径,mm;D为工况下上游管道内径,mm;ε为可膨胀系数,无量钢;Δp为孔板前后的差压值,Pa;ρ1为工况下流体的密度,kg/m3。 对于天然气而言,在标准状态下天然气积流量的实用计算公式为: 式中,qn为标准状态下天然气体积流量,m3/s;As为秒计量系数,视采用计量单位而定,此式As=×10-6;c为流出系数;E为渐近速度系数;d为工况下孔板内径,mm;FG 为相对密度系数,ε为可膨胀系数;FZ为超压缩因子;FT为流动湿度系数;p1为孔板上游侧取压孔气流绝对静压,MPa;Δp为气流流经孔板时产生的差压,Pa。 差压式流量计一般由节流装置(节流件、测量管、直管段、流动调整器、取压管路)和差压计组成,对工况变化、准确度要求高的场合则需配置压力计(传感器或变送器)、温度计(传感器或变送器)流量计算机,组分不稳定时还需要配置在线密度计(或色谱仪)等。流量计算器。 (2)速度式流量计 速度式流量计是以直接测量封闭管道中满管流动速度为原理的一类流量计。工业应用中主要有: ①涡轮流量计:当流体流经涡轮流量传感器时,在流体推力作用下涡轮受力旋转,其转速与管道平均流速成正比,涡轮转动周期地改变磁电转换器的磁阻值,检测线圈中的磁通随之发生周期性变化,产生周期性的电脉冲信号。在一定的流量(雷诺数)范围内,该电脉冲信号与流经涡轮流量传感器处流体的体积流量成正比。涡轮流量计的理论流量方程为: 式中n为涡轮转速;qv为体积流量;A为流体物性(密度、粘度等),涡轮结构参数(涡轮倾角、涡轮直径、流道截面积等)有关的参数;B为与涡轮顶隙、流体流速分布有关的系数;C为与摩擦力矩有关的系数。 ②涡街流量计:在流体中安放非流线型旋涡发生体,流体在旋涡发生体两侧交替地分离释放出两列规则的交替排列的旋涡涡街。在一定的流量(雷诺数)范围内,旋涡的分离频率与流经涡街流量传感器处流体的体积流量成正比。涡街流量计的理论流量方程为: 式中,qf为工况下的体积流量,m3/s;D为表体通径,mm;M为旋涡发生体两侧弓形面积与管道横截面积之比;d为旋涡发生体迎流面宽度,mm;f为旋涡的发生频率,Hz;Sr为斯特劳哈尔数,无量纲。 ③旋进涡轮流量计:当流体通过螺旋形导流叶片组成的起旋器后,流体被强迫围绕

压力与流量计算公式

压力与公式: 的Kv ,是调节阀的重要参数,它反映调节阀通过流体的能力,也就是调节阀的容量。根据调节阀流量系数Kv 的计算,就可以确定选择调节阀的口径。为了正确选择调节阀的口径,必须正确计算出调节阀的系数Kv 值。调节阀额定流量系数Kv 的定义是:在规定条件下,即阀的两端压差为 10Pa,流体的密度为lg/cm ,额定行程时流经调节阀以m/h 或t/h 的流量数。 1.一般液体的Kv 值计算 a.非阻塞流 :△ P时 当P2≤时 式中:Qg -下气体流量Nm/h Pm-(P1+P2)/2(P1 、P2 为绝对压力)kPa △P=P1-P2 G -气体比重(空气G=1) t -气体温度℃ b.高压气体(PN> 10MPa) 当P2>时 当P2≤时 式中:Z-系数,可查GB/T 2624-81 《的设计安装和使用》 3.低修正(高液体KV 值的计算) 液体粘度过高或流速过低时,由于雷诺数下降,改变了流经调节阀流体的流动状态,在

Rev<2300 时流体处于低速层流,这样按原来公式计算出的KV 值,误差较大,必须进行修正。此时计算公式应为: 式中:Φ―粘度,由Rev 查FR-Rev 曲线求得;QL-液体流量m/h 对于单座阀、阀、等只有一个流路的阀 对于双座阀、等具有二个平行流路的阀 式中:Kv′―不考虑粘度修正时计算的流量系 ν ―流体mm/s FR -Rev 关系曲线 FR-Rev 关系图 4.水蒸气的Kv 值的计算 a. 当P2>时 当P2≤时 式中:G―kg/h ,P1、P2 含义及单位同前,K-修正系数,部分蒸汽的K 值如下::K =;氨蒸汽:K=25;11:K=;、蒸汽:K =37;、蒸汽:K=;、蒸汽:K=。 b.过热水蒸汽 当P2>时 当P2≤时 式中:△ t ―水蒸汽℃,Gs、P1、P2含义及单位同前。那么如何计算选择电动水阀口径?工程上我们常用的是通过计算的流量系数(Kv/Cv )值来推导电动水阀口径,因为流量系数和水阀口径是成对应关系的,换句话说,流量系数定了,水阀口径大小也就确定了。水阀流量系数(Kv/Cv )采用以下公式计算:Cv=Q/ΔP1/2 其中Q-设备(/)的冷量/热量或风量ΔP- 为调节阀前后压差比理论上讲,在不同的空调回路中,ΔP值是不同的,是一个动态变化的值,取值范围一般在1-7 之间。但由于在流量系数的计算过程中ΔP 是开取值,所以对Cv 计算影响并不是很大。因此,在工程设计中一般选ΔP值为4。举例来说,假设1 台技术指标值如下:风量:8000 M3/H 冷量:KW 热量:KW 余压:410 PA 功率:2KW 如何选用调节水阀?首先,我们计算流量系数Kv/ Cv 值Cv=Q/ Δ P1/2=*2= Kv=Cv/== 然后计算出来的流量系数Kv/ Cv 选用与其相适应口径的调节水阀。 与流速的关系:气体的流速越大,越小。 1 压力 根据原理,Pc与进口压力P1(绝压)的比值称为临界压力比pβ,即β=Pc /P1 从此式可看出气体的临界压力比β 只与气体的比热比n 有关,气体的比热比可看作为一,不同类型气体的n 值如下: 对单气体,取n=1.67,则β=0.487,即Pc=0.487P1;

压力与流量计算公式

For personal use only in study and research; not for commercial use For personal use only in study and research; not for commercial use 压力与流量计算公式: 调节阀的流量系数Kv,是调节阀的重要参数,它反映调节阀通过流体的能力,也就是调节阀的容量。根据调节阀流量系数Kv的计算,就可以确定选择调节阀的口径。为了正确选择调节阀的口径,必须正确计算出调节阀的额定流量系数Kv值。调节阀额定流量系数Kv的定义是:在规定条件下,即阀的两端压差为10Pa,流体的密度为lg/cm,额定行程时流经调节阀以m/h或t/h的流量数。 1.一般液体的Kv值计算 a.非阻塞流 判别式:△P<FL(P1-FFPV) 计算公式:Kv=10QL 式中:FL-压力恢复系数,见附表 FF-流体临界压力比系数,FF=0.96-0.28 PV-阀入口温度下,介质的饱和蒸汽压(绝对压力),kPa PC-流体热力学临界压力(绝对压力),kPa QL-液体流量m/h ρ-液体密度g/cm P1-阀前压力(绝对压力)kPa P2-阀后压力(绝对压力)kPa b.阻塞流 判别式:△P≥FL(P1-FFPV) 计算公式:Kv=10QL 式中:各字符含义及单位同前 2.气体的Kv值计算 a.一般气体 当P2>0.5P1时 当P2≤0.5P1时 式中:Qg-标准状态下气体流量Nm/h Pm-(P1+P2)/2(P1、P2为绝对压力)kPa △P=P1-P2 G -气体比重(空气G=1) t -气体温度℃ b.高压气体(PN>10MPa) 当P2>0.5P1时

管道流量计算公式资料讲解

蒸汽管道设计表ssccsy 蒸汽管道设计表。流量(kg/hour)管道口径Pipe Size(mm)DN_蒸汽压力(bar)蒸汽流速(m/s)饱和蒸汽管道流量选型表(流速30米/秒)(流量:公斤/小时)压力BAR.管道口径(mm)备注:1Pa=100bar. 油管的选取小样~ 油管的选取油管的选取。问题:液压系统中液压泵的额定压力位6.3mpa,输出流量为40l/min,怎么确定油管规格。压力管路为15通径,管子外径22,管子接头M27X2。3.回油管路.1~3m/s同样根据公式计算,回油管路在17~29mm,往标准上靠的话,可以选20通径或者25通径,如果安装空间允许当然选大的好,25通径的管子外径为34,接头螺纹M42X2如果选20通径的话,管子外径28,螺纹M33X2以上说的都是国标,你也可以往美标等上靠,基本上差不多。压缩空气管径、流量及相关晴天多云 如:标准状态下流量为5430Nm3/h,换算成0.85MPa下流量为5430/8.5=639m3/h, 取流速为15m/s, 可以求得管径为123,取整为DN125的管径。 自吸泵的扬程、距离和功率的关系_百度知道李12子 自吸泵的扬程、距离和功率的关系_百度知道自吸泵的扬程、距离和功率的关系悬赏分:10 - 提问时间2010-6-16 22: 58.我需要一台汽油机水泵,自吸式,要求水平运输水150米左右,垂直运输2米,请问一台扬程为32米,功率为2.8马力,流量为25吨/h的水泵能满足要求吗? 管道气体流量的计算公式。浅墨微澜 管道气体流量的计算公式。1、管道气体流量的计算是指气体的标准状态流量或是指指定工况下的气体流量。未经温度压力工况修正的气体流量的公式为:流速*截面面积经过温度压力工况修正的气体流量的公式为:流速*截面面积*(压力*10+1)*(T+20)/(T+t)压力:气体在载流截面处的压力,MPa; T:绝对温度,273.15 t:气体在载流截面处的实际温度2、Q=Dn*Dn*V*(P1+1bar)/353Q为标况流量; 关于消防设计几点问题辉煌华宇 "并注明消火栓给水管道设计流速不宜超过2.5m/s,而厦门消防部门规定室外消防给水管道流速不能大于1.2m/s,笔者对此规定有不同的看法。消防部门的依据是市政部门所提供的市政管道流速为1.2m/s,故在选择室外消防给水管的流速也不大于l.2m/s,但笔者认为管道流速应与市政管道压力有关,只要市政给水管道压力足够大,室外消防管道流速又满足规范不宜大于2.5m/s的要求,既能满足消防流量的设计要求。 反渗透膜的化学清洗- 大将军王电厂化学的日...老姚同志 反渗透膜的化学清洗- 大将军王电厂化学的日志- 网易博客反渗透膜的化学清洗。停止清洗泵的运行,让膜元件完全浸泡在清洗液中。在对大型系统清洗之前,建议从待清洗的系统内取出1支膜元件,进行单个膜元件清洗效果试验,确认清洗效果后再实施整套系统的清洗。此处反向清洗是指在膜组件的浓排端泵入清洗液,在膜外侧进行组件内循环,使清洗液流经膜表面,以适当的流速在膜表面形成一定的冲刷力,将系统内和膜表面的污染物清除排出。 [转载]锅炉选择(201--300)(2010-07-06 13:...锅炉主操作 [转载]锅炉选择(201--300)(2010-07-06 13:01:54)转载原文原文地址:锅炉选择(201--300)作者:掌心201. 燃油丧失流动能力时的温度称( D ),它的高低与石蜡含量有关。B、锅炉传热温度的限制;245. 当过剩空气系数不变时,负荷变化锅炉效率也随之变化,在经济负荷以下时,锅炉负荷增加,效率(C )。256. 随着锅炉参数的提高,锅炉水冷壁吸热作用(A)变化。273. 锅炉水处理可分为锅炉外水处理和( C )水处理。 泵后阀门(水锤) 的讨论给排水On Line -服务...简单如我 有些情况下水锤的发生远在止回阀的数公里以外,"止回阀调整法"就显得无所适从;iI

几种常见的流量测量方法(气体)

流量计常用的几种测量方法简述 点击次数:179 发布时间:2010-8-31 15:48:15 为了满足各种测量的需要,几百年来人们根据不同的测量原理,研究开发制造出了数十种不同类型的流量计,大致分为容积式、速度式、差压式、面积式、质量式等。各种类型的流量计量原理、结构不同既有独到之处又存在局限性。为达到较好的测量效果,需要针对不同的测量领域,不同的测量介质、不同的工作范围,选择不同种类、不同型号的流量计。工业计量中常用的几种气体流量计有: (1)差压式流量计 差压式流量计是以伯努利方程和流体连续性方程为依据,根据节流原理,当流体流经节流件时(如标准孔板、标准喷嘴、长径喷嘴、经典文丘利嘴、文丘利喷嘴等),在其前后产生压差,此差压值与该流量的平方成正比。在差压式流量计中,因标准孔板节流装置差压流量计结构简单、制造成本低、研究最充分、已标准化而得到最广泛的应用。孔板流量计理论流量计算公式为: 式中,qf为工况下的体积流量,m3/s;c为流出系数,无量钢;β=d/D,无量钢;d为工况下孔板内径,mm;D为工况下上游管道内径,mm;ε为可膨胀系数,无量钢;Δp为孔板前后的差压值,Pa;ρ1为工况下流体的密度,kg/m3。 对于天然气而言,在标准状态下天然气积流量的实用计算公式为:

式中,qn为标准状态下天然气体积流量,m3/s;As为秒计量系数,视采用计量单位而定,此式As=3.1794×10-6;c为流出系数;E为渐近速度系数;d为工况下孔板内径,mm;FG为相对密度系数,ε为可膨胀系数;FZ为超压缩因子;FT为流动湿度系数;p1为孔板上游侧取压孔气流绝对静压,MPa;Δp为气流流经孔板时产生的差压,Pa。 差压式流量计一般由节流装置(节流件、测量管、直管段、流动调整器、取压管路)和差压计组成,对工况变化、准确度要求高的场合则需配置压力计(传感器或变送器)、温度计(传感器或变送器)流量计算机,组分不稳定时还需要配置在线密度计(或色谱仪)等。 (2)速度式流量计 速度式流量计是以直接测量封闭管道中满管流动速度为原理的一类流量计。工业应用中主要有: ① 涡轮流量计:当流体流经涡轮流量传感器时,在流体推力作用下涡轮受力旋转,其转速与管道平均流速成正比,涡轮转动周期地改变磁电转换器的磁阻值,检测线圈中的磁通随之发生周期性变化,产生周期性的电脉冲信号。在一定的流量(雷诺数)范围内,该电脉冲信号与流经涡轮流量传感器处流体的体积流量成正比。涡轮流量计的理论流量方程为: 式中n为涡轮转速;qv为体积流量;A为流体物性(密度、粘度等),涡轮结构参数(涡轮倾角、涡轮直径、流道截面积等)有关的参数;B为与涡轮顶隙、流体流速分布有关的系数;C 为与摩擦力矩有关的系数。 ② 涡街流量计:在流体中安放非流线型旋涡发生体,流体在旋涡发生体两侧交替地分离释放出两列规则的交替排列的旋涡涡街。在一定的流量(雷诺数)范围内,旋涡的分离频率与流经涡街流量传感器处流体的体积流量成正比。涡街流量计的理论流量方程为:

流量控制器气体及流量换算简表

GF Series MG/MR GAS&FLOW Exchange Data ISSUED BY WALTON N2O2Ar He SiH4BCl3CH4 SH403-103-105-145-143-63-33-8 SH4111-3011-3015-4215-427-184-109-23 SH4231-9231-9243-12943-12819-5611-3124-71 SH4393-28093-280130-400129-40057-17032-9472-215 SH44281-860281-860401-1214401-1194171-52395-289216-660 SH45861-2600861-26001215-36711195-3609524-1581290-874661-2000 SH462601-72002601-72003672-100003610-105001582-4500875-23002001-5700 SH477201-150007201-1500010001-2000010501-250004501-92002301-43005701-12500 SH4815001-3000015001-3000020001-3000025001-500009201-1850012501-25000 SH4930001-4000030001-3700030001-3350050001-9500025001-42000 SH5040001-5000037001-500033501-50000 SF6C3F8Si2H6C4F8CH3F NH3SiH2Cl2 SH40----3-33-73-83-3 SH413-83-54-103-58-229-244-10 SH429-256-1611-306-1623-6725-7311-29 SH4326-7717-5031-9217-5068-20474-22330-89 SH4478-23751-15493-28251-154205-625224-68590-273 SH45238-715155-465283-853155-465626-1890686-2072274-824 SH46716-1900466-1250854-2400466-12001891-52002073-6000825-2200 SH471901-37501251-24002401-47001201-23005201-105006001-125002201-4200 SH483751-75002401-48004701-95002301-460010501-2100012501-250004201-8500 SH4925001-42000 SH50 NF3NO CHF3CF4SiF4PH3H2 SH403-53-103-53-43-43-73-10 SH416-1511-306-165-135-118-2211-30 SH4216-4631-9217-4814-4012-3423-6731-92 SH4347-14093-28049-14541-12135-10368-20493-280 SH44141-430281-860146-445122-372104-316205-625281-860 SH45431-1300861-2600446-1344373-1123317-1000626-1890861-2600 SH461301-36002601-72001345-37001124-31001001-26001891-52002601-7500 SH473601-72007201-150003701-72003101-61002601-52005201-105007501-18000 SH487201-1450015001-300007201-150006101-122005201-1040018001-36000 SH4936001-69000 SH50 Cl2HBr N2O GeH4BF3CO2CO SH403-63-83-73-63-53-73-10 SH417-199-258-217-176-168-2211-30 SH4220-5726-7722-6518-5317-5023-6931-92 SH4358-17378-23566-20054-16151-15070-20993-280 SH44174-531236-723201-611162-495151-457210-642281-860 SH45532-1604724-2187612-1849496-1500458-1381643-1942861-2600 SH461605-50002188-58001850-51001501-40001382-38001943-53002601-7200 SH475001-96005801-110005101-100004001-80003801-76005301-105007201-15000 SH489601-1900010001-200008001-1600010501-2100015001-30000 SH4920001-2600021001-2600030001-40000 SH5026001-3300026001-3500040001-50000

各种流量计计算公式(稻谷书屋)

V锥流量计计算公式为: 其中: K为仪表系数; Y为测量介质压缩系数;对于瓦斯气Y=0.998; ΔP为差压,单位pa; ρ为介质工况密度,单位kg/m3。取0.96335 涡街流量计计算公式:

一、孔板流量计 1.1 工作原理 流体流经管道内的孔板,流速将在孔板处形成局部收缩因而流速增加,静压力降低,于是在孔板上、下游两侧产生静压力差。流体流量愈大,产生的压差愈大,通过压差来衡量流量的大小。它是以流动连续性方程(质量守恒定律)和伯努利方程(能量守恒定律)为基础,在已知有关参数的条件下,根据流动连续性原理和伯努利方程可以推导出差压与流量之间的关系而求得流量。其流量计算公式如下: 上式中:ε——被测介质可膨胀性系数,对于液体ε=1;对气体等可压缩流体ε<1(0.99192)Q工——流体的体积流量(单位:m3/min) d ——孔径(单位:m ) △P——差压(单位:Pa) ρ1——工作状况下,节流件(前)上游处流体的密度,[㎏/m3]; C ——流出系数 β——直径比 1.2 安装 孔板流量计的安装要求:对直管段的要求一般是前10D后5D,因此在安装孔板流量计时一定要满足这个直管段距离要求,否则测量的流量误差大。

1.3 测量误差分析 1.3.1 基本误差 孔板在使用过程中,会由于煤气的侵蚀而产生变形,从而引起流量系数增大而产生测量误差;而且流量计工作时间越长,流体对节流件的冲刷越严重,也会引起流量系数增大而产生测量误差。 1.3.2 附件误差 孔板节流装置安装于现场严酷的工作场所,在长期运行后,无论管道或节流装置都会发生一些变化,如堵塞、结垢、磨损、腐蚀等等。检测件是依靠结构形状及尺寸保持信号的准确度,因此任何几何形状及尺寸的变化都会带来附加误差。

流量计算公式

流量计算公式 (1)差压式流量计 差压式流量计是以伯努利方程和流体连续性方程为依据,根据节流原理,当流体流经节流件时(标准孔板、标准喷嘴、长径喷嘴、经典文丘利嘴、文丘利喷嘴等),在其前后产生压差,此差压与该流量的平方成正比。在差压式流量计中,因标准孔板节流装置差压流量计结构简单、制造成低、研究最充分、已标准化而得到最广泛的应用。孔板流量计理论流量计算公式为: 式中,qf为工况下的体积流量,m3/s;c为流出系数,无量钢;β=d/D,无量钢;d为工况下孔内径,mm;D为工况下上游管道内径,mm;ε为可膨胀系数,无量钢;Δp为孔板前后的差压值Pa;ρ1为工况下流体的密度,kg/m3。 对于天然气而言,在标准状态下天然气积流量的实用计算公式为: 式中,qn为标准状态下天然气体积流量,m3/s;As为秒计量系数,视采用计量单位而定,此式As=3.1794×10-6;c为流出系数;E为渐近速度系数;d为工况下孔板内径,mm;FG为相对密度数,ε为可膨胀系数;FZ为超压缩因子;FT为流动湿度系数;p1为孔板上游侧取压孔气流绝对压,MPa;Δp为气流流经孔板时产生的差压,Pa。 差压式流量计一般由节流装置(节流件、测量管、直管段、流动调整器、取压管路)和差压计组对工况变化、准确度要求高的场合则需配置压力计(传感器或变送器)、温度计(传感器或变送流量计算机,组分不稳定时还需要配置在线密度计(或色谱仪)等。 (2)速度式流量计 速度式流量计是以直接测量封闭管道中满管流动速度为原理的一类流量计。工业应用中主要有: ① 涡轮流量计:当流体流经涡轮流量传感器时,在流体推力作用下涡轮受力旋转,其转速与管道均流速成正比,涡轮转动周期地改变磁电转换器的磁阻值,检测线圈中的磁通随之发生周期性变产生周期性的电脉冲信号。在一定的流量(雷诺数)范围内,该电脉冲信号与流经涡轮流量传感处流体的体积流量成正比。涡轮流量计的理论流量方程为:

烟气流量计算公式

锅炉烟尘测试方法 1991—09—14发布1992—08—01实施 国家技术监督局 国家环境保护局发布 1、主题内容与适用范围 本标准规定了锅炉出口原始烟尘浓度、锅炉烟尘排放浓度、烟气黑度及有关参数的测试方法。 本标准适用于GBl3271有关参数的测试。 2、引用标准 GB l0180 工业锅炉热工测试规范 GB l327l 工业锅炉排放标准 3、测定的基本要求 3.1 新设计、研制的锅炉在按GBl0180标准进行热工试验的同时,测定锅炉出口原始烟尘浓度和锅炉烟尘排放浓度。 3.2 新锅炉安装后,锅炉出口原始烟尘浓度和烟尘排放浓度的验收测试,应在设计出力下进行。 3.3 在用锅炉烟尘排放浓度的测试,必须在锅炉设计出力70%以上的情况下进行,并按锅炉运行三年内和锅炉运行三年以上两种情况,将不同出力下实测的烟尘排放浓度乘以表l中所列出力影响系数K,作为该锅炉额定出力情况下的烟尘排放浓度,对于手烧炉应在不低于两个加煤周期的时间内测定。 表1 锅炉实测出力占锅炉设计出力的百分数,% 70-《75 75-《80 80-《85 85-《90 9 0-《95 》=95 运行三年内的出力影响系数K 1.6 1.4 1.2 1.1 1.05 1 运行三年以上的出力影响系数K 1.3 1.2 1.1 1 1 1 3.4 测定位置: 测定位置应尽量选择在垂直管段,并不宜靠近管道弯头及断面形状急剧变化的部位。测定位置应距弯头、接头、阀门和其他变径管的下游方向大于6倍直径处,和距上述部位的上游方向大于3倍直径处。 3.5 测孔规格: 在选定的测定位置上开测孔,在孔口接上直径dn为75mm,长度为30mm左右的短管,并装上丝堵。 3.6 测点位置、数目: 3.6.1 圆形断面:将管道断面划分为适当数量的等面积同心圆环,各测点均在环的等面积中心线上,所分的等面积圆环数由管道直径大小而定,并按表2确定环数和测点数。 表2 圆形管道分环及测点数的确定 管道直径D,mm 环数测点数 《200 1 2 200-400 1-2 2-4 400-600 2-3 4-6 600-800 3-4 6-8 800以上4-5 8-10

相关主题
文本预览
相关文档 最新文档