当前位置:文档之家› 第三章飞机的主要组成部分及其功能S1

第三章飞机的主要组成部分及其功能S1

第三章飞机的主要组成部分及其功能S1
第三章飞机的主要组成部分及其功能S1

3.1 机翼

机翼的第一个功能,也是最主要的功能就是产生升力,同时也起到一定的

稳定和操纵作用。通常在机翼上装有用于横向操纵的副翼和扰流片,可以控制

飞机的滚转;机翼前后缘部分通常设有各种型式的襟翼,用于增加升力或改变

机翼升力的分布。关于机翼的这些功能已在本教材第二章中的2.3和2.4节中有

了较详细的论述,本章不再赘述。机翼的第二个功能是将分布在其上的气动载

荷传到机身上以使全机的载荷平衡,本节侧重于第二个功能,主要介绍机翼的

传力结构。此外,机翼上还可安装发动机、起落架和油箱等。

3.1.1 典型的机翼结构

机翼的外载特点

可以把机翼看成是支持在机身上的悬臂梁或双支点外伸梁,其主要外载有

三类:空气动力载荷、其它部件、装载传来的集中载荷以及机翼结构的质量力,如图3.1.1所示。

图3.1.1 机翼的外载荷

q a—空气动力分布载荷

q c—机翼质量力分布载荷

P—发动机或其他部件传来的

集中载荷

R—机身支反力

空气动力载荷。空气动力载荷是分布载荷,它可以是吸力或压力,直接作

用在机翼表面上,形成机翼的升力和阻力。其中升力是机翼最主要的外载荷。

其它部件、装载传来的集中载荷。机翼上连接有其它部件(如起落架、发动机)、副翼、襟翼等各类附翼和布置在机翼内、外的各种装载(如油箱、炸弹)。

除了在以翼盒作为整体油箱情况下燃油产生的是分布载荷外,由于这些部件、

装载一般都是以有限的连接点与机翼主体结构相连,因此,不论是起落架传来

的地面撞击力或副翼等翼面上的气动载荷,以及其上各部件、装载本身的质量

力(包括重力和惯性力),都是通过接头,以集中载荷的形式传给机翼。其中有

些力的数值可能很大。

机翼结构的质量力。机翼本身结构的质量力为分布载荷,其大小与分布情

况取决于机翼结构质量的大小和分布规律。它的数值比气动载荷要小得多。

各种质量力的大小和方向与飞机过载系数有关,其方向与升力相反,对机

翼有卸载作用。

若以载荷形式分,机翼的外载有两种类型。一种是分布载荷,以气动载荷

为主,还包括机翼本身结构的质量力,这是机翼的主要载荷形式;另一种是由

各接头传来的集中载荷(力或力矩)。

机翼的总体受力

机翼的各种外载,总要在机翼、机身连接处,由机身提供支持力来平衡。

因此在上述载荷作用下,可把机翼看作是固定在机身上的一个“梁”。当机翼分

成两半,与机身在其左右两侧相连时,可把每半个机翼看作支持在机身上的悬

臂梁;若左右机翼连成一个整体时,则可把它看作支持在机身上的双支点外伸梁。这两种情况虽然在支持形式上有所不同,但对外翼结构来说,都可以看作

悬臂梁。

前述各种外载在机翼结构中将引起相应的内力:剪力Q、弯矩M和扭矩M t,统称为机翼的总体受力,如图 3.1.2所示。

图3.1.2 机翼上所受的力矩和剪力

(a)机翼的总体内力(b)与外载相平衡的总体内力

M n—由Q n引起的、作用在垂直面内的弯矩

M h—由Q h引起的作用在弦平面内的弯矩

M t—扭矩

因为机翼的升力很大,且作用在机翼刚度最小的方向上;而阻力相对于升

力要小得多,且作用在机翼刚度最大的弦平面内。因此在进行结构受力分析时,常着重考虑气动载荷沿垂直于弦平面的分量——升力引起的Q n、M n等。

机翼的典型结构元件

机翼一般由下述典型元件组成:纵向元件有翼梁、长桁、墙(腹板);横向

元件有翼肋(普通肋和加强肋)以及包在纵、横构件组成的骨架外面的蒙皮,如

图 3.1.3所示。

蒙皮。蒙皮的直接功用是形成流线形的机翼外表面。

为了使机翼的阻力尽量小,蒙皮应力求光滑,为此应提高蒙皮的横向弯曲

刚度,以减小它在飞行中的凹、凸变形。

从受力看,气动载荷直接作用在蒙皮上,因此蒙皮受有垂直于其表面的局

部气动载荷。此外蒙皮还参与机翼的总体受力——它和翼梁或翼墙的腹板组合

在一起,形成封闭的盒式薄壁梁承受机翼的扭矩;当蒙皮较厚时,它常与长桁一起组成壁板,承受机翼弯矩引起的轴力。壁板有组合式或整体式(见图 3.1.4)。某些结构型式(如多腹板式机翼)的蒙皮很厚,可从几毫米到十几毫米,常做成整体壁板形式,此时蒙皮将成为承受弯矩最主要的,甚至是惟一的受力元件。

图3.1.3 机翼的典型结构元件

1—翼梁2—前纵墙3—后纵墙4—普

通翼肋

5—加强翼肋6—对接接头7—硬铝蒙

皮8—长桁

图3.1.4 蒙皮 (a) 金属蒙皮 (b) 整体蒙皮(整体壁板)

长桁(也称桁条)。长桁是与蒙皮和翼肋相连的元件,,如图3.1.5所示。长桁上作用有气动载荷。在现代机翼中它一般都参与机翼的总体受力——承受机翼弯矩引起的部分轴向力,是纵向骨架中的重要受力元件之一。除上述承力作用外,长桁和翼肋一起对蒙皮起一定的支持作用。 图3.1.5 各种长桁

图3.1.6腹板式翼肋

1—腹板2—周缘弯边3—

与翼梁腹板

连接的弯边4—减轻孔

A—前段B—中段C—后段a—上部分

b—下部分

翼肋。普通翼肋(见图 3.1.6)构造上的功用是维持机翼剖面所需的气动外形。一般它与蒙皮、长桁相连,机翼受气动载荷时,它以自身平面内的刚度向蒙皮、长桁提供垂直方向的支持。同时翼肋又沿周边支持在蒙皮和梁(或墙)的腹板上,在翼肋受载时,由蒙皮、腹板向翼肋提供各自平面内的支承剪流。加强翼肋虽

也有上述作用,但其主要是用来承受并传递自身平面内的较大的集中载荷或由

于结构不连续(如大开口处)引起的附加载荷。

翼梁。翼梁由梁的腹板和缘条(或称凸缘)组成(见图3.1.7)。翼梁主要承受剪

力Q和弯矩M。在有的结构型式中,它是机翼主要的纵向受力件,承受机翼的

全部或大部分弯矩。翼梁大多在根部与机身固接(既能传递力,也能传递力距)。

纵墙(包含腹板)。纵墙的缘条比梁缘条弱得多,但大多强于一般长桁,纵

墙与机身的连接被看作为铰接(只能传递力,不能传递力距)。腹板或没有缘

条或缘条与长桁一样强。墙和腹板一般都不能承受弯矩,但与蒙皮组成封闭盒

段以承受机翼的扭矩。后墙则还有封闭机翼内部容积的作用(见图3.1.8)。

机翼的特点是薄壁结构,因此以上各元件之间的连接大多采用分散连接,

如铆钉连接、螺栓连接、点焊、胶接或它们的混合型式如胶铆等。连接缝间的

作用力可视为分布剪流形式。

最后,构成机翼结构的除以上基本元件外,还有机翼-机身连接接头,它是

重要受力件。接头的形式视机翼结构的受力型式而定。连接接头至少要保证机

翼静定地固定于机身上,即能提供6个自由度的约束。实际上一般该连接往往

是静不定的。

(a) 组合梁

1—上缘条2—腹板3—下缘

条4—支柱

(b) 整体梁

1—机翼与机身的对接接头 2—垫板 3—与前墙腹板连接处

图3.1.7 翼梁 图3.1.8纵墙

1—腹板2—很弱的缘条

典型的机翼结构型式 机翼在载荷作用下,由某些元件起主要受力作用,其它元件起次要作用。所谓机翼结构的受力型式是指结构中这些起主要作用的元件的组成形式。各种不同的受力型式表征了机翼结构不同的总体受力特点。受力型式比相应的真实机翼结构简单得多。对于组成某受力型式的各主要受力元件(如翼肋、翼梁等),我们并不注意它们本身的具体构造,而是着重分析它们各自的受力作用。

传统机翼的典型受力型式有:梁式、单块式、多腹板式及混合式等薄壁结构,此外还有一些厚壁结构(如整体壁板式)的机翼。

梁式机翼。梁式机翼的主要构造特点是纵向有很强的翼梁(有单梁、双梁或多梁等多种形式);蒙皮较薄,长桁较少且弱,梁缘条的剖面与长桁相比要大得

多;有时还同时布置有纵墙。梁式机翼通常不作成一个整体,而是分成左、右

两个机翼——即机翼常在机身的左、右侧边处有设计分离面,并在此分离面处,借助几个梁、墙根部传集中载荷的对接接头与机身连接(见图3.1.3)。

梁式机翼中翼梁是主要受力构件,主要承受剪力以及弯矩引起的轴力,薄

蒙皮和弱长桁均不参加机翼总体弯矩的传递。由于翼梁之间的跨度较大,因此

便于利用机翼的内部容积;与其他结构受力型式相比梁式机翼便于开口(如收藏

起落架等)而不致破坏原来的主要传力路线;机翼、机身通过几个集中接头连接,所以连接简单、方便。

单块式。从构造上看,单块式机翼的长桁较多且较强;蒙皮较厚;长桁、

蒙皮组成可受轴向力的壁板。当有梁时,一般梁缘条的剖面面积与长桁的剖面

面积接近或略大,有时就只布置纵墙。为了充分发挥单块式机翼的受力特点,左、右机翼一般连成整体贯穿机身。但有时为了使用、维护方便,在展向布置

有设计分离面。分离面处采用沿翼箱周缘分散连接的形式将机翼连为一体(见图3.1.10)。

单块式机翼的上、下壁板成为主要受力构件。这种机翼比梁式机翼的刚度

特性好(这点对后掠机翼很重要)。同时由于结构分散受力,能更好地利用剖面

结构高度,因而在某些情况下(如飞机速度较大时)材料利用率较高,重量可能

较轻。此外单块式机翼比梁式机翼生存力强。它的缺点是不便于开口。

图3.1.10单块式机翼

1—长桁2—翼肋3—墙或梁的腹板

多腹板式(多梁式)。这类机翼布置了较多的纵墙(一般多于5个);蒙皮厚

(可从几毫米到十几毫米);无长桁;翼肋很少,但结合受集中力的需要,至少

每侧机翼上要布置3~5个加强翼肋(见图714)。当左、右机翼连成整体时,与

机身的连接与单块式类似。但有的与梁式类似,分成左右机翼,在机身侧边与

之相连。此时往往由多腹板式过渡到多梁式,用少于腹板数的几个梁的根部集

中对接接头在根部与机身相连(见图3.1.11)。

多腹板式机翼主要由上、下厚蒙皮承受弯矩。它与梁式、单块式机翼相比,材料分散性更大。一般来说,该式机翼的刚度大、材料利用率也更好些。然而

也存在类似单块式机翼的缺点。

飞机的尾翼和舵面的结构和机翼基本类似,不再赘述。

图3.1.11 多腹板式机翼

1—纵墙2—蒙皮3—襟翼4—副翼5—纵墙的缘条

3.1.2飞机结构的一般要求及主要的结构材料

飞机结构的一般要求

与其它类型结构相比,飞机结构有其特殊性。首先,对重量特别敏感—飞

机本身的重量必须尽可能轻,以便多装人员、货物或装备,因而对结构材料要

求高;其次,飞机部件的尺寸大而刚度小——有的飞机机翼长达几十米,本身

又是薄壁结构,易变形,即刚度小(刚度是指一个结构在受力的情况下抵抗变

形的能力),因此飞机结构的精确度不易保证;还有,飞机零件的数量特别多,装配工作量大——大型飞机的零件有几万个之多,而铆钉的数量就可达几十万,所以装配特别费时。

一般说来,飞机结构应满足以下基本要求:

气动外形要求。当结构与气动外形有关时,结构设计应使结构构造的外形

能满足规定的外形准确度要求和表面质量要求。这些要求主要与气动阻力和升

力特性有关。为了保证飞机在气动上具有原定的良好稳定性与操纵性,机翼、

尾翼与机身不容许有过大的变形。

有足够的强度、刚度且重量要轻。结构设计应保证结构在承受各种规定的

载荷状态下,具有足够的强度(所谓强度,是指结构或材料抵抗破坏的能力),不产生不能容许的残余变形;具有足够的刚度(所谓刚度,是指结构或材料抵

抗变形的能力)与采取其他措施以避免出现不能容许的气动弹性问题与振动问题;具有足够的寿命等。即要求飞机构造满足一定的刚度与强度要求,但刚度、强度太大又会导致结构重量过重,而重量太轻又会导致刚度、强度不够。因而

应该在满足设计要求所规定的刚度、强度的前提下,重量应该最轻,以便多载

人员、货物、油料,以提高飞行性能。因而,应选择强度高而重量轻的材料来

制造飞机的构件。

抗疲劳破坏能力强。飞机有许多结构常处于交变载荷的作用下,容易产生

疲劳破坏。因而结构应该有较好的抗疲劳破坏能力才能保证飞行安全。

高的可靠性和生存力。在规定的时间和规定的条件下,结构能完成规定功

能的能力称为结构的可靠性。飞机的可靠性是无故障性、维修性、耐久性和储

存性的综合指标。

飞机的生存力是指被武器击中后,能够继续飞行的能力(两架“受伤”程度相

同的飞机,如果一架还能继续飞行,而另一架不能继续飞行了,则前者较后者

的生存力强)。

使用维护要求。为了确保飞机的各个部分(包括装在飞机内的电子设备、燃油系统等各个重要设备和系统以及主要结构)能安全可靠地工作,需要在规定的周期,检查各个指定需要检查的地方,如发现损伤,则需要进行修理或更换。

对于军民用飞机,则需要缩短维护及检修工作的时间,以保证飞机随时处于临战状态或者重新起飞状态。

为了保证维护、检修工作的高质量、高速度进行,在结构上需要布置合理的分离面与各种开口。

工艺性要求。要求飞机结构的工艺性要好,即加工要快、成本要低等。这些需结合机种、产量、需要迫切性与加工条件等综合考虑。

成本要求——经济性要求。这里所说的成本,主要是指制造成本与运营成本(含与结构的维修有关的那部分)。如果从广义上讲,经济性要求还应包括设计成本。

一般来说,以上各要求中,除气动外形都要保证外,对军机而言,重量要求是第一位的;对旅客机、运输机则要同时考虑重量和经济性。而经济性要求实质上和重量、使用维护及工艺要求均密切相关。

重量要求之所以是飞机结构设计的主要要求,是因为对军机而言,重量与性能密切相关,减重对军机十分重要;对旅客机、运输机而言,重量与经济效益直接相关。由于现代旅客机使用寿命长(一般可达60000 飞行小时以上),因此减轻结构重量意味着可增加商载(即旅客、货物、邮件等重量),在使用寿命期内增加的经济效益将是十分可观的。

主要的结构材料

为了减轻结构重量,除了采用合理的结构形式以外,最有效的方法是选用强度、刚度大而质量轻的材料。同时,应根据不同的飞行条件和工作环境,要求材料有一定的耐高温和抗低温性能;要有良好的耐老化和抗腐蚀能力;要有良好的抗疲劳性能等。此外,还要求材料应具有良好的加工性能;采用的材料要资源丰富、价格低廉。

一般纯金属的机械性能都不太好,只有加入一种或几种金属元素后所形成

的合金才具有良好的机械性能。

铝合金。铝合金除保持了纯铝的优点(如比重小、塑性高、抗腐蚀、导热及

导电性良好)以外,还具有良好的机械性能、物理性能和工艺性能。大多数变形

铝合金都易进行切削、压力加工成形。铸造铝合金则可用砂型、金属型、压力

铸造等方法成形。一般来讲铝合金由于具有接近钛合金、结构钢的比强度、高

的比刚度性能以及工艺性能优良、成形方便、成本低廉等其他合金所不能比拟

的优点,所以,铝合金是飞机的主要结构材料(约占60%~90%)。

镁合金。在现有的工程用金属中,镁合金的密度最小,约为1.8 g/cm3,约

为铝的64%,钢的32%,因而被广泛用作航空材料。虽然镁合金的强度、弹性

模量比铝合金、合金钢低,但其比强度、比弹性模量却大致相同。更由于截面

的惯性矩随其厚度的立方比增加,故用镁合金制造刚性好的航空零件十分适宜。

镁合金很轻,具有良好的机械加工性,可广泛应用于飞机的非主要受力构

件上,还可以用来制造起落架上的刹车轮毂。另外,由于镁合金对石油和碱类

物质有抗腐蚀性,可以用来做油管和油箱的零件。

合金钢。钢具有较高的比强度,性能稳定、工艺简单、成本低廉,是制造

承受大载荷的接头、起落架和主梁等飞机构件的最合适的结构材料。航空发动

机中的很多重要零件如压气机轴、涡轮轴和各种齿轮也要用高强度钢或渗碳钢

制造。超音速飞机(M>3)的受力框架等重要零件因在一定的温度场中工作,必

须采用中温超高强度钢。

很多航空零部件都要求材料具有良好的抗腐蚀性能和优良的高低温综合机

械性能。种类繁多的不锈钢正好能满足这些要求,例如马氏体不锈钢用来制造

压气机叶片、压气机盘、发动机机匣、环形件和大型壳体等。奥氏体不锈钢广

泛用来制造各种导管和仪表零件。因此不锈钢和结构钢在航空制造业中占有很

重要的地位。

钛合金。钛的密度小(4.5 g/cm3),但其强度却接近于钢。用钛合金制造的飞机结构可以明显的减轻结构重量。此外,钛合金具有良好的抗腐蚀性及超低温性能。钛合金的主要缺点是加工成形比较困难,成本也较高。

复合材料。复合材料是由两种或多种材料复合而成的多相材料。复合材料中起增强作用的材料称为增强体,起粘结作用的材料称为基体。一般的增强体主要有碳纤维、石墨纤维、玻璃纤维、芳纶纤维、硼纤维等高强度的纤维;基体材料一般采用具有柔韧型的树脂,如环氧树脂、聚酰亚胺树脂等,另外还有铝合金或钛合金等。

复合材料具有优异的性能,其密度低,强度和刚度高,抗疲劳性能、减震性能等较好,而且可以对其力学性能进行设计,因而在航空航天结构上采用的越来越多。

化工材料。除了以上主要工程材料外,在航空结构中还采用了种类繁多的化工材料。例如用于连接不同部件的胶粘剂,用于制造座舱密封盖的聚碳酸脂玻璃,用于制作航空轮胎的各种橡胶,还有为了防腐蚀甚至增加隐身性能的涂料等。

总之,飞行器的发展,所采用的各种材料的品种都在不断发展,越来越发挥着重要的作用。

国内民航飞机分类概述

国内民航飞机分类概述 大型宽体飞机:座位数在200以上,飞机上有双通道通行 747 波音747,载客数在350-400人左右。(747、74E均为波音747的不同型号) 777 波音777,载客在350人左右。(或以77B作为代号) 767 波音767,载客在280人左右 M11 麦道11,载客340人左右 340 空中客车340,载客350人左右 300 空中客车300,载客280人左右(或以AB6作为代号) 310 空中客车310,载客250人左右 ILW 伊尔86,苏联飞机,载客300人左右 中型飞机:指单通道飞机,载客在100人以上,200人以下 M90 麦道82,麦道90载客150人左右 733 波音737系列载客在130-160左右 320 空中客车320,载客180人左右 TU5 苏联飞机,载客150人左右 146 英国宇航公司BAE-146飞机,载客108人 YK2 雅克42,苏联飞机,载客110人左右 小型飞机:指100座以下飞机,多用于支线飞行 YN7 运7,国产飞机,载客50人左右 AN4 安24,苏联飞机,载客50人左右 SF3 萨伯100,载客30人左右 ATR 雅泰72A,载客70人左右 美国波音公司和欧洲空客公司是世界上两家最大的飞机制造商。波音是世界最大的航空航天公司,1997年波音与麦道公司合并,其主要民机产品包括717、737、747、757、767、777和波音公务机。全球正在使用中的波音喷气客机达11000多架。欧洲空客公司成立于1970年,如今已成为美国波音飞机公司在世界民用飞机市场上的主要竞争对手。30年来,该公司共获得来自175家客户的订货4200余架。 波音公司飞机机型系列的波音公司飞机型号介绍 波音737介绍 波音737飞机是波音公司生产的双发(动机)中短程运输机,被称为世界航空史上最成功的民航客机。在获得德国汉莎航空公司10架启动订单后波音737飞机于1964年5月开始研制,1967年4月原型机试飞,12月取得适航证,1968年2月投入航线运营。 波音737飞机基本型为B737-100型。传统型B737分100/200/300/400/500型五种,1998年12月5日,第3000架传统型B737出厂。目前,传统型B737均已停止生产。 1993年11月,新一代波音737项目正式启动,新一代波音737分600/700/800/900型四种,它以出色的技术赢得了市场青睐,被称为卖的最快的民航客机。截止2001年底,已交付超过1000架。 2000年1月,波音737成为历史上第一种累计飞行超过1亿小时的飞机。

《构造地质学》——期末复习题及答案_381427182024157

《构造地质学》期末复习题 一、判断题(正确标√,错误标×) 1. 如果地层倾向与坡向相同,且地层倾角大于地面坡角,则在地形地质图上,地层露头线弯曲方向与地形等高线弯曲方向相反()。 2. 倾斜岩层的产状由走向和倾向就可确定()。 3. 岩层走向加上或减去90°就是岩层的倾向()。 4. 倾斜岩层层面与水平面的交线是该岩层的走向线()。 5. 对称波痕的波峰尖端指向岩层的顶面()。 6. 泥裂在剖面上一般成“V”字形,其“V”字形尖端指向岩层顶面()。 7. 斜层理由一组或多组与主层面斜交的细层组成,其细层的收敛方向指向岩层的底面方向()。 8. 水平岩层在地面露头线与地形等高线平行或重合()。 9. 两套地层之间存在地层缺失,且两套地层的走向线平行,则该两套地层之间一定是平行不整合接触关系()。 10. 当岩层倾向与地面坡向相反,岩层界线与地形等高线的弯曲方向相反()。 11. 节理的分期就是将一定地区不同时期形成的节理加以区分,将同期节理组合在一起()。 12. 在断层旁侧发育的张性结构面(如羽状张节理)与断层的锐夹角指示对盘的运动方向()。 13. 同沉积褶皱是在岩层形成后受力变形而形成的()。 14. 因为在与最大主应力成45°夹角方向上的剪应力最大,因此剪裂面沿此方向发育()。 15. 同沉积断层的上盘常发育逆牵引构造,其弧形顶端指示断层本盘的运动方向()。 16. 正阶步的陡坎指示本盘运动方向()。 17. 当断层的走向与褶皱的走向一致时,该断层为走向断层()。 18. 缝合线构造的锥轴方向平行于最大主压应力轴()。 19. 褶皱的横截面(或正交剖面)必定垂直地面()。 20. 形成同沉积褶皱的作用主要是横弯褶皱作用()。 21. 枢纽断层是指与褶皱枢纽平行的断层()。 22. 在垂直断层走向的剖面上,如果发现上盘上升、下盘下降,则一定是逆断层()。 23. 最小主应力铅直,最大主应力和中间主应力水平,按照安德森断层形成模式,这种应力状态下可形成逆断层()。 24. 在剖面上表现出花状构造特征的一定是走滑断裂()。

第三章 飞机的一般介绍

第三章飞机的一般介绍 第一节飞机构造 飞机的基本结构部分可以分为机身、机翼、尾翼、起落架、动力装置和仪表设备等几个大部分,通常我们把机身、机翼、尾翼、起落架这几部分构成飞机外部形状的部分合称为机体。 一、机翼机翼是飞机升力的基本来源,因而它是飞机必不可缺少的 部分。飞机上用来产生升力的主要部件。一般分为左右两个翼面,对称地布置在机身两边。机翼的一些部位(主要是前缘和后缘)可以活动。驾驶员操纵这些部分可以改变机翼的形状,控制机翼升力或阻力的分布,以达到增加升力或改变飞机姿态的目的。机翼上常用的活动翼面(图1)有各种前后缘增升装置、副翼、扰流片、减速板、升降副翼等。机翼分为四个部分:翼根、前缘、后缘、翼尖。 1)机翼外形描述机翼外形的主要几何参数有翼展、翼面积(机翼俯仰

投影面积)、后掠角(主要有前缘后掠角、1/4弦后掠角等)、上反角、 翼剖面形状(翼型)等(图2a)。机翼的翼尖两点的距离称为翼展。机翼 的剖面称为翼型,翼型要符合飞机的飞行速度范围并产生足够升力。 机翼的平面形状多种多样,常用的有矩形翼、梯形翼、后掠翼、三 角翼、双三角翼、箭形翼、边条翼等。现代飞机一般都是单翼机, 但历史上也曾流行过双翼机、三帆翼和多翼机。(图2b) 2)翼根翼根是机翼和机身的结合部分,这里承受着机身重力,和由升力和重力产生的弯矩,是机翼受力最大的部位。翼根是结构强度最 强的部位。根据机翼在机身上安装的部位和形式,可以把飞机分为 几种,安装在机身下方的称为下单翼飞机,安在机身中部的称为中 单翼飞机,安在机身上部的称为上单翼飞机。目前的民航运输机大 部分为下单翼飞机,这是因为下 单翼飞机的机翼离地面近,起落 架可以做的短,两个主起落架之 间距离较宽,增加了降落的稳定 性。收起落架时很容易放入翼下 的起落架舱内,从而减轻了重量, 此外发动机和机翼离地面较近, 做维修工作方便,翼梁在飞机下

构造地质学考题及答案汇总

一、名词解释 1、地堑和地垒 地堑:是指由两组走向基本一致的相向倾斜的正断层构成,两组正断层之间为共同下降盘。地垒:是指由两组走向基本一致的相背倾斜的正断层构成,两组正断层之间为共同上升盘。 2、断层三角面 当断层崖受到与崖面垂直方向的水流的侵蚀切割,会形成沿断层走向分布的一系列三角形陡崖,即断层三角面。是现代活动断层的标志,常见于山区或山地与盆地、平原的分界处。 3、拉分盆地 是走滑断层拉伸中形成的断陷构造盆地,是一种张剪性盆地。其发育快、沉降快、沉积速率大、沉积厚度大、沉积相变化迅速。拉分盆地一般分为“S”型和“Z”型,左行左阶雁列式走滑断层控制下形成的拉分盆地为“S”型,右行右阶雁列式走滑断层控制下形成的拉分盆地为“Z”型。 4、纯剪切与简单剪切 产生均匀变形的剪切作用有两种:纯剪切(pure shear)和简单剪切(simple shear)。 纯剪切变形的主应变方向不随变形的递进而转动,所以又称非旋转变形或共轴变形,但两条主应变线的长度却分别持续伸长或持续缩短。纯剪切变形过程中,除主应变线以外的所有方向线的方向和长度都随变形的递进作有规律的变化。拉伸与压缩作用产生纯剪切变形。 简单剪切变形的两个主应变线的方向和长度随变形的递进而改变,所以又称旋转变形或非共轴变形。简单剪切过程中除了平行剪切面方向线的方向和长度不随变形的递进而改变以外,其他所有方向线的方向和长度都随变形的递进而改变。简单剪切变形由一系列平行的滑动层受剪切滑动而形成。 5、动态重结晶 在初始变形晶粒边界或局部的高位错密度处,储存了较高的应变能,在温度足够高的条件下,形成新的重结晶颗粒,使初始变形的大晶粒分解为许多无位错的细小的新晶粒。 6、底辟构造 底辟构造是地下高韧性岩体如岩盐、石膏、粘土或煤层等,在构造应力的作用下,或者由于岩石物质间密度的差异所引起的浮力作用下,向上流动并挤入上覆岩层之中而形成的一种构造。 7、平衡剖面 指将剖面中的变形构造通过几何原则和方法全部复原的剖面,是全面准确表现构造的剖面。平衡剖面技术目前主要用于检验地震解释结果的正确性、构造变形的定量研究和进行盆地构造演化分析。 平衡剖面基本原理为:如果变形前后物质的体积不变,则在垂直构造走向的剖面上体现为“面积不变”;如果变形前后岩层厚度保持不变,则转化为“层长不变”。所以,平衡剖面技术可以理解为是一种遵循岩层层长或面积在几何学上的守恒原则,将已变形的剖面恢复到未变形状态或从未变形地层剖面依据变形原理得到变形剖面的方法。 8. 构造窗和飞来峰 当逆冲断层和推覆构造发育地区遭受强烈侵蚀切割,将部分外来岩块剥掉而露出下伏原地岩块时,表现为在一片外来岩块中露出一小片由断层圈闭的较年青地层,这种现象称为构造窗。如果剥蚀强烈,外来岩块被大片剥蚀,只在大片被剥蚀出来的原地岩块上残留小片孤零零的外来岩块,称为飞来峰。飞来峰表现为原地岩块中残留一小片由断层圈闭的外来岩块,常常表现为在较年青的地层中残留一小片由断层圈闭的较老地层。

波音系列飞机介绍及总体参数

707 目录 概况 技术数据 主要型号 波音707在中国 [返回顶部] 概况 波音707是美国波音公司研制的四发远程喷气运输机,原型机编号367-80,1954年7月15日首次试飞。不久,在此试验机的基础上为美国空军研制出KC-135空中加油机,并大量生产。经美国空军同意,1957年在KC-135的基础上发展成民用客机波音707,同年12月首次试飞,1958年开始交付使用,并有许多改型,最后一架民用型707于1982年3月交付使用,该机是707-320C型。截止1992年3月31日,707共获订货1010架,生产线已于1991年关闭,1992年5月交付最后一架军用型。军用型除KC-135外还包括美空军的E-3、E-6和E-8。 1982年开始,波音公司陆续为正在服役的630架KC-135进行延寿处理和更换新型发动机,将翼下蒙皮更新,可使飞机寿命延长27000飞行小时,再把发动机换成 CFM56-2B-1涡扇发动机。这些措施可使KC-135机队服役到2020年。更换发动机后的美国空军的KC-135称KC-135R,美国海岸警卫队的KC-135称为KC-135E,法国空军的KC-135称为KC-135FR。波音公司用波音707为美国空军改装49架空中预警机E-3A,1983年4月,还开始用波音707改装成空中通信机E-6,用于美国国家指挥中心和美国海军“三叉戟”核潜艇舰队之间的通信联络。美国用波音707改装成联合机载雷达系统研究机E-8A,并决定E-8A将不再采用新制造的机身,而只是将民用型的707换装发动机。 波音707主要民用型别:波音707-120,第一种生产型;707-220,类似于-120型;707-320,洲际远程型;707-320 B,-320的改进型;707-320 C,-320B的改进型,中国民航曾购买10架-320C型;707-420型,改进的远程型;还有货运型和客货混合型;美国总统使用的“空军一号”专机型。 [返回顶部]

飞机构造课程复习考试试题及答案

《飞机构造》复习纲要 一、填空题 1. 构件在外力作用下,抵抗破坏(或断裂)的能力叫做构件的_______ 2. 夹层结构机翼采用了_______ 来做蒙皮和其他构件。 3. 动力装置主要用来产生________ ,使飞机前进。 4. _____ 是飞机处于平飞姿态时,为考虑平衡问题所选取的假想垂直面。 5. 机翼的主要功用是为飞机提供________ 。 、单选题 1. 加强隔框除了具有普通隔框的作用外,其主要作用是()。 A. 形成和保持机身的外形 B.提高蒙皮的稳定性 C.承受局部空气动力 D.承受和传递某些大部件传来的集中载荷 2. 机翼上的剪力主要是由以下哪个构件承受的?() A. 翼梁缘条 B.翼梁腹板 C.桁条 D.翼肋 3. 飞机在x轴方向的过载等于()。 A. 发动机推力与飞机阻力之差与飞机重量的比值 B. 飞机升力与飞机重量的比值 C. 飞机侧向力与飞机重量的比值 D. 飞机横向力与飞机重量的比值 4. 力臂的符号在什么情况下为正?() A. 重量的力臂在基准面之后 C.重量的力臂在重心之后 5. 最大起飞重量的定义是()。 A.经过核准的飞机及其载重的最大重量 C.飞机着陆所允许的最大重量6. 重力供油的原理是()。 A.燃油利用自身重力自动地向发动机供油 B. 重量的力臂在基准面之前 D.重量的力臂在重心之后 B. 在飞机开始起飞滑跑时所允许的最大重量D.当飞机在停机坪停机时所允许的最大重量 B. 采用电动油泵将燃油从油箱中抽出,然后供到发动 机 C. 在密封的油箱内通进一定压力的气体,使油从油 箱中压出供发动机工作的需要 D. 以上都不对 B.增大活塞移动的距离 D.增大油液流量 ()。 B.矿物基液压油 D.以上都不对 B.空气驱动泵 D.冲压空气涡轮驱动泵

构造地质学看图题及答案

1、看图题(共40道) 序 号 内容图形 001Quest:分析下图各地层间的接触关系Ans: D2/D1——整合 P1/D2——平行不整合 T1/P1——平行不整合 T2/T1——整合 K1/T2——角度不整合 002Quest:分析下面地形地质图,指出J-K、O -P地层的产出状态 Ans: J-K:水平产状 O-P:SW 003Quest:分析下面地形地质图,指出地层是正常层序还是倒转层序 Ans: 倒转层序 004Quest:下图为一次构造变形之产物,请根据原生沉积构造恢复褶皱的转折端(用虚线

绘出) Ans: 005 Quest:下图为一次构造变形之产物,请根 据沉积构造、层间小褶皱、劈理判断地层层 序,恢复褶皱的转折端(用虚线绘出) Ans: 006 Quest:根据劈理与层理关系判断下列剖面 图中的同一岩层的正常、倒转,恢复褶皱转 折端(条件:图中只发生了一次构造变形)Ans: 007 Quest:下面剖面图中,两种岩层(1、2层)中都发育有劈理,试根据劈理发育特征判断 哪种岩性韧性小(较强硬)?背形转折端发 育在哪一侧? Ans: (1)1-大,2-小 (2)东侧 008 Quest:指出下列图中线理的名称类型 Ans: A——皱纹 B——拉伸

009Quest:下图AB为一线性构造,请指出其产状要素名称 Ans: 010Quest:写出下图褶皱各部分名称Ans: 1)转折端2)翼 3)核4)轴面 5)枢纽6)背斜最高点 7)脊8)拐点 011Quest:根据小褶皱、劈理特征,分析判断岩层层序并恢复背、向斜形态。 Ans: 012Quest:下图为S形雁列脉,请用箭头标出形成时剪切力偶作用方向 Ans: 013Quest:分析判断下列两个平面地质图上走向断层的运动学类型? Ans: 014Quest:根据断层的伴生构造分析判断下图中断层两盘相对运动方向,并确定断层运动学类型。(用箭头标出两盘相对运动方向)

波音和空客各飞机型号(完美版)(图)

欧洲的空中客车(Airbus)系列: 一、空客A310: 主要外形特征: 1、机身短而粗。 2、舱门为三个。 3、主起落架是两排轮子。 4、驾驶舱最边上的那个窗是一个五边形(除了A380外,空中客车的所有飞机驾驶舱最边上的这个窗口都是这个形状)。 5、机尾部分,上部轮廓线较为水平(这也是AB 6、A310与B762的重要区别之一),垂直尾翼的圆弧半径较大(较接近直线)。 二、空客A300-600,俗称AB6: 主要外形特征: 1、样子和A310差不多,但比A310长。 2、舱门为四个。

4、和A310的外形特征3、4、5相同。 三、空客A318,是A320系列机身最短的一种型号: 主要外形特征: 1、机身短而细。 2、舱门为三个。 3、主起落架为一排轮子。 4、驾驶舱最边上的窗为五边形。 5、翼尖有小翼(和310的小翼一样,320系列的都有这种形状的小翼)。 6、第一、二门之间的窗口为6+4+1形式。 四、空客A319: 主要外形特征: 1、机身短而细,但比A318稍长。 2、第一、二门之间的窗口为12+1形式。 3、与A318的外形特征2、3、 4、5相同。 也就是说,A318和A319外形基本一致,唯一的区别就是机身长度及随之而变化的窗口分布。

五、空客A330-200,简称A332: 主要外形特征: 1、机身长而粗。 2、舱门为四个。 3、主起落架为两排轮子。 4、驾驶舱最边上的窗为五边形。 5、机翼很修长,翼尖有小翼。基本上是一个梯形,330及340系列的飞机都有这种形状的小翼,这也是A330与AB6的重要区别之一。 6、机翼与机身连接处有很大一块的机翼盒,这个机翼盒在320系列及340系列均存在,这也是A330与AB6的重要区别之一。 7、机尾部分,上部轮廓线较为水平。其实空客系列的机型均有此特点,这也是与B757、B767甚至B777的重要区别之一。 8、第一、二门之间最多有12个窗口。 六、空客A330-300,简称A333: 主要外形特征: 1、第一、二门之间最多有17个窗口。 2、与A330-200的外形特征1、2、 3、 4、 5、 6、7相同。

构造地质学看图题及答案

1、看图题 (共40道) 序号 内 容 图 形 001 Quest: 分析下图各地层间的接触关系 Ans: D2/D1——整合 P1/D2——平行不整合 T1/P1——平行不整合 T2/T1——整合 K1/T2——角度不整合 002 Quest: 分析下面地形地质图,指出J -K 、O -P 地层的产出状态 Ans: J-K :水平产状 O-P :SW 003 Quest: 分析下面地形地质图,指出地层是正常层序还是倒转层序 Ans: 倒转层序 004 Quest: 下图为一次构造变形之产物,请根据原生沉积构造恢复褶皱的转折端(用虚

线绘出) Ans: 005 Quest:下图为一次构造变形之产物,请 根据沉积构造、层间小褶皱、劈理判断地层层序,恢复褶皱的转折端(用虚线绘出) Ans: 006 Quest:根据劈理与层理关系判断下列剖面 图中的同一岩层的正常、倒转,恢复褶皱转折端(条件:图中只发生了一次构造变形)Ans: 007 Quest:下面剖面图中,两种岩层(1、2 层)中都发育有劈理,试根据劈理发育特征判断哪种岩性韧性小(较强硬)?背形转折端发育在哪一侧? Ans: (1)1-大,2-小 (2)东侧 008 Quest:指出下列图中线理的名称类型 Ans: A——皱纹 B——拉伸

009 Quest: 下图AB 为一线性构造,请指出其产状要素名称 Ans: 010 Quest: 写出下图褶皱各部分名称 Ans: 1) 转折端 2)翼 3)核 4)轴面 5)枢纽 6)背斜最高点 7)脊 8)拐点 011 Quest: 根据小褶皱、劈理特征,分析判断岩层层序并恢复背、向斜形态。 Ans: 012 Quest: 下图为S 形雁列脉,请用箭头标出形成时剪切力偶作用方向 Ans: 013 Quest: 分析判断下列两个平面地质图上走向断层的运动学类型? Ans: 014 Quest: 根据断层的伴生构造分析判断下图中断层两盘相对运动方向,并确定断层运动 学类型。(用箭头标出两盘相对运动方向)

波音飞机机型介绍

波音飞机机型介绍——波音B757 波音757为美国波音公司开发的中短程民航客机,原设计为美国东方航空及英国航空取代旗下的波音727。波音757于1983年投入服务,并于2005年11月18日停产,共生产了1,050架。最后一架757已交付上海航空[1]。波音757可被视为波音最成功的计划之一。可是,随着销售量于90年代末开始下跌,最终导致波音757于2005年11月28日停产。757-300的需求主要来自美国纽约至西欧的航线。停产后产品空缺由737-900代替。据2007年1月统计,全球目前共有1006架波音757在服役中。 简介 波音757(于起初发展阶段名为 7N7 )由波音公司设计,用于替换波音727,并在客源较少的航线上补充波音767。相比起原构思的波音727-300(727-200的加长版),757拥有较新的设计,包括采用双引擎、双人操作的驾驶室。最初设计的757亦世袭至727,具有“T型垂直尾翼尾”(T-tail),虽然T型尾翼拥有风阻小的优点,但因为容易使飞机失速,最终设计仍使用传统的垂直尾翼。 757为波音第一款航机使用非美国生产的发动机—劳斯莱斯RB211-535。后来普惠(Pratt & Whitney)另提供一款PW2000型号作选择。本来通用电气亦打算提供CF6-32型号,但最后因得不到航空公司垂青而取消计划。 波音757拥有亚音速窄体客机市场中最大的航程,在满载200名乘客的情况下可飞行超过7,200公里,使它足以横越大西洋的续航距离,亦是一款最早获得双发延程飞行(ETOPS)评级之一的民航客机。为了更符合经济效益,757的载客量比波音727多出50人。 波音于757上大量地使用与767相同的部件,而两款飞机均获得相同的美国联邦航空局评级,即飞行员只须受其中一款型号的训练及测试,就能同时获准飞行另一型号。另外,波音757的机身直径与707、727和737一样。 757的性能非常优异,亦因其高的爬升速度而不时被称为“火箭飞机”(Rocket Plane),在最大起飞重量的情况下,757能比其他商业客机在较短的时间内爬升至41,000尺。另有一些航空公司都选用757来往气候较热和地势较高的目的地,例如墨西哥城,因为它在以上地方的性能亦比其他机型出色。基于以上情况,墨西哥总统亦选择757作为其专机。虽然757是被设计为取代727的客机,但某些航空公司却以757的窄体客机中最大航程的特点,用来取代载客量相若、四引擎、及耗油量高的707客机。 可是,757必须要有75%或以上的载客率,才可以使航班有盈利,令757只能使用于高密度航线。另外,1990年代随着空中客车的A321投入竞争,757的销量

波音737系列介绍

波音737系列飞机是波音公司生产的双发(动机)中短程运输机,被称为世界航空史上最成功的民航客机,也是民航业最大的飞机家族。在获得德国汉莎航空公司10架启动订单后波音737飞机于1964年5月开始研制,采用波音707/727的机头和机身横截面,1967年4月原型机试飞,12月取得适航证,1968年2月投入航线运营。 波音737飞机基本型为B737-100型。传统型B737分100/200/300/400/500型五种,其中B737-100/200采用低涵道比涡喷发动机,属于第一代波音737,B737-200在市场上大受欢迎后,1981年波音公司决定为737系列继续设计改进型号,并装备先进的CFM56-3涡扇发动机及电子仪表设备,逐步发展形成第二代波音737,共有-300/400/500三个基本型号,波音737问世后20年的1998年12月5日,第3000架传统型B737出厂。传统型B737在2000年停止生产。官方公布传统型波音737共生产了3132架。 20世纪80年代,空中客车公司推出A320与B737争夺市场,在1993年11月,波音公司正式启动新一代波音737项目,以应对A320的出现,新一代波音737分600/700/800/900型四个基本型号,换装推力更大、性能更好的CFM56-7发动机,并装备新型电子仪表设备,1997年底开始交付使用,由于继续保持着可靠性高、使用成本低的特点,深受各航空公司的青睐,被称为卖的最快的民航客机,截止2006年3月底,只用了8年时间,新一代737系列已交付1900架。 2000年1月,波音737成为历史上第一种累计飞行超过1亿小时的飞机。2005年12月,随着厦门航空公司10架737-800订单的签署,737的销售量突破了6000架。2006年2月13日,波音公司和美国西南航空公司庆祝第5000架波音737飞机下线,吉尼斯世界纪录已认可波音737飞机是民用航空史上产量最多的大型民用飞机。 传统型波音737系列介绍: B737-100: 为基本型,装两台JT8D-7或-9低涵道比涡喷发动机,仅生产30架。1967年4月9日首飞,1968年2月交付德国汉莎航空公司使用,典型全经济舱布局载客100人。目前该型号飞机已全部退出商业运营。 B737-200: 为100型的加长型;在-100的机身上加长1.8米,在空气动力方面加以改进,同时还增加了反推装置、修改了襟翼等,1967年8月8日首飞,同年12月交付美国联合航空使用,至1988年8月停产B737-200各型号(含19架军用型T-43)共生产1114架,根据使用重量可使用使用JT8D-9至JT8D-17多种型号发动机。载客115~130名。 B737-200型号还可细分为: B737-200:基本型,最初生产的型号; B737-200Adv:先进型,200型生产线上第280架后,进一步改进机翼、制动系统和起落架后,形成先进型,可在机腹货舱加装油箱,共生产865架; B737-200C/QC:客货两用型,机身和地板进行了加强。客舱加开了一个舱门。客型和货型可以快速转换,共生产104架。 B737-200远程型,总燃油量增加到22598升,下货舱后部还有一容积为3066升的备用油箱,其航程比标准型737-200增加1200公里。 1988年8月8日,最后一架出厂的B737-200(注册号B-2524)交付给中国厦门航空公司。 目前,约有500架B737-200还在运营中,部分飞机加装了降低噪音设备,可以满足新的噪音管制要求。 B737-300/400/500系列: 波音737系列第二代家族包括737-300、400、500三种型号,波音公司在1981年3月宣布开始研制第二代737的基本型号B737-300,启动用户是美国合众国航空(US Airways)和西南航空,与早期100/200型相比,最大的差别是装备CFM56-3涡扇发动机,可降低燃油消耗、降低噪音,与200型相比,还装有彩色气象雷达、数字飞行管理系统和自动油门,具体型号有:

波音飞机外形结构说明

B737飞机外部结构说明 ——观察机头整流罩 是否整流罩完好无损,如整流罩头有黑点,表明可能被雷击或静电积累击过。需走近仔细观察,如发现击穿,应要求机务换整流罩;如不能确定,也可让机务搬观察 梯近距离检查。 ——前轮舱整体外观 前电子设备舱: 内有气象雷达天 线。放电造成整流罩上的 烧蚀 雷达罩导电条:6条, 缺失超过1条不放行

——支柱、撑杆是否有裂纹,是否断裂。 ——起落架作动筒、前轮转弯作动筒是否漏液压油(特别是冬天在北方机场过站、长时间停放时,由于橡胶低温易硬化特性,易造成密封圈硬化导致液压油渗漏)。若出现渗漏,应查MEL。 易渗油

。刹车片是否安装好,是否两块 磨损一致(若一多一少,则在 起飞收起落架刹前轮过程中, 会造成机头较大震动;同时造 成两前轮磨损不一致,地面滑 行时飞机可能会向一侧侧滑)。 铆钉是否露出刹车片,若 露出,应更换。 前轮舱观察孔玻璃是否清 洁(300型)起落架放好标致线(两箭 头对齐即放好)

前轮转弯旁通插销:地面 推飞机时,插上此销,旁 通液压A系统,不再给转 弯作动筒加压,令推车能 自由转动前轮。 拖把转弯角度限制线(推 飞机时):最大78°。 滑行灯导线

空地传感器 —NG型:每个起落架都有 轮胎 1、是否磨损见线(基地见线一层以上,外站见线二层以上建议换胎,轮胎总共有12-13层) 2、是否被钉子扎伤: ①、钉子扎入其中,可见一个白色亮点。若不能确定是否石子、尘埃等还是钉子, 可用手或脚轻轻刮几下,若刮不掉,则可能是钉子需进一步仔细确认并请机务 检查。 ②、若见到一个孔,而不见刺入物,可用牙签或木棍等探测一下孔深;若感觉较深, 也需让机务进一步检查确认。

飞机结构修理

飞机结构修理 飞机的机体结构通常是由蒙皮和骨架等组成。蒙皮用来构成机翼,尾翼和机身的外形,承受局部气动载荷,以及参与抵抗机翼,尾翼,机身的弯曲变形和扭转变形。骨架包括纵向构件主要包括梁和桁条组成其作用主要是承受机翼、尾翼、机身弯曲时所产生的拉力和压力;横向构件包括翼肋、隔框等,主要用来保持机翼、尾翼和机身的截面形状,并承受局部的空气动力,各类飞机大部分以铝合金作为主要结构材料。飞机上的蒙皮、梁、肋、桁条、隔框和起落架都可以用铝合金制造。因为其密度小、强度高的优点,在航空材料中得以广泛的应用。铝合金结构在使用过程不可避免地受到不同程度的损伤,如蒙皮破孔、梁缘条裂纹、框变形等,因而需要采取相应的方法加以修理,保证各个结构能够在使用中安全负载和工作。主要介绍飞机铝合金蒙皮、梁、桁、框及肋等结构的维修方法 1.飞机铝合金蒙皮 蒙皮是包围在机翼骨架外的维形构件,用粘接剂或铆钉固定于骨架上,形成机翼的气动力外形。蒙皮用来构成机翼、尾翼和机身的外形,承受局部空气动力载荷,以及参与抵抗机翼、尾翼、机身的弯曲变形和扭转变形。早期低速飞机的蒙皮是布质的,而如今飞机的蒙皮多是用硬铝板材制成的金属蒙皮。

机身蒙皮与机翼蒙皮的作用和构造相同。如衍梁、衍条、蒙皮、隔框的不同组合、可以形成机身的不同构造形式。如果蒙皮较厚,则衍梁、衍条、隔柜可以较弱;如果蒙皮较薄,则上述骨架也应该较强、较多。 2.梁的结构及特点 翼梁

翼梁是最主要的纵向构件,它承受全部或大部分弯矩和剪力。翼梁一般由凸缘、腹板和支柱构成(如图所示),剖面多为工字型。翼梁固支在机身上。凸缘通常由锻造铝合金或高强度合金钢制成,腹板用硬铝合金板材制成,与上下凸缘用螺钉或铆钉相连接。凸缘和腹板组成工字型梁,承受由外载荷转化而成的弯矩和剪力。 桁条与桁梁 衍条的形状、作用与机冀的衍条相似。桁条是用铝合金挤压或板材弯制而成,铆接在蒙皮内表面,支持蒙皮以提高其承载能力,并共同将气动力分布载荷传给翼肋。衍梁的形状与衍条相似,但剖面尺才要大些,其作用与翼梁相似。

(完整版)飞机构造基础_宋静波_试卷1

广州民航职业技术学院2002/2003学年第二学期00级机电班 <<飞机构造基础>>期末考试题(A) 姓名:_______________班级:___________学号:______成绩:___________ 选择题:请将最正确的答案填写在答题纸上。每空1分,共100分。 1、飞机在飞行中,对飞机结构影响最大的载荷是: A、发动机推力 B、升力 C、阻力 D、飞机重力 2、飞机在正过载时: A、机翼上壁板受压,机身上壁板受拉 B、机翼上壁板受拉,机身上壁板 受压C、机翼上壁板受压,机身下壁板受拉D、机翼上壁板受拉,机身上壁板受拉 3、下述有关机翼结构质量力的说法,哪个是正确的? A、机构结构质量力就等于机翼重力 B、小于机翼重力 C、大于机翼重力 D、机翼结构质量力等于重力与惯性力之和。 4、机翼的纵向骨架有: A、翼梁和翼肋 B、翼梁和桁条 C、腹板,缘条,桁条和隔框 D、翼肋,桁 条和翼梁 5、梁式机翼上剪力主要由哪个部件承受: A、翼梁缘条 B、桁条 C、翼梁腹板 D、翼肋 6、单块式机翼与梁式机翼相比: A、梁式机翼更能保持较好的翼型 B、单块式机翼与机身对接容易 C、梁式 机翼便于承受较大的集中载荷D、单块式机翼生存力较差 7、机身在对称载荷作用下,所受的内力有: A、剪力和弯矩 B、剪力、弯矩和扭矩 C、弯矩和扭矩 D、剪力和扭矩 8、副翼差动的目的是为了: A、保持飞机的纵向平衡 B、提高副翼操纵的灵敏性 C、减小操纵副翼所需 要的力D、使两侧机翼产生的气动阻力平衡 9、调整飞机载重与平衡的主要目的是为了: A、提高飞行效率 B、提高实用装载 C、提高飞行安全 D、降低燃油消耗 10、在对飞机进行平衡验算时,有关力臂与重量的说法,哪个正确: A、基准面前力臂取正号;增加的重量取正号 B、基准面前力臂取正号; 拆除的重量取正号C、基准面后力臂取正号;增加的重量取正号D、基准面后力臂取正号;拆除的重量取正号 11、飞机称重前的准备工作哪个是错误的: A、使飞机处于水平姿态 B、将燃油放油直到油量指示为零 C、饮用水和洗 涤水及厕所排空D、液压油箱和滑油箱排空

构造地质学试及答案解析

构造地质学试卷 一、选择题(共8分,每小题1分)。 1、当断面直立时,擦痕的侧伏角( A ) A 与倾伏角相同 B 比倾伏角大 C 比倾伏角小 D 与倾伏角无关 2、构造地质学尺度的划分是相对的,变化围很大,其中构造地质学主要研究的对象( A ) A 中型、小型构造 B 小型、微型构造 C 大型、中型构造 D 巨型、大型构造 3、两套地层关系反映了构造演化过程为:下降沉积-褶皱、岩浆侵入并遭受剥蚀—再下降沉积,其接触关系为( B ) A 平行不整合 B 角度不整合 C 整合 D 假整合 4、在单剪状态下,剪切面平行( A ) A 应变椭球体的XY面 B 应变椭球体的XZ面 C ab 运动面 D 应变椭球体的YZ面 5、线理延伸向与应变椭球体A轴一致的A型线理有( C ) A 香肠构造 B 皱纹线理 C 矿物生长线理 D 交面线理

6、褶皱外弧曲率相同,等倾斜线等长的褶皱是( B ) A 相似褶皱 B 等厚褶皱 C 平行褶皱 D 顶薄褶皱 7、正断层形成的安德森模式是( B ) A σ2直立,σ1σ3水平 B σ1直立,σ2σ3水平 C σ3直立,σ1σ2水平 D 任意 8、原生构造与次生构造有什么差别( B ) A原生构造发育于构造变形较强的环境,次生构造发育于构造变形较弱的环境B原生构造发育于构造变形较弱的环境,次生构造发育于构造变形较强的环境C原生构造与围构造环境同时产生,同时发育,次生构造发育晚于其构造环境D 原生构造发育晚于围构造环境,次生构造与其构造环境同时产生发育 二、填空题(共12分,每空0.5分) 1、当岩层的倾向与地面坡向相同 .. 且岩层倾角大于坡度角时,岩层露头 线与地形等高线呈相反 .. 向弯曲. 2、岩变形的四种基本式为平移转动形变和体变、。受力物体的形变 可以分为均匀形变 ....和非均匀形变 ..... 。

飞机构造定义

飞机结构 4. Definitions 4. 定义 A. The definitions of primary and secondary structures are as follows: A. 定义基本的和次级的结构依下列各项: WARNING: THE FAILURE OF PSE’S COULD RESULT IN THE CATASTROPHIC FAILURE OF THE AIRPLANE. 警告: PSE (主要构件)的失效可以造成飞机灾难性的故障。 (1) Primary Structure: Structure which carries flight, ground, or pressure loads. Primary structure is classified into two categories: Principal Structural Elements (PSE) and Other Structure. Most of the primary structures on the airplane are Principal Structural Elements (PSE). PSEs are also known as Structural Significant Items (SSI). (1) 基本结构:承传受飞行, 地面, 或压力载荷的结构。基本的结构又分为两类: 主要构件 (PSE) 和其他构件。飞机上的大部分基本结构是主要构件(PSE). PSEs (主要构件)也是被作为结构的重要项目(SSI). (a) Principal Structural Elements (PSE): Primary structure which contribute significantly to carrying flight, ground, and pressurization loads, and whose failure could result in the catastrophic failure of the airplane. (1) 主要构件 (PSE):主要承受飞行, 地面, 和压力载荷的基本结构,这些构件的失效将造成飞机的灾难性故障。 (b) Other Structure: Primary structure that is not a Principal Structural Element (PSE). (b) 其他的结构: 基本结构中不是主要构件的部分 (PSE). (2) Secondary Structure: Structure which carries only air or inertial loads generated on or within the secondary structure. Most secondary structures are important to the aerodynamic performance of the airplane. (2) 次级结构:承受空气或次级结构本身产生的惯性载荷的结构。大部分次级结构对飞行的气动性能很重要。 修理定义 1. Applicability A. This subject gives the definitions related to repair classification and inspection for damage-tolerant and non-damage tolerant primary and secondary structures as applicable. 2. References

构造地质学看图题及答案

1、看图题(共40道) 001Quest:分析下图各地层间的接触关系Ans: D2/D1——整合 P1/D2——平行不整合 T1/P1——平行不整合 T2/T1——整合 K1/T2——角度不整合 002Quest:分析下面地形地质图,指出J-K、O -P地层的产出状态 Ans: J-K:水平产状 O-P:SW 003Quest:分析下面地形地质图,指出地层是正常层序还是倒转层序 Ans: 倒转层序 004Quest:下图为一次构造变形之产物,请根据原生沉积构造恢复褶皱的转折端(用虚线

绘出) Ans: 005 Quest:下图为一次构造变形之产物,请根 据沉积构造、层间小褶皱、劈理判断地层层 序,恢复褶皱的转折端(用虚线绘出) Ans: 006 Quest:根据劈理与层理关系判断下列剖面 图中的同一岩层的正常、倒转,恢复褶皱转 折端(条件:图中只发生了一次构造变形)Ans: 007 Quest:下面剖面图中,两种岩层(1、2层)中都发育有劈理,试根据劈理发育特征判断 哪种岩性韧性小(较强硬)?背形转折端发 育在哪一侧? Ans: (1)1-大,2-小 (2)东侧 008 Quest:指出下列图中线理的名称类型 Ans: A——皱纹 B——拉伸

009Quest:下图AB为一线性构造,请指出其产状要素名称 Ans: 010Quest:写出下图褶皱各部分名称Ans: 1)转折端2)翼 3)核4)轴面 5)枢纽6)背斜最高点 7)脊8)拐点 011Quest:根据小褶皱、劈理特征,分析判断岩层层序并恢复背、向斜形态。 Ans: 012Quest:下图为S形雁列脉,请用箭头标出形成时剪切力偶作用方向 Ans: 013Quest:分析判断下列两个平面地质图上走向断层的运动学类型? Ans: 014Quest:根据断层的伴生构造分析判断下图中断层两盘相对运动方向,并确定断层运动学类型。(用箭头标出两盘相对运动方向)

波音 飞机家族系列介绍

波音767飞机家族系列介绍 波音767系列是一个完整的飞机家族,可以在200-300座级市场上最大限度地满足客户的需求。767系列均为双发飞机,其大小介于单过道的波音757和双过道的波音777之间,载客量在181人至375人之间。经过近20年的出色运营,波音767已在航空公司中建立了赢利性和舒适性的美誉。 767飞机有三种客运型号:767-200ER、767-300ER、767-400ER,还有一种在767-300ER基础上改装的货运型号。三种客运型号飞机的区别主要在机身长度上,767-400ER比767-300ER长约6.43米,而767-300ER又比767-200ER长约6.43米。 767飞机的客 舱比单过道飞机宽1.2米,用户可按照自己的需求选择每排4、5、6、7或8座等几种客舱布局。767飞机的载客量依客舱布局而定:在典型的三级客舱布局情况下可容纳181人至245人,头等舱每排5座,座椅尺寸与波音747的头等舱一样,公务舱每排6座,经济舱每排7座,在高密度的包机布局下,767-400ER 最多可容纳375人。 767-200ER的下层货舱容量为81.4立方米,767-300ER的容量为106.8立方米,767-400ER则为1 29.6立方米。 767设计的起飞重量和航程范围十分广泛,用户完全可以按需选择。其航程从10460公里到12,300 公里,既可以高效地用于美国和欧洲境内的短程航线,也可服务于跨北大西洋和北太平洋的远程航线。目前,在连接美国和欧洲的大西洋航线上,波音767的数量比其他任何机型都多。 767的航班准点率(一种行业标准,飞机在预计时刻的15分钟范围内离开登机门)接近99%,整个机队的日利用率(飞机实际空中飞行时间)平均超过10个小时。 波音767系列项目发展情况 767-200的生产设计始于1978年,那一年美国联合航空公司宣布订购30架中短程767飞机。首架7 67飞机于1981年8月4日在波音的埃弗雷特工厂下线,并于1981年9月26日首飞。 767-300项目于1983年9月启动。这种机型比767-200长6.43米,载客量增加了20%(约40名乘客),货运容积增加了31%。首架767-300飞机于1986年9月交付给日本航空公司。 上述每一种767机型都对应着一种延程型(ER),从而给用户带来了更大的经营灵活性。这种延程能力加上特有的低运营成本特性,使波音767成为北大西洋市场分解的主要原因。 波音767不断改进其特性和能力,以保持市场主导地位 与早期的波音飞机相比,波音767的机翼更厚、更长,后掠角略小,这使其具有优异的起飞性能和燃油经济性。另外,767飞机所装备的两台高函道比涡扇发动机只需稍加改装,就能与747飞机的发动机互换。 有了设计先进的机翼和动力强大的发动机,767-200的最大起飞重量为136080公斤,起飞滑跑距离只需1735米,它可以在两级客舱布局的情况下载客224人从纽约直飞洛杉矶。而767-200ER的最大起飞

相关主题
文本预览
相关文档 最新文档