当前位置:文档之家› 水通道蛋白的发现及对人体的作用

水通道蛋白的发现及对人体的作用

水通道蛋白的发现及对人体的作用
水通道蛋白的发现及对人体的作用

水通道蛋白的发现及对人体的作用

刘彦成

(渭南师范学院环境与生命科学系陕西渭南 714000)摘要:水通道蛋白(aquaporin,AQP) 是一种对水专一的通道蛋白。具有介导水的跨膜转运和调节体内水代谢平衡的功能。水通道蛋白调节失控与水平衡紊乱等一系列疾病密切相关。

关键词:细胞膜;水通道蛋白(AQP);跨膜转运;疾病;调节

Abstract:The pass of water protein (aquaporin, AQP) is one kind of adding water single-minded channel protein.Has lies between leads the water the cross membrane transportation and the adjustment body domestic waters metabolism balance function.Pass of water protein adjustment out of control and level balance disorder and so on a series of disease close correlation.

Key word:Cell membrane pass of water protein (AQP) cross membrane transportation disease adjusts

1 水通道蛋白的发现

1.1 细胞膜的运输方式

细胞是构成生物的基本单位,细胞与细胞之间则是通过细胞膜来沟通和实现基本的生命活动。细胞膜的主要成分为磷脂和蛋白质,其结构为磷脂双分子层,磷脂双分子层上有糖蛋白,糖蛋白所在一侧为细胞外侧。物质跨膜运输可分为自

图1 细胞膜的立体结构

由扩散(不需能量、载体),协助扩散(不需要能量、需载体),主动运输(要能量、需载体)三种。还有一些大分子物质是通过胞吞、胞吐方式通过细胞膜,它们需要能量、不要载体。另外还有一种很主要的方式就是通道蛋白。

1.2 生物膜水通道的发现【1】

长期以来对于水的运输方式研究者普遍认为主要有两种:即简单的扩散方式和借助离子通道通过磷脂双分子层。

近些年研究者发现某些细胞在低渗溶液中对水的通透性很高, 很难用简单扩散来解释。如将红细胞移入低渗溶液后,很快吸水膨胀而溶血,而水生动物的

卵母细胞在低渗溶液不膨胀。因此,人们推测水的跨膜转运除了简单扩散外, 还存在某种特殊的机制, 并提出了水通道的概念。

20世纪80年代中期,美国科学家彼得·阿格雷研究了不同的细胞膜蛋白,经过反复研究,他发现一种被称为水通道蛋白的细胞膜蛋白就是人们寻找已久的水通道。为了验证自己的发现,阿格雷把含有水通道蛋白的细胞和去除了这种蛋白的细胞进行了对比试验,结果前者能够吸水,后者不能。为进一步验证,他又制造了两种人造细胞膜,一种含有水通道蛋白,一种则不含这种蛋白。他将这两种人造细胞膜分别做成泡状物,然后放在水中,结果第一种泡状物吸收了很多水而膨胀,第二种则没有变化。这些充分说明水通道蛋白具有吸收水分子的功能,就是水通道(图2)。

图2 细胞膜上的跨膜通道图3 水分子通过水通道蛋白AQP1

那么水通道蛋白为什么只允许水分子而禁止其它的分子和离子通过?

水通道蛋白AQP1的立体空间结构于2000年被解出后(图3),科学家得以解释水通道对水分子的高度选择性——水分子在通道上半与下半部具有相反方向的偶极矩,故可防止质子的通过。从而揭示了水通道蛋白(Aquaporin,AQP)均具有选择性的让水分子通过的特性。已知与AQP1相似的水通道在人体内至少有十一种。尤其是AQP1及AQP2两种水通道蛋白对每天对尿液吸收一百五十至两百公升水的肾脏最为重要。

由此,我们知道水通过两种机制穿过膜:一种是通过脂双层的扩散。因为脂双层虽是疏水的,其中并非没有空间,水分子可以通过氢键在其中形成类似冰的结构,从而穿过膜;第二种机制是通过专一的水通道蛋白(AQP),它是一类膜蛋白,相对分子质量不大。植物细胞的质膜和液泡膜中各有不同的水通道蛋白。根据来自动物的水通道蛋白的研究,这类蛋白质分布很广泛,意义重大。

2 对水通道蛋白的研究进展

2.1 对水通道蛋白AQP1的研究

水分子穿越双磷脂生物膜的输运机理是生理学和细胞生物学中一个长期未

能解决的重要问题。AQP1的发现和鉴定使得人们确认出一个新的蛋白质家族———水通道蛋白家族。正是这一蛋白家族的存在,使得水分子可以进行快速的跨膜传输【3】。AQP1 在细胞膜中以四聚体形式存在(图4),每个单聚体(即一个AQP1 分子)是一个独立功能单元,中心存在一个通道管。它由6个贯穿膜两面的长α螺旋构成基本骨架,其中间有两个嵌入但不贯穿膜的短α螺旋几乎顶对顶地放置着(图5)。在两个短螺旋相对的顶端各拥有一个在所有水通道家蛋白中都保守存在的Asn-Pro-Ala(NPA)氨基酸组单元。它们使得这种顶对顶结构得以稳定存在。从两个螺旋的顶端分别延生出一条氨基酸残基松散链条分别回绕,走向各自的膜面。

图4 水通道蛋白的投影密度图。图5水通道蛋白的α螺旋结构构造。

2.2 水通道蛋白成员在人体组织中的分布情况【4】

泌尿系统已经有AQPI, AQP2, AQP3, AQP4, AQP6,AQP7, AQP8等7种水通道蛋白亚型在肾脏内被发现;呼吸系统中共发现4种水通道蛋白亚型:AQPI, AQP3, AQP4, AQPS;消化系统至少有8种水通道蛋白(AQP I、AQP3、AQP4、AQPS、AQPS、AQPg、AQP10、AQP12)在消化道上皮表达;神经系统中的脑内水通道蛋白主要是AQP3、AQPS、AQP8等存在于神经元内,AQP3、AQP4、AQPS、AQPS和AQPgmRNA则存在于星形胶质细胞中。

3 水通道蛋白对人体的功能及作用

AQP作为细胞膜上的一种对水专一的通道蛋白,普遍存在于动植物及微生物细胞膜上,尤其在动物体中的功能和作用日益凸显。研究其对人类疾病的治疗无疑具有重要的价值,目前已发现人体内至少有11种【5】(AQP0~AQP10),其中大部分存在肾脏、大脑、眼睛和心脏中.

3.1 AQP与眼

眼组织是人体含水最丰富的器官,其多项生理功能的完成依赖于快速、高效的细胞水转运。而水通道蛋白是遍布于机体内与水的转运有关的通道蛋白,在眼

组织亦有多种类型的水通道蛋白分布。如AQPO存在于晶状体纤维细胞;AQP1在

睫状体和虹膜上皮、角膜及小梁网、视网膜等处表达;AQP3位于结膜上皮;AQP4在睫状体非色素上皮细胞和视网膜等多部位表达【6】。

水通道蛋白1(Aquaporin- 1,AQP1)在各种类型及不同发展时期原发性青光眼患者的小梁组织中表达的改变,为研究青光眼的发病机理及治疗提供一条新的思路。目前已证实:1.持续高眼压可破坏小梁网正常结构,使小梁细胞数目减少,导致结构和功能异常,并可使小梁网AQP1的表达减少;2. 眼压急剧升高

的早期,机体能够自主上调小梁网内皮细胞膜AQP1的表达【7】。

3.2 AQP与肾

梗阻性黄疸是胆道外科常见疾病,临床上约8%的患者在手术期出现急性肾

功能不全。人们发现水通道蛋白之后,就可以利用其特点在分子水平研究肾损伤。AQP 3是肾脏集合管自由水代谢调节的主要蛋白质。梗阻性黄疸肾集合管损伤的研究对于指导临床早期治疗具有重要意义【8】

水通道蛋白基因在胎肾中表达的研究,现已发现共有7种水通道蛋白(AQP)1,2,3,4,6,7,8在肾脏中表达,主要集中在近曲小管、亨勒袢降支、集合管等;AQP1-4参与水的重吸收和尿浓缩,有关AQP6-8的生理与病理意义不明【9】

3.3 AQP与肺

肺分布于肺组织的AQP有6种(AQP1、AQP3、AQP4、AQP5、AQP8及AQP9),分别表达于肺组织的不同部位,其中AQP1、AQP3、AQP4及AQP5在肺泡毛细血管间水的转运中发挥重要的作用,可能参与了出生时肺泡液体的吸收、气道的湿化、肺水容量的调节及肺水肿的形成。就水通道蛋白在肺组织的分布、功能及与肺出血的关系作如下综述【10】:

水通道蛋白(AQP)的作用对临床治疗肺水肿有重要意义,AQPs功能均不受温度和脂质膜成分影响,而且不存在开放和关闭的功能状态,只要有渗透压梯度就有水分子顺渗透压梯度通过水孔通道。目前发现有6种AQPs在肺脏表达。实验证实,急性肺损伤时,都存在肺泡上皮细胞和毛细血管内皮细胞AQPs表达量减少和活性降低;通过提高AQPs含量或者活性,增强肺水肿患者肺水清除率,可能是治疗肺水肿的有效途径【11】。

水通道蛋白的发现使肺水肿的研究跃入了一个全新的阶段,它的发现使我们能够在分子水平认识肺水肿发生、发展的全过程。对肺水肿发生后AQPs的变化机制和AQPs家族成员在肺脏的分布、表达、调控和代谢机制以及AQPs在肺水肿发生、发展中的作用的深入研究,将会对研究肺水肿的发病机制有重要意义,从而为临床对肺水肿的治疗提供新思路、新途径。

3.4 AQP与心

AQP2是1993年被克隆确认的水通道蛋白家族中的一种,位于肾脏集合管主

细胞管腔侧和靠近管腔侧的囊泡内,是血管加压素依赖性水通道,是调节肾脏集合

管对水通性的关键蛋白,在调节肾脏水平衡中起重要作用,并被认为是维持体内水

平衡的必需物质;水通道蛋白2是血管加压素对肾脏集合管调节的重要对象,进而

达到改变集合管主细胞水通透性的目的,调节方式有两种,即短期调节和长期调节;

AQP2的调节机制异常与某些心血管系统疾病,如充血性心力衰竭、高血压的发病

和其所致的病理生理学改变密切相关【12】。

3.5 AQP与脑

在哺乳动物内已发现有十种水通道蛋白(AQPO-AQP9)分布于水代谢活跃的

器官。每种水通道蛋白都具有组织分布特异性,不同水通道蛋白之间的结构相似,

均以四聚体形式存在,每一单体构成一个功能单位(水通道),具有转运水的功

能。脑组织中的水通道蛋白主要的AQP4和AQP1,其分子结构与功能在基因水平

存在动态调节【13】。深入研究它们在脑内的分布与功能,尤其与脑水肿之间的关

系,对指导脑水肿治疗和开发新药均具有重要意义。

作为具有高度选择性的水通道特异蛋白家族,其中AQP4则主要分布于脑部。

AQP4是胶质细胞与细胞间液、脑脊液以及血管之间的水调节和运输的重要结构基

础,参与了各种原因如创伤、中风、脑肿瘤等所致的脑水肿的形成以及癫痫的发

生,对AQP4在脑水肿中的形成机制的作用研究有望为临床脑水肿的治疗开辟新

的途径【14】。

4 总结

水通道蛋白作为细胞膜上的重要水通道之一有着特殊的意义。研究者们通过对水通道蛋白的深入研究,尤其是对人体细胞的11种AQP的功能和作用的全面揭晓,对人类的某些疾病治疗有着非常重要的作用。对于目前很难根治的一些疾病或许从水通道蛋白处能够找到理想答案。

(指导教师:张万海)

参考文献:

【1】.https://www.doczj.com/doc/464223501.html,/JXZY/JXSC/200510/170.html

【2】.关桂梅,徐春玲,董震等。水通道蛋白-1在鼻息肉组织中的表达。中华耳鼻咽喉杂志,2001,36(5):330-332

【3】.[期刊论文] 隋海心, 任罡- 《化学进展》2004年2期

【4】.[期刊论文] 侯彩云, 陈超- 《生命的化学》2008年2期

【5】.张勋,袁永一,顾文平等,水通道蛋白-2在鼻息肉组织中的表达。中华耳鼻咽喉杂志,2003,38(4):272-332

【6】.陈海孙善全现代医药卫生, 2005(12): 1518-1520

【7】.https://www.doczj.com/doc/464223501.html,/meeting/ShowArticle.asp?ArticleID=4686

【8】.https://www.doczj.com/doc/464223501.html,/kns50/GetInfoByDOI.aspx?DOI=CNKI:SUN:ZHPZ.0.2007-0 8-033

【9】.https://www.doczj.com/doc/464223501.html,/pay.php?id=62251912

【10】.https://www.doczj.com/doc/464223501.html,/grid20/GetInfoByDOI.aspx?DOI=CNKI:SUN:YXZS.0.2007-20-010【11】.https://www.doczj.com/doc/464223501.html,/Clinical/080915/11292566.html

【12】.欧阳劭(综述)陈琳(综述)匡希斌(审校)心血管病学进展, 2005(6): 620-623 【13】.https://www.doczj.com/doc/464223501.html,/mag2/yixue/jichuyixue/20472/200206/1099306/#

【14】.刘军(综述)鲁宏(审校)水通道蛋白与脑水肿国际检验医学杂志, 2006(11):

999-1000

免疫球蛋白

免疫球蛋白 免疫球蛋白(immunoglobulin)指具有抗体活性的动物蛋白。主要存在于血浆中,也见于其他体液、组织和一些分泌液中。人血浆内的免疫球蛋白大多数存在于丙种球蛋白(γ-球蛋白)中。免疫球蛋白可以分为IgG、IgA、IgM、IgD、IgE五类。 免疫球蛋白分类 免疫球蛋白可分为五类,即免疫球蛋白G(IgG)、免疫球蛋白A(IgA)、免疫球蛋白M(IgM)、免疫球蛋白D(IgD)和免疫球蛋白E(IgE),IgG,IgA和IgM还有亚类。 IgG,IgD,IgE均为单体,分泌液中IgA(SIgA)是双体,IgM是五聚体。 免疫球蛋白结构 Ig 分子的基本结构是由四肽链组成的,即由二条相同的分子量较小的轻链(L 链)和二条相同的分子量较大的重链(H 链)组成的。L链与H链是由二硫键连接形成一个四肽链分子,称为Ig分子的单体,是构成免疫球蛋白分子的基本结构。现已知5 种免疫球蛋白中IgG、IgA和IgD的H链各有一个可变区(VH)和三个恒定区(CH1、CH2 和CH3)共四个功能区。IgM和IgE 的H链各有一个可变区(VH)和四个恒定区(CHl、CH2、CH3 和CH4)共五个功能区。VL和VH 是与抗原结合的部位,单体由一对L链和一对H链组成的基本结构,只有2 个与抗原结合的位点,如IgG、IgD、IgE、血清型IgA;双体由J链连接的两个单体,有4 个与抗原结合的位点,如分泌型IgA(SIgA),所以SigA结合抗原的亲合力要比血清型IgA高。五聚体由J 链和二硫键连接五个单体,如IgM。五聚体IgM 理论上应为10 个与抗原结合的位点,但实际上由于立体构型的空间位阻,—般只有5 个结合点可结合。 H和L链上都有可变区,同类重链和同型轻链的近N端约110个氨基酸序列的变化很大,其他部分的氨基酸序列相对恒定,据此可将轻链和重链区分为可变区(V)和恒定区(C)。VH和VI。各有3个区域的氨基酸组成和排列顺序高度变化,称为高变区(HVR)或互补决定区(CDR),分别为CDRl、CDR2和CDR3。CDR以外区域的氨基酸组成和排列顺序相对不易变化,称为骨架区(FR)。VH和VI。各有113和107个氨基酸残基,组成4个FR(分别为FRl、FR2、FR3和FR4)和3个CDRs。VH和VI-中的各氨基酸可编号,一些保守的氨基酸都有其固定的编号位置,将不同序列和已编号的序列进行对比以后,在某个位置上多出来氨基酸编号为A、B、C等,如27A、27B、27C、106A等。VH和VL 的3个CDR共同组成Ig的抗原结合部位,识别及结合抗原,并决定抗体识别的特异性。 免疫球蛋白轻、重链可变区氨基酸顺序的编号 重链和轻链的C区分别称为CH和CL,不同型别(x或入)CI。的长度基本一致.但不同类别IgCH的长度不一,有的包括CHl~CH3,有的为CHl~CH4。同一种属生物体内针对不同抗原的同一类别Ig的C区氨基酸组成和排列顺序比较恒定,其抗原性是相同的,但V区各有不同。C区与抗体的效应功能相关,可激活补体,介导穿过胎盘和黏膜屏障,结合细胞表面的Fc受体从而介导调理作用、ADCC作用和I型超敏反应。 在Ig分子伸出的两臂和主干之间(CHl与CH2之间)还有个可弯曲的区域,称为铰链区。该区含有丰富的脯氨酸,因此易伸展弯曲,能改变两个结合抗原的Y形臂之间的距离,两臂之间的角度可自0到90变化,这样有利于两臂同时

蛋白质在人体中的功能与作用

论蛋白质在人体中的功用与合理饮食习惯 经过一学期的生化学习,让我对生物这门自然科学有了更深的认识,他不单单是一门学科,更是探索人体奥秘一种途径,在学习中让我首次对蛋白质有了兴趣。蛋白质是人体的必须营养素,在生命活动过程中起着各种生命功能执行者的作用,几乎没有一种生命活动能离开蛋白质,所以没有蛋白质就没有生命。 那么什么是蛋白质呢?蛋白质是化学结构复杂的一类有机化合物,是人体的必须营养素。蛋白质的英文是protein,源于希腊文的proteios,是“头等重要”意思,表明蛋白质是生命活动中头等重要物质。蛋白质是细胞组分中含量最为丰富、功能最多的高分子物质,在生命活动过程中起着各种生命功能执行者的作用。 我们每天都吃饭,有五谷杂粮,有肉蛋奶等等之类。我们都知道肉蛋奶中富含蛋白质,有些植物中也富含蛋白质,所以蛋白质的食物来源可分为植物性蛋白质和动物性蛋白质两大类。植物大白质中,谷类含蛋白质10%左右,蛋白质含量不算高,但由于是人们的主食,所以仍然是膳食蛋白质的主要来源。豆类含有丰富的蛋白质,特别是大豆含蛋白质高达36%-40%,氨基酸组成也比较合理,在体内的利用率较高,是植物蛋白质中非常好的蛋白质来源。蛋类含蛋白质11%-14%,是优质蛋白质的重要来源。奶类(牛奶)一般含蛋白质3.0%-3.5%,是婴幼儿蛋白质的最佳来源。肉类包括禽、畜和鱼的肌肉。新鲜肌肉含蛋白质15%-22%,肌肉蛋白质营养价值优于植物蛋白质,是人体蛋白质的重要来源。 提到了摄入那么不得不说到吸收的问题,蛋白质是大分子物质但是蛋白质在胃液消化酶的作用下,初步水解,在小肠中完成整个消化吸收过程。氨基酸的吸收通过小肠黏膜细胞,是由主动运转系统进行,分别转运中性、酸性和碱性氨基酸。在肠内被消化吸收的蛋白质,不仅来自于食物,也有肠黏膜细胞脱落和消化液的分泌等,每天有70g左右蛋白质进入消化系统,其中大部分被消化和重吸收。未被吸收的蛋白质由粪便排出体外。所以每日所能吸收的蛋白质是有限制的。这就是为什么总有人说一天只吃两个鸡蛋吃了就不会消化的原因。 肉富含蛋白质,而且肉人们都爱吃。但是肉吃多了,会导致摄入过量动物蛋白质的摄入,就必然摄入较多的动物脂肪和胆固醇。其次蛋白质过多本身也会产生有害影响。正常情况下,人体不储存蛋白质,所以必须将过多的蛋白质脱氨分解,氮则由尿排出体外,这加重了代谢负担,而且,这一过程需要大量水分,从而加重了肾脏的负荷,若肾功能本来不好,则危害就更大。过多的动物蛋白摄入,也造成含硫氨基酸摄入过多,这样可加速骨骼中钙质的丢失,易产生骨质疏松。 同样有时也会出现缺乏的情况。蛋白质缺乏在成人和儿童中都有发生,但处于生长阶段的儿童更为敏感。蛋白质的缺乏常见症状是代谢率下降,对疾病抵抗力减退,易患病,远期效果是器官的损害,常见的是儿童的生长发育迟缓、体质量下降、淡漠、易激怒、贫血以及干瘦病或水肿,并因为易感染而继发疾病。蛋白质的缺乏,往往又与能量的缺乏共同存在即蛋白质—热能营养不良,分为两种,一种指热能摄入基本满足而蛋白质严重不足的营养性疾病,称加西卡病。另一种即为“消瘦”,指蛋白质和热能摄入均严重不足的营养性疾病。 我们既不能摄入过多的蛋白质,又不能缺少蛋白质,所以就涉及到如何挑选蛋白质食物来补充自身的蛋白质又不会过量含蛋白质多的食物包括:牲畜的奶,如牛奶、羊奶、马奶等;畜肉,如牛、羊、猪、狗肉等;禽肉,如鸡、鸭、鹅、鹌鹑、驼鸟等;蛋类,如鸡蛋、鸭蛋、鹌鹑蛋等及鱼、虾、蟹等;还有大豆类,包括黄豆、大青豆和黑豆等,其中以黄豆的营养价值最高,它是婴幼儿食品中优质的蛋白质来源;此外像芝麻、瓜子、核桃、杏仁、松子等干果类的蛋白质的含量均较高。 蛋白质食物是人体重要的营养物质,保证优质蛋白质的补给是关系到身体健康的重要问题,怎样选用蛋白质才既经济又能保证营养呢? 首先,要保证有足够数量和质量的蛋白质食物。根据营养学家研究,一个成年人每天通

吃蛋白粉对身体究竟有什么作用

分离大豆蛋白(Soy Protein Isolate):高品质的蛋白质,不含胆固醇 乳清蛋白(Lactalbumin):含充足的氨基酸,有修补、活化的作用 乳清:提供高品质蛋胺酸,并改变味道,有利于人体吸收 卵磷脂:具抗氧化及乳化作用,使蛋白质粉更易被人体消化和吸收,且有助于蛋白质混合,不易形成胶块,溶解得更快更好 主要功能:蛋白质是人体中最重要的物质,也是最多的物质之一,成人身体中有20%都是由蛋白质所组成的。主要功能有: 修补细胞与建造组织 构成体内所有的细胞和组织 维持细胞的正常功能与新陈代谢 形成酵素系统,维持正常的消化机能 制造血液的运送物质,维持身体的渗透压 胶原蛋白的主要成份 参与人体的七大作用 酶的催化作用 荷尔蒙的调节作用 氧气的运载作用 肌肉的收缩作用 身体的免疫作用 身体的支架作用 体液的中和作用 供给热量:一克蛋白质可生产四千卡热量,一平匙完全蛋白质粉等于一杯牛奶或一个鸡蛋或一两肉所含的蛋白质,蛋胆固醇只是鸡蛋的1/25而已。 适应人群: 想在高脂肪蛋白质以外,以更健康的方法摄取高质量的植物性蛋白质者 日常饮食中,牛奶、肉类、乳酪等蛋白质食物摄取不足者

需要额外补充更多蛋白质者,如儿童、青少年、老年人、孕妇、哺乳期妇女、手术后后患病者等 素食者 用量计算:不同的人因健康状况、年龄、体重等因素而不同。以下是不同年龄的用量指数: 1-3岁:1.80 4-6岁:1.49 7-10岁:1.21 11-14岁:0.99 15-18岁:0.88 19岁以上:0.79 根据年龄找到对应的指数,乘与体重就是每日所需的蛋白质克数。值得注意的是:早餐摄取蛋白质量应占全天的70%,中餐和晚餐只占30%。 完全蛋白质与不完全蛋白质的差别:人体需要九种必须氨基酸: 色胺酸(Tryptophon) 离胺酸(Lysine) 甲硫胺酸(Methionine) 苯丙胺酸(Phenylalanine) 精胺酸(Arginine) 吉胺酸(Valine) 白胺酸(Leucine) 异白胺酸(Isoleucine) 组胺酸(Histidine) 含有九种必须氨基酸的蛋白质称为完全蛋白质。常见的这类食物有:蛋黄、鲜奶、肝脏、瘦肉类以及酵母、核果、黄豆、胚芽等;缺乏某种必须氨基酸的称为不完全蛋白质,如大麦、小麦、谷类、豌豆、玉米等。

关于水对于人体重要性的资料

关于水对于人体重要性的资料: 水在人体中的比例如果用“人”字结构打个比方,水应该是一撇,其他营养素是一捺,有了水合其他营养素的相互支撑,才有了生命。 水约占人体组成的70%。男性体内含水分较女性多,年轻的人较年长者多,新生儿体内所含水量约为70%~75%。在人体各组织中,水分的含量也是不同的:分布于骨骼和软骨中的水约占骨总量的10%;脂肪当中的水约占脂肪总量的20%~35%;肌肉中水的分布已高达肌肉总量的70%左右;而血液中的血浆里面,除了6%~8%的血浆蛋白,0.1%左右的葡萄糖和0.9%左右的无机盐以外,其余的成分全是水,约占血浆总量的91%~92%。 人体每天要消耗多少水分呢?经营养学的方法测定,一般情况下,每天以不同方式消耗的水量如下: 通过呼吸排出水分约400毫升; 通过皮肤排出水分约400~800毫升; 通过粪便排出水分约150毫升; 通过尿液排出水分约1500毫升; 以上共计2500毫升。 然而,每天从食物中可以得到的水分约为800毫升,每天在体内分解氧化营养物质时(除产生能量外,还产生水分)约产生400毫升的水,其余的1300毫升水必须通过饮食(包括饮料)来补充。 每人每天该喝多少水,和人的年龄、体重、活动量以及环境、温度等因素有关。一般而言,婴幼儿每1千克体重,每天需饮水110毫升;少年儿童每1千克体重,每天需饮水40毫升;成年人每1千克体重,每天需饮水40毫升。所以,一个体重60千克的成年人每天需饮水约2500毫升。 水对人体的生理功能具体表现在: 一、水参与人体内新陈代谢的全过程,水的溶解力甚强,并有较大的电离能力,可使人体内的水溶物质的溶解状态和电解质离子状态存在;又由于水具有较大的流动性能,在人体消化、吸收、循环、排泄过程中可加速协助营养物质的运送,和废物的排泄,使人体内新陈代谢和生理化学反应得以顺利进行。 二、水是细胞和体液的重要组成部分之一,人体的每个细胞及其基本单元均含有水份,人体的各种腺体分泌物均为液体。如果缺水,则消化液分泌减少,食物消化受影响,食欲下降,血流减缓。体内废物积累,代谢活动降低,导致体内衰竭致病,并加重病情。

浅谈蛋白质与人体健康的关系

浅谈蛋白质与人体健康的关系 蛋白质是人体组织不可缺少的构成成分,是人体生命的物质基础,如果从生命活动过程去衡量,蛋白质加上核酸,是生命存在的主要形式。人体有无数细胞构成,蛋白质是主要部分。蛋白质不仅是人类机体的主要构成物质,而且蛋白质也是构成人体内各种生物活性物质的主要成份。人体内许多重要的生理活动均由蛋白质来完成,如酶、激素、抗体等;肌肉收缩,血液凝固等也都是通过蛋白质来实现的。如果人体内没有酶、激素等物质的存在,那么人体内的物质代谢、神经传导细胞分裂与分化等生理活动将无法进行;蛋白质是人体正常代谢的物质保证,是维持组织的生长、繁殖、更新和修复的必需营养素。蛋白质提供人体必需的部分能量。因此,可以肯定地讲没有蛋白质就没有生命,人体健康就无从谈起。 蛋白质是荷兰科学家格里特在1838年发现的。蛋白质主要由氨基酸组成,因氨基酸的组合排列不同而组成各种类型的蛋白质。多个蛋白质可以一起,往往是通过结合在一起形成稳定的蛋白质复合物,折叠或螺旋构成一定的空间结构,从而发挥某一特定功能。人体中估计有10万种以上的蛋白质。生命是物质运动的高级形式,这种运动方式是通过蛋白质来实现的,人体内的一些生理活性物质如胺类、神经递质、多肽类激素、抗体、酶、等都离不开蛋白质,它对调节生理功能,维持新陈代谢起着极其重要的作用。人体运动系统中肌肉的成分以及肌肉在收缩、作功、完成动作过程中的代谢无不与蛋白质有关,离开了蛋白质,体育锻炼就无从谈起。所以蛋

白质有极其重要的生物学意义。与人体健康更是息息相关。 人体的大部分都是由蛋白质所组成,皮肤、肌肉、内脏、毛发、指甲、大脑甚至骨骼等除了尿液、胆汁都是由蛋白质构成。蛋白质充足时,才能维持细胞正常的功能与新陈代谢。因为人体的肌肉组织中,蛋白质的含量最高,因此只要照照镜子,就可以看出自己所摄取蛋白质是否充足。 强壮而营养充足的肌肉,自然会使身体挺拔健壮。如果肌肉得不到所需的养分,便会失去弹性,向旧轮胎一样松松垮垮,姿势会不好看。一个要求孩子站有站相、坐有坐相的母亲,等于是承认自己对食物的忽视。一个健康的人,总是抬头挺胸,两肩自然下垂、小腹微缩、脊椎略微弯曲、步伐稳健有节奏。毛发与指甲也是由蛋白质所构成,因此需要充分的营养来维持他们的健康。没有光泽、没有弹性、甚至断裂的头发,只要补充适度的营养也能在几个星期内恢复健康。 摄取充足的蛋白质,可以是精力旺盛、心情愉快。倦怠的主要原因 除了血糖过低之外,还有缺乏蛋白质所造成的许多原因,如血压太低、贫血、身体机能障碍、无法产生将食物分解为能量的酶等。这些都无法在短期内得到改善。 血压是指血液对血管壁的压力。血管壁的组织坚韧才能维持正常的血压。如果血管壁变得脆弱或松弛,血管扩大,而血液的流量固定,血压相对降低,红血球输送养分的功能减弱,组织细胞的不到充足的养分,就会产生

蛋白质的主要生理功能和作用

蛋白质的主要生理功能和作用 张世林外语学院日语14.1 学号:201407030120 摘要本文阐述了蛋白质的定义概念、组成特点、结构性质、生理功能以及作用。 关键词历史定义组成特点结构性质功能 正文: 在18世纪,安东尼奥·弗朗索瓦(Antoine Fourcroy)和其他一些研究者发现蛋白质是一类独特的生物分子,他们发现用酸处理一些分子能够使其凝结或絮凝。当时他们注意到的例子有来自蛋清、血液、血清白蛋白、纤维素和小麦面筋里的蛋白质。荷兰化学家格利特·马尔德(Gerhardus Johannes Mulder)对一般的蛋白质进行元素分析发现几乎所有的蛋白质都有相同的实验公式。用“蛋白质”这一名词来描述这类分子是由Mulder的合作者永斯·贝采利乌斯于1838年提出。Mulder随后鉴定出蛋白质的降解产物,并发现其中含有为氨基酸的亮氨酸,并且得到它(非常接近正确值)的分子量为131Da。 对于早期的生物化学家来说,研究蛋白质的困难在于难以纯化大量的蛋白质以用于研究。因此,早期的研究工作集中于能够容易地纯化的蛋白质,如血液、蛋清、各种毒素中的蛋白质以及消化性和代谢酶(获取自屠宰场)。1950年代后期,Armour Hot Dog Co.公司纯化了一公斤纯的牛胰腺中的核糖核酸酶A,并免费提供给全世界科学家使用。

这一构想最早是由威廉·阿斯特伯里于1933年提出。随后,Walter Kauzman在总结自己对变性的研究成果和之前Kaj Linderstrom-Lang的研究工作的基础上,提出了蛋白质折叠是由疏水相互作用所介导的。1949年,弗雷德里克·桑格首次正确地测定了胰岛素的氨基酸序列,并验证了蛋白质是由氨基酸所形成的线性(不具有分叉或其他形式)多聚体。原子分辨率的蛋白质结构首先在1960年代通过X射线晶体学获得解析;到了1980年代,NMR也被应用于蛋白质结构的解析;近年来,冷冻电子显微学被广泛用于对于超大分子复合体的结构进行解析。截至到2008年2月,蛋白质数据库中已存有接近50,000个原子分辨率的蛋白质及其相关复合物的三维结构的坐标。 蛋白质是一种复杂的有机化合物,旧称“朊(ruǎn)”。氨基酸是组成蛋白质的基本单位,氨基酸通过脱水缩合连成肽链。蛋白质是由一条或多条多肽链组成的生物大分子,每一条多肽链有二十至数百个氨基酸残基(-R)不等;各种氨基酸残基按一定的顺序排列。蛋白质的氨基酸序列是由对应基因所编码。除了遗传密码所编码的20种基本氨基酸,在蛋白质中,某些氨基酸残基还可以被翻译后修饰而发生化学结构的变化,从而对蛋白质进行激活或调控。多个蛋白质可以一起,往往是通过结合在一起形成稳定的蛋白质复合物,折叠或螺旋构成一定的空间结构,从而发挥某一特定功能。合成多肽的细胞器是细胞质中

蛋白质对人体的六大作用

蛋白质对人体的六大作用 2008-3-4 13:34:3 在人体中,蛋白质的主要生理作用表现在六个方面: 1)构成和修复身体各种组织细胞的材料 人的神经、肌肉、内脏、血液、骨骼等,甚至包括体外的头皮、指甲都含有蛋白质,这些组织细胞每天都在不断地更新。因此,人体必须每天摄入一定量的蛋白质,作为构成和修复组织的材料。 2)构成酶、激素和抗体 人体的新陈代谢实际上是通过化学反应来实现的,在人体化学反应的过程中,离不开酶的催化作用,如果没有酶,生命活动就无法进行,这些各具特殊功能的酶,均是由蛋白质构成。此外,一些调节生理功能的激素和胰岛素,以及提高肌体抵抗能力儿保护肌体免受致病微生物侵害的抗体,也是以蛋白质为主要原料构成的。 3)维持正常的血浆渗透压,是血浆和组织之间的物质交换保持平衡 如果膳食中长期缺乏蛋白质,血浆蛋白特别是xx的含量就会降低,血液内的水分便会过多地渗入周围组织,造成临床上的营养不良性水肿。 4)供给肌体能量 在正常膳食情况下,肌体可将完成主要功能而剩余的蛋白质,氧化分解转化为能量。不过,从整个肌体而言,蛋白质的这方面功能是微不足道的。 5)维持肌体的酸碱平衡 肌体内组织细胞必须处于合适的酸碱度范围内,才能完成其正常的生理活动。肌体的这种维持酸碱平衡的能力是通过肺、肾脏以及血液缓冲系统来实现的。蛋白质缓冲体系是血液缓冲系统的重要组成部分,因此说蛋白质在维持肌体酸碱平衡方面起着十分重要的作用。 6)运输氧气及营养物质

血红蛋白可以携带氧气到身体的各个部分,供组织细胞代谢使用。体内有许多营养素必须与某种特异的蛋白质结合,将其作为载体才能运转,例如运铁蛋白、钙结合蛋白、视黄醇蛋白等都属于此类。 蛋白质原料前十位(每100xx) > (99.90xx) (84.10xx) (65.30xx) (64.70xx) (60.00xx) (55.60xx) (54.10xx) (50.20xx) (47.80xx) (47.60xx) 蛋白质菜谱前十位(每100xx) > (84.10xx) (74.22xx) (71.21xx) (66.94xx) (66.03xx)

47认识人体的免疫球蛋白

免疫球蛋白(immunoglobulin,Ig) 具有抗体活性的血清蛋白称为免疫球蛋白,又称为抗体。是由机体的B淋巴细胞在抗原的刺激下分化、分裂而成的一组特殊球蛋白。在人体至少有五种免疫球蛋白,即IgG、IgA、IgM、IgD、IgE。 免疫球蛋白是机体受抗原(如病原体)刺激后产生的,其主要作用与抗原起免疫反应,生成抗原-抗体复合物,从而阻断病原体对机体的危害,使病原体失去致作用。 免疫球蛋白是一组具有抗体活性的蛋白质,主要存在于生物体血液、组织液和外分泌液中,是检查机体体液免疫功能的一项重要指标。IgD和IgE含量很低,常规所测定的Ig主要为lgG、lgA、IgM三项。血清中免疫球蛋白异常,主要可分为三类: 1.几种不同的Ig水平增加:主要见于感染、肿瘤、自身免疫病、慢性活动性肝炎、肝硬化及淋巴瘤等。自身免疫病中,如系统性红斑狼疮(SLE)以lgG、lgA、IgM升高多见,类风湿性关节炎以IgG、IgM升高多见。 2.单一的Ig水平增加:又称为“M”蛋白病,主要见于: 多发性骨髓瘤(MM),表现为仅有某一种Ig异常增高,而其他种明显降低或维持正常。其中以IgG型MM最常见,

血清中lgG含量可高达70g/L,IgA型次之,IgD型较少见,IgE 型最为罕见。 巨球蛋白血症,是产生IgM的浆细胞恶性增生,血清中IgM可高达20g/L以上。 3.一种或多种Ig水平减少:分为原发性或继发性的,前者属于遗传性,如瑞士丙种球蛋白缺乏症,选择性IgA、IgM缺乏症等。继发性缺损见于网状淋巴系统的恶性疾病、慢性淋巴细胞性白血病、肾病综合征、大面积烧伤烫伤患者、长期大剂量使用免疫抑制剂或放射线照射所致。lgD升高主要见于lgD型MM。流行性出血热、过敏性哮喘、特应性皮炎患者IgD升高。妊娠末期、吸烟者中IgD也可出现生理性升高。IgE升高常见于超敏反应性疾病,如过敏性鼻炎、外源性哮喘、枯草热、慢性荨麻疹,以及寄生虫感染、急慢性肝炎、药物所致的间质性肺炎、支气管肺曲菌病、类风湿性关节炎和IgE型MM等。 人体血清免疫球蛋白的主要成分是IgG ,它占总的免疫球蛋白的70-75%。IgG是初级免疫应答中最持久、最重要的抗体,它仅以单体形式存在。大多是抗菌性、抗毒性和抗病毒抗体属于IgG,它在抗感染中起到主力军作用,它能够促进单核巨噬细胞的吞噬作用(调理作用),中和细菌毒素的毒性(中和毒素)和病毒抗原结合使病毒失去感染宿主细胞的能力(中和病毒)。它是唯一能通过胎盘的Ig,在自然被动免

蛋白质对各类人群的作用

蛋白质对各类人群的作用 一、孕妇应补充蛋白质 妇女在妊娠期身体发生一系列生理变化,蛋白质需要量增加,不仅要维持自身,更要满足胎儿发育的需要,还要在妊娠全过程储存蛋白约910克,以补偿分娩时蛋白质的消耗、产后失血与乳腺分泌。此外哺乳期也应该应补充蛋白质,哺乳母亲在承担分泌乳汁哺育婴儿重担的同时,还要补偿由于妊娠、分娩所损耗的蛋白储备。如蛋白质供给不足,不仅影响母体健康,还会降低乳汁质量,影响婴儿生长发育。蛋白质不足虽然短时间仍有乳汁,但消耗了母体储备甚至母体组织,严重影响母体健康。蛋白质不足,会影响乳汁中蛋白质含量及氨基酸组成,明显减少蛋氨酸,赖氨酸的含量,而胎儿在生长的第三个月,出现脑细胞生长的第二高峰,脑发育的关键取决于母乳的营养,哺乳期间多补充蛋白质对宝宝的智力发育至关重要。 二、儿童应补充蛋白质 儿童处于迅速生长阶段,特别是 4 岁之前大脑的发育正处于关键时期,代谢旺盛,所需热量和营养素相对比成人高。因为生长发育期的儿童不仅需要活动的能量,细胞组织更新的营养素物质,还需要供给身体生长发育的营养素。但幼儿园、学校或家里不能供应营养丰富的食物,儿童又未养成良好的进食习惯,导致蛋白质摄入量较低,应当补充蛋白质。 青少年应补充蛋白质 12—18岁人体进入青春期,此时身高体重增加速度加快,生殖器官逐渐发育成熟,思维能力活跃,记忆力最强,是一生中长身体与长知识的最主要时期。如果摄入蛋白质不足,下丘脑与垂体激素的合成与分泌受限,影响机体的发育成熟。同时中学阶段的学习任务繁重,面对升学,就业的各种压力,蛋白质的需要量也更多。青春期补充蛋白质不仅为激素合成提供优质原料,保证下丘脑与垂体激素的分泌量,促进机体成熟;还为大脑补充氨基酸,提高学习效率,增强记忆,缓解精神紧张等压力,保证顺利而健康地渡过这一时期。 三、中青年人应补充蛋白质 中青年人虽然体质相对强壮,但也要补充蛋白质。这是因为:人体必需的8种氨基酸在体内无法自身合成,需要食物补充,而蛋白质富含8种必需氨基酸食用后可以迅速补充被吸收。中青年人普遍工作压力大,往往无暇顾及自己的营养状况。缺乏营养、亚健康现象比较普遍地存在,他们更需要补充营养,尤其是补充蛋白质。 四、老年人应补充蛋白质 老年人日常胃酸、消化酶减少,食欲与消化吸收能力差,又因为咀嚼困难,限制了食物的食用,导致营养不良或不平衡。老年人体内蛋白质以分解代谢为主,代谢缓慢,由于酶的作用及小肠功能衰退,蛋白质在吸收过程中分解不充分,使体内肽增多,游离氨基酸减少;老年人肾功能低下,影响氨基酸的再吸收,肝功能下降,对肽类的利用也减少,因此氨基酸的消耗增加,要供给老人生物价值高的蛋白质食物,防止由于免疫机能低下导致慢性气管、支气管及其粘膜炎症,肺心

水在人体中的作用详解

水在人体中的作用详解 水在身体中的作用: 1.身体出现局部缺水,首先会抑制身体的某些功能,并最终使之彻底丧失。 2.水是能量的主要来源,它是身体的「流动资金」。 3.水在身体所有细胞内部产生电力和磁力,它提供了生存所需的能量。 4.水是细胞结构的建筑粘合剂。 5.水可以防止基因遭破坏,并使基因因此更能发挥他的所长。 6.水可以大幅度提高骨髓免疫系统的效率,所以水也可以提高防癌的效率。 7.水是所有食物、维生素和矿物质的主要溶剂。 8.水可有助于食物分解成细小的颗粒,促使它们消化、吸收和新陈代谢。 9.水可以提高身体吸收食物核心物质的效率。 10.水可以运输身体内所有物质。 11.在血液、红细胞和肺部收集氧气的过程中,水可以提高效率。 12.当水到达一个细胞时,它可以为细胞输送氧气,并把细胞产生的废气交由肺处理。13.水可以清除身体各部分产生的有毒废物,并把它们交由肝和肾处理。 14.水是关节空隙的主要润滑剂,它有助于防止关节炎和背部疼痛。 15.水可以使椎间盘成为「防震气垫」。 16.水是最好的倾泻剂,可以防止便秘的产生。 17.水有助于减少心脏病和中风发生的几率。 18.水可以预防心脏和大脑的血管阻塞。 19.水对身体的冷却(排汗)系统和加热(产生电能)系统至关重要。 20.水为大脑行使正常功能(尤其是大脑的思考功能)提供活力和电量。 21.水是提高所有神经传递素(包括血液中的血清素)生产效率的关键物质。

22.水是大脑产生所有荷尔蒙(包括褪黑激素)的必需物质。 23.水有助于预防注意力缺乏症。 24.水有助于提高工作效率,扩大注意力的范围。 25.和所有饮料相比,天然矿泉水是最好的饮料,而且没有任何副作用。 26.水有助于减少压力、焦虑和抑郁。 27.水可以改善并恢复正常的睡眠**惯。 28.水有助于减少疲劳,为我们提供能量,使我们更加富有朝气。 29.水可以使皮肤变得更加光滑,并可延缓衰老。 30.水可以使眼睛更有神采。 31.水有助于防止青光眼。 32.水可以使骨髓的造血机制恢复正常,并有助于防止白血病和淋巴瘤。 33.水可以大幅度提高身体的免疫功能,以对抗感染和癌细胞的产生。 34.水可以稀释血液,防止血液凝固。 35.水可以减少经期前疼痛以及潮热。 36.水和心跳机能可以产生稀释物和水流,防治血管形成废弃物沉积现象。 37.在脱水过程中,身体不会储存任何剩余水分,这也是你必须每天及时补充。 山东银丰深海矿泉有限公司水源地位于旅游胜地烟台养马岛旅游度假区,取水位置为海平面200米以下的深海岩层,深海岩层水历经近万年岩层渗透精滤,富含天然矿物质和微量元素,水质天然洁净、更具活性、温度低,没有微生物、藻类生长及其它有机与无机有害物质存在,易被细胞吸收,生物利用率高,符合新一代健康饮用水要求。

静注人免疫球蛋白ph4

静注人免疫球蛋白ph4 具有抗体活性的动物蛋白,是由淋巴细胞(B细胞)产生的一种糖蛋白。主要存在于血浆中,也见于其他体液、组织和一些分泌液中。人血浆内的免疫球蛋白大多数存在于丙种球蛋白(γ-球蛋白)中。可分为五类,即免疫球蛋白G(IgG)、免疫球蛋白A(IgA)、免疫球蛋白M(IgM)、免疫球蛋白D(IgD)和免疫球蛋白E(IgE),IgG,IgA和IgM还有亚类。IgG,IgD,IgE均为单体,分泌液中IgA(SIgA)是双体,IgM 是五聚体。其中IgG是最主要的免疫球蛋白,约占人血浆丙种球蛋白的70%,分子量约15万,含糖2~3%。尽管免疫球蛋白千变万化,但都有类似的结构。抗体分子是由两对长短不同的多肽链所组成,四条链通过链间二硫键构成Y型基本结构(H2L2)。IgG分子由4条肽链组成。其中分子量为2.5万(23kD)的肽链,称轻链(L链),分子量为5万的肽链(50~60kD),称重链(H链)。轻链与重链之间通过二硫键(—S—S—)相连接。 H和L链上都有可变区,同类重链和同型轻链的近N端约110个氨基酸序列的变化很大,其他部分的氨基酸序列相对恒定,据此可将轻链和重链区分为可变区(V)和恒定区(C)。VH和VI。各有3个区域的氨基酸组成和排列顺序高度变化,称为高变区(HVR)或互补决定区(CDR),分别为CDRl、CDR2和CDR3。CDR以外区域的氨基酸组成和排列顺序相对不易变化,称为骨架区(FR)。VH和VI。各有113和107个氨基酸残基,组成4个FR(分别为FRl、FR2、FR3和FR4)和3个CDRs。VH和VI-中的各氨基酸可编号,一些保守的氨基酸都有其固定的编号位置,将不同序列和已编号的序列进行对比以后,在某个位置上多出来氨基酸编号为A、B、C等,如27A、27B、27C、106A等。VH和VL的3个CDR共同组成Ig的抗原结合部位,识别及结合抗原,并决定抗体识别的特异性。 免疫球蛋白轻、重链可变区氨基酸顺序的编号 重链和轻链的C区分别称为CH和CL,不同型别(x或入)CI。的长度基本一致.但不同类别IgCH的长度不一,有的包括CHl~CH3,有的为CHl~CH4。同一种属生物体内针对不同抗原的同一类别Ig的C 区氨基酸组成和排列顺序比较恒定,其抗原性是相同的,但V区各有不同。C区与抗体的效应功能相关,可激活补体,介导穿过胎盘和黏膜屏障,结合细胞表面的Fc受体从而介导调理作用、ADCC作用和I型超敏反应。 在Ig分子伸出的两臂和主干之间(CHl与CH2之间)还有个可弯曲的区域,称为铰链区。该区含有丰富的脯氨酸,因此易伸展弯曲,能改变两个结合抗原的Y形臂之间的距离,两臂之间的角度可自0到90变化,这样有利于两臂同时结合两个不同的抗原表位。虽然IgD、IgG、IgA有绞链区,而IgM和IgE没有,但这并不说明它们完全不能弯曲,实际上还有相对的弯曲性。各类抗体的铰链区的长度及氨基酸的顺序也有不同;人IgD的可伸展的距离最大,IgG4和两种IgA的弯曲度则有限。 所有的抗体是Ig,但Ig并不都是抗体。Ig的两个重要特征是特异性和多样性。它们是机体受抗原(如病原体)刺激后产生的,其主要作用是与抗原起免疫反应,生成抗原-抗体复合物,从而阻断病原体对机体的危害,使病原体失去致病作用。另一方面,免疫球蛋白有时也有致病作用。临床上的过敏症状如花粉引起的支气管痉挛,青霉素导致全身过敏反应,皮肤荨麻疹(俗称风疹块)等都是由免疫球蛋白制剂能增强人体抗病毒的能力,可作药用。如注射人血清或人胎盘中提取的丙种球蛋白制剂可防治麻疹、传染性肝炎等传染病。Ig是一个多藣有分子:(1)可结合抗原;(2)可作为抗原诱发抗体的产生;(3)可激发一系列如补体激活、吞吐噬调理、信号传导等次级反应。各种特异性Ig已被广泛应用于临床疾病的预防、治疗和诊断。例如,IgM是体液免疫应答首先产生的Ig。SIgA是机体黏膜防御感染的重要因素。IgE是同速发型过敏反应发生有关的Ig。IgD以膜结合形式存在于B细胞,在B细胞分化发育中起重调节有作用。 [编辑本段]注射免疫球蛋白不是万能的 首先,丙种球蛋白注入人体后产生的免疫力是被动给予的,不是自身主动产生的,一般2周就被排泄,之后体内丙种球蛋白的含量又恢复到原来水平,要长期保持体内所含丙种球蛋白的高水平,就必须每隔2周注射1次。 其次,应用丙种球蛋白有一定的适应症,因为该药随所含抗体量的不同而预防效果各异。普通的丙种球蛋白主要用于预防麻疹、甲肝、流行性腮腺炎等,想用丙种球蛋白来预防各种疾病是不可能的。

蛋白质的作用(九种作用)

蛋白质 蛋白质的缺乏症 1、体质较弱易生病。 2、儿童和青少年身体发育受阻。 3、抵抗力下降,容易疲劳。 4、消瘦、腹胀水肿、精神呆滞、活动能力不足。 5、孕妇缺乏蛋白质,可影响胎儿的正常发育。 蛋白质的主要食物来源 鱼禽肉蛋提供动物蛋白。 蔬菜、谷物、豆类提供植物蛋白。 蛋白质 蛋白质约占人体重量的20%。 纽崔莱蛋白质粉的特点:一优、二宝、三低、四健康 一优:优质高蛋白蛋白质含量高达百分之九十。 二宝:含卵磷脂(调节大脑功能,调节血脂促进胆固醇的代谢)、异黄酮(植物的雌激素可以调节内分泌、它是双向调节,激素水平应该高的时候它不高,它就能给你调高了。对更年期女性特别有好处。对骨质蔬松、心脑血管疾病有好处,可以调节血脂,有抗氧化作用。 三低:(低脂肪、低胆固醇。低热量)、和它相反就是三高。 四健:对妇女健康、心脏健康、运动健康、抗癌症。 16、什么是优质蛋白质?(1)大豆和动物蛋白。(2)纽崔莱蛋白质粉提供优质高蛋白,一勺可以提供8克人体必须的蛋白质它可以完全被人体吸收。经国家相关部门检验是安全的产品。(3)三低的特点可以让人们以更健康的方式补充蛋白质。动物蛋白质摄入过多会会引起三高,给你带来健康上的隐患。(4)二氧化硅取代磷酸酸钙。它起到抗结块。不含香精、色素、防腐剂。不含乳糖。食物中蛋白质的含量:咱们中国人讲究好吃,什么好吃养 牛肉:100克含20克蛋白质,但长时间的煮蛋白质会大打折扣。 羊肉:100克含13克蛋白质,但胆固醇含量高173毫克,热量也高。 猪肉:100克含蛋白质9.5克,油脂60克。我们吃猪肉多,从来没有关注油的含量,所以心脑血管病的发病率大大提高。 鸡蛋里胆固醇含量特别高。每个鸡蛋含330毫克胆固醇,猪肉里的油专门让鸡蛋里的胆固醇沉积在血管壁上。所以得富裕病的人特别多。主要是营养不均衡造成的。 黄豆里每100克含蛋白质36克,但黄豆里缺蛋氨酸。牛奶里含有蛋氨酸,安利公司把牛奶里的蛋氨酸拿过来,把牛奶里的其它成分去掉。这是最完美的。纽崔莱的蛋白质粉里含有9种必须氨基酸。米面里缺赖氨酸。男人40多岁秃顶,有的人过敏。赖氨酸参与人体胶原蛋白的合成。人体里有100多种蛋白质中有50多种叫胶原蛋白,也就是说人体里能合成的氨基酸加上必须氨基酸组成20几

蛋白质与人体健康

蛋白质与人体健康 蛋白质是人体组织不可缺少的构成成分,是人体生命的物质基础,如果从生命活动过程去衡量,蛋白质加上核酸,是生命存在的主要形式。人体有无数细胞构成,蛋白质是主要部分。蛋白质不仅是人类机体的主要构成物质,而且蛋白质也是构成人体内各种生物活性物质的主要成份。人体内许多重要的生理活动均由蛋白质来完成,如酶、激素、抗体等;肌肉收缩,血液凝固等也都是通过蛋白质来实现的。如果人体内没有酶、激素等物质的存在,那么人体内的物质代谢、神经传导细胞分裂与分化等生理活动将无法进行;蛋白质是人体正常代谢的物质保证,是维持组织的生长、繁殖、更新和修复的必需营养素。蛋白质提供人体必需的部分能量。因此,可以肯定地讲没有蛋白质就没有生命,人体健康就无从谈起。 蛋白质是荷兰科学家格里特在1838年发现的。蛋白质主要由氨基酸组成,因氨基酸的组合排列不同而组成各种类型的蛋白质。多个蛋白质可以一起,往往是通过结合在一起形成稳定的蛋白质复合物,折叠或螺旋构成一定的空间结构,从而发挥某一特定功能。人体中估计有10万种以上的蛋白质。生命是物质运动的高级形式,这种运动方式是通过蛋白质来实现的,人体内的一些生理活性物质如胺类、神经递质、多肽类激素、抗体、酶、等都离不开蛋白质,它对调节生理功能,维持新陈代谢起着极其重要的作用。人体运动系统中肌肉的成分以及肌肉在收缩、作功、完成动作过程中的代谢无不与蛋白质有关,离开了蛋白质,体育锻炼就无从谈起。所以蛋白质有极其重要的生物学意义。与人体健康更是息息相关。 人体的大部分都是由蛋白质所组成,皮肤、肌肉、内脏、毛发、指甲、大脑甚至骨骼等除了尿液、胆汁都是由蛋白质构成。蛋白质充足时,才能维持细胞正常的功能与新陈代谢。因为人体的肌肉组织中,蛋白质的含量最高,因此只要照照镜子,就可以看出自己所摄取蛋白质是否充足。 强壮而营养充足的肌肉,自然会使身体挺拔健壮。如果肌肉得不到所需的养分,便会失去弹性,向旧轮胎一样松松垮垮,姿势会不好看。一个要求孩子站有站相、坐有坐相的母亲,等于是承认自己对食物的忽视。一个健康的人,总是抬头挺胸,两肩自然下垂、小腹微缩、脊椎略微弯曲、步伐稳健有节奏。毛发与指甲也是由蛋白质所构成,因此需要充分的营养来维持他们的健康。没有光泽、没有弹性、甚至断裂的头发,只要补充适度的营养也能在几个星期内恢复健康。 摄取充足的蛋白质,可以是精力旺盛、心情愉快。倦怠的主要原因除了血糖过低之外,还有缺乏蛋白质所造成的许多原因,如血压太低、贫血、身体机能障碍、无法产生将食物分解为能量的酶等。这些都无法在短期内得到改善。 血压是指血液对血管壁的压力。血管壁的组织坚韧才能维持正常的血压。如果血管壁变得脆弱或松弛,血管扩大,而血液的流量固定,血压相对降低,红血球输送养分的功能减弱,组织细胞的不到充足的养分,就会产生疲劳感。 饮食中蛋白质的摄取量充足时,可以增强抵抗力。人体有各种抵抗疾病的机能,其中抗体及白血球与蛋白质的摄取密切相关,在正常状态下肝脏会制造球蛋白或抗体,这些都是保卫健康的战士,能吞噬各种细菌、细菌性毒素及病毒,使其变为无害。研究表明、经常受到各种细菌及病毒感染的人,血液中球蛋白的含量均偏低。

免疫球蛋白IgE

免疫球蛋白IgE 免疫球蛋白lgE(人体的一种抗体),存在于血中。是正常人血清中含量最少Ig,可以引起I型超敏反应 球蛋白偏高,与慢性肝病,机体免疫系统有关。人血浆内的免疫球蛋白大多数存在于丙种球蛋白(γ-球蛋白)中。可分为五类,即免疫球蛋白G(IgG)、免疫球蛋白A(IgA)、免疫球蛋白M(IgM)、免疫球蛋白D(IgD)和免疫球蛋白E(IgE)。其中IgG是最主要的免疫球蛋白,约占人血浆丙种球蛋白的70%,分子量约15万,含糖2~3%。IgG分子由4条肽链组成。其中分子量为万的肽链,称轻链,分子量为5万的肽链,称重链。轻链与重链之间通过二硫键(—S —S—)相连接。免疫球蛋白是机体受抗原(如病原体)刺激后产生的,其主要作用是与抗原起免疫反应,生成抗原-抗体复合物,从而阻断病原体对机体的危害,使病原体失去致病作用。另一方面,免疫球蛋白有时也有致病作用。在慢性乙肝患者,长期白、球比例倒置,警惕有肝硬化迹象 免疫球蛋白Ig的医学定义是具有免疫功能或结构与抗体相似的球蛋白,其基本结构是:两条相同的重链和两条相同的轻链由链间二硫键连接而成。重链根据恒定区中氨基酸种类和排列顺序不同分为5种:α,γ,δ,ε,μ。分别对应5种含相应重链的免疫球蛋白:IgA,IgG,IgD,IgE,IgM。 血清免疫球蛋白E(IgE)又称为反应素,是血清中含量最少的一类免疫球蛋白,只占血清总量的%。IgE测定用国际单位IU或ng表示,1IU=,相当于WHO标准冻干血清制剂内所含的IgE量。 IgE是正常人血清中含量最少的Ig,正常浓度是5×10的-5次方mg/ml。正常人群IgE水平受环境、种族、遗传、年龄、检测方法及取样标准等因素的影响,各家各医院的正常值相差甚远。它是一种亲细胞抗体,与具有吞噬作用的肥大细胞,嗜中性粒细胞(可以吞噬被细菌,病毒等有害病原体感染的细胞)有很高的亲和力。因此可以介导Ⅰ型超敏反应,即我们平时所说的过敏反应。此外,IgE 可能与抗寄生虫感染有关。 一般大于100-333IU/ml(ku/L)即大于250-800ng/ml(μg/L)即表现为增高,主要见于过敏性体质及过敏性疾病,如哮喘、过敏性鼻炎、荨麻疹等。

人体内水份的作用

人体内水份的作用 水是生命的源泉。人体细胞的重要成分是水,水占成人体重的60~70%,占儿童体重的80%以上。人对水的需要仅次于氧气。人如果不摄入某一种维生素或矿物质,也许还能继续活几周或带病活上若干年,但人如果没有水,却只能活几天。那水份有什么作用呢? 1.水份帮助身体完成生理及代谢活动 水可溶解各种营养物质、脂肪和蛋白质等要成为悬浮于水中的胶体状态才能被吸收;水在血管、细胞之间流动,把氧气和营养物质运送到组织细胞,再把代谢废物排出体外。总之人的各种代谢和生理活动都离不开水。 2.水份在调节身体体温方面有一定的作用 当人呼吸和出汗时都会排出一些水分。比如炎热季节,环境温度往往高于体温,人就靠出汗,使水分蒸发带走一部分热量,来降低体温,使人免于中暑。而在天冷时,由于水储备热量的潜力很大,人体不致因外界温度低而使体温发生明显的波动。 3.水份是人体内部的润滑剂 水能滋润皮肤,皮肤缺水,就会变得干燥失去弹性,显得面容苍老。体内一些关节囊液、浆膜液可使器官之间免于摩擦受损,且能转动灵活。眼泪、唾液也都是相应器官的润滑剂。 4.水是最廉价最有治疗力量的奇药 水的保健和防病作用是众所周知的,主要是因为水中含有对人体有益的成分。当感冒、发热时,多喝开水能帮助发汗、退热、冲淡血液里细菌所产生的毒素,同时小便增多,有利于加速毒素的排出;大面积烧伤以及发生剧烈呕吐和腹泻等症状,都需要及时补充液体,以防止严重脱水,加重病情;便秘时需要大口大口地喝水,吞咽动作快一些,这样水就能够尽快地到达结肠,刺激肠蠕动,促进排便。心脏病人在睡觉前喝水可以减低血液的黏稠度,减少心脏病突发的危险。有胃病的,或者感到胃不舒服,可以采取喝粥的“水养护”措施,稀饭中含有的大量水分,还能有效地润滑肠道,荡涤肠胃中的有害物质,并顺利地把它们带出体外。

蛋白质对人体的作用

蛋白质对人体的作用 蛋白质是我们饮食的重要组成部分。蛋白质是由较大的复合分子组成的错综复杂的链珠状体。链子上的每一个“珠子”是由一组被称为氨基酸的更小的分子组成。氨基酸是由碳、氧、氮、氢等元素组成的,有些氨基酸还含有硫。 利用饮食中摄入的氨基酸,身体可以产生5万多种不同的蛋白质。这些蛋白质是我们皮肤、毛发、指甲、细胞膜、肌肉和结缔组织的主要组成元素。胶原质是我们皮肤的主要成份,能防止外来物质的入侵。细胞膜上的蛋白质决定哪些物质可以进出细胞。我们的肌肉,包含了整个人体65%的蛋白质,为我们的身体定型和提供力量。在结缔组织比如肌腱、韧带和软骨内的蛋白质,一方面可以使我们的骨架良好运作,另一方面构成人体内部器官,同时还可以保持内部器官的位置。血液中的蛋白质把氧带到各个细胞,并带走二氧化碳和其他废弃物。肌肉、结缔组织和血液中的蛋白质占据了人体内蛋白质的大部分。其他蛋白质,比如酶,可促进新陈代谢。此外。还有些蛋白质和氨基酸是激素或者是影响神经系统的化学物质,这些物质在整个人体中传递信息,同时调节整个新陈代谢的进程。 我们的身体在生长的过程中必须制造和储存大量的蛋白质。因此在生长期,身体对蛋白质的需求量很大。即使是在非生长期,人体内每种蛋白质都是有其一定的存在期限的,必须及时得到补充。因此,人体对蛋白质的需求永无止境。 大部分食物含有蛋白质,其中有一些是相对较好的蛋白质来源。所谓的“完全蛋白质”,含有用来合成人体所需的蛋白质的所有必需氨基酸。完全蛋白质的最佳来源是瘦肉、禽肉、鱼虾类、低脂奶制品、鸡蛋。 谷类和麦类食物是蛋白质的优良来源,但是因为这些蛋白质往往缺少一种或两种必需的氨基酸,它们便被称为“不完全蛋白质”。玉米中赖氨酸和色氨酸的含量很低,小麦中缺乏赖氨酸,相反,豆类中赖氨酸含量很高,但蛋氨酸的含量低。豆类中,黄豆所含的蛋白质是最完整的。

相关主题
文本预览
相关文档 最新文档