当前位置:文档之家› 汽车结构有限元分析

汽车结构有限元分析

汽车结构有限元分析
汽车结构有限元分析

汽车结构的常规有限元分析

本文介绍了与产品研发同步的5个有限元分析阶段,阐述了有限元模型建立过程中应注意的问题,简单介绍了汽车产品的4种常规分析方法,建立汽车设计标准的方法,以及3个强度分析范例。范例1说明了有限元分析应注意的内容,范例2和3介绍了“应力幅值法”在解决汽车车轮轮辐开裂和汽车发动机汽缸体水套底板开裂问题的应用。

汽车是艺术和技术的结合。一辆好车的主要特点是造型美观、有时代感、结构设计合理、轻量化、材料利用率高,车辆性能先进并且满足国家法规、标准和环保的要求,质量可靠、保养方便、低成本、用户满意、满足市场需求等。在竞争日益激烈的汽车市场,汽车性价比已经成为市场竞争的焦点。采用有限元的常规分析技术,用计算机辅助设计代替经验设计,预测结构性能、实现结构优化,提高产品研发水平、降低产品成本,加快新产品上市。

1. 与产品研发同步的5个有限元分析阶段

在汽车产品研发流程中,一般有如下5个同步的有限元分析阶段:

第0阶段:对样车进行试验和分析;

第1阶段:概念设计阶段的分析;

第2阶段:详细设计阶段的分析;

第3阶段:确认设计阶段的分析;

第4阶段:产品批量生产后改进设计的分析。

有限元分析在产品研发的不同阶段有不同的分析目的和分析内容。有限元分析和试验分析是互相结合和验证的。在详细设计阶段,有些汽车公司对白车身和成品车车身都进行有限元分析,有些汽车公司只对白车身进行有限元分析。

2. 有限元分析的关键环节――建立合理的有限元模型

有限元模型的建立是有限元分析的关键环节。通过力学分析,把实际工程问题简化为有限元分析的问题,提出建立有限元模型的具体意见和方法,确定载荷和位移边界条件,使得有限元分析有较好的模拟(仿真)效果。

前处理自动生成的网格可能存在问题。建立有限元模型的好坏直接影响计算结果的误差和分析结论的正确性。在结构的几何图形上,划分有限元网格是建立有限元模型的主要内容之一。在用有限元分析的前处理自动生成网格时,特别是用常应变单元自动生成有限元网格时要非常注意,有可能存在问题,应引起注意,必要时加以改进。要想用有限元分析前处理自动生成出好的有限元网格也要付出辛勤地劳动。即使在方案比较的情况下,应力和变形的分布规律也不能离谱,计算结果的误差也应在给定的范围之内,建立好的有限元模型与分析经验有关。

在没有有限元分析指南的情况下,用力学分析和试验结果对有限元模型的确认和对计算结

果的验证是非常重要的,以避免不正确的有限元分析结果误导设计。

3. 汽车结构的常规分析

汽车结构的常规分析包括强度分析、刚度分析、NH分析、设计优化分析等内容。

强度分析

强度的概念是结构在正常工作时能承受的载荷,一般用工作应力的峰值来表示结构强度的水平。

在解决实际工程问题时,要根据分析目的和分析对象的受力状态,选择描述(评价)分析对象力学性能的物理量,并用这个物理量进行强度分析,这是一个非常重要的问题。指导原则是有限元分析输出的物理量应与试验分析时测试的物理量相同,以便于试验验证。

刚度分析

刚度的概念是结构在正常工作时的许可变形,用刚度表示结构抵抗结构变形的能力, 刚度是结构在外力作用下发生单位变形所需要的力。

评价一辆车的好坏,主要看车身。一般车身结构(如商用车的驾驶室)设计的主要问题是刚度问题,其次是强度问题。如果车身结构的刚度已满足要求,则车身结构的强度基本能满足要求。

NH分析

汽车在外载荷(路面激励、发动机的怠速和工作转速的激励)的作用下发生振动,用有限元分析的方法识别汽车结构的模态参数(振型、频率和阻尼),对汽车结构的振动噪声和舒适性(NH)进行分析。

设计优化分析

设计优化分析意味着在满足约束的前提下产生最佳设计的可能性。汽车结构的设计优化分析一般是以轻量化为设计目标,以强度(应力)和刚度(变形)为约束条件,改变设计的形状和尺寸(以设计的形状和尺寸为设计变量),进行多方案比较(拓扑优化),选择较优的设计方案。分析人员在设计优化有了初步结果之后,一定要用力学分析和设计的经验进行合理地解释,进一步确认设计优化结果的正确性。

4. 制定设计标准

在产品的研发中,应制定设计标准、试验规范和有限元分析指南。

以竞争对手的整车、系统、总成和零部件的性能参数为研发车辆性能的参考依据。在产品

研发中,将车辆水平的指标分解成车身、底盘(车架)、动力总成等主要总成和系统的指标,总成和系统的指标又进一步分解为零部件与子系统的指标,为研发部门提供依据。

5. 强度分析的3个范例

汽车车身(车架)的强度分析

在汽车车身(车架)强度的有限元分析时,用.Mises

应力σe分析车身在复杂应力状态下变形能量的分布规律和水平,是可行的。但有些分析人员在车架的分析时,也用当量的.Mises

应力σe研究车架的应力分布规律和应力水平,笔者认为欠妥,有误导设计的可能性。

主要原因是:由于.Mises应力σe是永远大于零的数,用.Mises应力σe不能够清楚地表示车架的应力(拉应力和压应力)分布规律和应力水平。建议用最大主应力σmax

表示车架的应力(拉应力和压应力)分布规律和应力水平,用最大主应力σmax

控制车架的应力水平。最大主应力σmax的计算结果还可以与试验分析时测试的最大主应力σmax相比较。

汽车车轮轮辐的强度分析

车轮在路面滚动时,车轮轮辐在路面弯矩载荷作用下产生的应力是变化的。因此,在车轮轮辐强度的有限元分析中,描述车轮轮辐在路面弯矩载荷作用下的应力分布规律和应力水平,就不能简单用车轮在某个载荷工况下的最大主应力σmax和.Mises应力σe表示,而用汽车车轮滚动试验时车轮轮辐强度分析的物理量-应力幅值σa表示。有限元分析中轮辐应力幅值σa的计算结果可以用试验分析时应变片测量的轮辐应力幅值σa验证。

如何计算车轮轮辐在路面弯矩载荷作用下的应力幅值σa,也是非常重要的。几十年来,国内外一些汽车公司用有限元分析的方法对汽车车轮进行应力分析,试图计算车轮轮辐在路面弯矩载荷作用的应力幅值σa都没有成功。分析困难的原因之一是车轮是转动的,分析困难的另外一个原因是车轮的受力分析难度大,轮辐、轮毂和车轮螺栓之间的载荷传递不容易确定。一些汽车公司主要还用实际样品的试验分析解决问题,没有发挥有限元分析的作用。1987年,笔者在国际上首次提出“应力幅值法”——通过有限元分析技术,模拟试验分析,在周期性的外载荷作用下计算结构应力幅值的方法。有限元分析和“应力幅值法”相结合,解决了汽车车轮受力分析的问题,能够计算车轮轮辐在路面弯矩载荷作用下产生交变应力的应力幅值σa。用“应力幅值法”计算车轮轮辐的应力幅值σa误差小、精度高,可以代替汽车车轮的滚动试验装置研究车轮轮辐应力幅值σa的应力分布规律和应力水平,优化车轮轮辐设计。

应用“应力幅值法”,对某些商用车和乘用车的车轮轮辐的强度进行有限元分析,成功解决了这些车轮轮辐的开裂问题,为车轮轮毂和轮辐的优化设计提供了依据。

汽车发动机气缸体的强度分析

本范例的汽车发动机气缸体强度的有限元分析,用发动机气缸体强度试验分析时所使用的物理量——应力幅值σa,分析汽车发动机气缸体在曲轴旋转不平衡惯性力作用下产生交变应力的应力分布规律和应力水平,有限元分析中应力幅值σa的计算结果可以用试验分析时应变片测量的应力幅值σa验证。应用“应力幅值法”,对汽车发动机气缸体强度进行有限元分析,成功解决了某型号发动机汽缸体水套底板开裂问题,通过增加曲轴平衡块,可降低水套底板应力幅值的1/3。

有限元分析软件比较分析

有限元分析软件 有限元分析是对于结构力学分析迅速发展起来的一种现代计算方法。它是50 年代首先在连续体力学领域--飞机结构静、动态特性分析中应用的一种有效的数值分析方法,随后很快广泛的应用于求解热传导、电磁场、流体力学等连续性问题。 有限元分析软件目前最流行的有:ANSYS、ADINA、ABAQUS、MSC 四个比较知名比较大的公司,其中ADINA、ABAQUS 在非线性分析方面有较强的能力目前是业内最认可的两款有限元分析软件,ANSYS、MSC 进入中国比较早所以在国内知名度高应用广泛。目前在多物理场耦合方面几大公司都可以做到结构、流体、热的耦合分析,但是除ADINA 以外其它三个必须与别的软件搭配进行迭代分析,唯一能做到真正流固耦合的软件只有ADINA。ANSYS是商业化比较早的一个软件,目前公司收购了很多其他软件在旗下。ABAQUS专注结构分析目前没有流体模块。MSC是比较老的一款软件目前更新速度比较慢。ADINA是在同一体系下开发有结构、流体、热分析的一款软件,功能强大但进入中国时间比较晚市场还没有完全铺开。 结构分析能力排名:ABAQUS、ADINA、MSC、ANSYS 流体分析能力排名:ANSYS、ADINA、MSC、ABAQUS 耦合分析能力排名:ADINA、ANSYS、MSC、ABAQUS 性价比排名:最好的是ADINA,其次ABAQUS、再次ANSYS、最后MSC ABAQUS 软件与ANSYS 软件的对比分析: 1.在世界范围内的知名度:两种软件同为国际知名的有限元分析软件,在世界范围内具有各自广泛的用户群。ANSYS 软件在致力于线性分析的用户中具有很好的声誉,它在计算机资源的利用,用户界面开发等方面也做出了较大的贡献。ABAQUS软件则致力于更复杂和深入的工程问题,其强大的非线性分析功能在设计和研究的高端用户群中得到了广泛的认可。由于ANSYS 产品进入中国市场早于ABAQUS,并且在五年前ANSYS 的界面是当时最好的界面之一,所以在中国,ANSYS 软件在用户数量和市场推广度方面要高于ABAQUS。但随着ABAQUS北京办事处的成立,ABAQUS软件的用户数目和市场占有率正在大幅度和稳步提高,并可望在今后的几年内赶上和超过ANSYS。 2.应用领域:ANSYS 软件注重应用领域的拓展,目前已覆盖流体、电磁场和多物理场耦合等十分广泛的研究领域。ABAQUS 则集中于结构力学和相关领域研究,致力于解决该领域的深层次实际问题。 3.性价比:ANSYS 软件由于价格政策灵活,具有多种销售方案,在解决常规的

有限元法在汽车行业中的应用

有限元法在汽车行业中的应用 【摘要】:汽车车身结构主要是由薄板冲压的覆盖件、承载骨架和各种加强件组成的。在有限元分析中可将它看成是由许多单元所组成的整体, 或起承载作用, 或承受、传递外部载荷, 以保证整个汽车的正常工作。 【关键词】:汽车;技术;应用 在当前的工程技术领域中有越来越多的复杂结构,包括复杂的几何形状、复杂的载荷作用和复杂的支撑约束等。当对这些复杂问题进行静、动态力学性能分析时, 往往可以很方便地写出基本方程和边界条件, 但却求不出解析解。这是因为大量的工程实际问题非常复杂, 有些构件的形状甚至不可能用简单的数学表达式表达, 所以就更谈不上解析解了。 对于这类工程实际问题, 通常有两种分析和研究途径: 一是对复杂问题进行简化, 提出种种假设, 最终简化为一个能够处理的问题。这种方法由于太多的假设和简化, 将导致不准确乃至错误的答案。另一种方法是尽可能保留问题的各种实际工况, 寻求近似的数值解。在众多的近似分析方法中, 有限元法是最为成功和运用最广的方法。 1. 汽车结构有限元分析 汽车车身结构主要是由薄板冲压的覆盖件、承载骨架和各种加强件组成的。在有限元分析中可将它看成是由许多单元所组成的整体, 或起承载作用, 或承受、传递外部载荷, 以保证整个汽车的正常工作。由于要完成各自独特的功能, 它们的结构各不相同, 并且都比较复杂。一些结构件的工作条件比较恶劣, 长期在振动和冲击载荷下工作。寻求有关这些结构件正确而可靠的设计和计算方法, 是提高汽车的工作性能及可靠性的主要途径之一。 在汽车结构分析中, 有限元法由于其能够解决结构形状和边界条件都非常任意的力学问题的独特优点而被广泛使用。各种汽车结构件都可应用有限元法进行静态分析、固有特性分析和动态分析; 并且从原来对工程实际问题的静态分析为主转化为要求以模态分析和动态分析为主。也可根据工程实际结构的特点要求进行非线性分析。具体地说, 汽车结构有限元分析的应用体现于: 一是在汽车设计中对所有的结构件、主要机械零部件的刚度、强度、稳定性分析; 二是在汽车的计算机辅助设计和优化设计中, 用有限元法作为结构分析的工具; 三是在汽车结构分析中普遍采用有限元法来进行各构件的模态分析,同时在计算机屏幕上直观形象地再现各构件的振动模态, 进一步计算出各构件的动态响应, 较真实地描绘出动态过程, 为结构的动态设计提供方便有效的工具。 有限元法分析汽车结构的一般过程如下:

轿车盘式制动器结构设计及有限元分析(含CAD图纸)

毕业设计说明书 题目:轿车盘式制动器结构 设计及有限元分析 学院: 年级专业: 姓名: 学号: 指导教师: 完成时间:

目 录 摘要 (1) Abstract (1) 1前言 (2) 2制动器的结构形式及分类 (3) 2.1制动器的结构形式 (3) 2.2制动器分类 (3) 3制动器的主要参数及其选择 (8) 3.1基本参数 (8) 3.2制动力与制动力分配系数 (8) 3.3同步附着系数 (8) 3.4制动强度与附着系数利用率 (9) 3.5同步附着系数 (8) 3.6制动器的最大制动力矩 (10) 3.7盘式制动器主要参数的确定 (11) 3.7.1制动盘直径D (11) 3.7.2制动盘厚度h (11) 3.7.3摩擦衬块内半径1R 和外半径2R (11) 3.7.4摩擦衬块工作面积A (12) 3.7.5有效半径e R 的确定 (12) 4盘式制动器的设计计算 (14) 4.1摩擦衬片的磨损特性计算 (14) 4.2驻车制动计算 (15) 4.3制动器温升核算 (16) 4.4制动力矩与盘的压力 (17) 5盘式制动器的主要元件 (18) 5.1制动盘 (18) 5.2制动钳 (18)

5.3制动块18 5.4摩擦材料 (19) 5.5制动器间隙的调整方法及相应机构 (19) 5.6制动盘的安装 (20) 5.7制动盘的修理 (20) 6盘式制动器的三维设计 (21) 6.1制动盘的三维建模 (21) 6.2制动钳体和支架的三维建模 (21) 6.3制动衬块和背板的三维建模 (22) 6.4其他小零件的三维建模 (23) 6.5装配图的展示 (24) 7有限元分析 (27) 7.1有限元法概述 (27) 7.1.1有限元法介绍 (27) 7.2有限元软件ANSYS介绍 (27) 8盘式制动器有限元模型的建立 (29) 8.1 制动盘的模态分析 (29) 8.2 摩擦衬块的静态分析 (35) 9结论 (41) 总结与体会 (42) 谢辞 (43) 参考文献 (44)

(完整word版)有限元分析软件的比较

有限元分析软件的比较(购买必看)-转贴 随着现代科学技术的发展,人们正在不断建造更为快速的交通工具、更大规模的建筑物、更大跨度的桥梁、更大功率的发电机组和更为精密的机械设备。这一切都要求工程师在设计阶段就能精确地预测出产品和工程的技术性能,需要对结构的静、动力强度以及温度场、流场、电磁场和渗流等技术参数进行分析计算。例如分析计算高层建筑和大跨度桥梁在地震时所受到的影响,看看是否会发生破坏性事故;分析计算核反应堆的温度场,确定传热和冷却系统是否合理;分析涡轮机叶片内的流体动力学参数,以提高其运转效率。这些都可归结为求解物理问题的控制偏微分方程式,这些问题的解析计算往往是不现实的。近年来在计算机技术和数值分析方法支持下发展起来的有限元分析(FEA,Finite Element A nalysis)方法则为解决这些复杂的工程分析计算问题提供了有效的途径。在工程实践中,有限元分析软件与CAD系统的集成应用使设计水平发生了质的飞跃,主要表现在以下几个方面: 增加设计功能,减少设计成本; 缩短设计和分析的循环周期; 增加产品和工程的可靠性; 采用优化设计,降低材料的消耗或成本; 在产品制造或工程施工前预先发现潜在的问题; 模拟各种试验方案,减少试验时间和经费; 进行机械事故分析,查找事故原因。 在大力推广CAD技术的今天,从自行车到航天飞机,所有的设计制造都离不开有限元分析计算,FEA在工程设计和分析中将得到越来越广泛的重视。国际上早20世纪在50年代末、60年代初就投入大量的人力和物力开发具有强大功能的有限元分析程序。其中最为著名的是由美国国家宇航局(NASA)在1965年委托美国计算科学公司和贝尔航空系统公司开发的NASTRAN有限元分析系统。该系统发展至今已有几十个版本,是目前世界上规模最大、功能最强的有限元分析系统。从那时到现在,世界各地的研究机构和大学也发展了一批规模较小但使用灵活、价格较低的专用或通用有限元分析软件,主要有德国的ASKA、英国的PA FEC、法国的SYSTUS、美国的ABQUS、ADINA、ANSYS、BERSAFE、BOSOR、COSMOS、ELAS、MARC和STARDYNE等公司的产品。 以下对一些常用的软件进行一些比较分析: 1. LSTC公司的LS-DYNA系列软件

汽车结构有限元分析

汽车结构的常规有限元分析 本文介绍了与产品研发同步的5个有限元分析阶段,阐述了有限元模型建立过程中应注意的问题,简单介绍了汽车产品的4种常规分析方法,建立汽车设计标准的方法,以及3个强度分析范例。范例1说明了有限元分析应注意的内容,范例2和3介绍了“应力幅值法”在解决汽车车轮轮辐开裂和汽车发动机汽缸体水套底板开裂问题的应用。 汽车是艺术和技术的结合。一辆好车的主要特点是造型美观、有时代感、结构设计合理、轻量化、材料利用率高,车辆性能先进并且满足国家法规、标准和环保的要求,质量可靠、保养方便、低成本、用户满意、满足市场需求等。在竞争日益激烈的汽车市场,汽车性价比已经成为市场竞争的焦点。采用有限元的常规分析技术,用计算机辅助设计代替经验设计,预测结构性能、实现结构优化,提高产品研发水平、降低产品成本,加快新产品上市。 1. 与产品研发同步的5个有限元分析阶段 在汽车产品研发流程中,一般有如下5个同步的有限元分析阶段: 第0阶段:对样车进行试验和分析; 第1阶段:概念设计阶段的分析; 第2阶段:详细设计阶段的分析; 第3阶段:确认设计阶段的分析; 第4阶段:产品批量生产后改进设计的分析。 有限元分析在产品研发的不同阶段有不同的分析目的和分析内容。有限元分析和试验分析是互相结合和验证的。在详细设计阶段,有些汽车公司对白车身和成品车车身都进行有限元分析,有些汽车公司只对白车身进行有限元分析。 2. 有限元分析的关键环节――建立合理的有限元模型 有限元模型的建立是有限元分析的关键环节。通过力学分析,把实际工程问题简化为有限元分析的问题,提出建立有限元模型的具体意见和方法,确定载荷和位移边界条件,使得有限元分析有较好的模拟(仿真)效果。 前处理自动生成的网格可能存在问题。建立有限元模型的好坏直接影响计算结果的误差和分析结论的正确性。在结构的几何图形上,划分有限元网格是建立有限元模型的主要内容之一。在用有限元分析的前处理自动生成网格时,特别是用常应变单元自动生成有限元网格时要非常注意,有可能存在问题,应引起注意,必要时加以改进。要想用有限元分析前处理自动生成出好的有限元网格也要付出辛勤地劳动。即使在方案比较的情况下,应力和变形的分布规律也不能离谱,计算结果的误差也应在给定的范围之内,建立好的有限元模型与分析经验有关。 在没有有限元分析指南的情况下,用力学分析和试验结果对有限元模型的确认和对计算结

各种有限元分析软件比较

各种有限元分析软件比较 有限元分析(FEA,Finite Element Analysis)利用数学近似的方法对真实物理系统(几何和载荷工况)进行模拟。还利用简单而又相互作用的元素,即单元,就可以用有限数量的未知量去逼近无限未知量的真实系统。 有限元分析具有确保产品设计的安全合理性,同时采用优化设计,找出产品设计最佳方案,降低材料的消耗或成本; 在产品制造或工程施工前预先发现潜在的问题; 模拟各种试验方案,减少试验时间和经费等作用,越来越被应用,越来越的有限元分析也不断被开发出来,当我们在做有限元分析时,我们该选择什么样的软件?或者我们该学习什么软件?成了大多数人困惑的问题。看板网根据自己超过十年的有限元分析项目经验和培训经验,对各种有限元分析软件进行了一些比较,希望大家在选择时能够大家做参考。 有限元分析常用软件 国外软件 大型通用有限元商业软件:如ANSYS可以分析多学科的问题,例如:机械、电磁、热力学等;电机有限元分析软件NASTRAN等。还有三维结构设计方面的UG,CATIA,Proe等都是比较强大的。 国内软件 国产有限元软件:FEPG,SciFEA,JiFEX,KMAS等。 当然首先要明确你要用这个软件进行什么分析,一般会用到有限元分析的地方有:1.模流分析;2.结构强度分析;3.电磁场分析;4.谐响应分析(比如查找共振频率);5. 铸造分析。等等 ANSYS是商业化比较早的一个软件,目前公司收购了很多其他软件在旗下。ABAQUS专注结构分析目前没有流体模块。MSC是比较老的一款软件目前更新速度比较慢。ADINA是在同一体系下开发有结构、流体、热分析的一款软件,功能强大但进入中国时间比较晚市场还没有完全铺开。 workbench是一个综合性的有限元分析软件,几乎囊括了所有有限元分析领域,传统的优势领域有强度分析、谐响应分析和电磁分析。workbench是ansys

汽车结构有限元分析--第六讲_汽车结构有限元分析实例

版权所有,仅限于学习交流之用 第六讲汽车结构有限元分析实例 合肥工业大学机械与汽车学院车辆工程系 谭继锦编写 2010年3 月

----------------------汽车结构分析实例 ?1、汽车结构设计准则与目标 ?2、汽车结构有限元模型 ?3、汽车结构强度分析 ?4、汽车结构刚度分析 ?5、汽车结构动态分析 ?6、汽车结构疲劳分析 ?7、汽车结构碰撞分析 ?8、汽车结构有限元优化设计

1、汽车结构设计准则与目标 ?有限元分析方法是汽车数字化设计的一项核心技术; ?在产品设计阶段对汽车结构及性能做出预先评估; ?有限元分析能够提供大量的仿真试验数据和技术参数, 进而可以替代部分试验,有利于设计经验的积累和设计技术的提高。 ------汽车结构分析的目的主要是解决汽车结构的可靠性、安全性、经济性和舒适性等问题,其分析内容十分广泛,而且相互关联,主要涉及以下内容: ?可靠性:研究汽车结构强度、刚度和动态特性,以及疲 劳寿命等; ?安全性:研究结构耐撞性与乘员安全性等; ?经济性:研究结构优化及轻量化等; ?舒适性:进行结构振动噪声分析等。

汽车结构设计准则与目标 ?结构分析可以划分成几个阶段,各阶段有不同的设计 目标。 ?◇概念设计阶段建立相应的设计目标; ?◇详细设计阶段达到相应的设计目标; ?◇样车制作阶段验证整车的性能并且分析设计中存在 问题; ?◇产品制造阶段验证设计和改进产品。 ------以下概略汇总了汽车结构分析中在概念设计阶 段和详细设计阶段汽车结构部分分析内容及设计目标,这些内容与目标是动态发展的,需要结合工程实际不断调整并发展。

各大CAE软件特点比较

有限元分析软件比较 有限元分析是对于结构力学分析迅速发展起来的一种现代计算方法。它是50年代首先在连续体力学领域--飞机结构静、动态特性分析中应用的一种有效的数值分析方法,随后很快广泛的应用于求解热传导、电磁场、流体力学等连续性问题。 有限元分析软件目前最流行的有:ANSYS、ADINA、ABAQUS、MSC四个比较知名比较大的公司,其中ADINA、ABAQUS在非线性分析方面有较强的能力目前是业内最认可的两款有限元分析软件,ANSYS、MSC进入中国比较早所以在国内知名度高应用广泛。目前在多物理场耦合方面几大公司都可以做到结构、流体、热的耦合分析,但是除ADINA以外其它三个必须与别的软件搭配进行迭代分析,唯一能做到真正流固耦合的软件只有ADINA。 ANSYS是商业化比较早的一个软件,目前公司收购了很多其他软件在旗下。ABAQUS 专注结构分析目前没有流体模块。MSC是比较老的一款软件目前更新速度比较慢。ADINA 是在同一体系下开发有结构、流体、热分析的一款软件,功能强大但进入中国时间比较晚市场还没有完全铺开。 结构分析能力排名:1、ABAQUS、ADINA、MSC、ANSYS 流体分析能力排名:1、ANSYS、ADINA、MSC、ABAQUS 耦合分析能力排名:1、ADINA、ANSYS、MSC、ABAQUS 性价比排名:最好的是ADINA,其次ABAQUS、再次ANSYS、最后MSC ABAQUS软件与ANSYS软件的对比分析 1.在世界范围内的知名度: 两种软件同为国际知名的有限元分析软件,在世界范围内具有各自广泛的用户群。ANSYS软件在致力于线性分析的用户中具有很好的声誉,它在计算机资源的利用,用户界面开发等方面也做出了较大的贡献。ABAQUS软件则致力于更复杂和深入的工程问题,其强大的非线性分析功能在设计和研究的高端用户群中得到了广泛的认可。 由于ANSYS产品进入中国市场早于ABAQUS,并且在五年前ANSYS的界面是当时最好的界面之一,所以在中国,ANSYS软件在用户数量和市场推广度方面要高于ABAQUS。但随着ABAQUS北京办事处的成立,ABAQUS软件的用户数目和市场占有率正在大幅度和稳步提高,并可望在今后的几年内赶上和超过ANSYS。 2.应用领域: ANSYS软件注重应用领域的拓展,目前已覆盖流体、电磁场和多物理场耦合等十分广泛的研究领域。ABAQUS则集中于结构力学和相关领域研究,致力于解决该领域的深层次

(完整)各种有限元分析软件比较

(完整)各种有限元分析软件比较 编辑整理: 尊敬的读者朋友们: 这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望((完整)各种有限元分析软件比较)的内容能够给您的工作和学习带来便利。同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。 本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为(完整)各种有限元分析软件比较的全部内容。

各种有限元分析软件比较 有限元分析(FEA,Finite Element Analysis)利用数学近似的方法对真实物理系统(几何和载荷工况)进行模拟。还利用简单而又相互作用的元素,即单元,就可以用有限数量的未知量去逼近无限未知量的真实系统. 有限元分析具有确保产品设计的安全合理性,同时采用优化设计,找出产品设计最佳方案,降低材料的消耗或成本; 在产品制造或工程施工前预先发现潜在的问题;模拟各种试验方案,减少试验时间和经费等作用,越来越被应用,越来越的有限元分析也不断被开发出来,当我们在做有限元分析时,我们该选择什么样的软件?或者我们该学习什么软件?成了大多数人困惑的问题。看板网根据自己超过十年的有限元分析项目经验和培训经验,对各种有限元分析软件进行了一些比较,希望大家在选择时能够大家做参考。 有限元分析常用软件 国外软件 大型通用有限元商业软件:如ANSYS可以分析多学科的问题,例如:机械、电磁、热力学等;电机有限元分析软件NASTRAN等。还有三维结构设计方面的UG,CATIA,Proe等都是比较强大的。 国内软件 国产有限元软件:FEPG,SciFEA,JiFEX,KMAS等。 当然首先要明确你要用这个软件进行什么分析,一般会用到有限元分析的地方有:1。模流分析;2.结构强度分析;3。电磁场分析;4。谐响应分析(比如查找共振频率);5。铸造分析。等等 ANSYS是商业化比较早的一个软件,目前公司收购了很多其他软件在旗下.ABAQUS 专注结构分析目前没有流体模块.MSC是比较老的一款软件目前更新速度比较慢。ADINA是在同一体系下开发有结构、流体、热分析的一款软件,功能强大但进入中国时间比较晚市场还没有完全铺开。

车架有限元分析

1前言 车架是汽车的主要部件。深人解车架的承载特性是车架结构设计改进和优化的基础。过去汽车设计多用样车作参考,这种方法不仅费用大,试制周于精确解。因此,正确建立结构的力学模型,是分析期长,而且也不可能对多种方案进行评价。现代车架设计已发展到包括有限元法、优化、动态设计等在内的计算机分析、预测和模拟阶段。计算机技术与现代电子测试技术相结合已成为汽车车架研究中十分行之有效的方法。实践证明,有限元法是一种有效的数值计算方法,利用有限元法计算得到的结构位移场、应力场和低阶振动频率可作为结构设计的原始判据或作为结构改进设计的基础。 2车架的静态分析 力学模型的选择 有限元分析的基本思想,是用一组离散化的单元组集,来代替连续体机构进行分析,这种单元组集体称之为结构的力学模型;如果已知各个单元体的力和位移(单元的刚度特性),只需根据节点的变形连续条件与节点的平衡条件,来推导集成结构的特性并研究其性能。有限元的特点是始终以矩阵形式来作为数学表达式,便于程序设计,大量工作是由电子计算机来完成,只要计算机容量足够,单元的剖分可以是任意的,对于任何复杂的几何形状,多样化的载荷和任意的边界条件都能适应。然而,由于有限元是一种数值分析方法,计算结果是近似解,其精度主要取决于离散化误差。如果结构离散化恰当,单元位移函数选取合理,随着单元逐步缩小,近似解将收敛于精确解。因此,正确建立结构的力学模型,是分析工作的第一步目前采用有限元分析模型一般有如下两种:梁单元模型和组合模型等。梁单元模型是将车架结构简化为由一组两节点的梁单元组成的框架结构,以梁单元的截面特性来反映车架的实际结构特性。其优点是:划分的单元数目和节点数目少,计算速度快而且模型前处理工作量不大,适合初选方案。其缺点是:无法仔细分析车架应力集中问题,因而不能为车架纵、横梁连接方案提供实用的帮助。组合单元模型则是既采用梁单元也采用板壳单元进行离散。在实际工程运用中,由于车架是由一系列薄壁件组成的结构,且形状复杂,宜离散为许多板壳单元的组集,其缺点是前处理工作量大,计算时间长,然而随着计算机技术的不断发展,这个问题已得到了较好的解决,而且由于有大型有限元软件支撑,巨大的前处理工作量绝大部分可由计算机完成,也不是制约板壳元模型实际运用的困难了。这种模型使得对车架的分析计算更为精确,能为车架设计提供更为有利的帮助。 车架的计算方法 汽车车架的主要结构形式为边梁式车架,货车车架纵梁截面多为槽形,横梁截面可为槽

有限元软件介绍和比较

有限元软件介绍和比较 一、msc/patran+nastran, ansys, abaqus 三者的比较 俺最喜欢的是msc/patran+nastran,因为当年国内飞机公司最先引进的就是nastran,其菜单式的操作,比用手写有限元程序,爽多了!!特别是建立飞机这类巨大型结构,可以说,只有patran的建模最强!!(有人在仿真说abaqus能建整个飞机模型,哈哈,吹牛不上税,就凭其目前功能,要花一百年!!) 另外,msc财大气粗,其教程是手把手式,航空上最常用的有限元分析,都有现成的例题,step by step,傻瓜都会很快地入门!!由于其广泛应用于航空航天/汽车工业,所以,至今为止,如果要学CAE软件,俺认为应首选msc/patran+nastran。 与patran+nastran相比,ansys的界面就低了一些,操作也没有patran舒服。不过,差别不是很大。ansys据俺的体会,唯一的强项就是多场耦合。其他的功能, msc/patran+nastran都有。不过,ansys的apdl语言比较高级,是其最大优势,或者说,msc 应向这一方向发展!!不过,apdl最开始学也很费事,得一条一条查,一条一条记,这个过程没有两三个月下不来。由此,ansys的清爽度比msc差一些。 abaqus,如果自己用手编写过有限元程序的,入门应该不难。其命令格式,跟自己用手编程序一个套路。abaqus的强项是其分析功能很全面,特别是非线性部分,基本上都包含了。abaqus最大的缺点是上手慢,其教程太差,除了几本手册,基本上等于没有教程。要学abaqus,其时间要比msc, ansys长多了!!现在看,学abaqus实在没什么省时间的方法(比如它的 training lecture,一本250$,买来一看,气晕俺,还没手册说得详细!!),所以唯一的笨方法就是要看手册啦。(如果说msc是windows点鼠标时代的水平,abaqus就是敲dos命令的原始时代。不过,如果愣要用非线性分析,而nastran/ansys都没用,也只能用abaqus了。估计几年后,其CAE应能发展patran的水平,其教程应有step by step的水平。否则,为了一个非线性,多花数倍的时间,实在不爽!!或者说,花一辈子时间,才会用其中一部分功能,真可谓生也有涯,学也无涯,以有涯学无涯,不如不学算了!! 二、MSC.PATRAN和ANSYS比较 MSC.PATRAN最早由美国宇航局(NASA)倡导开发的, 是工业领域最著名的并行框架式有限元前后处理及分析系统,其开放式、多功能的体系结构可将工程设计、工程分析、结果评估、用户化身和交互图形界面集于一身,构成一个完整 CAE集成环境。 ANSYS软件是融结构、流体、电场、磁场、声场分析于一体的大型通用有限元分析软件。由世界上最大的有限元分析软件公司之一的美国ANSYS开发,它能与多数CAD软件接口,实现数据的共享和交换,如Pro/Engineer, NASTRAN, Algor, I-DEAS, AutoCAD等,是现代产品设计中的高级CAD工具之一。 在建立复杂模型上ANSYS不如PATRAN,但PATRAN很繁琐。ANSYS比较适合于教学和科研,但ANSYS的求解效率确实不如NASTRAN。所以NASTRAN比较适合于工程。比较如下: 1、PATRAN界面层次分明,建模思路清晰;ANSYS界面菜单重叠、繁杂、互相覆盖,建模思路交替杂乱,条理不清。 2、PATRAN在一个界面内完成所有的同类模型(Geo. Fem BC. Mat. Prop.等各自为一类)操作。而ANSYS要重复打开和关闭多个相互重叠覆盖的界面,才能完成一个特征的创建和参数的输入等操作,非常烦琐。 3、PATRAN将计算任务提交给NASTRAN在后台运算后,在前台PATRAN仍然可以进行各种建模操作。而ANSYS提交了计算任务后,就不能再使用其前后处理功能。ANSYS的使用效率就大大地降低。

有限元分析软件及应用

3.5 ANSYS软件加载、求解、后处理技术 3.5.1 ANSYS 3.5.1 ANSYS 荷载概述荷载概述 在这一节中将讨论: 有限元分析软件及应用 8 有限元分析软件及应用 8 A. 载荷分类 3.5 ANSYS 软件加载、求解、后处理技术 3.5 ANSYS 软件加载、求解、后处理技术 B. 加载 C. 节点坐标系 D. 校验载荷 孙瑛 孙瑛 E. 删除载荷 哈哈尔尔滨滨工工业业大学空大学空间结间结构研构研究中心究中心 2010秋 2010秋 SSRC SSRC 1/ 76 S Space pace S Stru truc ctu ture re R Res esear earc ch h C Center enter, H , HI IT, T, CH CHIN INA A

理技术 A. 载荷分类 B. 加载 A. 载荷分类 B. 加载 ANSYS中的载荷可分为: 可在实体模型或 FEA 模型节点和单元上加载自由度DOF - 定义节点的自由度( DOF )值结构分析_ 沿单元边界均布的压力 沿线均布的压力 位移集中载荷 - 点载荷结构分析_力面载荷 - 作用在表面的分布载荷结构分析_压力 在关键点处 在节点处约 约束体积载荷 - 作用在体积或场域内热分析_ 体积膨胀、内生 束 成热、电磁分析_ magnetic current density等实体模型 FEA 模型惯性载荷 - 结构质量或惯性引起的载荷重力、角速度等 在关键点加集中力在节点加集中力 SSR SSRC C SSR SSRC C 2/ 76 3/ 76 S Space pace S Stru truc ctu ture re R Res esear earc ch h C Center enter, H , HI IT, T, CH CHIN INA A S Space pace S Stru truc ctu ture re R Res esear earc ch h C Center enter, H , HI IT, T, CH CHIN INA A

有限元法在汽车中的应用

有限元法在汽车中的应用 有限元法是随着计算机技术的应用而发展起来的一种先进的技术,广泛应用于各个领域中的科学计算、设计、分析中,成功的解决了许多复杂的设计和分析问题,己成为工程设计和分析中的重要工具。随着计算机技术的快速发展和普及,有限元方法迅速从结构工程强度分析计算扩展到几乎所有的科学技术领域,成为一种丰富多彩、应用广泛并且实用高效的数值分析方法,有限元法在产品设计和研制中所显示出的无可伦比的优越性,使其成为企业在市场竞争中制胜的一个重要工具,有限元法在机电工程中的应用也越来越重要。现代汽车工业技术快速发展,计算机技术不断推陈出新,使分析仿真技术以其快速高效和低成本的强大优势,成为汽车设计的重要手段,各种分析软件成为CAE技术广泛应用的工具。 有限元在机械设计中的优点是有目共睹的,在汽车的设计中这些优势得到了完美的体现,其优点如下: 1、与CAD软件的无缝集成 当今有限元分析软件的一个发展趋势是与通用CAD软件的集成使用,即在用CAD软件完成部件和零件的造型设计后,能直接将模型传送到CAE软件中进行有限元网格划分并进行分析计算,如果分析的结果不满足设计要求则重新进行设计和分析,直到满意为止,从而极大地提高了设计水平和效率。 2、更为强大的网格处理能力

有限元法求解问题的基本过程主要包括:分析对象的离散化、有限元求解、计算结果的后处理三部分。对于许多工程实际问题,在整个求解过程中,模型的某些区域将会产生很大的应变,引起单元畸变,从而导致求解不能进行下去或求解结果不正确,因此必须进行网格自动重划分。有限元使用的自适应网格往往是许多工程问题如裂纹扩展、薄板成形等大应变分析的必要条件。 3、由求解线性问题发展到求解非线性问题 随着科学技术的发展,线性理论已经远远不能满足设计的要求,许多工程问题如材料的破坏与失效、裂纹扩展等仅靠线性理论根本不能解决,必须进行非线性分析求解,为此国外一些公司花费了大量的人力和物力开发非线性求解分析软件,它们的共同特点是具有高效的非线性求解器、丰富而实用的非线性材料库。 4、由单一结构场求解发展到耦合场问题的求解 理论上已经证明,只要用于离散求解对象的单元足够小,所得的解就可足够逼近于精确值。用于求解结构线性问题的有限元方法和软件已经比较成熟,发展方向是结构非线性、流体动力学和耦合场问题的求解。需要对结构场和流场的有限元分析结果交叉迭代求解,即所谓"流固耦合"的问题。由于有限元的应用越来越深入,人们关注的问题越来越复杂,耦合场的求解必定成为CAE软件的发展方向。 5、程序面向用户的开放性 有限元软件允许用户根据自己的实际情况对软件进行设置和扩充,包括用户自定义单元特性、用户自定义材料本构(结构本构、热

汽车结构有限元分析试题及答案(精华)

一 、20分) (×)1. 节点的位置依赖于形态,而并不依赖于载荷的位置 (√)2. 对于高压电线的铁塔那样的框架结构的模型化处理使用梁单元 (×)3. 不能把梁单元、壳单元和实体单元混合在一起作成模型 (√)4. 四边形的平面单元尽可能作成接近正方形形状的单元 (×)5. 平面应变单元也好,平面应力单元也好,如果以单位厚来作模型化 处理的话会得到一样的答案 (×)6. 用有限元法不可以对运动的物体的结构进行静力分析 (√)7. 一般应力变化大的地方单元尺寸要划的小才好 (×)8. 所谓全约束只要将位移自由度约束住,而不必约束转动自由度 (√)9. 同一载荷作用下的结构,所给材料的弹性模量越大则变形值越小 (√)10一维变带宽存储通常比二维等带宽存储更节省存储量。 二、填空(20分) 1.平面应力问题与薄板弯曲问题的弹性体几何形状都是 薄板 ,但前者受力特点是: 平行于板面且沿厚度均布载荷作用 ,变形发生在板面内; 后者受力特点是: 垂直于板面 的力的作用,板将变成有弯有扭的曲面。 2.平面应力问题与平面应变问题都具有三个独立的应力分量: σx ,σy ,τxy ,三个独立的应变分量:εx ,εy ,γxy ,但对应的弹性体几何形状前者为 薄板 ,后者为 长柱体 。 3.位移模式需反映 刚体位移 ,反映 常变形 ,满足 单元边界上位移连续 。 4.单元刚度矩阵的特点有:对称性 , 奇异性 ,还可按节点分块。 5.轴对称问题单元形状为:三角形或四边形截面的空间环形单元 ,由于轴对称的特性,任意一点变形只发生在子午面上,因此可以作为 二 维问题处理。 6.等参数单元指的是:描述位移和描述坐标采用相同的形函数形式。等参数单元优点是:可以采用高阶次位移模式,能够模拟复杂几何边界,方便单元刚度矩阵和等效节点载荷的积分运算。 7.有限单元法首先求出的解是 节点位移 ,单元应力可由它求得,其计算公式为{}{}[][]e D B σδ=。(用符号表示即可) 8.一个空间块体单元的节点有 3 个节点位移: u ,v ,w 9.变形体基本变量有位移应变应力基本方程平衡方程物理方程 几何方程 10.实现有限元分析标准化和规范化的载体就是单元 三 选择题(14分) 1 等参变换是指单元坐标变换和函数插值采用__B___的结点和______的插值函数。

有限元分析软件ANSYS命令流中文说明4 4

有限元分析软件ANSYS命令流中文 说明4 4 有限元分析软件ANSYS命令流中文说明4/42010-05-23 21:151设置分析类型 ANTYPE,Antype,status,ldstep,action 其中antype表示分析类型 STATIC:静态分析 MODAL:模态分析 TRANS:瞬态分析 SPECTR:谱分析 2 KBC,KEY 制定载荷为阶跃载荷还是递增载荷 EKY=0递增方式 KEY=1阶跃方式 3 SOLVE开始一个求解运算 4 LSSOLVE读入并求解多个载荷步 5 TIME,time设置求解时间 有时在分析中需要进入后处理,然后在保持进入后处理之前的状态的情况下接着算下去,可以使用以下的方法: PARSAV,ALL,PAR,TXT

!PARSAV命令是储存ANSYS的参数,ALL代表所有参数,PAR是文件名,TXT是扩展名 /SOLU ANTYPE,REST,CruStep-1,,CONTINUE !ANTYPE是定义分析类型的命令,REST代表重启动,CruStep代表本载荷步的编号 PARRES,NEW,PAR,TXT !PARRES是恢复参数的命令,NEW表示参数是以刷新状态恢复,PAR和TXT 代表了储存了参数的文件名和扩展名 如果有单元生死的问题,可以这样处理: ALLSEL,ALL *GET,E_SUM_MAX,ELEM,NUM,MAX!得到单元的最大编号,即单元的总数 ESEL,S,LIVE!选中"生"的单元 *GET,E_SUM_AL,ELEM,COUNT *DIM,E_POT_AL,E_SUM_MAX!单元选择的指示 *DIM,E_NUM_AL,E_SUM_AL!单元编号的数组 J=0 !读出所选单元号 *DO,I,1,E_SUM_MAX *VGET,E_POT_AL(I),ELEM,I,ESEL !对所有单元做循环,被选中的单元标志为"1" *IF,E_POT_AL(I),EQ,1,THEN J=J+1 E_NUM_AL(J)=I

基于ANSYS的有限元分析

有限元大作业 基于ansys的有限元分析 班级: 学号: 姓名: 指导老师: 完成日期:

ANSYS软件是美国ANSYS公司研制的大型通用有限元分析(FEA)软件,是世界范围内增长最快的计算机辅助工程(CAE)软件,能与多数计算机辅助设计(CAD,computer Aided design)软件接口,实现数据的共享和交换,如Creo,NASTRAN, Alogor, I-DEAS, AutoCAD 等。是融结构、流体、电场、磁场、声场分析于一体的大型通用有限元分析软件。在核工业、铁道、石油化工、航空航天、机械制造、能源、汽车交通、国防军工、电子、土木工程、造船、生物医学、轻工、地矿、水利、日用家电等领域有着广泛的应用。ANSYS功能强大,操作简单方便,现在已成为国际最流行的有限元分析软件,在历年的FEA评比中都名列第一。目前,中国100多所理工院校采用ANSYS软件进行有限元分析或者作为标准教学软件。 2D Bracket 问题描述: We will model the bracket as a solid 8 node plane stress element. 1.Geometry: The thickness of the bracket is 3.125 mm 2.Material: steel with modulus of elasticity E=200 GPa. 3.Boundary conditions: The bracket is fixed at its left edge. 4.Loading: The bracket is loaded uniformly along its top surface. The load is 2625 N/m. 5.Objective: a.Plot deformed shape b.Determine the principal stress and the von Mises stress. (Use the stress plots to determine these) c.Remodel the bracket without the fillet at the corner or change the fillet radius to 0.012 and 0.006m, and see how d.principal stress and von Mises stress chang e.

主流CAE有限元分析软件的比较

随着现代科学技术的发展,人们正在不断建造更为快速的交通工具、更大规模的建筑物、更大跨度的桥梁、更大功率的发电机组和更为精密的机械设备。这一切都要求工程师在设计阶段就能精确地预测出产品和工程的技术性能,需要对结构的静、动力强度以及温度场、流场、电磁场和渗流等技术参数进行分析计算。例如分析计算高层建筑和大跨度桥梁在地震时所受到的影响,看看是否会发生破坏性事故;分析计算核反应堆的温度场,确定传热和冷却系统是否合理;分析涡轮机叶片内的流体动力学参数,以提高其运转效率。这些都可归结为求解物理问题的控制偏微分方程式,这些问题的解析计算往往是不现实的。近年来在计算机技术和数值分析方法支持下发展起来的有限元分析(FEA,Finite Element Analysis)方法则为解决这些复杂的工程分析计算问题提供了有效的途径。在工程实践中,有限元分析软件与CAD系统的集成应用使设计水平发生了质的飞跃,主要表现在以下几个方面: 增加设计功能,减少设计成本; 缩短设计和分析的循环周期; 增加产品和工程的可靠性; 采用优化设计,降低材料的消耗或成本; 在产品制造或工程施工前预先发现潜在的问题; 模拟各种试验方案,减少试验时间和经费; 进行机械事故分析,查找事故原因。 在大力推广CAD技术的今天,从自行车到航天飞机,所有的设计制造都离不开有限元分析计算,FEA 在工程设计和分析中将得到越来越广泛的重视。国际上早20世纪在50年代末、60年代初就投入大量的人力和物力开发具有强大功能的有限元分析程序。其中最为著名的是由美国国家宇航局(NASA)在1965年委托美国计算科学公司和贝尔航空系统公司开发的NASTRAN有限元分析系统。该系统发展至今已有几十个版本,是目前世界上规模最大、功能最强的有限元分析系统。从那时到现在,世界各地的研究机构和大学也发展了一批规模较小但使用灵活、价格较低的专用或通用有限元分析软件,主要有德国的ASKA、英国的PAFEC、法国的SYSTUS、美国的ABQUS、ADINA、ANSYS、BERSAFE、BOSOR、COSMOS、ELAS、MARC和STARDYNE等公司的产品。 以下对一些常用的软件进行一些比较分析: 1. LSTC公司的LS-DYNA系列软件 LS-DYNA是一个通用显式非线性动力分析有限元程序,最初是1976年在美国劳伦斯利弗莫尔国家实验室(Lawrence Livermore National Lab.)由J.O.Hallquist 主持开发完成的,主要目的是为核武器的弹头设计提供分析工具,后经多次扩充和改进,计算功能更为强大。此软件受到美国能源部的大力资助以及世界十余家著名数值模拟软件公司(如ANSYS、MSC.software、ETA等)的加盟,极大地加强了其的前后处理能力和通用性,在全世界范围内得到了广泛的使用。在软件的广告中声称可以求解各种三维非线性结构的高速碰撞、爆炸和金属成型等接触非线性、冲击载荷非线性和材料非线性问题。即使是这样一个被人们所称道的数值模拟软件,实际上仍在诸多不足,特别是在爆炸冲击方面,功能相对较弱,其欧拉混合单元中目前最多只能容许三种物质,边界处理很粗糙,在拉格朗日——欧拉结合方面不如DYTRAN灵活。虽然提供了十余种岩土介质模型,但每种模型都有不足,缺少基本材料数据和依据,让用户难于选择和使用。2. MSC.software公司的DYTRAN软件 当前另一个可以计算侵彻与爆炸的商业通用软件是MSC.Software Corporation ( MSC公司) 的MSC.DYTR AN程序。该程序在是在LS-DYNA3D的框架下,在程序中增加荷兰PISCES INTERNATIONAL公司开发的PICSES的高级流体动力学和流体——结构相互作用功能,还在PISCES的欧拉模式算法基础上,开发了物质流动算法和流固耦合算法。在同类软件中,其高度非线性、流—固耦合方面有独特之处。MSC.DYTR AN的算法基本上可以概况为:MSC.DYTRAN采用基于Lagrange格式的有限单元方法(FEM)模拟结构的变形和应力,用基于纯Euler格式的有限体积方法(FVM)描述材料(包括气体和液体)流动,对通过流体与固体界面传递相互作用的流体—结构耦合分析,采用基于混合的Lagrange格式和纯Euler 格式的有限单元与有限体积技术,完成全耦合的流体-结构相互作用模拟。MSC.DYTRAN用有限体积法跟踪

相关主题
文本预览
相关文档 最新文档