当前位置:文档之家› 机械优化设计题目答案

机械优化设计题目答案

机械优化设计题目答案
机械优化设计题目答案

1-1.简述优化设计问题数学模型的表达形式。

答:优化问题的数学模型是实际优化设计问题的数学抽象。在明确设计变量、约束条件、目标函数之后,优化设计问题就可以表示成一般数学形式。

求设计变量向量[]12T

n x

x x x =L 使()min f x →且满足约束条件

()0(1,2,)k h x k l ==L ()0

(1,2,)j g x j m ≤=L

利用可行域概念,可将数学模型的表达进一步简练。设同时满足

()0

(1,2,)

j g x j m ≤=L 和

()0

(1,2,)k h x k l ==L 的设计点集合为R ,即R 为优化问题的可行域,则优化问题的数学模型可简练地写成

求x 使 min ()x R

f x ∈ 符号“∈”表示“从属于”。

在实际优化问题中,对目标函数一般有两种要求形式:目标函数极小化

()min f x →或目标函数极大化

()max f x →。由于求()f x 的极大化与求()f x -的极小化等价,所以今后优化问题的数学表达一律采用目标函数极小

化形式。

1-2.简述优化设计问题的基本解法。(不要抄书,要归纳) 答:求解优化问题可以用解析解法,也可以用数值的近似解法。

解析解法就是把所研究的对象用数学方程(数学模型)描述出来,然后再用数学解析方法(如微分、变分方法等)求出有化解。

但是,在很多情况下,优化设计的数学描述比较复杂,因而不便于甚至不可能用解析方法求解;另外,有时对象本身的机理无法用数学方程描述,而只能通过大量试验数据用插值或拟合方法构造一个近似函数式,再来求其优化解,并通过试验来验证;或直接以数学原理为指导,从任取一点出发通过少量试验(探索性的计算),并根据试验计算结果的比较,逐步改进而求得优化解。这种方法是属于近似的、迭代性质的数值解法。

数值解法不仅可用于求复杂函数的优化解,也可以用于处理没有数学解析表达式的优化问题。因此,它是实际问题中常用的方法,很受重视。其中具体方法较多,并且目前还在发展。但是,应当指出,对于复杂问题,由于不能把所有参数都完全考虑并表达出来,只能是一个近似的最后的数学描述。由于它本来就是一种近似,那么,采用近似性质的数值方法对它们进行解算,也就谈不到对问题的精确性有什么影响了。

不管是解析解法,还是数值解法,都分别具有针对无约束条件和有约束条件的具体方法。

可以按照对函数倒数计算的要求,把数值方法分为需要计算函数的二阶导数、一阶导数和零阶导数(即只要计算函数值而不需计算其导数)的方法。

2-1.何谓函数的梯度?梯度对优化设计有何意义?

答:二元函数f(x1,x2)在x0点处的方向导数的表达式可以改写成下面的形式

??

??????????????=??+??=??2cos 1cos 212cos 21cos 1θθθθxo x f x f xo x f xo x f xo d f 令xo T x f x f x f x f

x f ??

????

????=????=?21]2

1[)0(并称它为函数f (x1,x2)在x0点处的梯度。

假设??

????=2cos 1cos θθd

为D 方向上的单位向量,则有d T x f xo d f

)0(?=?? 即函数f (x1,x2)在x0点处沿某一方向d 的方向导数

xo d

f

??等于函数在该点处的梯度)0(x f ?与d 方向单位向量的内积。 梯度方向是函数值变化最快的方向,而梯度的模就是函数变化率的最大值。

梯度与切线方向d 垂直,从而推得梯度方向为等值面的法线方向。梯度)0(x f ?方向为函数变化率最大方向,也就是最速上升方向。负梯度-)0(x f ?方向为函数变化率最小方向,即最速下降方向。

2-2.求二元函数

212

2212122),(x x x x x x f +-+=在T

x ]0,0[0=处函数变化率最大的方向和数值。

解;由于函数变化率最大的方向就是梯度的方向,这里用单位向量p 表示,函数变化率最大和数值时梯度的模)

0(x f ?。

求f (x1,x2)在x0点处的梯度方向和数值,计算如下:

()???

???-=??????+-=????

??????????=?120122214210x x x x f

x f x f

2221)0(?

?? ????+??? ????=?x f x f x f =

5

??

?

??

???????-=??????-=??=5152512)0()

0(x f x f p 2-3.试求目标函数

()2

2

21212143,x x x x x x f +-=在点X 0

=[1,0]T

处的最速下降方向,并求沿着该方向移动一个单位长度后新点的目标函数值。 解:求目标函数的偏导数

212

21124,46x x x f x x x f +-=??-=?? 则函数在X 0

=[1,0]T

处的最速下降方向是

??????-=??????-+-=??????

??????????-=-?=====462446)(0

121

210

12102121x x x x

x x x x x f x f X f P 这个方向上的单位向量是:

13

]2,3[4)6(]4,6[T 2

2T -=

+--==

P

P e

新点是

?????

???????-=+=132133101e X X 新点的目标函数值

13213

94

)(1-=

X f 2-4.何谓凸集、凸函数、凸规划?(要求配图)

一个点集(或区域),如果连接其中任意两点x1、x2的线段都全部包含在该集合内,就称该点集为凸集,否则为非凸集。

函数f(x )为凸集定义域内的函数,若对任何的01α≤≤及凸集域内的任意两点x1、x2,存在如下不等式:

称f (x )是定义在图集上的一个凸函数。

()()()1212

11f

x x f x x αααα+-≤+-????

对于约束优化问题

min ()

s.t. ()0 (1,2,,)

j f x g x j m ≤=

()j=j f x g x

、() 1,2,...,m 都是凸函数,则称此问题为凸规划。 3-1.简述一维搜索区间消去法原理。(要配图)

答:搜索区间(a ,b )确定之后,采用区间逐步缩短搜索区间,从而找到极小点的数值近似解。假设搜索区间(a ,b )内任取两点a1,b1 ,a1《b1,并计算函数值f (a1),f (b1)。将有下列三种可能情形; 1)f (a1)《f (b1)由于函数为单谷,所以极小点必在区间(a ,b1)内 2)f (a1)》f (b1),同理,极小点应在区间(a1,b )内 3)f (a1)=f (b1),这是极小点应在(a1,b1)内

3-2.简述黄金分割法中0.618的来由,搜索过程及程序框图。

黄金分割法适用于

[],a b 区间上的任何单谷函数求极小值问题。对函数除要求“单谷”外不作其他要求,甚至可以不连续。因此,这种方法的适应面相当广。黄金分割法也是建立在区间消去法原理基础上的试探方法,即在搜索区间[],a b 内适当插入

两点1α、2α,并计算其函数值。1α、2α将区间分成三段。应用函数的单谷性质,通过函数值大小的比较,删去其中一段,使搜索区间得以缩短。然后再在保留下来的区间上作同样的处置,如此迭代下去,使搜索区间无限缩小,从而得到极小点的数值近似解。

黄金分割法要求插入点

1α、2α的位置相对于区间[],a b 两端点具有对称性,即

1()b b a αλ=--

2()a b a αλ=+- 其中,λ为待定常数。

图a

除对称要求外,黄金分割法还要求在保留下来的区间内再插入一点所形成的区间新三段,与原来区间的三段具有相同的比例分布。设原区间[],a b 长度为1,如图a 所示,保留下来的区间[]2,a α长度为,区间缩短率为λ。为了保持相同的比例分

布,新插入点

3α应在(1)λλ-位置上,1α在原区间的1λ-位置应相当于在保留区间的2λ位置。故有

21λλ-= 210λλ+-=

取方程正数解,得

0.618λ=

若保留下来的区间为

[]1,b α,根据插入点的对称性,也能推得同样的λ值。所谓“黄金分割”是指将一线段分成两段的方法,

使整段长与较长段的长度比值等于较长段与较短段长度的比值,即 1::(1)λλλ=-

同样算得0.618λ

≈。

可见黄金分割法能使相邻两次搜索区间都具有相同的缩短率0.618,所以黄金分割法又被称作0.618法。

图 b

黄金分割法的搜索过程是: (1) 给出初始搜索区间[],a b 及收敛精度ε,将λ赋以0.618。

(2)

按坐标点计算公式

1()b b a αλ=--、2()a b a αλ=+-计算1α和2α,并计算其对应的函数值

1()f α,2()f α。

(3)

根据区间消去法原理缩短搜索区间。为了能用原来的坐标点计算公式,需进行区间名称的代换,并在保留区间中计算一个新的试验点及其函数值。

(4) 检查区间是否缩短到足够小和函数值收敛到足够近,如果条件不满足则返回到步骤(2)。 (5) 如果条件满足,则取最后两试验点的平均值作为极小点的数值近似解。 (6)

黄金分割法的程序框图如图b 所示。 3-3.对函数ααα2)(2+=f ,当给定搜索区间55≤≤-α时,写出用黄金分割法求极小点*

α

的前三次搜索过程。(要

列表)

解;此时的a=-5,b=5。首先插入两点a1和a2。可得 a1=b-)(a b -λ=-1.18 , a2=a+)(a b -λ=1.18

再计算相应插入点的函数值,得

y1=f (a1)=-0.9676,y2=f (a2)=3.7524

因为y2>y1,所以消去区间[a2,b],则新的搜索区间[a,b]的端点a=-5不变,而端点b=a2=1.18

第一次迭代;此时插入点a1=b-)(a b -λ=-2.639,a2=-1.181。相应插入点的函数值y1=f (a1)=1.686,y2=f (a2)=-0.967,由于y1>y2,故消去区间[a ,a1],新的搜索区间为[-2.639,1.18],如此继续迭代下去 列出前三次迭代结果

3-4.使用二次插值法求f (x )=sin(x )在区间[2,6]的极小点,写出计算步骤和迭代公式,给定初始点x 1=2,x 2=4,x 3=6, ε=10-4

迭代次数K= 4 ,极小点为 4.71236 ,最小值为 -1

1

3131x x y y c --=,1

2122

x x y y c --=

,3

2123

x x c c c --=

)(213

131c c x x x p -+=

收敛的条件:

ε<-2

2y y y p

4-1.简述无约束优化方法中梯度法、共轭梯度法、鲍威尔法的主要区别。

答:梯度法是以负梯度方向作为搜索方向,使函数值下降最快,相邻两个迭代点上的函数相互垂直即是相邻两个搜索方向

相互垂直。这就是说在梯度法中,迭代点向函数极小点靠近的过程,走的是曲折的路线。这一次的搜索方向与前一次的搜索过程互相垂直,形成“之”字形的锯齿现象。从直观上可以看到,在远离极小点的位置,每次迭代可使函数值有较多的下降。可是在接近极小点的位置,由于锯齿现象使每次迭代行进的距离缩短,因而收敛速度减慢。这种情况似乎与“最速下降”的名称矛盾,其实不然,这是因为梯度是函数的局部性质。从局部上看,在一点附近函数的下降是最快的,但从整体上看则走了许多弯路,因此函数的下降并不算快。

共轭梯度法是共轭方向法中的一种,因为在该方法中每一个共轭的量都是依赖于迭代点处的负梯度而构造出来的,所以称作共轭梯度法。该方法的第一个搜索方向取作负梯度方向,这就是最速下降法。其余各步的搜索方向是将负梯度偏转一个角度,也就是对负梯度进行修正。所以共轭梯度法实质上是对最速下降法进行的一种改进,故它又被称作旋转梯度法。

鲍威尔法是直接利用函数值来构造共轭方向的一种共轭方向法,这种方法是在研究其有正定矩阵G 的二次函数

1()2

T

T f x x Gx b x c =

++的极小化问题时形成的。其基本思想是在不用导数的前提下,在迭代中逐次构造G 的共轭方向。在该算法中,每一轮迭代都用连结始点和终点所产生出的搜索方向去替换原向量组中的第一个向量,而不管它的“好坏”,这是产生向量组线性相关的原因所在。因此在改进的算法中首先判断原向量组是否需要替换。如果需要替换,还要进一步判断原向量组中哪个向量最坏,然后再用新产生的向量替换这个最坏的向量,以保证逐次生成共轭方向。 4-2.如何确定无约束优化问题最速下降法的搜索方向?

答:优化设计是追求目标函数值最小,因此搜所方向d 取该点的负梯度方向-)(x f ?。使函数值在该点附近的范围下降

最快。按此规律不断走步,形成以下迭代的算法

)(1

k

x f k

k x k x

?-=+α(k=0,1,2,…)

由于最速下降法是以负梯度方向作为搜索方向,所以最速下降法有称为梯度法 为了使目标函数值沿搜索方向-)(k

x f

?能获得最大的下降值,其步长因子k

a

应取一维搜索的最佳步长。即有

)(min )(min )(1α?=??

?????-=???????-=???

?

??+k x f a k

x f k x f k a k x f k x f

根据一元函数极值的必要条件和多元复合函数求导公式得;

0)()1(=???????+?k x f T k x f 或写成01=???

? ??+k d T k d 由此可知,在最速下降法中,相邻两个迭代点上的函数梯度相互垂直。而搜索方向就是负梯度方向,因此相邻的两个搜索

方向相互垂直。这就是说在最速下降法中,迭代点向函数极小点靠近的过程。

4-3. 给定初始值x 0=[-7,11]T

,使用牛顿法求函数2212121)2()2(),(x x x x x f -+-=的极小值点和极小值。 解: 梯度函数、海赛矩阵分别为

??

????---+-=?)2(4)2(2)2(2),(2121121x x x x x x x f (2分)

[]

????

?

?????=???

????--=?-41414121

,8444),(1

2

212f x x f (4分) 假设初始值x 0=[-7,11]

T

则,11676)(0??

????-=?x f (1分)

[]

?

?

????=???-=-12)(01

201x x x f f

(2分)

则,00)(1??

????=?x f (1分)

x 1

满足极值的必要条件,海赛矩阵是正定的,所以是极小点

1)(,11*1*-=??

?

???==x x x f 。 (2分)

4-4.以二元函数

),(21x x f 为例说明单形替换法的基本原理。

答:如图所示在平面上取不在同一直线上的三个点x1,x2,x3,以它们为顶点组成一单纯形。 计算各顶点函数值,设f (x1)>f (x2)>f (x3),这说明x3点最好,x1点最差。

为了寻找极小点,一般来说。应向最差点的反对称方向进行搜索,即通过x1并穿过x2x3的中点x4的方向上进行搜索。在此方向上取点x5

使 x5=x4+α

(x4-x1)

x5称作x1点相对于x4点的反射点,计算反射点的函数值f (X5),可能出现以下几种情形; 1)f (x5)

2)f (x3)f(x1),反射点比最差点还差,说明收缩应该多一些。将新点收缩在x1x4之间 5) f(x)>f(x1),说明x1x4方向上所有点都比最差点还要差,不能沿此方向进行搜索。

5-1.简述约束优化方法的分类。(简述约束优化问题的直接解法、间接解法的原理、特点及主要方法。)

答: 直接解法通常适用于仅含不等式约束的问题,它的基本思路是在m 个不等式约束条件所确定的可行域内选择一个初

始点0x ,然后决定可行搜索方向d ,且以适当的步长α沿d 方向进行搜索,得到一个使目标函数值下降的可行的新点1

x ,

即完成一个迭代。再以新点为起点,重复上述搜索过程,满足收敛条件后,迭代终止。所谓可行搜索方向是指,当设计点沿该方向作微量移动时,目标函数值将下降,且不会越出可行域。产生可行搜索方向的方法将由直接解法中的各种算法决定。

直接解法的原理简单,方法实用。其特点是:1)由于整个求解过程在可行域内进行,因此迭代计算不论何时终点,都可以获得一个比初始点好的设计点。2)若目标函数为凸函数,可行域为凸集,则可保证获得全域最优解。否则,因存在多个局部最优解,当选择的初始点不相同时,可能搜索到不同的局部最优解。为此,常在可行域内选择几个差别较大的初始点分别进行计算,以便从求得多个局部最优解中选择最好的最优解。3)要求可行域为有界的非空集,即在有界可行域内存在满足全部约束条件的点,且目标函数有定义。

直接解法有:随机方向法、复合形法、可行方向法、广义简约梯度法等。

间接解法有不同的求解策略,其中一种解法的基本思路是将约束优化问题中的约束函数进行特殊的加权处理后,和目标函数结合起来,构成一个新的目标函数,即将原约束优化问题转化成一个或一系列的无约束优化问题。再对新的目标函数进行无约束优化计算,从而间接地搜索到原约束问题的最优解。

间接解法是目前在机械优化设计中得到广泛应用的一种有效方法。其特点是:1)由于无约束优化方法的研究日趋成熟,已经研究出不少有效的无约束最优化方法和程序,使得间接解法有了可靠的基础。目前,这类算法的计算效率和数值稳定性也都有了较大提高。2)可以有效地处理具有等式约束的约束优化问题。3)间接算法存在的主要问题是,选取加权因子比较困难,加权因子选取不当,不但影响收敛速度和计算精度,甚至会导致计算失败。

间接解法有惩罚函数法和增广乘子法。 5-2.用内点法求下列问题的最优解:

312)(2112

221≤-=?+-+=x g t

s x x x x f min (提示:可构造惩罚函数 []∑=-=2

1

)(ln )(),(u u x g r x f r x φ,然后用解析法求解。

[解] 构造内点惩罚函数:

[]∑=--+-+=-=2

1

)()(),(u u x r x x x x g r x f r x )3ln(12ln 212

221φ

令惩罚函数对x 的极值等于零:

0)3/()(22

2221=??

????----=x r x x dx d φ 得:

4

83661

21r

x x +±=

=

舍去负根后,得4

83662

r x ++=

当 []T

x x r

31302=→→该问题的最优解为,时,。

机械优化设计试卷期末考试及答案(补充版)

4、最优点、最优值和最优解 答:选取适当优化方法,对优化设计数学模型进行求解,可解得一组设计变量,记作: x * = [x1* , x2* , x3* , . . . , x n *]T 使该设计点的目标函数F (x*)为最小,点x*称为最优点(极小点)。相应的目标函数值F (x*) 称为最优值(极小值)。一个优化问题的最优解包着最优点(极小点)和最优值(极小值) 。把最优点和最优值的总和通称为最优解。 或: 优化设计就是求解n个设计变量在满足约束条件下使目标函数达到最小值,即 min f(x)=f(x*) x €R n s.t. g u (x)w 0,u= 1,2,... ,m; h v (x) = 0,v= 1,2,... ,p

机械优化设计论文(基于MATLAB工具箱的机械优化设计)

基于MATLAB工具箱的机械优化设计 长江大学机械工程学院机械11005班刘刚 摘要:机械优化设计是一种非常重要的现代设计方法,能从众多的设计方案中找出最佳方案,从而大大提高设计效率和质量。本文系统介绍了机械优化设计的研究内容及常规数学模型建立的方法,同时本文通过应用实例列举出了MATLAB 在工程上的应用。 关键词:机械优化设计;应用实例;MATLAB工具箱;优化目标 优化设计是20世纪60年代随计算机技术发展起来的一门新学科, 是构成和推进现代设计方法产生与发展的重要内容。机械优化设计是综合性和实用性都很强的理论和技术, 为机械设计提供了一种可靠、高效的科学设计方法, 使设计者由被动地分析、校核进入主动设计, 能节约原材料, 降低成本, 缩短设计周期, 提高设计效率和水平, 提升企业竞争力、经济效益与社会效益。国内外相关学者和科研人员对优化设计理论方法及其应用研究十分重视, 并开展了大量工作, 其基本理论和求解手段已逐渐成熟。 国内优化设计起步较晚, 但在众多学者和科研人员的不懈努力下, 机械优化设计发展迅猛, 在理论上和工程应用中都取得了很大进步和丰硕成果, 但与国外先进优化技术相比还存在一定差距, 在实际工程中发挥效益的优化设计方案或设计结果所占比例不大。计算机等辅助设备性能的提高、科技与市场的双重驱动, 使得优化技术在机械设计和制造中的应用得到了长足发展, 遗传算法、神经网络、粒子群法等智能优化方法也在优化设计中得到了成功应用。目前, 优化设计已成为航空航天、汽车制造等很多行业生产过程的一个必须且至关重要的环节。 一、机械优化设计研究内容概述 机械优化设计是一种现代、科学的设计方法, 集思考、绘图、计算、实验于一体, 其结果不仅“可行”, 而且“最优”。该“最优”是相对的, 随着科技的发展以及设计条件的改变, 最优标准也将发生变化。优化设计反映了人们对客观世界认识的深化, 要求人们根据事物的客观规律, 在一定的物质基和技术条件下充分发挥人的主观能动性, 得出最优的设计方案。 优化设计的思想是最优设计, 利用数学手段建立满足设计要求优化模型; 方法是优化方法, 使方案参数沿着方案更好的方向自动调整, 以从众多可行设计方案中选出最优方案; 手段是计算机, 计算机运算速度极快, 能够从大量方案中选出“最优方案“。尽管建模时需作适当简化, 可能使结果不一定完全可行或实际最优, 但其基于客观规律和数据, 又不需要太多费用, 因此具有经验类比或试验手段无可比拟的优点, 如果再辅之以适当经验和试验, 就能得到一个较圆满的优化设计结果。 传统设计也追求最优结果, 通常在调查分析基础上, 根据设计要求和实践

《机械优化设计》习题与答案

机械优化设计习题及参考答案 1-1.简述优化设计问题数学模型的表达形式。 答:优化问题的数学模型是实际优化设计问题的数学抽象。在明确设计变量、约束条件、目标函数之后,优化设计问题就可以表示成一般数学形式。求设计变量向量[]12T n x x x x =L 使 ()min f x → 且满足约束条件 ()0 (1,2,)k h x k l ==L ()0 (1,2,)j g x j m ≤=L 2-1.何谓函数的梯度?梯度对优化设计有何意义? 答:二元函数f(x 1,x 2)在x 0点处的方向导数的表达式可以改写成下面的 形式:?? ??????????????=??+??=??2cos 1cos 212cos 21cos 1θθθθxo x f x f xo x f xo x f xo d f ρ 令xo T x f x f x f x f x f ?? ????????=????=?21]2 1[)0(, 则称它为函数f (x 1,x 2)在x 0点处的梯度。 (1)梯度方向是函数值变化最快方向,梯度模是函数变化率的最大值。 (2)梯度与切线方向d 垂直,从而推得梯度方向为等值面的法线方向。梯度)0(x f ?方向为函数变化率最大方向,也就是最速上升方向。负梯度-)0(x f ?方向为函数变化率最小方向,即最速下降方向。 2-2.求二元函数f (x 1,x 2)=2x 12+x 22-2x 1+x 2在T x ]0,0[0=处函数变化率最 大的方向和数值。

解:由于函数变化率最大的方向就是梯度的方向,这里用单位向量p 表示,函数变化率最大和数值时梯度的模)0(x f ?。求f (x1,x2)在x0点处的梯度方向和数值,计算如下: ()??? ???-=????? ?+-=???? ??????????=?120122214210x x x x f x f x f 2 221)0(?? ? ????+??? ????=?x f x f x f =5 ????? ???????-=??????-=??=5152512)0()0(x f x f p ? 2-3.试求目标函数()2 221212143,x x x x x x f +-=在点X 0=[1,0]T 处的最速下 降方向,并求沿着该方向移动一个单位长度后新点的目标函数值。 解:求目标函数的偏导数 212 21124,46x x x f x x x f +-=??-=?? 则函数在X 0=[1,0]T 处的最速下降方向是 ??????-=??????-+-=?????? ??????????-=-?=====462446)(0 121210 1210 2121x x x x x x x x x f x f X f P 这个方向上的单位向量是: 13]2,3[4 )6(]4,6[T 22T -=+--==P P e 新点是

机械优化设计试卷及答案.doc

百度文库 《机械优化设计》复习题及答案 一、填空题 、用最速下降法求 2 2 2 2 的最优解时,设X (0)T ,第一步迭代 1 1 =[,] 1 f(X)=100(x - x ) +(1- x ) 的搜索方向为 [-47;-50] 。 2、机械优化设计采用数学规划法,其核心一是建立搜索方向二是计算最佳步长因子。 3、当优化问题是 __凸规划 ______的情况下,任何局部最优解就是全域最优解。 4、应用进退法来确定搜索区间时,最后得到的三点,即为搜索区间的始点、中间点和 终点,它们的函数值形成高-低-高趋势。 5、包含 n 个设计变量的优化问题,称为n 维优化问题。 、函数 1 X T HX B T X C 的梯度为HX+B 。 6 2 7、设 G 为 n×n 对称正定矩阵,若 n 维空间中有两个非零向量0,d1,满足 (d0 T1 ,d ) Gd =0 则 d0、d1之间存在 _共轭_____关系。 8、设计变量、约束条件、目标函数是优化设计问题数学模型的基本要素。 9、对于无约束二元函数 f (x1 , x2 ) ,若在 x 0 ( x10 , x20 ) 点处取得极小值,其必要条件是梯 度为零,充分条件是海塞矩阵正定。 10、库恩-塔克条件可以叙述为在极值点处目标函数的梯度为起作 用的各约束函数梯度的非负线性组合。 11 、用黄金分割法求一元函数 f ( x) x2 10 x 36的极小点,初始搜索区间 [ a,b] [ 10,10] ,经第一次区间消去后得到的新区间为[,] 。 12、优化设计问题的数学模型的基本要素有设计变量、约束条件目标函数、 13、牛顿法的搜索方向 d k= ,其计算量大,且要求初始点在极小点逼近位置。 14、将函数f(X)=x 2 2 表示成 1 X T HX T X C 的形 1 +x2 -x1x2-10x1-4x2+60 2 B 式。 15、存在矩阵 H,向量 d ,向量 d ,当满足(d1)TGd2=0 ,向量 d 和向量 d 1 2 1 2 是关于 H 共轭。 16、采用外点法求解约束优化问题时,将约束优化问题转化为外点形式时引入的惩罚因 子 r 数列,具有由小到大趋于无穷特点。 17、采用数学规划法求解多元函数极值点时,根据迭代公式需要进行一维搜索,即

机械优化设计方法论文

浅析机械优化设计方法基本理论 【摘要】在机械优化设计的实践中,机械优化设计是一种非常重要的现代设计方法,能从众多的设计方案中找出最佳方案,从而大大提高设计的效率和质量。每一种优化方法都是针对某一种问题而产生的,都有各自的特点和各自的应用领城。在综合大量文献的基础上,总结机械优化设计的特点,着重分析常用的机械优化设计方法,包括无约束优化设计方法、约束优化设计方法、基因遗传算方法等并提出评判的主 要性能指标。 【关键词】机械;优化设计;方法特点;评价指标 一、机械优化概述 机械优化设计是适应生产现代化要求发展起来的一门科学,它包括机械优化设计、机械零部件优化设计、机械结构参数和形状的优化设计等诸多内容。该领域的研究和应用进展非常迅速,并且取得了可观的经济效益,在科技发达国家已将优化设计列为科技人员的基本职业训练项目。随着科技的发展,现代化机械优化设计方法主要以数学规划为核心,以计算机为工具,向着多变量、多目标、高效率、高精度方向发展。]1[ 优化设计方法的分类优化设计的类别很多,从不同的角度出发,可以做出各种不同的分类。按目标函数的多少,可分为单目标优化设计方法和多目标优化设计方法按维数,可分为一维优化设计方法和多维优化设计方法按约束情况,可分为无约束优化设计方法和约束优化设计方法按寻优途径,可分为数值法、解析法、图解法、实验法和情况研究法按优化设计问题能否用数学模型表达,可分为能用数学模型表达的优化设计问题其寻优途径为数学方法,如数学规划法、最优控制法等。 1.1 设计变量 设计变量是指在设计过程中进行选择并最终必须确定的各项独立参数,在优化过程中,这些参数就是自变量,一旦设计变量全部确定,设计方案也就完全确定了。设计变量的数目确定优化设计的维数,设计变量数目越多,设计空间的维数越大。优化设计工作越复杂,同时效益也越显著,因此在选择设计变量时。必须兼顾优化效果的显著性和优化过程的复杂性。

《机械优化设计》习题及答案

机械优化设计习题及参考答案 1-1、简述优化设计问题数学模型的表达形式。 答:优化问题的数学模型就是实际优化设计问题的数学抽象。在明确设计变量、约束条件、目标函数之后,优化设计问题就可以表示成一般数学形式。求设计变量向量[]12 T n x x x x =使 ()min f x → 且满足约束条件 ()0 (1,2,)k h x k l == ()0(1,2,)j g x j m ≤= 2-1、何谓函数的梯度?梯度对优化设计有何意义? 答:二元函数f(x 1,x 2)在x 0点处的方向导数的表达式可以改写成下面的形式:?? ??????????????=??+??=??2cos 1cos 212cos 21cos 1θθθθxo x f x f xo x f xo x f xo d f 令xo T x f x f x f x f x f ?? ????????=????=?21]21[)0(, 则称它为函数f(x 1,x 2)在x 0点处的梯度。 (1)梯度方向就是函数值变化最快方向,梯度模就是函数变化率的最大值。 (2)梯度与切线方向d 垂直,从而推得梯度方向为等值面的法线方向。梯度)0(x f ?方向为函数变化率最大方向,也就就是最速上升方向。负梯度-)0(x f ?方向为函数变化率最小方向,即最速下降方向。 2-2、求二元函数f(x 1,x 2)=2x 12+x 22-2x 1+x 2在T x ]0,0[0=处函数变化率最 大的方向与数值。 解:由于函数变化率最大的方向就就是梯度的方向,这里用单位向量p 表

示,函数变化率最大与数值时梯度的模)0(x f ?。求f(x1,x2)在x0点处的梯度方向与数值,计算如下: ()??????-=??????+-=???? ??????????=?120122214210x x x x f x f x f 2221)0(?? ? ????+??? ????=?x f x f x f =5 ????? ???????-=??????-=??=5152512)0()0(x f x f p 2-3、试求目标函数()2221212143,x x x x x x f +-=在点X 0=[1,0]T 处的最速下降 方向,并求沿着该方向移动一个单位长度后新点的目标函数值。 解:求目标函数的偏导数 212 21124,46x x x f x x x f +-=??-=?? 则函数在X 0=[1,0]T 处的最速下降方向就是 ??????-=??????-+-=????????????????-=-?=====462446)(0121210 121021 21x x x x x x x x x f x f X f P 这个方向上的单位向量就是: 13]2,3[4 )6(]4,6[T 22T -=+--==P P e 新点就是 ????? ???????-=+=132133101e X X 新点的目标函数值

机械优化设计案例分析

优化设计案例分析 优化设计是在给定的设计指标和限制条件下,运用最优化原理和方法,在电子计算机上进行自动调优计算,从而选定出最优设计参数,使设计指标达到最优值。该最优设计参数就是一个最优设计方案。所谓设计指标,就机械设计而言,一般是指重量轻、能耗小、刚性大、成本低等;所谓限制条件,是指强度要求、刚度要求、尺寸范围要求等。 设计变量选择 一个设计方案可以用一组基本参数的数值来表示,这些基本参数可以是构件尺寸等几何量,也可以是质量等物理量,还可以是应力、变形等表示工作性能的导出量。在设计过程中进行选择并最终必须确定的各项独立的基本参数,称作设计变量,又叫做优化参数。在充分了解设计要求的基础上,根据各设计参数对目标函数的影响程度分析其主次,尽量减少设计变量的数目,以简化优化设计问题。注意各设计变量应相互独立,避免耦合情况的发生,否则会使目标函数出现“山脊”或“沟谷”,给优化带来困难。 目标函数与约束的确定 对于一般机械,可按重量最轻或体积最小建立目标函数;对应力集中现象突出的构件,以应力集中系数最小为目标;对精密仪器,应按其精度最高或误差最小的要求建立目标函数。约束条件是就工程设计本身而提出的对设计变量取值范围的限制条件,目前尚无一套完整的评价方法来检验哪些约束是必须,哪些约束是可忽略的,通常是凭经验取舍,不可避免会带来模型和现实系统的不相吻合。在最优化设计问题中,可以只有一个目标函数,称为单目标函数。当在同一设计中要提出多个目标函数时,这种问题称为多目标函数的最优化问题。在一般的机械最优化设计中,多目标函数的情况较多。目标函数愈多,设计的综合效果愈好,但问题的求解亦愈复杂。对于复杂的问题,要建立能反映客观工程实际的、完善的数学模型往往会遇到很多困难,有时甚至比求解更为复杂。这时要抓住关键因素,适当忽略不重要的成分,使问题合理简化,以易于列出数学模型,这样不仅可节省时间,有时也会改善优化结果。 数学模型确立 数学模型越精确,设计变量越多,维数越大,建模越复杂,优化进程越慢;但数学模型忽略过多元素,则难以确切凸现结构的特殊之处。故要结合工程实际和优化设计经验,把握与研究目标相关程度大的因素,尽可能的建立确切、简洁的数学模型。然后通过基于统计理论的检验方法———t 检验/F 检验/ X2检验/ 拟合优度检验等,分析模型的置信区间,对模型有效性进行评价,提高模型的准确度。 下面以机票销售策略案例进行说明 某航空公司每天有三个航班服务于A, B, C, H四个城市,其中城市H是可供转机使用的, 三个航班的出发地-目的地分别为AH, HB, HC,可搭乘旅客的最大数量分别为120人, 100人, 110人, 机票的价格分头等舱和经济舱两类. 经过市场调查,公司销售部得到了每天旅客的相关信息, 见表1. 该公司应该在每条航线上分别分配多少头等舱和经济舱的机票?

(完整版)机械优化设计试卷期末考试及答案

第一、填空题 1.组成优化设计的数学模型的三要素是 设计变量 、目标函数 和 约束条件 。 2.可靠性定量要求的制定,即对定量描述产品可靠性的 参数的选择 及其 指标的确定 。 3.多数产品的故障率随时间的变化规律,都要经过浴盆曲线的 早期故障阶段 、 偶然故障阶段 和 耗损故障阶段 。 4.各种产品的可靠度函数曲线随时间的增加都呈 下降趋势 。 5.建立优化设计数学模型的基本原则是在准确反映 工程实际问题 的基础上力求简洁 。 6.系统的可靠性模型主要包括 串联模型 、 并联模型 、 混联模型 、 储备模型 、 复杂系统模型 等可靠性模型。 7. 函数f(x 1,x 2)=2x 12 +3x 22-4x 1x 2+7在X 0=[2 3]T 点处的梯度为 ,Hession 矩阵为 。 (2.)函数()22121212,45f x x x x x x =+-+在024X ??=????点处的梯度为120-?? ????,海赛矩阵为2442-???? -?? 8.传统机械设计是 确定设计 ;机械可靠性设计则为 概率设计 。 9.串联系统的可靠度将因其组成单元数的增加而 降低 ,且其值要比可靠 度 最低 的那个单元的可靠度还低。 10.与电子产品相比,机械产品的失效主要是 耗损型失效 。 11. 机械可靠性设计 揭示了概率设计的本质。 12. 二元函数在某点处取得极值的充分条件是()00f X ?=必要条件是该点处的海赛矩阵正定。 13.对数正态分布常用于零件的 寿命疲劳强度 等情况。 14.加工尺寸、各种误差、材料的强度、磨损寿命都近似服从 正态分布 。 15.数学规划法的迭代公式是 1k k k k X X d α+=+ ,其核心是 建立搜索方向, 模型求解 两方面的内容。 17.无约束优化问题的关键是 确定搜索方向 。 18.多目标优化问题只有当求得的解是 非劣解 时才有意义,而绝对最优解存在的可能性很小。 19.可靠性设计中的设计变量应具有统计特征,因而认为设计手册中给出的数据

机械优化设计试卷与答案

《机械优化设计》复习题及答案 一、填空题 1、用最速下降法求f(X)=100(x 2- x 12) 2+(1- x 1) 2的最优解时,设X (0)=[-0.5,0.5]T ,第一步迭代的搜索方向为[-47;-50] 。 2、机械优化设计采用数学规划法,其核心一是建立搜索方向 二是计算最佳步长因子 。 3、当优化问题是__凸规划______的情况下,任何局部最优解就是全域最优解。 4、应用进退法来确定搜索区间时,最后得到的三点,即为搜索区间的始点、中间点和终点,它们的函数值形成 高-低-高 趋势。 5、包含n 个设计变量的优化问题,称为 n 维优化问题。 6、函数 C X B HX X T T ++2 1的梯度为 HX+B 。 7、设G 为n×n 对称正定矩阵,若n 维空间中有两个非零向量d 0,d 1,满足(d 0)T Gd 1=0,则d 0、d 1之间存在_共轭_____关系。 8、 设计变量 、 约束条件 、 目标函数 是优化设计问题数学模型的基本要素。 9、对于无约束二元函数),(21x x f ,若在),(x 20100x x 点处取得极小值,其必要条件是 梯度为零 ,充分条件是 海塞矩阵正定 。 10、 库恩-塔克 条件可以叙述为在极值点处目标函数的梯度为起作用的各约束函数梯度的非负线性组合。 11、用黄金分割法求一元函数3610)(2+-=x x x f 的极小点,初始搜索区间 ]10,10[],[-=b a ,经第一次区间消去后得到的新区间为 [-2.36,2.36] 。 12、优化设计问题的数学模型的基本要素有设计变量 、约束条件 目标函数 、 13、牛顿法的搜索方向d k = ,其计算量 大 ,且要求初始点在极小点 逼近 位 置。 14、将函数 f(X)=x 12+x 22-x 1x 2-10x 1-4x 2+60 表示成 C X B HX X T T ++2 1的形式 。 15、存在矩阵H ,向量 d 1,向量 d 2,当满足 (d1)TGd2=0 ,向量 d 1和向量 d 2是关于H 共轭。 16、采用外点法求解约束优化问题时,将约束优化问题转化为外点形式时引入的惩罚因子r 数列,具有 由小到大趋于无穷 特点。 17、采用数学规划法求解多元函数极值点时,根据迭代公式需要进行一维搜索,即求 。

机械优化设计方法基本理论

机械优化设计方法基本理论 一、机械优化概述 机械优化设计是适应生产现代化要求发展起来的一门科学,它包括机械优化设计、机械零部件优化设计、机械结构参数和形状的优化设计等诸多内容。该领域的研究和应用进展非常迅速,并且取得了可观的经济效益,在科技发达国家已将优化设计列为科技人员的基本职业训练项目。随着科技的发展,现代化机械优化设计方法主要以数学规划为核心,以计算机为工具,向着多变量、多目标、高效率、高精度方向发展。]1[ 优化设计方法的分类优化设计的类别很多,从不同的角度出发,可以做出各种不同的分类。按目标函数的多少,可分为单目标优化设计方法和多目标优化设计方法按维数,可分为一维优化设计方法和多维优化设计方法按约束情况,可分为无约束优化设计方法和约束优化设计方法按寻优途径,可分为数值法、解析法、图解法、实验法和情况研究法按优化设计问题能否用数学模型表达,可分为能用数学模型表达的优化设计问题其寻优途径为数学方法,如数学规划法、最优控制法等 1.1 设计变量 设计变量是指在设计过程中进行选择并最终必须确定的各项独立参数,在优化过程中,这些参数就是自变量,一旦设计变量全部确定,设计方案也就完全确定了。设计变量的数目确定优化设计的维数,设计变量数目越多,设计空间的维数越大。优化设计工作越复杂,同时效益也越显著,因此在选择设计变量时。必须兼顾优化效果的显著性和优化过程的复杂性。 1.2 约束条件 约束条件是设计变量间或设计变量本身应该遵循的限制条件,按表达方式可分为等式约束和不等式约束。按性质分为性能约束和边界约束,按作用可分为起作用约束和不起作用约束。针对优化设计设计数学模型要素的不同情况,可将优化设计方法分类如下。约束条件的形式有显约束和隐约束两种,前者是对某个或某组设计变量的直接限制,后者则是对某个或某组变量的间接限制。等式约束对设计变量的约束严格,起着降低设计变量自由度的作用。优化设计的过程就是在设计变量的允许范围内,找出一组优化的设计变量值,使得目标函数达到最优值。

机械优化设计三个案例

机械优化设计案例1 1. 题目 对一对单级圆柱齿轮减速器,以体积最小为目标进行优化设计。 2.已知条件 已知数输入功p=58kw ,输入转速n 1=1000r/min ,齿数比u=5,齿轮的许用应力[δ]H =550Mpa ,许用弯曲应力[δ]F =400Mpa 。 3.建立优化模型 3.1问题分析及设计变量的确定 由已知条件得求在满足零件刚度和强度条件下,使减速器体积最小的各项设计参数。由于齿轮和轴的尺寸(即壳体内的零件)是决定减速器体积的依据,故可按它们的体积之和最小的原则建立目标函数。 单机圆柱齿轮减速器的齿轮和轴的体积可近似的表示为: ] 3228)6.110(05.005.2)10(8.0[25.087)(25.0))((25.0)(25.0)(25.02221222122212222122121222 212221202 22222222121z z z z z z z z z z z g g z z d d l d d m u m z b bd m u m z b b d b u z m b d b z m d d d d l c d d D c b d d b d d b v +++---+---+-=++++- ----+-=πππππππ 式中符号意义由结构图给出,其计算公式为 b c d m u m z d d d m u m z D m z d m z d z z g g 2.0) 6.110(25.0,6.110,21022122211=--==-=== 由上式知,齿数比给定之后,体积取决于b 、z 1 、m 、l 、d z1 和d z2 六个参数,则设计变量可取为 T z z T d d l m z b x x x x x x x ][][21165 4321 == 3.2目标函数为 min )32286.18.092.0858575.4(785398.0)(26252624252463163212 51261231232123221→++++-+-+-+=x x x x x x x x x x x x x x x x x x x x x x x x x x f 3.3约束条件的建立 1)为避免发生根切,应有min z z ≥17=,得

机械优化设计试卷期末考试及答案(补充版)

第一、填空题 1.组成优化设计数学模型的三要素是 设计变量 、 目标函数 、 约束条件 。 2.函数()22121212,45f x x x x x x =+-+在024X ??=????点处的梯度为120-?? ? ??? ,海赛矩阵 为2442-?? ? ? -?? 3.目标函数是一项设计所追求的指标的数学反映,因此对它最基本的要求是能用 来评价设计的优劣,,同时必须是设计变量的可计算函数 。 4.建立优化设计数学模型的基本原则是确切反映 工程实际问题,的基础上力求简洁 。 5.约束条件的尺度变换常称 规格化,这是为改善数学模型性态常用的一种方法。 6.随机方向法所用的步长一般按 加速步长 法来确定,此法是指依次迭代的步 长按一定的比例 递增的方法。 7.最速下降法以 负梯度 方向作为搜索方向,因此最速下降法又称为 梯度法,其收 敛速度较 慢 。 8.二元函数在某点处取得极值的充分条件是()00f X ?=必要条件是该点处的海赛矩阵正定 9.拉格朗日乘子法的基本思想是通过增加变量将等式约束 优化问题变成 无 约束优化问题,这种方法又被称为 升维 法。 10改变复合形形状的搜索方法主要有反射,扩张,收缩,压缩 11坐标轮换法的基本思想是把多变量 的优化问题转化为 单变量 的优化问题 12.在选择约束条件时应特别注意避免出现 相互矛盾的约束, ,另外应当尽量减少不必要的约束 。 13.目标函数是n 维变量的函数,它的函数图像只能在n+1, 空间中描述出来,为了在n 维空间中反映目标函数的变化情况,常采用 目标函数等值面 的方法。 14.数学规划法的迭代公式是 1k k k k X X d α+=+ ,其核心是 建立搜索方向, 和 计算最佳步长 15协调曲线法是用来解决 设计目标互相矛盾 的多目标优化设计问题的。 16.机械优化设计的一般过程中, 建立优化设计数学模型 是首要和关键的一步,它是取得正确结果的前提。 二、名词解释

机械优化设计课后习题答案

第一章习题答案 1-1 某厂每日(8h 制)产量不低于1800件。计划聘请两种不同的检验员,一级检验员的标准为:速度为25件/h ,正确率为98%,计时工资为4元/h ;二级检验员标准为:速度为15件/h ,正确率为95%,计时工资3元/h 。检验员每错检一件,工厂损失2元。现有可供聘请检验人数为:一级8人和二级10人。为使总检验费用最省,该厂应聘请一级、二级检验员各多少人? 解:(1)确定设计变量; 根据该优化问题给定的条件与要求,取设计变量为X = ?? ????=? ??? ??二级检验员一级检验员 21x x ; (2)建立数学模型的目标函数; 取检验费用为目标函数,即: f (X ) = 8*4*x 1+ 8*3*x 2 + 2(8*25*0.02x 1 +8*15*0.05x 2 ) =40x 1+ 36x 2 (3)本问题的最优化设计数学模型: min f (X ) = 40x 1+ 36x 2 X ∈R 3· s.t. g 1(X ) =1800-8*25x 1+8*15x 2≤0 g 2(X ) =x 1 -8≤0 g 3(X ) =x 2-10≤0 g 4(X ) = -x 1 ≤0 g 5(X ) = -x 2 ≤0 1-2 已知一拉伸弹簧受拉力F ,剪切弹性模量G ,材料重度r ,许用剪切应力[]τ,许用最大变形量[]λ。欲选择一组设计变量T T n D d x x x ][][2 32 1 ==X 使弹簧重量最轻,同时满足下列限制条件:弹簧圈数3n ≥, 簧丝直径0.5d ≥,弹簧中径21050D ≤≤。试建立该优化问题的数学模型。 注:弹簧的应力与变形计算公式如下 3 22234 881 ,1,(2n s s F D FD D k k c d c d Gd τλπ==+==旋绕比), 解: (1)确定设计变量; 根据该优化问题给定的条件与要求,取设计变量为X = ????? ? ????=??????????n D d x x x 2321; (2)建立数学模型的目标函数; 取弹簧重量为目标函数,即: f (X ) = 322 12 4 x x rx π (3)本问题的最优化设计数学模型:

《机械优化设计》试卷及答案

《机械优化设计》复习题及答案 、填空题 1、用最速下降法求f(X)=100(x2- X12) 2+(1- x i) 2的最优解时,设X (°)=[-0.5,0.5]T,第一 步迭代的搜索方向为[-47;-50]_________________ 。 2、机械优化设计采用数学规划法,其核心一是建立搜索方向二是计算最佳步长因 子 ________ 。 3、当优化问题是—凸规划______ 的情况下,任何局部最优解就是全域最优解。 4、应用进退法来确定搜索区间时,最后得到的三点,即为搜索区间的始点、中间点和 终点,它们的函数值形成高-低-高___________ 趋势。 5、包含n个设计变量的优化问题,称为__n _______ 维优化问题。 1 6、函数—X T HX B T X C的梯度为HX+B 。 2 7、设G为n>n对称正定矩阵,若n维空间中有两个非零向量d0,d1,满足(d°)T Gd—=0, 则d0、d1之间存在—共轭 ______ ■关系。 8、设计变量、约束条件______________ 、目标函数________________ 是优化设计问题数学模型的基本要素。 9、对于无约束二元函数f(X1,X2),若在X°(X10,X20)点处取得极小值,其必要条件是_梯度为 零,充分条件是海塞矩阵正定 ______________ 。 10、 ________________ 条件可以叙述为在极值点处目标函数的梯度为起作 用的各约束函数梯度的非负线性组合。 11、用黄金分割法求一元函数f (x) x2 10x 36的极小点,初始搜索区间 [a,b] [ 10,10],经第一次区间消去后得到的新区间为[-2.36236] 。 12、优化设计问题的数学模型的基本要素有设_________ 、 13、牛顿法的搜索方向d k= ______ ,其计算量大,且要求初始点在极小点逼近位置。 14、将函数f(X)=x 12+X22-X1X2-10x1-4x2+60 表示成-X T HX B T X C 的形 2 式 ________________________ 。 15、存在矩阵H,向量d1,向量d2,当满足(d1)TGd2=0 ,向量d1和向量d2是关于H共轭。 16、采用外点法求解约束优化问题时,将约束优化问题转化为外点形式时引入的惩罚因 子r数列,具有____________ 由小到大趋于无穷 ________________ 特点。 17、采用数学规划法求解多元函数极值点时,根据迭代公式需要进行一维搜索,即 求 _____________ 。

机械优化设计习题集

机械优化设计复习题 一、单项选择题 1.机械优化设计中,凡是可以根据设计要求事先给定的独立参数,称为( ) (P19-21) A . 设计变量 B .目标函数 C .设计常量 D .约束条件 2.下列哪个不是优化设计问题数学模型的基本要素( )(P19-21) A .设计变量 B .约束条件 C .目标函数 D .最佳步长 3.凡在可行域内的任一设计点都代表了一允许采用的方案,这样的设计点为( ) (P19-21) A .边界设计点 B .极限设计点 C .外点 D .可行点 4.当设计变量的数量n 在下列哪个范围时,该设计问题称为中型优化问题 (P19-21) A .n<10 B .n=10~50 C .n<50 D .n>50 5. 机械最优化设计问题多属于什么类型优化问题( )(P19-24) A .约束线性 B .无约束线性 C .约束非线性 D .无约束非线性 6. 工程优化设计问题大多是下列哪一类规划问题( )(P22-24) A .多变量无约束的非线性 B .多变量无约束的线性 C .多变量有约束的非线性 D .多变量有约束的线性 7. n 元函数在()k x 点附近沿着梯度的正向或反向按给定步长改变设计变量时,目 标函数值( )(P25-28) A .变化最大 B .变化最小 C .近似恒定 D .变化不确定 8.()f x ?方向是指函数()f x 具有下列哪个特性的方向( )(P25-28) A . 最小变化率 B .最速下降 C . 最速上升 D .极值 9. 梯度方向是函数具有( )的方向 (P25-28) A .最速下降 B .最速上升 C .最小变化 D .最大变化率 10. 函数()f x 在某点的梯度方向为函数在该点的()(P25-28) A .最速上升方向 B .上升方向 C .最速下降方向 D .下降方向 11. n 元函数()f x 在点x 处梯度的模为( )(P25-28) A .f ?= B .12...n f f f f x x x ????=++??? C .22212()()...()n f f f f x x x ????=++??? D .f ?=12.更适合表达优化问题的数值迭代搜索求解过程的是( ) (P25-31) A .曲面或曲线 B .曲线或等值面 C .曲面或等值线 D .等值线或等值面 13.一个多元函数()f x 在*x 点附近偏导数连续,则该点为极小值点的充要条件 ( )(P29-31) A.*()0f x ?= B. *()0G x = C. 海赛矩阵*()G x 正定 D. **()0G()f x x ?=,负定

~机械优化设计复习题及答案

机械优化设计复习题 一.单项选择题 1.一个多元函数()F X 在X * 附近偏导数连续,则该点位极小值点的充要条件为( ) A .() *0F X ?= B. ()* 0F X ?=,() *H X 为正定 C .() *0H X = D. ()* 0F X ?=,() *H X 为负定 2.为克服复合形法容易产生退化的缺点,对于n 维问题来说,复合形的顶点数K 应( ) A . 1K n ≤+ B. 2K n ≥ C. 12n K n +≤≤ D. 21n K n ≤≤- 3.目标函数F (x )=4x 2 1+5x 22,具有等式约束,其等式约束条件为h(x)=2x 1+3x 2-6=0,则目 标函数的极小值为( ) A .1 B . 19.05 C .0.25 D .0.1 4.对于目标函数F(X)=ax+b 受约束于g(X)=c+x ≤0的最优化设计问题,用外点罚函数法求解 时,其惩罚函数表达式Φ(X,M (k) )为( )。 A. ax+b+M (k){min [0,c+x ]}2,M (k) 为递增正数序列 B. ax+b+M (k){min [0,c+x ]}2,M (k) 为递减正数序列 C. ax+b+M (k){max [c+x,0]}2,M (k) 为递增正数序列hn D. ax+b+M (k){max [c+x,0]}2,M (k) 为递减正数序列 1.B 2.C 3.B 4.B 5.A 6.B 7.D 8.B 9.A 10C.11.B 12.C 13A 14.B 15.B 16 D 17.D 18.A 19.B.20.D 21.A 22.D 23.C 24.B 25.D 26.D 27.A 28.B 29.B 30.B 5.黄金分割法中,每次缩短后的新区间长度与原区间长度的比值始终是一个常数,此常数是( )。 A.0.382 B.0.186 C.0.618 D.0.816 6.F(X)在区间[x 1,x 3]上为单峰函数,x 2为区间中一点,x 4为利用二次插值法公式求得的近似极值点。如x 4-x 2>0,且F(x 4)>F(x 2),那么为求F(X)的极小值,x 4点在下一次搜索区间内将作为( )。 A.x 1 B.x 3 C.x 2 D.x 4 7.已知二元二次型函数F(X)= AX X 21T ,其中A=?? ????4221,则该二次型是( )的。 A.正定 B.负定 C.不定 D.半正定 8.内点罚函数法的罚因子为( )。 A.递增负数序列 B.递减正数序列 C.递增正数序列 D.递减负数序列 9.多元函数F(X)在点X * 附近的偏导数连续,?F(X * )=0且H(X * )正定,则该点为F(X)的 ( )。 A.极小值点 B.极大值点 C.鞍点 D.不连续点 10.F(X)为定义在n 维欧氏空间中凸集D 上的具有连续二阶偏导数的函数,若H(X)正定,则称F(X)为定义在凸集D 上的( )。

机械优化设计题库

、绪论 1. 思考题 1.何为约束优化设计问题 ?什么是无约束优化设计问题 ?试各举一例说明。机械优化设计问题多属哪一类? 2.一般优化问题的数学模型包括哪些部分?写出一般形式的数学模型。 3.机械优化设计的过程是怎样的 ?它与常规的机械设计有什么不同 ? 4.怎样判断所求得的最优解是不是全局最优解? 5.试简述优化算法的迭代过程。 6.何为可行域?为什么说当存在等式约束则可行域将大为缩小?当优化问题中有—个等式约束时 可行域是什么 ?当优化问题中有两个等式约束时可行域是什么?当 n 维优化问题中有 n 个等式约束时可 行域是什么? 7.什么是内点、什么是外点 ?在优化设计中内点和外点都可以作为设计方案吗?为什么 ? 8.试写出第一节中第三个问题的数学模型。 9.目标函数及其等值线(等值面)的意义和特性是什么? 2.习题 1.设计一容积为 V 的平底、无盖圆柱形容器,要求消耗原材料最少,试建立其优化设计的数学模型,并指出属于哪一类优化问题。 2.当一个矩形无盖油箱的外部总面积限定为S 时,怎样设计可使油箱的容量最大?试列出这个优 化问题的数学模型,并回答: ①属于几维的优化问题? ②是线性规划还是非线性规划? 3.欲造容积为 V 的长方形无盖水箱,问应如何选定其长、宽、高尺寸,才能使用料消耗最少?试写出其数学模型。 4.试求直径为 D 的圆内所有内接三角形面积中的最大值。 5?在曲面f l(X l,X2,X3)=0上找一点P l,在曲面f2(X l,X2,X3)=0上找一点卩2,使得P l与卩2的距离为最短,试建立优化问题的数学模型。 6?有一薄铁皮,宽b=14cm,长L=24cm,制成如图2-9所示的梯形槽,求边长 X和倾斜角a为多大时,槽的容积最大?试写出此问题的优化设计模型并指出该问题属于哪一类的优化设计问题。 7?欲制一批如图 2-12所示的包装纸箱,其顶和底由四边延伸的折纸板组成。要求纸箱的容积为 2m3,问如何确定a、b和c的尺寸,使所用的纸板最省。试写出该优化问题的数学模型。 8?—根长I的铅丝截成两段,一段弯成圆圈,另一段弯折成方形。问应以怎样的比例截断铅丝,才能使圆和方形的面积之和为最大,试写出这一优化问题的数学模型。 9?某厂生产A、B两种产品:A每桶需用煤90kN、电4度、劳动日3个,获利润700元;B每桶需用煤40kN、电5度、劳动日10个,获利润1200元。但计划规定可用煤 3600kN、电200度、劳动 日 300 个,试问 A、 B 各生产多少桶时利润最大?列出其教学模型,并说明属于何种数学规划问题? 10.某厂生产两种机器,两种产品生产每台所

机械优化设计大作业

一、问题描述 1.1结构特点 (1)体积小、重量轻、结构紧凑、传递功率大、承载能力高 ; (2)传动效率高,工作高 ;(3)传动比大。 1.2用途和使用条件 某行星齿轮减速器主要用于石油钻采设备的减速,其高速轴转速为1300r/min ;工作环境温度为-20℃~60℃,可正、反两向运转。 按该减速器最小体积准则,确定行星减速器的主要参数。 二、分析 传动比u=4.64,输入扭矩T=1175.4N.m ,齿轮材料均选用38SiMnMo 钢,表面淬火硬度HRC 45~55,行星轮个数为3。要求传动比相对误差02.0≤?u 。 弹性影响系数Z E =189.8MPa 1/2;载荷系数k=1.05;齿轮接触疲劳强度极限[σ]H =1250MPa ;齿轮弯曲疲劳强度极限[σ]F =1000MPa ;齿轮的齿形系数Y Fa =2.97;应力校正系数Y Sa =1.52;小齿轮齿数z 取

值范围17--25;模数m取值范围2—6。 注:优化目标为太阳轮齿数、齿宽和模数,初始点[24,52,5]T 三、数学建模 建立数学模型见图1,即用数学语言来描述最优化问题,模型中的数学关系式反映了最优化问题所要达到的目标和各种约束条件。 3.1设计变量的确定 影响行星齿轮减速器体积的独立参数为中心轮齿数、齿宽、模数及行星齿轮的个数,将他们列为设计变量,即: x=[x 1 x 2 x 3 x 4 ]T=[z 1 b m c]T [1] 式中:z1 ˉ ̄太阳轮齿数;b―齿宽(mm);m—模数(mm);行星轮的个数。通常情况下,行星轮个数根据机构类型以事先选定,由已知条件c=3。这样,设计变量为: x=[x 1 x 2 x 3 ]T=[z 1 b m]T [1] 3.2目标函数的确定 为了方便,行星齿轮减速器的重量可取太阳轮和3个行星轮体积之和来代替,即: V=π/4(d 12+Cd 2 2)b 式中:d1--太阳轮1的分度圆直径,mm;d2--行星轮2的分度圆直径,mm。 将d 1=mz 1, d 2 =mz 2 ,z 2 =z 1 (u-2)/2代入(3)式整理,目标函 数则为:

相关主题
文本预览
相关文档 最新文档