当前位置:文档之家› 奥氏体马氏体知识

奥氏体马氏体知识

奥氏体马氏体知识

固态金属及合金都是晶体,即在其内部原子是按一定规律排列的,排列的方式一般有三种即:体心立方晶格结构、面心立方晶格结构和密排六方晶格结构。金属是由多晶体组成的,它的多晶体结构是在金属结晶过程中形成的。组成铁碳合金的铁具有两种晶格结构:910℃以下为具有体心立方晶格结构的α——铁,910℃以上为具有面心立方晶格结构的Υ——铁。如果碳原子挤到铁的晶格中去,而又不破坏铁所具有的晶格结构,这样的物质称为固溶体。碳溶解到α——铁中形成的固溶体称铁素体,它的溶碳能力极低,最大溶解度不超过0.02%。而碳溶解到Υ——铁中形成的固溶体则称奥氏体,它的溶碳能力较高,最高可达2%。奥氏体是铁碳合金的高温相。钢在高温时所形成的奥氏体,过冷到727℃以下时变成不稳定的过冷奥氏体。如以极大的冷却速度过冷到230℃以下,这时奥氏体中的碳原子已无扩散的可能,奥氏体将直接转变成一种含碳过饱和的α固溶体,称为马氏体。由于含碳量过饱和,引起马氏体强度和硬度提高、塑性降低,脆性增大。不锈钢的耐蚀性主要来源于铬。实验证明,只有含铬量超过12%时钢的耐蚀性能才会大大提高,因此,不锈钢中的含铬量一般均不低于12%。由于含铬量的提高,对钢的组织也有很大影响,当铬含量高而碳含量很少时,铬会使铁碳平衡,图上的Υ相区缩小,甚至消失,这种不锈钢为铁素体

组织结构,加热时不发生相变,称为铁素体型不锈钢。当含铬量较低(但高于12%),碳含量较高,合金在从高温冷却时,极易形成马氏体,故称这类钢为马氏体型不锈钢。镍可以扩展Υ相区,使钢材具有奥氏体组织。如果镍含量足够多,使钢在室温下也具有奥氏体组织结构,则称这种钢为奥氏体型不锈钢。

工程材料第三章作业参考答案

1、解释下列名词:奥氏体化,过冷奥氏体,残余奥氏体;奥氏体的起始晶粒度、实际晶粒度、本质晶粒度。 答:奥氏体化:在临界点以上加热,目的是获得均匀的奥氏体组织,称为奥氏体化奥氏体化也是形核和长大的过程,分为四步:第一步奥氏体晶核形成、第二步奥氏体晶核长大、第三步残余Fe3C溶解、第四步奥氏体成分均匀化。 过冷奥氏体:处于临界点A1以下的奥氏体称过冷奥氏体。过冷奥氏体是非稳定组织,迟早要发生转变。随过冷度不同,过冷奥氏体将发生珠光体转变、贝氏体转变和马氏体转变三种类型转变。 残余奥氏体:即使冷却到Mf 点,也不可能获得100%的马氏体,总有部分奥氏体未能转变而残留下来,称残余奥氏体,用A’ 或g’ 表示。 奥氏体的起始晶粒度:奥氏体化刚结束时的晶粒度称起始晶粒度,此时晶粒细小均匀。 实际晶粒度:在给定温度下奥氏体的晶粒度称实际晶粒度。 本质晶粒度:加热时奥氏体晶粒的长大倾向称本质晶粒度。 2、过冷奥氏体转变时所形成的珠光体类、贝氏体类、马氏体类组织有哪几种 ? 它们在形成条件、组织形态和性能方面有何特点 ? 答:过冷奥氏体在 A1~ 550℃间将转变为珠光体类组织,为铁素体与渗碳体片层相间的机械混合物。根据片层厚薄不同,又细分为珠光体、索氏体和屈氏体。⑴珠光体:形成温度为A1-650℃,片层较厚,500倍光镜下可辨,用符号P表示。⑵索氏体:形成温度为650-600℃,片层较薄,800-1000倍光镜下可辨,用符号S 表示。⑶屈氏体:形成温度为600-550℃,片层极薄,电镜下可辨,用符号T 表示。珠光体、索氏体、屈氏体三种组织无本质区别,只是形态上的粗细之分,因此其界限也是相对的。片间距越小,钢的强度、硬度越高,而塑性和韧性略有改善。 过冷奥氏体在550℃- 230℃ (Ms)间将转变为贝氏体类型组织,贝氏体用符号B表示。根据其组织形态不同,贝氏体又分为上贝氏体(B上)和下贝氏体(B下)。⑴上贝氏体形成温度为550-350℃。在光镜下呈羽毛状.在电镜下为不连续棒状的渗碳体分布于自奥氏体晶界向晶内平行生长的铁素体条之间。⑵下贝氏体形成温度为350℃-Ms。在光镜下呈竹叶状。在电镜下为细片状碳化物分布于铁素体针内,并与铁素体针长轴方向呈55-60o角。上贝氏体强度与塑性都较低,无实用价值。下贝氏体除了强度、硬度较高外,塑性、韧性也较好,即具有良好的综合力学性能,是生产上常用的强化组织之一。 当奥氏体过冷到Ms以下将转变为马氏体类型组织。马氏体的形态分板条和针状两类。⑴板条马氏体:立体形态为细长的扁棒状在光镜下板条马氏体为一束束的细条组织。每束内条与条之间尺寸大致相同并呈平行排列,一个奥氏体晶粒内可形成几个取向不同的马氏体束。在电镜下,板条内的亚结构主要是高密度的位错,r=1012/cm2,又称位错马氏体。⑵针状马氏体立体形态为双凸透镜形的片状。显微组织为针状。在电镜下,亚结构主要是孪晶,又称孪晶马氏体。高硬度是马氏体性能的主要特点。马氏体的硬度主要取决于其含碳量。含碳量增加,其硬度增加。 3、作图并说明共析碳钢 C 曲线上各个区、各条线以及临界冷却速度 V k 的物理意义。答:

比较贝氏体转变与珠光体转变和马氏体转变的异同

试比较贝氏体转变与珠光体转变和马氏体转变的异同

一.组织形态: 1.珠光体: 珠光体的组织形态特征: 珠光体的典型组织特征是由一层铁素体和一层渗碳体交替平行堆叠而形成的双相组织。根据片层间距的不同,可将珠光体分为三种: 珠光体:S0=450-150nm,形成温度为A1-650℃,普通光学显微镜可以分辨。 索氏体:S0=150-80nm,形成温度为650-600℃,高倍光学显微镜可以分辨。 屈氏体:S0=80-30nm,形成温度为600-550℃,电子显微镜可以分辨。 铁素体基体上分布着粒状渗碳体的组织为粒状珠光体。这种组织一般是通过球化退火或淬火后高温回火得到的。 在珠光体转变过程中,所形成的珠光体中的铁素体与母相奥氏体具有一定的晶体学位向关系。珠光体中,铁素体与渗碳体之间存在一定的晶体学位向关系。 2.马氏体: 马氏体的组织形态: ○1.板条马氏体是低、中碳钢中形成的一种典型马氏体组织,其形貌特征可描述如下:在一个原奥氏体晶粒部有几个(3-5个)马氏体板条束,板条束间取向随意;在一个板条束有若干个相互平行的板条块,块间是大角晶界;在一个板条块是若干个相互平行的马氏体板条,板条间是小角晶界。马氏体板条存在大量的位错,所以板条马氏体的亚结构是高密度的位错和位错缠结。板条状马氏体也称为位错型马氏体。 ○2.片状马氏体是中、高碳钢中形成的一种典型马氏体组织,其形貌特征可描述如下:在一个原奥氏体晶粒部有许多相互有一定角度的马氏体片。马氏体片的空间形态为双凸透镜状,横截面为针状或竹叶状。在原奥氏体晶粒中首先形成的马氏体片贯穿整个晶粒,将奥氏体晶粒分割,以后陆续形成的马氏体片越来越小,所以马氏体片的尺寸取决于原始奥氏体晶粒的尺寸。 片状马氏体的形成温度较低,在马氏体片的周围往往存在着残余奥氏体。 片状马氏体的部亚结构主要是孪晶。当碳含量较高时,在马氏体片中可以看到中脊,中脊面是密度很高的微孪晶区。 马氏体片形成时的相互撞击,马氏体片中存在大量的纤维裂纹。 3.贝氏体: 贝氏体的组织形态: ○1.上贝氏体 上贝氏体形成于贝氏体转变区较高温度围,中、高碳钢大约在350-550℃形成。为成束分布、平行排列的条状铁素体和夹于其间的断续条状渗碳体的混合物。多在奥氏体晶界形核,自晶界的一侧或两侧向晶长大,具有羽毛状特征。 上贝氏体中铁素体的亚结构是位错,其密度比板条马氏体低2-3个数量级,随形成温度降低,位错密度增大。随碳含量增加,上贝氏体中铁素体条增多、变薄,渗碳体数量增多、变细。随转变温度降低,上贝氏体中铁素体条变薄,渗碳体细化。上贝氏体中铁素体条间还可能存在未转变的残余奥氏体。 ○2.下贝氏体 下贝氏体形成于贝氏体转变区较低温度围,中、高碳钢大约在350℃-Ms之间温度形成。

马氏体不锈钢与奥氏体不锈钢的区别

马氏体不锈钢:标准马氏体钢材的改良,含有类如镍、钼、钒等的添加元 素,主要是用于将标准钢材受限的容许工作温度提升至高于1100K,当添加这些元素时,碳含量也增加,随着碳含量的增加,在焊接物的硬化热影响区中避免龟裂的问题变成更严重。 马氏体不锈钢能在退火、硬化和硬化与回火的状态下焊接,无论钢材的原先状态如何,经过焊接后都会在邻近焊道处产生一硬化的马氏体区,热影响区的硬度主要是取决于母材金属的碳含量,当硬度增加时,则韧性减少,且此区域变成较易产生龟裂、预热和控制层间温度,是避免龟裂的最有效方法,为得最佳的性质,需焊后热处理。 马氏体不锈钢是一类可以通过热处理(淬火、回火)对其性能进行调整的不锈钢,通俗地讲,是一类可硬化的不锈钢。这种特性决定了这类钢必须具备两个基本条件:一是在平衡相图中必须有奥氏体相区存在,在该区域温度范围内进行长时间加热,使碳化物固溶到钢中之后,进行淬火形成马氏体,也就是化学成分必须控制在γ或γ+α相区,二是要使合金形成耐腐蚀和氧化的钝化膜,铬含量必须在10.5%以上。按合金元素的差别,可分为马氏体铬不锈钢和马氏体铬镍不锈钢。 马氏体铬不锈钢的主要合金元素是铁、铬和碳。图1-4是Fe-Cr系相图富铁部分,如Cr大于13%时,不存在γ相,此类合金为单相铁素体合金,在任何热处理制度下也不能产生马氏体,为此必须在内Fe-Cr二元合金中加入奥氏体形成元素,以扩大γ相区,对于马氏体铬不锈钢来说,C、N是有效元素,C、N元素添加使得合金允许更高的铬含量。在马氏体铬不锈钢中,除铬外,C是另一个最重要的必备元素,事实上,马氏体铬不锈耐热钢是一类铁、铬、碳三元合金。当然,还有其他元素,利用这些元素,可根据Schaeffler图确定大致的组织。 马氏体不锈钢主要为铬含量在12%-18%范围内的低碳或高碳钢。各国广泛应用的马氏体不锈钢钢种有如下3类: 1.低碳及中碳13%Cr钢 2.高碳的18%Cr钢 3.低碳含镍(约2%)的17%Cr钢 马氏体不锈钢具备高强度和耐蚀性,可以用来制造机器零件如蒸汽涡轮的叶片(1Cr13)、蒸汽装备的轴和拉杆(2Cr13),以及在腐蚀介质中工作的零件如活门、螺栓等(4Cr13)。碳含量较高的钢号(4Cr13、9Cr18)则适用于制造医疗器械、餐刀、测量用具、弹簧等。 与铁素体不锈钢相似,在马氏体不锈钢中也可以加入其它合金元素来改进其他性能:1.加入0.07%S或Se改善切削加工性能,例如1Cr13S或4Cr13Se;2.加入约1%Mo及0.1% V,可以增加9Cr18钢的耐磨性及耐蚀性;3.加入约1Mo-1W-0.2V,可以提高1Cr13及2Cr13钢的热强性。 马氏体不锈钢与调制钢一样,可以使用淬火、回火及退火处理。其力学性质与调制钢也相似:当硬度升高时,抗拉强度及屈服强度升高,而伸长率、截面收缩率及冲击功则随着降低。 马氏体不锈钢的耐蚀性主要取决于铬含量,而钢中的碳由于与铬形成稳定的碳化铬,又间接的影响了钢的耐蚀性。因此在13%Cr钢中,碳含量越低,则耐蚀性越高。而在1Cr13、2Cr13、3Cr13及4Cr13四种钢中,其耐蚀性与强度的顺序恰好相反。

第三章 奥氏体在冷却时的转变

第六节钢在冷却时的转变 一、共析钢的过冷奥氏体转变 由铁碳相图可知,共析钢从奥氏体状态冷却到临界点A1点以下时将要发生珠光体转变。实际上,迅速冷却到A1点以下温度时,转变并不是立即开始的,在A1点以下未转变的奥氏体称为过冷奥氏体。 1.过冷奥氏体转变曲线 (1)过冷奥氏体等温转变曲线图10—38是通过实验测定的共析钢过冷奥氏体等温转变 动力学曲线,又称过冷奥氏体等温转变 等温图(又称TTT图或C曲线)。图中 左边的曲线是转变开始线,右边的曲线 是转变完了线。它的上部向A1线无限 趋近,它的下部与Ms线相交。Ms点是 奥氏体开始向马氏体转变的温度。由图 可以看出,过冷奥氏体开始转变需要经 过一段孕育期,在550~500℃等温时孕 育期最短,转变最快,称为C曲线的 “鼻子”。在鼻温以上的高温阶段,随过冷 度的增加,转变的孕育期缩短,转变加 快;在鼻温以下的中温阶段,随过冷度的 增加,转变的孕育期变长,转变变慢。这 是因为共析转变是扩散型相变,转变速 率是由相变驱动力和扩散系数D两个 因素综合决定的(参看第三节)。 过冷奥氏体在不同的温度区间会发 生三种不同的转变。在A1~500~C区间 发生珠光体转变,转变的产物是珠光体(P),其硬度值较低,在11~40HRC之间;550~C~

Ms点区间发生贝氏体转变,产物是贝氏体(B),硬度值较高在40~55HRC之间;在Ms点 以下将发生马氏体转变,得到马氏体(M),马氏体的硬度很高,可达到60HRC以上。碳素 钢的贝氏体转变温度区间与珠光体、马氏体转变的温度区间没有严格的界限,相互之间有重叠。 一般认为过冷奥氏体有了1%的转变即为转变的开始,转变已完成99%即为转变完了。在转变开始线和转变完了线之间,还可以划出转变量为10%、50%、90%等等几条大体平行的曲线(图中以虚线表示)。转变开始线、终止线与A。线、Ms线之间将等温转变图划分成几个区域,各个区域表示组织状态及转变量与温度和时间之间的关系。从等温转变图右侧的纵坐标,还可以看出各温度下转变产物的硬度值。例如,过冷奥氏体在600~C进行等温转变,若等温时间只有1s,钢仍然处在过冷奥氏体状态;如果等温了3s,这时已有50%的奥氏体转变成珠光体,组织状态是奥氏体加珠光体各占50%;若在600~C等温7s以上,过冷奥氏体早已全部转变成珠光体,珠光体的硬度值是38HRC。如果在600~C等温3s后立即淬火,将得到50%马氏体加珠光体的组织。 (2)过冷奥氏体连续冷却转变曲线在绝大多数情况下奥氏体转变是在连续冷却的条件下进行的。如铸造、锻轧、焊接之后,一般都是采用在空气中冷却,或在坑中堆放冷却等连续冷却方式。从奥氏体状态经炉内冷却退火。或空气中冷却正火,或水中急冷淬火等热处理工艺也都是连续冷却过程。因此,研究过冷奥氏体连续冷却转变图(CCT图),有更大的实际意义。实验测定的不同冷却条件下共析碳钢的CCT图如图10—39所示。由图可以看出,不同冷却速度下,过冷奥氏体开始转变的时间和温度不同,冷却速度越快,开始转变所需的时间越短,转变温度越低。图中还划出该钢的c曲线。与c曲线相比较,CCT图中同样性质的曲线(转变开始线,转变终了线)均位于C曲线的下方。在连续冷却条件下,共析碳钢不发生贝氏体转变。若冷却速度小于33.4~C.s叫(图中的曲线3)时,奥氏体将全部转变成珠光 一、

马氏体奥氏体珠光体贝氏体的区别

马氏体奥氏体珠光体贝氏体 马氏体(martensite)是黑色金属材料的一种组织名称。马氏体(M)是碳溶于α-Fe的过饱和的固溶体,是奥氏体通过无扩散型相变转变成的亚稳定相。其比容大于奥氏体、珠光体等组织,这是产生淬火应力,导致变形开裂的主要原因。马氏体最初是在钢(中、高碳钢)中发现的:将钢加热到一定温度(形成奥氏体) 奥氏体(austenite)A、γ是晶体结构:面心立方(fcc)。是碳在γ-Fe中形成的间隙固溶体。奥氏体是一种塑性很好,强度较低的固溶体,具有一定韧性。不具有铁磁性。因此,分辨奥氏体不锈钢刀具(常见的18-8型不锈钢)的方法之一就是用磁铁来看刀具是否具有磁性。古代铁匠打铁时烧红的铁块即处于奥氏体状态。另外,奥氏体因为是面心立方,四面体间隙较大,可以容纳更多的碳。 珠光体pearlite 珠光体是奥氏体(奥氏体是碳溶解在γ-Fe中的间隙固溶体)发生共析转变所形成的铁素体与渗碳体的共析体。得名自其珍珠般(pearl-like)的光泽。其形态为铁素体薄层和渗碳体薄层交替重叠的层状复相物,也称片状珠光体。用符号P表示,含碳量为ωc=%。在珠光体中铁素体占88%,渗碳体占12%,由于铁素体的数量大大多于渗碳体,所以铁素体层片要比渗碳体厚得多.在球化退火条件下,珠光体中的渗碳休也可呈粒状,这样的珠光体称为粒状珠光体。珠光体的性能介于铁素体和渗碳体之间,强韧性较好.其抗拉强度为750 ~900MPa,180 ~280HBS,伸长率为20 ~25%,冲击功为24 ~32J.力学性能介于铁素体与渗碳体之间,强度较高,硬度适中,塑性和韧性较好。

铁素体(ferrite,缩写:FN,用F表示)即α-Fe和以它为基础的固溶体,具有体心立方点阵。亚共析成分的奥氏体通过先共析析出形成铁素体。在碳钢和低合金钢的热轧(正火)和退火组织中,铁素体是主要组成相;室温下的铁素体的机械性能和纯铁相近。铁素体的强度、硬度不高,但具有良好的塑性与韧性。 经过硝酸溶液侵蚀后,从颜色上观察区分金相组织形态. 铁素体是白色,珠光体是黑色,马氏体(M)是碳溶于α-Fe的过饱和的固溶体,在金相观察中为细长的板条状或针叶状。

奥氏体马氏体铁素体的区别

创作编号: GB8878185555334563BT9125XW 创作者:凤呜大王* 奥氏体/马氏体/铁素体 奥氏体(钢的组别:A1, A2, A3 A4, A5)(性能等级:50软,70冷加工,80高强度) 马氏体(钢的组别:C1,C2,C3) (性能等级:50软,70、110淬火并回火,80淬火并回火) 铁素体(钢的组别:F1) (性能等级:45软,60冷加工) 马氏体不锈钢属于铬不锈钢。由于含碳量高,碳化铬多,钢的耐蚀性能下降,虽可通过热处理的方法改善,但防腐性不高。马氏体不锈钢多用于制造力学性能要求较高,并有一定耐蚀性能要求的零件,如汽轮机叶片、喷嘴、阀座、量具、刃具等。 铁素体不锈钢也属于铬不锈钢。含碳量小,抗大气、硝酸及盐水溶液的腐蚀能力强,有高温抗氧化性能好等特点。主要用于制作化工设备中的容器、管道。 奥氏体不锈钢属于铬镍不锈钢。具有很高的耐蚀性,优良的塑性,良好的焊接性及低温韧性,不具有磁性,易加工硬化。主要用于在腐蚀介质中工作的零件、容器、管道、医疗器械以及抗磁环境中。 奥氏体 奥氏体是碳溶解在γ-Fe中的间隙固溶体,常用符号A表示。它仍保持γ-Fe的面心立方晶格。其溶碳能力较大,在727℃时溶碳为ωc= 0.77%,1148℃时可溶碳2.11%。奥氏体是在大于727℃高温下才能稳定存在的组织。奥氏体塑性好,是绝大多数钢种在高温下进行压力加工时所要求的组织。奥氏体是没有磁性的。 马氏体分级淬火 是将奥氏体化工件先浸入温度稍高或稍低于钢的马氏体点的液态介质(盐浴或碱浴)中,保持适当的时间,待钢件的内、外层都达到介质温度后取

出空冷,以获得马氏体组织的淬火工艺,也称分级淬火。分级淬火由于在分级温度停留到工件内外温度一致后空冷,所以能有效地减少相变应力和热应力,减少淬火变形和开裂倾向。分级淬火适用于对于变形要求高的合金钢和高合金钢工件,也可用于截面尺寸不大、形状复杂地碳素钢工件。 马氏体不锈钢 通过热处理可以调整其力学性能的不锈钢,通俗地说,是一类可硬化的不锈钢。典型牌号为Cr13型,如2Cr13 ,3Cr13 ,4Cr13等。粹火后硬度较高,不同回火温度具有不同强韧性组合,主要用于蒸汽轮机叶片、餐具、外科手术器械。根据化学成分的差异,马氏体不锈钢可分为马氏体铬钢和马氏体铬镍钢两类。根据组织和强化机理的不同,还可分为马氏体不锈钢、马氏体和半奥氏体(或半马氏体)沉淀硬化不锈钢以及马氏体时效不锈钢等。 马氏体就是以人命命名的: 对于学材料的人来说,“马氏体”的大名如雷贯耳,那么说到阿道夫·马滕斯又有几个人知道呢?其实马氏体的“马”指的就是他了。在铁碳组织中这样以人名命名的组织还有很多,今天我们就来说说这些名称和它们背后那些材料先贤的故事。 马氏体Martensite,如前所述命名自Adolf Martens (1850-1914)。这位被称作马登斯或马滕斯的先生是一位德国的冶金学家。他早年作为一名工程师从事铁路桥梁的建设工作,并接触到了正在兴起的材料检验方法。于是他用自制的显微镜(!)观察铁的金相组织,并在1878年发表了《铁的显微镜研究》,阐述金属断口形态以及其抛光和酸浸后的金相组织。(这个工作我们现在做的好像也蛮多的。)他观察到生铁在冷却和结晶过程中的组织排列很有规则(大概其中就有马氏体),并预言显微镜研究必将成为最有用的分析方法之一(有远见)。他还曾经担任了柏林皇家大学附属机械工艺研究所所长,也就是柏林皇家材料试验所("Staatliche Materialprüfungsamt")的前身,他在那里建立了第一流的金相试验室。1895年国际材料试验学会成立,他担任了副主席一职。直到现在,在德国依然有一个声望颇高的奖项以他的名字命名

奥氏体马氏体铁素体不锈钢区别

奥氏体马氏体铁素体不锈钢区别? 铁素体型不锈钢 它的内部显微组织为铁素体,其铬的质量分数在11.5%~32.0%范围内。随着铬含量的提高,其耐酸性能也提高,加入钼(Mo)后,则可提高耐酸腐蚀性和抗应力腐蚀的能力。这类不锈钢的国家标准牌号有00Cr12、1Cr17、00Cr17Mo、00Cr30Mo2等。 430是铁素体不锈钢。 铁素体不锈钢是含铬大于14%的低碳铬不锈钢,含铬大于27%的任何含碳量的铬不锈钢,以及在上述成分基础上再添加有钼、钛、铌、硅、铝、、钨、钒等元素的不锈钢,化学成分中形成铁素体的元素占绝对优势,基体组织为铁素。这类钢在淬火(固溶)状态下的组织为铁素体,退火及时效状态的组织中则可见到少量碳化物及金属间化合物。 属于这一类的有Crl7、Cr17Mo2Ti、Cr25,Cr25Mo3Ti、Cr28等。铁素体不锈钢因为含铬量高,耐腐蚀性能与抗氧化性能均比较好,但机械性能与工艺性能较差,多用于受力不大的耐酸结构及作抗氧化钢使用。 马氏体型不锈钢 它的显微组织为马氏体。这类钢中铬的质量分数为11.5%~18.0%,但碳的质量分数最高可达0.6%。碳含量的增高,提高了钢的强度和硬度。在这类钢中加入的少量镍可以促使生成马氏体,同时又能提高其耐蚀性。这类钢的焊接性较差。列入国家标准牌号的钢板有1Cr13、2 Cr13、3Cr13、1Cr17Ni2等。 410是马氏体不锈钢,其中碳最大含量为0.15%,锰最大含量1.00%,硅最大含量为1.00%,铬含量为11.50~13.50%。为通用型可热处理不锈钢,耐腐蚀,耐热,硬度可达42HRC或更高些。 奥氏体型不锈钢 其显微组织为奥氏体。它是在高铬不锈钢中添加适当的镍(镍的质量分数为8%~25%)而形成的,具有奥氏体组织的不锈钢。奥氏体型不锈钢以Cr18Ni19铁基合金为基础,在此基础上随着不同的用途,发展成图1-2所示的铬镍奥氏体不锈钢系列。 奥氏体、铁素体、马氏体不锈钢在用途上如何区分? 工业上应用的不锈钢按金相组织可分为三大类:铁素体不锈钢,马氏体不锈钢,奥氏体不锈钢。可以把这三类不锈钢的特点归纳(如下表),但需要说明的是马氏体不锈钢并不是都不可焊接,只是受某些条件的限制,如焊前应预热焊后应作高温回火等,而使焊接工艺比较复杂。实际生产中一些马氏体不锈钢如1Cr13,2Cr13以及2Cr13与45钢焊接还是比较多的。 马氏体不锈钢属于铬不锈钢。 由于含碳量高,碳化铬多,钢的耐蚀性能下降,虽可通过热处理的方法改善,但防腐性不高。马氏体不锈钢多用于制造力学性能要求较高,并有一定耐蚀性能要求的零件,如汽轮机叶片、喷嘴、阀座、量具、刃具等。 铁素体不锈钢也属于铬不锈钢。 含碳量小,抗大气、硝酸及盐水溶液的腐蚀能力强,有高温抗氧化性能好等特点。主要用于制作化工设备中的容器、管道。 奥氏体不锈钢属于铬镍不锈钢。

马氏体可逆转变和形状记忆效应

马氏体可逆转变和形状记忆效应 在马氏体相变热力学一节中已经讨论到马氏体相变具有可逆性,并将马氏体向高温上的转变称为逆转变或反相变。碳钢中的马氏体因其加热时极易分解,所以到目前为止尚未观直接察到它的逆转变。但在一系列铁合金和非铁合金的马氏体相变中均已观察到逆转变的存在,并且在逆转变中亦观察到了表面凹凸现象,凹凸的方向正好和正相变相反。已发现具有可逆马氏转变的合金有:Fe-Ni,Fe-Mn,Cu-Al,Cu-Au,In-Tl,Au-Cd,Ni-Ti等。这些合金中的马氏体可逆转变,按其特点不同,可分为热弹性马氏体的可逆转变和非热弹性马氏体可逆转变两类。热弹性马氏体的可逆转变是近代发展形状记忆材料的基础。而非热弹性马氏体可逆转变则导致材料的相变冷作硬化,成为材料强化的途径之一。(一)马氏体可逆转变的特点 具有马氏体可逆转变的不同合金中,马氏体相变的热滞后现象有明显差异。例如,在Fe-Ni合金(以此作为非热弹性马氏体可逆转变的代表)中,A S较M S高420℃,Au-Cd 合金(以此作为热弹性马氏体可逆转变的代表)中A S比M S 仅高16℃,如图3-100所示。显然,这两种合金马氏体相变的驱动力差别很大,前者很大,后者很小。因此,它们的相变行为也有很大的差别。 1、共同特点

热弹性马氏体可逆转变和非热弹性马氏体可逆转变的共同特点是急速加热和冷却都不能遏制转变的进行。在连续冷却时两种合金转变量随温度的变化都是连续的,即转变量是转变温度的函数,符合降温形成马氏体动力学的一般规律。 2、不同特点 主要表现在M S以下两种合金马氏体的长大方式有着明显的差别。 (1)非热弹性马氏体 在Fe-Ni合金中,连续冷却时新马氏体片不断形成,每一片都是突然出现,并迅速长大到极限尺寸。因此,相变速率是温度下降速率的函数,马氏体是由成核率及每一片马氏体长大后的大小来决定的,而和长大速度无关。因为Fe-Ni 合金马氏体相变驱动力很大,马氏体片长大速度极快。而马氏体在成核长大过程中,新相和母相必须保持共格关系,所以,当成长着的马氏体片周围的奥氏体,因马氏体片长大而产生塑性变形,在变形达到新相和母相的共格关系被破坏的程度时,片的长大便会停止。这时,若继续降低温度,虽然相变驱动力增大,但上述马氏体片因共格关系已被破坏,所以不再长大,只有在母相其他位置上出现新的符合相变热力学条件的马氏体核胚,长成新的马氏体。 (2)热弹性马氏体

铁素体奥氏体马氏体等归纳

1铁素体,奥氏体,马氏体是钢在不同温度下,或是不同处理使得存在形式,首先碳溶在铁中若含量极少,小于0.0218%,在较低温度时就会形成铁素体,碳含量增加的话就会存在铁素体和渗碳体,铁素体和渗碳体机械混合结构和成珠光体,将碳含量小于0.77%的铁加热到727摄氏度以上就会变成奥氏体,奥氏体与铁素体的不同是结构不一样,奥氏体是面形立方,铁素体是体心立方,将奥氏体以极快的速度冷却,它就不能变为低温下的铁素体和渗碳体混合结构,因为碳原子无法扩散,直接就切变成体心立方的马氏体,马氏体是碳过饱和溶于体心立方的铁中,之所以研究这些东西,在于这些结构的性质不同,如,铁素体有好的塑形,但是非常软,马氏体是很硬的,但塑形不怎么样,一般淬火得到的就是马氏体,2正火得到珠光体组织,淬火是将奥氏体变化为马氏体,回火是将马氏体变为铁素体。 加入锰和镍能将奥氏体临界转变温度降至室温以下,使钢在室温下保持奥氏体组织,即所谓奥氏体钢。 3铁素体,奥氏体都有很好的塑性,韧性,珠光体有较高的综合机械性能;莱氏体\渗碳体都是脆性的,硬度高,耐磨性好;索氏体较珠光体有更高的综合机械性能;马氏体分2种:低碳M有很高的强韧性,高碳M有更高的耐磨性;屈氏体较索氏体的层片间距更小,屈服强度更高,弹性更好. 4奥氏体——碳与合金元素溶解在γ-Fe中的固溶体,仍保持γ-Fe的面心立方晶格。晶界比较直,呈规则多边形;淬火钢中残余奥氏体分布在马氏体间的空隙处铁素体——碳与合金元素溶解在a-Fe中的固溶体。 亚共析钢中的慢冷铁素体呈块状,晶界比较圆滑,当碳含量接近共析成分时,铁素体沿晶粒边界析出。 渗碳体——碳与铁形成的一种化合物。 在液态铁碳合金中,首先单独结晶的渗碳体(一次渗碳体)为块状,角不尖锐,共晶渗碳体呈骨骼状。过共析钢冷却时沿Acm线析出的碳化物(二次渗碳体)呈网结状,共析渗碳体呈片状。铁碳合金冷却到Ar1以下时,由铁素体中析出渗碳体(三次渗碳体),在二次渗碳体上或晶界处呈不连续薄片状。 珠光体——铁碳合金中共析反应所形成的铁素体与渗碳体的机械混合物。 珠光体的片间距离取决于奥氏体分解时的过冷度。过冷度越大,所形成的珠光体片间距离越小。在A1~650℃形成的珠光体片层较厚,在金相显微镜下放大400倍以上可分辨出平行的宽条铁素体和细条渗碳体,称为粗珠光体、片状珠光体,简称珠光体。在650~600℃形成的珠光体用金相显微镜放大500倍,从珠光体的渗碳体上仅看到一条黑线,只有放大1000倍才能分辨的片层,称为索氏体。在600~550℃形成的珠光体用金相显微镜放大500倍,不能分辨珠光体片层,仅看到黑色的球团状组织,只有用电子显微镜放大10000倍才能分辨的片层称为屈氏体。 上贝氏体——过饱和针状铁素体和渗碳体的混合物,渗碳体在铁素体针间。 过冷奥氏体在中温(约350~550℃)的相变产物,其典型形态是一束大致平行位向差为6~8od铁素体板条,并在各板条间分布着沿板条长轴方向排列的碳化物短棒或小片;典型上贝氏体呈羽毛状,晶界为对称轴,由于方位不同,羽毛可对称或不对称,铁素体羽毛可呈针状、点状、块状。若是高碳高合金钢,看不清针状羽毛;中碳中合金钢,针状羽毛较清楚;低碳低合金钢,羽毛很清楚,针粗。转变时先在晶界处形成上贝氏体,往晶内长大,不穿晶。 下贝氏体——同上,但渗碳体在铁素体针内。 过冷奥氏体在350℃~Ms的转变产物。其典型形态是双凸透镜状含过饱和碳的铁素体,并在其内分布着单方向排列的碳化物小薄片;在晶内呈针状,针叶不交叉,但可交接。与回火马氏体不同,马氏体有层次之分,下贝氏体则颜色一致,下贝氏体的碳化物质点比回火马氏体粗,易受侵蚀变黑,回火马氏体颜色较浅,不易受侵蚀。高碳高合金钢的碳化物分散度

马氏体转变的主要特征

马氏体转变的主要特征 马氏体转变是在低温下进行的一种转变。对于钢来说,此时不仅铁原子已不能扩散,就是碳原子也难以扩散。故马氏体转变具有一系列不同于加热转变以及珠光体转变的特征。这里只提出几个最重要的转变特征,其它特征将在以后各有关的章节内讨论。 (一)马氏体转变的非恒温性 必须将奥氏体以大于临界冷却速度的冷却速度过冷到某一温度才能发生马氏体转变。也就是说马氏体转变有一上限温度。这一温度称为马氏体转变的开始温度,也称为马氏 体点,用M S 表示。不同材料的M S 是不同的。当奥氏体被过冷到M S 点以下任一温度,不需经过孕育,转变立即开始,且以极大的速度进行,但转变很快停止,不能进行到终了如下图1所示。为了使转变能继续进行,必须降低温度,即马氏体转变是温度的函数,如图2所示,而与等温时间与无关,或者说,马氏体量只取决于冷却所达到的温度。当温度降到某一温度以下时,虽然马氏体转变未达到100%,但转变已图1 马氏体等温转变曲线 图2 马氏体转变与温度的关系

不能进行。该温度称为马氏体转变终了点,用M f 表示(图 2)。如某钢的M S 高于室温而M f 低于室温,则冷却至室温时还将保留一定数量的奥氏体,称为残余奥氏体。如果继续冷至室温以下,未转变的奥氏体将继续转变为马氏体直到M f 点。深冷至室温以下在生产上称为冷处理。马氏体的这一特征称为非恒温性。 对于某些M S 点低于0℃ 的Fe-Ni-C 等合金来说,当 过冷至M S 点以下时,马氏体 可能爆发形成,即最初形成 的马氏体有可能促发一定数 量的奥氏体转变为马氏体, 未转变的奥氏体样必须在继续冷却的情况下才能转变,且有可能再次爆发形成。在此情况下,马氏体转变量与温度的关系如图3所示。 也还有少数M S 点低于0℃的合金,如Fe-Ni-Mn ,Fe-Ni-Cr 以及高碳高锰钢等可以发生马氏体等温度转变。其动力学特征与珠光体等温转变很相似,也有“C ”型曲线(图4),不同点是等温转变量不多,转变不能进行到底。 (二)马氏体转变的切变共格与表 面浮凸现象 图3 爆发式转变时的马氏体转变量与温度的关系 图4 Fe-23%Ni-3.7%Mn 合金 马氏体等温转变动力学

奥氏体不锈钢与马氏体不锈钢的区别

管件知识(2)奥氏体不锈钢与马氏体不锈钢的区别 奥氏体不锈钢与马氏体不锈钢的区别与不同用处 奥氏体不锈钢:在常温下具有奥氏体组织的不锈钢。钢中含Cr约18%、Ni 8%~10%、C约0.1%时,具有稳定的奥氏体组织。奥氏体铬镍不锈钢包括著名的18Cr-8Ni 钢和在此基础上增加Cr、Ni含量并加入Mo、Cu、Si、Nb、Ti等元素发展起来的高Cr-Ni系列钢。奥氏体不锈钢无磁性而且具有高韧性和塑性,但强度较低,不可能通过相变使之强化,仅能通过冷加工进行强化。如加入S,Ca,Se,Te等元素,则具有良好的易切削性。此类钢除耐氧化性酸介质腐蚀外,如果含有Mo、Cu等元素还能耐硫酸、磷酸以及甲酸、醋酸、尿素等的腐蚀。此类钢中的含碳量若低于0.03%或含Ti、Ni,就可显著提高其耐晶间腐蚀性能。高硅的奥氏体不锈钢浓硝酸肯有良好的耐蚀性。由于奥氏体不锈钢具有全面的和良好的综合性能,在各行各业中获得了广泛的应用。 奥氏体型钢 (1)1Cr17Mn6Ni15N;(2)1Cr18Mn8Ni5N;(3)1Cr18Ni9;(4)1Cr18Ni9Si3;(5)0Cr18Ni9;(6)00Cr19Ni10;(7)0Cr19Ni9N;(8)0Cr19Ni10NbN; (9)00Cr18Ni10N;(10)1Cr18Ni12;(11) 0Cr23Ni13;(12)0Cr25Ni20;(13) 0Cr17Ni12Mo2;(14) 00Cr17Ni14Mo2;(15) 0Cr17Ni12Mo2N;(16) 00Cr17Ni13Mo2N;(17) 1Cr18Ni12Mo2Ti;(18) 0Cr18Ni12Mo2Ti;(19) 1Cr18Ni12Mo3Ti;(20) 0Cr18Ni12Mo3Ti;(21) 0Cr18Ni12Mo2Cu2;(22) 00Cr18Ni14Mo2Cu2;(23) 0Cr19Ni13Mo3;(24) 00Cr19Ni13Mo3;(25) 0Cr18Ni16Mo5;(26) 1Cr18Ni9Ti;(27) 0Cr18Ni10Ti;(28) 0Cr18Ni11Nb;(29) 0Cr18Ni13Si4 1.概述 奥氏体不锈钢1913年在德国问世,在不锈钢中一直扮演着最重要的角色,其生产量和使用量约占不锈钢总产量及用量的70%。钢号也最多,当今我国常用奥氏体不锈钢的牌号就有40多个,最常见的就是18-8型。 定义:常温下具有奥氏体组织的不锈钢。 分类:Fe-Cr-Ni (主体) Fe-Cr-Mn

第三章 改变材料性能的主要途径

1.练习题 一、填空题 1.钢加热时奥氏体形成是由【A 晶核的形成】,【A 晶核的长大】,【剩余C Fe 3的溶解】和【A 成分的均匀化】四个基本过程所组成。 2.在过冷奥氏体等温转变产物中,珠光体与屈氏体的主要相同点是【都是由F 和C Fe 3组成的机械混合物】,不同点是【T 的片层间距比P 的片层间距小、强度硬度比P 高】 3.用光学显微镜观察,上贝氏体的组织特征呈【羽毛】状,而下贝氏体则呈【针】状。 4.与共析钢相比,非共析钢C 曲线的特征是【亚共析钢多一条铁素体析出线,过共析钢多一条渗碳体析出线】。 5.马氏体的显微组织形态主要有【板条状】、【针状】两种,其中【板条状】的韧性较好。 6.钢的淬透性越高,则其C 曲线的位置越【靠右】,说明临界冷却速度越【小】。 7.钢的热处理工艺是由【加热】、【保温】、【冷却】三个阶段组成。一般来讲,它不改变被处理工件的【形状】,但却改变其【组织与性能】。 8.利用C Fe Fe 3-相图确定钢完全退火的正常温度范围是【3Ac 以上20~30C 0】,它只适应于 【亚共析】钢。 9.球化退火的主要目的是【使P 中的C Fe 3球化,降低硬度,便于加工】,它主要适用于【高碳钢】。 10.钢的正常淬火温度范围,对亚共析钢是【3Ac 以上30~50C 0】,对过共析钢是【1Ac 以上30~50C 0 】。 11.当钢中发生奥氏体向马氏体的转变时,原奥氏体中碳含量越高,则Ms 点越【低】,转变后的残余奥氏体量就越【多】 12.在正常淬火温度下,碳素钢中共析钢的临界冷却速度比亚共析钢和过共析钢的临界冷却速度都 【小】。 13.钢热处理确定其加热温度的依据是【C Fe Fe 3-相图】。而确定过冷奥氏体冷却转变产物的依据是【C 曲线】 14.淬火钢进行回火的目的是【获得所要求的力学性能、消除内应力、稳定组织和尺寸】回火温度越高,钢的硬度越【低】 15.钢在回火时的组织转变过程是由【碳的偏聚】、【马氏体的分解】、【残余奥氏体的转变】和 【渗碳体的聚集长大和铁素体再结晶】。 16.化学热处理的基本过程包括【分解】、【吸收】和【扩散】三个阶段。 17.索氏体和火花索氏体在形态上的区别是【S 中C Fe 3呈片状,而回火S 中的C Fe 3呈粒状】,在性能上的区别是【在强度、硬度相同时,回火S 的塑性、韧性比正火S 的好】。 二、不定项选择题 1.钢在淬火后获得的马氏体组织的粗细主要取决于【b .奥氏体的实际晶粒度 d.奥氏体的最终晶粒度】 2.奥氏体向珠光体的转变是【a.扩散型转变 d.高温转变】 3.钢经调质处理后获得的组织是【c.回火索氏体】 4.过共析钢的正常淬火加热温度是【b.C A o c )50~30(1+】 5.影响碳钢淬火后残余奥氏体量的主要因素是【b.钢中奥氏体的碳含量 d.钢的淬火加热温度】 6.共析钢过冷奥氏体在550~350的温度区间等温转变时,所形成的组织是【c.上贝氏体】 7.若合金元素能使C 曲线右移,则钢的淬透性将【b.提高】 8.马氏体的硬度取决于【c.奥氏体的碳含量】 9.淬火时,零件易变形、干裂的形状可能有【b. 有尖角d.壁厚不均匀】 10.对形状复杂,截面变化大的钢件进行淬火时,应选用【a.高淬透性钢】 11.对形状复杂,截面变化大的零件进行淬火时,应采用【c.盐浴中淬火】 12.若要提高淬火时的淬硬层深度,应采取【a.选择高淬透性钢】

铁素体马氏体和奥氏体的区别

铁素体和奥氏体的区别 钢的组织和特性?铁是钢的基本组成元素。铁在固态有两种晶体结构,一是体心立方结构(存在于两个温度范围内,?912?℃?以上称?α? 铁,?1394?℃?以上称?δ?铁);另一是面心立方结构(存在 于?912?~?1394?℃?之间,称?γ?铁)。碳是钢中另一主要元素,对钢的组织和性能起重要作用,通常随着含碳量的增加,钢的强度增加、塑性下降。碳在钢中主要有两种存在形式,一是溶入铁中与铁形成固溶体(两种以上化学组分互相溶解而形成的均匀固相);另一是与铁形成铁碳化合物,称渗碳体(?Fe?3C?),其硬度高、脆性大。碳溶于?α?铁中形成的固溶体称铁素体;溶于?γ?铁中形成的固溶体称奥氏体,其最大溶解度为??%。钢在冷却过程中,过饱和的奥氏体将发生分解,形成铁素体和渗碳体。铁素体和渗碳体组成的呈片状相间排列的混合物称珠光体。一般碳素钢在室温下的金相组织由铁素体、珠光体和渗碳体组成? 铁素体是碳溶解在a-Fe中的间隙固溶体,常用符号F表示。 不锈钢中的“铁素体”,指的是碳溶解在a-Fe中的间隙固溶体,其溶碳能力很小,常温下仅能溶解为%的碳,在727℃时最大的溶碳能力为%, 它仍保持的体心立方晶格.常用符号F表示。

由于铁素体含碳量很低,其 c:\iknow\docshare\data\cur_work\&aid=6148&sid=&click=1&url=http:的是在使用状态下以铁素体组织为主的不锈钢。它的含铬量在11%~30%,具有体心立方晶体结构,至于不锈钢含铁量与它是否是铁素体不锈钢并无关系.铁素体不锈钢只取决于在使用状态下,它是否以铁素体组织为主. 铁素体有磁性. 在使用状态下以铁素体组织为主的不锈钢。含铬量在11%~30%,具有体心立方晶体结构。这类钢一般不含镍,有时还含有少量的Mo、Ti、Nb等到元素,这类钢具导热系数大,膨胀系数小、抗氧化性好、抗应力腐蚀优良等c:\iknow\docshare\data\cur_work\&aid=6025&sid=&click=1&url=http:727℃1148℃727℃是奥氏体不锈钢的三大元素之一(碳、铬、镍)。镍在奥氏体不锈钢中的作用是与碳紧密结合(不锈钢含碳量越大越容易生锈,为了使奥氏体不锈钢既具有强度又不容易生锈,就需要控制碳的含量,而镍正好弥补这一缺陷),增加其强度及硬度。因为镍抗磁性元素,所以奥氏体不锈钢是没有磁性的。因为铁素体不锈钢主要用于加工装饰方面,需具有良好的塑性与韧性,所以它只含极少量的镍元素,因而它是有磁性的。B. 因为马氏体和铁素体的内部电子都有规则的排列;决定磁性的关键因素是排列规则的电子有规律的运动.而镍正好破坏了电子间这种有规则的排列。 为什么不锈钢不生锈铬具有耐腐蚀性。奥氏体不锈钢、马氏体和铁素体不锈钢都含有12%——30%的铬元素,所以它们不生锈。

奥氏体马氏体知识

固态金属及合金都是晶体,即在其内部原子是按一定规律排列的,排列的方式一般有三种即:体心立方晶格结构、面心立方晶格结构和密排六方晶格结构。金属是由多晶体组成的,它的多晶体结构是在金属结晶过程中形成的。组成铁碳合金的铁具有两种晶格结构:910℃以下为具有体心立方晶格结构的α——铁,910℃以上为具有面心立方晶格结构的Υ——铁。如果碳原子挤到铁的晶格中去,而又不破坏铁所具有的晶格结构,这样的物质称为固溶体。碳溶解到α——铁中形成的固溶体称铁素体,它的溶碳能力极低,最大溶解度不超过0.02%。而碳溶解到Υ——铁中形成的固溶体则称奥氏体,它的溶碳能力较高,最高可达2%。奥氏体是铁碳合金的高温相。钢在高温时所形成的奥氏体,过冷到727℃以下时变成不稳定的过冷奥氏体。如以极大的冷却速度过冷到230℃以下,这时奥氏体中的碳原子已无扩散的可能,奥氏体将直接转变成一种含碳过饱和的α固溶体,称为马氏体。由于含碳量过饱和,引起马氏体强度和硬度提高、塑性降低,脆性增大。不锈钢的耐蚀性主要来源于铬。实验证明,只有含铬量超过12%时钢的耐蚀性能才会大大提高,因此,不锈钢中的含铬量一般均不低于12%。由于含铬量的提高,对钢的组织也有很大影响,当铬含量高而碳含量很少时,铬会使铁碳平衡,图上的Υ相区缩小,甚至消失,这种不锈钢为铁素体 组织结构,加热时不发生相变,称为铁素体型不锈钢。当含铬量较低(但高于12%),碳含量较高,合金在从高温冷却时,极易形成马氏体,故称这类钢为马氏体型不锈钢。镍可以扩展Υ相区,使钢材具有奥氏体组织。如果镍含量足够多,使钢在室温下也具有奥氏体组织结构,则称这种钢为奥氏体型不锈钢。

马氏体转变

第四章马氏体转变 4-1 M转变的主要特征 1.M转变属于非扩散相变,具有无扩散性 实验依据 (1)M的化学成分与转变钱A的化学成分完全相同 (2)穆斯堡尔谱测定的结果表明,在发生M转变时原来A中碳原子所处的位置,直接遗传给M (3)M转变速度极快,即使在下,M长大速度为,每一片M形成约需 上述三点证明M转变过程未发生原子的扩散,非扩散机制 无扩散含义:(a)相变时原子的位移量小于一个原子间距 (b)在M转变前的原子的相对位置不变 (c)转变过程原子协同移动(军队式转变) 2.M转变的共格切变性 在发生M相变时,原来磨光的表面上会出现浮凸,原来划在表面上的直线变成折线,而且即不断开也不弯折,因而说明: (1)发生倾动的表面一直保持为一个平面,即发生了均匀的切变 均匀切变:晶胞的变形和晶体的宏观变形相似 (2)A/M界面为共格或半共格 (3)M转变时有一个惯习面,M与A之间有一定的位向关系、 惯习面:M总是在母相A的一定晶面上形成,这一定的晶面称之为惯习面。以母相的晶面指数表示。M的惯习面随钢中的含碳量不同而不同,例如 马氏体的惯习面尺寸不变,也不转动,所以称为不变平面,M转变时发生共格切变,总是保持惯习面为不变平面,因为M转变时的应变又称为不变平面应变。 位向关系:M与原A为共格或半共格,故存在位向关系,现以观测到的有 定义:M转变:在冷却过程中发生无扩散,共格切变方式的固态相变。称之为M转变。其转变产物为M。 马氏体:是无扩散,共格切变式的固态转变的产物,M是非平衡相变的产物,因而是非平衡组织是亚稳组织,有向稳定组织转变的自发趋势。 3 M相变属一级相变,有体积效应。(V=0);热效应(H 0),M转变形核长大过程。属于有核相变。 4 M转变动力学具有多样性,变温形成。等温形成,爆发形成等。 5 M转变具有不完全性。组织中总含有残余A,且钢的含碳量越高,Ar量也越多。 6 M的转变的可逆性,A M。As~~Af。As高于Ms,Au—ed,Ag—cu, As与Ms仅差20~50.C,Fe—Ni大400。C。Fe—C合金未发现逆变。 7 M转变具有普遍性,黑色,有色,陶瓷都有M转变。 4—2M的晶体结构 1M点阵常数。 早在20年代人们用X射线的方法测定室温下,常用碳钢点阵常数a和c,计算c/a(正方度)发生它们和M的含碳量呈线性关系,并可导出一组公式 A1=2.861A0 A-FD点阵常数c/a~正方度由此可见由于c原子强制溶入使c/a不等于1a-Fe

马氏体转变及其应用

马氏体转变概述 摘要:钢经奥氏体化后快速冷却,抑制其扩散性分解,在较低的温度下发生的无扩散型相变为马氏体转变。马氏体转变是钢件热处理强化的主要手段。因此,马氏体转变的理论研究与热处理生产实践有着十分密切的关系。本文简略介绍了碳钢中的马氏体转变的定义、机理、研究过程、和技术运用情况[1]。 1 马氏体转变的特点及定义 1.1 马氏体相变是无扩散型相变 因为相变前后化学成分不变,新相(马氏体)和母相(奥氏体)碳的质量分数相同,只是晶格结构由面心立方晶格转变成了体心立方晶格而且马氏体相变可以在-196℃到-296℃低温下进行,这样低的温度原子扩散极困难,所以相变不可能以扩散方式进行,因此马氏体相变过程中,原子有规则移动,原来相邻的原子相变以后仍然相邻,原子不发生扩散就可以发生马氏体相变[2]。 1.2 切变共格和表面浮凸现象 人们早就发现,在高碳钢样品中产生马氏体转变之后,在其磨光的表面上出现倾动,形成表面浮凸。这个现象说明转变和母相的宏观切变有着密切关系。马氏体形成是以切变的方式实现的,同时马氏体和奥氏体之间界面上的原子是共有的,既属于马氏体,又属于奥氏体,而且整个相界面是互相牵制的,这种界面称为“切变共格”界面[3]。 1.3 马氏体转变是在一个温度范围内形成 就马氏体相变而言,不但在快冷的变温过程中有马氏体相变,而且在等温过程中,也有等温马氏体产生,如Fe - Ni26 - Cu3 合金所能发生等温马氏体相变,但钢的马氏体相变是在一个温度范围内形成的[4]。 当奥氏体被冷却到Ms点以下任一温度时,不需经过孕育,转变立即开始,转变速度极快,但转变很快就停止了,不能进行到终了,为了使转变继续进行,必须降低温度,也就是说马氏体是在不断降温条件下才能形成。这是因为在高温下母相奥氏体中某些与晶体缺陷有关的有利位置,通过能量起伏和结构起伏,预先形成了具有马氏体结构的微区。这些微区随温度降低而被冻结到低温,在这些微区里存在一些粒子,这些粒子在没有成为可以长大成马氏体的晶核以前我们叫它核胚。从高温冻结下来的核胚有大有小,从经典的相变理论可知:冷却达到的

相关主题
文本预览
相关文档 最新文档