当前位置:文档之家› 焦炉工艺

焦炉工艺

焦炉工艺
焦炉工艺

焦炉工艺

焦炉又称炼焦炉,煤炼焦的设备。是焦化技术中的关键。煤焦化技术的应用已有200多年的历史,其炉子的结构形式经历了许多变化。初期炼焦仿造烧木炭的过程采用成堆干馏。18世纪中期,开始演变成砖砌的半封闭式长窑炉。1763年开始采用全封闭式圆窑即蜂窝炉。成堆干馏和窑炉干馏共同的特点是内部加热,即炭化和燃烧在一起,靠燃烧一部分煤和干馏煤气直接加热其余的煤而干馏成焦。19世纪中期,焦炉技术发生转折性变革,从窑炉发展到外部加热的炭化室炼焦阶段,出现倒焰炉。这种焦炉是将成焦的炭化室和加热的燃烧室用墙隔开,在隔墙上部设有通道,炭化室内煤的干馏气经此通道直接流入燃烧室,与来自燃烧室顶部风道的空气混合,自上而下地流动燃烧,这种炉子已经具备了现代焦炉最基本的特征。19世纪70年代,建成了回收化学产品的焦炉,使炼焦走向生产多种产品的重要阶段。此后不久,1883年建成了利用烟气废热的蓄热式焦炉,至此,焦炉在总体上基本定型。

现代焦炉炉体由炭化室、燃烧室和蓄热室三个主要部分构成。一般,炭化室宽0.4~0.5m、长10~17m、高4~7.5m,顶部设有加煤孔和煤气上升管(在机侧或焦侧),两端用炉门封闭。燃烧室在炭化室两侧,由许多立火道构成。蓄热室位于炉体下部,分空气蓄热室和贫煤气蓄热室。

现代化焦炉主要部分用硅砖砌筑,火道温度可达到1400℃。成焦时间因炭化室宽度和火道温度不同,一般为13~18h。焦炉机械有装煤车、推焦车、导焦车和熄焦车等。由装煤车把煤装入炭化室,炼成的焦炭用推焦车推出,赤热的焦炭经导焦车落入熄焦车内,经水熄或回收热能的干法熄焦。熄过的焦炭放到焦台上。焦炭经过筛选后作为产品外送。

为了改善炼焦生产条件,现代焦炉操作除了机械化、自动化之外,还建有防治烟尘和处理污水装置。电子计算机也已开始用于焦炉操作。炉子向大型化发展,炭化室有效容积增加到50m3。为了提高焦炉生产能力,采取降低炉墙

焦炉炉体为双联火道、废气循环、宽炭化室、宽蓄热室、焦炉煤气下喷的单热式焦炉。熄焦采用湿法熄焦;装煤采用捣固侧装方式;装煤、推焦设有地面除尘站

3.2.5.1备煤车间

备煤包括煤的堆存、配煤、粉碎和输送。

●煤场

精煤由本公司或外地洗煤厂购进,从外省购进的洗精煤用火车运进厂内的经卸料槽后用皮带运至精煤堆场,汽车可直接运送至精煤堆场;本地精煤由矿区各洗煤厂汽运至精煤堆场。煤场主要用于贮存各种炼焦煤。

炼焦煤在煤场经过一段时间的贮存后,能够达到煤质均匀化和脱水的目的;同时保证焦炉连续、均衡生产,并稳定焦炭的质量。

拟建煤场的设计容量为3.5万t,操作容量为2.7万t。按4种煤计算,满足焦炉15天的用煤量。

●地下受配煤槽

地下受配煤槽是将各种牌号的炼焦用煤,根据配煤试验确定的配比进行配合,使配合后的煤能够炼出符合质量要求的焦炭,同时合理利用煤炭资源,降低生产成本。受配煤槽采用锥形斗嘴,操作稳定,仓壁配有仓壁振动器,可防止配煤槽内棚料,提高配煤的准确性。

●粉碎

粉碎机室是将配合后的煤进行粉碎处理,使其细度<3mm的煤达到80%以上,从而保证装炉煤的粒度均匀,达到提高焦炭质量的目的。

由受配煤机槽来的配合煤经除铁件后,进入粉碎机室进行粉碎。粉碎机为2台200t/h的反击式粉碎机,1用1备。

本工程设计采用地下受煤坑,备煤工艺采用先配合再粉碎的工艺流程。备煤系统分为卸料系统、备料系统及配煤粉碎系统。从精煤卸料开始至煤场为卸料系统;从煤场开始至配煤仓顶为备料系统;从配煤仓下电子自动配料秤开始至煤塔顶为配煤粉碎系统。备煤系统能力按60万吨/年产焦配套设计,卸料系统能力为600t/h,备料系统能力为300t/h,配煤粉碎系统能力为200t/h。

炼焦所需的洗精煤运至煤场,由推土机或装载机将煤卸到地下受煤槽中,用圆盘给料机配煤。配好的煤通过皮带机送到粉碎室,粉碎后的煤通过胶带机送入焦炉煤塔中,保证焦炉的正常生产。

炼焦、熄焦车间

炼焦采用炉外煤饼捣固侧装入炉高温干馏湿法熄焦工艺,焦炉采用

TJL4350D型焦炉。TJL4350D型焦炉借鉴了化学工业第二设计院设计的双联、下喷、废气循环焦炉技术及TJL940E型捣固焦炉成功的经验,并根据非钢铁企业没有贫煤气的特点,采用了化学工业第二设计院设计的双联、下喷、废气循环、单热式捣固侧装煤焦炉,该焦炉具有国内先进经验。炉组规模为2×50孔。

熄焦塔高36米,顶部装有折流式捕尘器,可捕集熄焦时产生的大量焦尘和水雾,除尘效率在80%以上。

炼焦工艺流程简述:

贮煤场的精洗煤由输煤皮带运至偏置于机侧装煤推焦机上方的贮煤塔备用,中途用电磁除铁器除掉煤中的铁块或铁器。通过摇动给料机连续均匀分层给料并由设于上方的多锤捣固机逐层夯实,然后从机侧将捣好的煤饼送入各炭化室中,煤饼在950℃~1050℃的高温下,干馏成焦炭,

成熟的焦炭由推焦车推出经除尘拦焦车导入熄焦车箱内,然后由熄焦车运至熄焦塔喷淋熄焦,熄灭后的焦炭被卸至凉焦台,凉焦台上的焦炭冷却后经刮板放焦机、皮带机将焦炭送往筛焦工段进行筛分处理。

煤在炭化室内干馏过程中产生的荒煤气汇集到炭化室顶部空间进入机侧上升管,在桥管处由循环氨水喷淋冷却,700℃左右的荒煤气在桥管及集气管内经循环氨水喷洒后温度降至82℃左右,荒煤气中焦油等同时冷凝下来。煤气和冷凝下来的焦油等同氨水一起经吸煤气管道进入冷凝鼓风工段,进入煤气净化系统。装煤过程逸散的荒煤气,由设在炉顶的消烟除尘车吸至车上燃烧室,完全燃烧后经过洗涤烟尘分离后,废气排入大气,洗涤用水排入粉焦沉淀池循环使用。出焦过程中产生的焦尘由设置在拦焦车上的集气罩将推焦烟气收集后,送到地面站布袋除尘器净化后排入大气。

焦炉加热用的回炉煤气经煤气总管、支管从焦炉下部进入各燃烧室,经焦炉煤气预热器预热至45℃左右送入地下室,再经下喷管进入燃烧室立火道与从废气交换开闭器进入蓄热室经预热的空气汇合燃烧。燃烧后的废气通过立火道顶部跨越孔进入下降气流的立火道,经过蓄热室热交换后再进入小烟道,经废气交换开闭器、分烟道、总烟道、烟囱排入大气。

上升气流的煤气和空气与下降气流的废气由液压交换传动装置定时进行换向。

筛焦车间

焦炭按四级筛分(≥40mm,40~25mm,25~10mm,<10mm)。筛焦楼内设振动筛,按粒径大小进行筛分。筛焦楼内设有4个冶金焦仓和焦丁、焦末仓各1个,冶金焦仓总贮量为600t,焦丁、焦末仓均为75t。仓上使用可逆配仓胶带机布料及密封。

凉焦台上的焦炭放至胶带输送机送入筛焦楼内的三层振动筛筛分,筛上≥40mm,筛中40~25mm和25~10mm的焦炭,筛下<10mm,筛分后的焦炭分别进各自的贮仓,直接装车外售或送至焦场堆存;<10mm小焦及焦粉可外卖,也可破碎后掺混炼焦。

图3-7 炼焦车间工艺流简图

3.2.5.4煤气净化车间

由焦炉来的荒煤气采用横管初冷却器两段冷却工艺,由设置于鼓风机前的蜂窝式电捕焦油器进一步脱除煤气中的焦油雾;煤气鼓风机后脱硫采用PDS栲胶为复合催化剂的湿式氧化法脱硫工艺;脱氨采用泡沸伞式饱和器法硫铵工艺;煤气脱苯采用焦油洗油洗苯工艺。其煤气净化系统如下:

焦炉来荒煤气初冷器电捕焦油器煤气鼓风机脱硫塔泡沸伞式饱和器终冷塔洗苯净化煤气自用或外送

(1)冷凝鼓风及电捕

本工段包括焦炉荒煤气的间接冷却、电捕除焦油、煤气输送及焦油、氨水分离等工艺。

高温焦炉荒煤气经气液分离器分离后降至82℃左右,再依次进入并联操作的间接式横管初冷器进行一、二两段冷却,煤气冷却至22℃,接着,煤气入蜂窝式电捕焦油器,在高压直流电场作用下除去所含的焦油雾。而后,煤气进入煤气鼓风机加压送往脱硫工段。

从煤气气液分离器分离的循环氨水与焦油混合液进入机械化氨水澄清槽。其中,沉积的焦油渣由刮板机刮出落入渣箱,定期运往备煤系统掺入炼焦煤料中;循环氨水由澄清槽上部引至循环氨水中间槽,继续由循环氨水泵返送回焦炉系统用于冷却出炉的高温荒煤气;剩余氨水经蒸氨后的蒸氨废水送入生化污水处理站处理;焦油从澄清槽下部经液位调节器控制流入焦油中间槽作为产品送往油库。

在煤气间接式初冷器中冷却产生的煤气冷凝液和喷洒冲洗液首先进入冷凝液中间槽,然后溢流至冷凝液贮槽。该冷凝液的一部分送进混合液槽中,与一定量的焦油混合后用作煤气初冷器的喷洒液,以清除煤气初冷器内冷却横管外壁上的积萘,以提高初冷器冷却煤气的效果;其余冷凝液则送入循环氨水与焦油混合液系统。

(2)脱硫工段

本工段包括煤气的脱硫、脱硫液的再生、硫泡沫沉淀分离和熔硫、硫磺产品的贮存及剩余氨水的蒸馏等工艺过程。

从煤气鼓风机来的煤气,首先进入煤气预冷塔底部;来自冷鼓工段的氨水则从预冷塔顶部进入、喷洒,与煤气逆流接触将其冷却。然后煤气进脱硫塔与塔顶喷淋的再生脱硫母液逆液接触,经过脱硫的煤气自脱硫塔上部引出送往硫铵工段。

脱硫液从脱硫塔底部流经液封槽进入反应槽,由此用泵送再生塔底与压缩空气混合一起自下而上顺流接触,氧化再生。再生后的脱硫液由再生塔上部流出,经液位调节器返回脱硫塔循环再用。

由脱硫液再生产生的硫泡沫浮于再生塔顶扩大部分,利用位差自流入硫泡沫槽,通过加热、搅拌、澄清分层后,清液经碱液漏斗返回反应槽,浓缩的硫泡沫则直接流入熔硫釜熔硫。熔融硫冷却盘,自然冷却后即为

产品硫磺,入仓待售。

在生产过程中,为了避免脱硫液积累过量铵引起的降低脱硫效率,需排出少量废液,送生化污水处理站处理。

(3)蒸氨工段

脱硫过程中的剩余氨水引入蒸氨塔内进行蒸氨,蒸出浓氨汽经冷凝冷却后制得含氨18~20%的浓氨水,送入脱硫液槽,兑入脱硫液中,作为补充碱源。

对蒸氨废气选用目前国内较先进的氨裂解处理技术。在裂解炉内,氨气在触媒的作用下,通过控制炉温可将蒸氨废气中的氨还原成氢气、氮气和一氧化碳气,并将这部分混合气体返回煤气管道中,不仅防止了对大气的污染,而且还可增加煤气量,是一项回收能源、化害为利的控制措施,该技术成熟、可靠,在国内外焦化厂均有使用。

(4)硫铵工段

由脱硫工段送来的煤气经煤气预热器预热至70℃后进入喷淋式饱和器上段的喷淋室,在此煤气与循环母液充分接触,使其中的氨被硫酸吸收。煤气经饱和器内的除酸器分离酸雾后送至洗脱苯工段。

在饱和器母液中不断有硫铵晶体生成,用结晶泵将其连同一部分母液送至结晶槽,然后经离心分离、干燥、称重、包装后外售。离心分离出的结晶母液返回饱和器循环使用。

(5)洗脱苯工段

来自硫铵工段的粗煤气,首先进入煤气隔板式终冷却器,冷却后从洗脱塔底部入塔,由下而上经过洗苯塔填料层,与塔顶喷淋的循环洗油逆流接触,煤气中的苯被循环洗油吸收,进一步脱除煤气中的焦油和萘;再经过塔的捕雾段脱除雾滴后离开洗苯塔,其中部分净煤气送焦炉做回炉煤气及脱苯管式炉燃料,剩余部分外送。

由洗苯装置送来的含苯富油,首先进入粗苯冷凝冷却器,与脱苯塔来的粗苯蒸汽间接接触换热到60℃左右,然后进入贫富油换热器,与脱苯塔底来的热贫油间接换热到120~130℃进入管式炉,在管式炉中通入400℃过热蒸汽,富油被加热到180~185℃进入脱苯塔,其中1~2%的富油进入再生器;再生器底部聚合的残渣定期排出;再生器顶部蒸出的气体进入脱苯塔。另外,98~99%的富油进入脱苯塔蒸馏。所得粗苯外售,脱苯后的贫油返回洗苯塔循环使用。

脱苯塔顶部出来的粗苯蒸汽,经粗苯冷凝冷却器进入油水分离器,分离出来的粗苯流入回流槽,在此用泵抽出部分粗苯送到脱苯塔顶回流,多余部分流入计量槽,计量后放入粗苯贮槽,用液下泵装入汽车槽车外售。

脱苯塔底热贫油自流通过贫富油换热器,经间接换热后流入脱苯塔的贫油槽。再经泵抽出,送进一段、二段贫油冷却器,在此用循环水和低温水将贫油冷却到27~30℃,送至洗苯装置的洗苯塔顶进行喷洒,吸收煤气中的苯,洗油循环使用。

从脱苯塔侧线引出的萘油,自流入萘油再生残渣槽。

为了减轻终冷循环水中污染物的积累和对设备的腐蚀。从其下段循环泵出口引出部分污水,送生化污水处理站处理。

电力供应

本工程大部分电力负荷属一、二类负荷,供电电源为两路独立电源,每路皆能承担项目100%的负荷。焦化区域10kV高压配电室电源由八钢焦化区域35kV变电所提供。

给水

根据生产对水质、水温的不同要求,给水系统划分为生产消防给水系统、煤气净化循环水系统、除盐水系统、软水系统、二次利用水系统及夏季喷淋系统等。各系统具有相互独立的管网。

3.2.8.3 排水

a) 无压排水系统

炼焦、煤气净化车间的生产废水排水量39m3/h,浴室等生活设施排放的污水量1 m3/h,其排水均送至酚氰废水处理站。

b) 有压排水系统

蒸氨废水及烟道排水加压后送至酚氰废水处理站, 排水量27 m3/h。

c) 生产净废水排水系统

酚氰废水处理站处理后的达标水,经生产废水排水管道排至高炉水冲渣系统,水量为64 m3/h(使用湿熄焦时,回用量为34 m3/h),其余排至高炉水冲渣系统。

厂区雨排水采用地面排放形式,局部考虑管道排放。

将炉内推出的红热焦炭送去熄焦塔熄火,然后进行破碎、筛分、分级、获得不同粒度的焦炭产品,分别送往高炉及烧结等用户。

熄焦方法有干法和湿法两种。

湿法熄焦是把红热焦炭运至熄焦塔,用高压水喷淋60~90s。

干法熄焦是将红热的焦炭放入熄焦室内,用惰性气体循环回收焦炭的物理热,时间为2~4h。

在炼焦过程中还会产生炼焦煤气及多种化学产品。焦炉煤气是烧结、炼焦、炼铁、炼钢和轧钢生产的主要燃料。

变压吸附技术在焦炉煤气制氢中的应用

变压吸附技术在焦炉煤气制氢中的应用 戴四新 (厦门市建坤实业发展公司,福建厦门 361012) 摘要:介绍了变压吸附(PSA)技术的基本原理及其应用于焦炉煤气提氢的Sysiv和Bergbau PSA制氢典型工艺。指出PSA技术是近年国内外发展最快、技术最成熟、成本最低的煤气制氢方法,在国内焦炉煤气制氢中最具发展前途,应大力推广应用。 关键词:变压吸附(PSA)技术;焦炉煤气;制氢技术 中图分类号:TQ028.1+5 文献标识码:B 文章编号:1004-4620(2002)02-0065-02 Application of the Pressure Shift Absorbing Technique in Hydrogen Making Process from COG DAI Si-xin (Xiamen Jiankun Industry Developing Corp.,Xiamen 361012,China) Abstract:The basic pinciple of the Pressure Shift Absorbing(PSA) Technique and the representative technics(Sysiv and Bergban)of it`s application for hydrogen making process from COG are discribing.It is pointed out that in recend past years the development of the PSA technique for the hydrogen-making process from COG is the most rapid and the technique is also the most perfect and economical way in the world,and it has the best developing foreground in hydrogen-making process from COG in China.It should be expanded and applied widely soon. Key words:pressure shift absorbing(PSA);coke oven gas(COG);hydrogen making technology

工艺流程主数据

工艺流程主数据操作手册 1.系统登陆 (2) 2.系统菜单按钮说明 (3) 3.工艺流程主数据 (5) 3.1.工艺流程主数据DEM图 (5) 3.1.1工作中心 (5) 3.1.2机器 (8) 3.1.3任务 (10) 3.1.4物料工艺流程 (11) 3.1.45工艺流程工序 (12)

1.系统登陆 双击Infor Worktop,出现以下登陆界面: 输入用户名和密码,点击进入系统

2.系统菜单按钮说明 本部分所叙述的内容是全系统通用,功能按钮和功能键的操作功能解释,用户可以根据需要选择学习。在具体的进程中,下面的功能按钮和功能键并不是都由有效,您只能使用有效的操作。 图标按钮: 对操作进行存盘并退出处理 对操作进行存盘处理。 打印信息,输出到打印机。 新增一条记录。 复制记录。 删除信息记录。 取消上一步操作。 查询按钮。点击后弹出相应的查询关键字登录界面 刷新按钮。 单击鼠标点中,向前移动到头条记录。 单击鼠标点中,向前移动到1条记录。 单击鼠标点中,向后移动到1条记录。 单击鼠标点中,向后移动到末条记录。 新增一条组记录。 单击鼠标点中,向前翻屏到头组记录。

单击鼠标点中,向前翻屏到前1组记录。 单击鼠标点中,向后翻屏到后1组记录。 单击鼠标点中,向后翻屏到末组记录。 打开帮助信息。 文字按钮: 关闭一个界面。 保存进程中维护的信息。 取消当前操作。 读取帮助信息。 键盘操作: 【F1】系统当前进程帮助信息。 【F2】弹出计算器功能界面。 【F5】刷新功能。 【Esc】取消操作。 【Tab】跳格键。操作界面上光标在数据框之间的移动,必须用Tab键实现。

(现场管理)炼焦车间工艺流程

1.炼焦车间 1.1概述 本工程炼焦车间采用4×55孔JNDK55-05型5.5m单热式捣固焦炉。单U形集气管(设在焦侧),双吸气管。两个2×55孔炉组布置在一条中心线上。在每个炉组机侧设一个双曲线斗槽的煤塔。装煤除尘采用双U形导烟管的装煤导烟车(CGT车),将装煤烟尘导到n+2和n-1炭化室。出焦除尘设地面站,采用皮带小车式除尘拦焦机。每2×55孔焦炉配一套新型湿法熄焦系统和预留一套干熄焦装置位置。 1.2炼焦基本工艺参数 炭化室孔数4×55 孔 每孔炭化室装煤量(干) 40.6 t 焦炉周转时间25.5 h 焦炉年工作日数365 d 焦炉紧张操作系数 1.07 装炉煤水分10% 煤气产率330 m3/t干煤 全焦率75% 焦炉加热用煤气低发热值: 焦炉煤气17900kJ/m3 装炉煤水份为7%时炼焦干煤相当耗热量 焦炉煤气加热时2250kJ/kg

由备煤车间送来的能满足炼焦要求的配合煤装入煤塔。通过摇动给料器将煤装入装煤推焦机的煤箱内(下煤不畅时,采用风力震煤措施),并将煤捣固成煤饼,装煤推焦机按作业计划从机侧炉门送入炭化室内。煤饼在炭化室内经过一个结焦周期的高温干馏炼制成焦炭和荒煤气。 炭化室内的焦炭成熟后,用装煤推焦机推出,经拦焦机导入熄焦车内,由电机车牵引熄焦车至熄焦塔内进行喷水熄焦。熄焦后的焦炭卸至凉焦台上,冷却一定时间后送往筛贮焦工段进行筛分。 煤在炭化室干馏过程中产生的荒煤气汇集到炭化室顶部空间,经过上升管,桥管进入集气管,约800℃左右的荒煤气在桥管内被氨水喷洒冷却至85℃左右。荒煤气中的焦油等同时被冷凝下来。煤气和冷凝下来的焦油同氨水一起经吸煤气管道送入煤气净化车间。 焦炉加热用的焦炉煤气,由外部管道架空引入。分别进入每座焦炉的焦炉煤气经预热器预热至45℃左右送入地下室,通过下喷管把煤气送入燃烧室立火道与从废气开闭器进入的空气汇合燃烧。燃烧后的废气通过立火道顶部跨越孔进入下降气流的立火道,再经过蓄热室,由格子砖把废气的部分显热回收后经过小烟道、废气交换开闭器、分烟道、总烟道、烟囱,排入大气。 上升气流的煤气和空气与下降气流的废气由交换传动装置定时进行换向。

均四甲苯的生产工艺

均四甲苯的生产工艺 均四甲苯又名杜烯,化学名为:1,2,4,5—四甲基苯,是一种重要的有机化工原料。主要用于生产均苯四甲酸二酐(1,2,4,5—苯甲酸二酐,PMDA),均苯四甲酸二酐是生产聚酰亚胺聚合物的重要原料,聚酰亚胺是一种耐高温、低温、耐辐射、抗冲击且具有优异电性能和机械性能的新型合成材料,在宇航和机电工业中具有其它工程塑料不可替代的重要用途。随着聚酰亚胺市场用量的不断扩大,均四甲苯作为合成其的主要原料,其需求也与日俱增。均四甲苯的生产路线分两类,一类是化学合成法,包括,异构化法、烷基化法、歧化反应法等,合成法不但工艺复杂,成本也较高;另一类是分离提纯法,以石油和煤加工过程中的副产物,主要是C10重芳烃为原料进行分离提纯。我国C10资源丰富,炼油厂的催化重整装置、涤纶厂的宽馏分催化重整装置、乙烯装置以及煤高温炼焦装置等。对于国内企业来说,从C10中提取高附加值的均四甲苯,能为企业带来显著的经济效益。选择一种简单有效、易工业化的技术路线,具有重要意义。 C10原料中约含8—12%均四甲苯,精馏切取190℃~200℃的馏分。此馏分为均四甲苯及其同系物等的混合物,偏四甲苯、连四甲苯含量较高,其沸点相近,单纯依靠精馏无法将它们分开,但均四甲苯纯品凝固点高达72℃,而偏四甲苯纯品为—24℃,连四甲苯纯品—60℃,通过结晶、离心分离的方法很容易将均四甲苯分离出来。为了进一步提高均四甲苯的纯度,采用压榨机进行挤压操作,提取的均四甲苯的纯度可达99%以上。 1 实验部分 1.1 原料 重整碳十芳烃:辽阳石化催化重整装置副产碳十重芳烃。原料性质见表1。 1.2 工艺原则流程 工艺原则流程见图1。 1.3 分析测试 纯度:带有程序升温系统氢火焰检测器的5890型色谱仪。采用氢火焰离子化检测器,将液体样品注入到涂有SE—54毛细柱中,载气为氮气,流量30 ml/min,气化温度250℃,检测室温度250℃,进料量0.2μl。根据流出物的峰面积,用归一化方法测定。 外观:目测。 1.4 产品质量标准 均四甲苯的质量标准见表2。 1.5 主要设备 主要设备见表3。 1.6 主要工艺参数 结晶釜温度:—15℃~—20℃ 结晶时间:6~8小时 离心时间:40~50分钟 挤压压力:20~22MPa 挤压时间:50~80分钟 盐水温度:—25℃~—30℃ 1.7 工艺操作

焦炉砌筑

一、筑炉的准备筑炉的准备工作涉及许多方面,首先应作好施工的组织工作,其内容包括:施工平面布置、施工进度、劳动组织与施工方法等。为保证砌砖质量要建立质量检验机构,在整个施工过程中,做好专职检查,确保施工质量。1 砌砖大棚的要求和耐火材料的贮存焦炉砌筑应在大棚内进行。大棚内应防风防雨以保证水线稳定,避免雨水冲刷灰缝,砌体受潮和标杆变形。棚内温度冬季应高于5℃,以防泥浆冻结,应有足够均匀的照明。来厂的耐火材料要核实验收,入库时应按砌砖部位的使用先后、公差大小,做好标记,分开堆放。耐火材料应放在库内,砖库应能防雨雪,地坪坚实防止下沉,四周设有排水沟。灰库要严防风雨,以免吹跑细粒火泥,防止混入泥砂和受潮结块。2 预砌由于焦炉砖型复杂,砖量多,为保证质量,避免返工,对于蓄热室、斜道、炭化室等有代表性的部位砖层和炉顶的复杂部位,必需在施工前进行预砌,检查耐火砖的外形能否满足砌体的质量要求,以提供耐火砖的加工及大小公差搭配使用的依据,检查耐火泥的砌砖性能,确定泥料的配置方案;审查设计图纸及耐火砖的制造是否误差。并应培训技术工人,掌握技术。3 砌炉基础及抵抗墙的抹面焦炉在基础顶板上砌筑,要求顶板表面平坦均匀,砌砖前顶板表面应用水泥砂浆抹平,达到设计标高为止,砌完红砖后的顶面标高公差应在允许的范围内。对于下喷式焦炉,在抹面前应进行下喷管埋设。焦炉下喷管与炉体砖煤气道连接。由于焦炉砌体与基础由冷态到热态的膨胀量不同,因此,下喷管的中心距与冷态砖煤气道的中心距也不同,以适应炉体膨胀后砖煤气道位置的变化。设计上规定的下

喷管中心距大于冷态砖煤气道的中心距,并虽蓄热室的材质不同而异。例如:立火道中心距为480mm,硅砖蓄热室按1%的膨胀量计算,下喷管中心距为484mm,粘土砖按0.5%膨胀量考虑,下喷管中心距为482mm。施工中要求它们的公差都在±3mm。否则误差过大,或无法砌砖,或烘炉后下喷管与砖煤气道不重合,甚至拉裂管砖。烘炉过程中抵抗墙与炉体有相对位移,因此,抵抗墙与炉体接触部位是滑动面,应用水泥沙浆抵抗墙抹平。其控制公差、平直度为5mm,垂直度也为5mm。4 砌炉的基准线焦炉是一种比较复杂的工业加热炉,炉体本身和其它设备、机械间的相关尺寸比较严格,因此,各部位、各炉孔的线性尺寸应严格控制。否则将影响工程质量,造成较大浪费,为此,施工前要埋设永久性标桩及基准点,埋设卡钉及设置横列标板与直立标杆。(1)永久性标桩及基准点是用来控制焦炉整体尺寸的,其布置如图5。焦炉纵中心线是焦炉炉组位置的主要控制线。在焦炉的抵抗墙、煤塔或炉端台外的场地上埋设永久性标桩。边炉永久性标桩为焦炉两端炭化室的中心线,用以控制焦炉的整个长度,同纵中心线严格垂直。基准点用来控制炉体各部位的水平标高,一般在炉组一侧埋设一个,或每侧埋设一个,还可在煤塔处埋设一个备用基准点。(2)埋设卡钉永久性标桩和基准点都埋设在大棚外。为砌砖方便,将永久性标桩和基准点引到抵抗墙和基础顶板上,并埋设一定量的卡钉,在卡钉上刻以中心点,以供砌砖时拉纵轴中心线及与其平行的两侧正面限之用。(3)设置横列标板和直立标杆横列标杆用来控制各个炉墙砌体中心线的,在标板上用木螺丝表示个燃烧

焦炉煤气制氢新工艺

焦炉煤气变压吸附制氢新工艺的开发与应用焦炉煤气变压吸附(PSA)制氢工艺利用焦化公司富余放散的焦炉煤气,从杂质极多、难提纯的气体中长周期、稳定、连续地提取纯氢,不仅解决了焦化公司富余煤气放散燃烧对大气的污染问题;而且还减少了大量焦炭能源的耗用及废水、废气、废渣的排污问题;是一个综合利用、变废为宝的环保型项目;同时也是一个低投入、高产出、多方受益的科技创新项目。该装置首次采用先进可靠的新工艺,其经济效益、社会效益可观,对推进国内PSA技术进步也有重大意义。 1942年德国发表了第一篇无热吸附净化空气的文献、20世纪60年代初,美国联合碳化物(Union Carbide)公司首次实现了变压吸附四床工艺技术工业化,进入20世纪70年代后,变压吸附技术获得了迅速的发展。装置数量剧增,装置规模不断扩大,使用范围越来越广,主要应用于石油化工、冶金、轻工及环保等领域。本套大规模、低成木提纯氢气装罝,是用难以净化的焦炉煤气为原料,国内还没有同类型的装置,并且走在了世界同行业的前列。 1、焦炉煤气PSA制氢新工艺。 传统的焦炉煤气制氢工艺按照正常的净化分离步骤是: 焦炉煤气首先经过焦化系统的预处理,脱除大部分烃类物质;经初步净化后的原料气再经过湿法脱硫、干法脱萘、压缩机、精脱萘、精脱硫和变温吸附(TSA)系统,最后利用PSA制氢工艺提纯氢气,整个系统设备投资大、工业处理难度大、环境污染严重、操作不易控制、生产成本高、废物排放量大,因此用焦炉煤气PSA制氢在某种程度上受到一定的限制,所以没有被大规模的应用到工业生产当中。 本装置釆用的生产工艺是目前国内焦炉煤气PSA制氢工艺中较先进的生产工艺,它生产成本低、效率高,能解决焦炉煤气制氢过程中杂质难分离的问题,从而推动了焦炉煤气PSA制氢的发展。该工艺的特点是: 焦炉煤气压缩采用分步压缩法、冷冻净化及二段脱硫法等新工艺技术。 1.1工艺流程。 PSA制氢新工艺如图1所示。

车间生产工艺流程总结

车间实习总结 通过一周的车间实习,使我对车间的生产流程有了初步的了解,现将工作做简要的总结。 一、信息提取 易飞系统的数据庞大,数据源的录入由较多的部门负责,每一项的数据在不同的“信息表”里。由于前期的录入数据源工作庞大,首先确保录入数据源的准确性。如果数据源偏差、遗落,对后期的核算工作造成巨大影响,那么信息的录入势必达不到它所能发挥的作用,最终财务报表不能准确反映企业的真实状况,另一方面来讲又造成人力资源的浪费。其次,每个部门使用易飞系统进行核算时,有自己的使用的某项功能。比如,采购部门录入采购来的原材料的价格,仓库负责录入重量,外协价格在“打印自定义报表”中,库存查询用到“查询库存状况”。在单部门的操作中,大大简便了工作。但信息的录入,其目的在于信息的使用。各部门独立的信息录入,并不能达到财务部门方便使用的目的。那么,信息提取就是其过程中非常重要的一点。将零散、分离的信息提取出来,整合成能够直接使用的信息。在各个部门录入的大量源数据中,提取出财务部门核算时所需的某几种信息,直观的看出每一个半成品、成品的成本价格及重量,在实际应用中将信息使用最大化,一是便捷财务部门的核算,二是不浪费前期的录入工作。在此过程中存在两大问题: 1、如何确保数据源的准确录入,前期数据缺失该如何补全? 我们从目的出发,信息的最终流向使用者。使用者需要什么样的

数据,这些数据的来源是否可靠可计量。例如:财务部门核算一类产成品的成本价格,需要该产成品的料、工、费。从购入材料开始,每一步工序的材料费、工人的工资以及应摊销的制造费用等等。那么在实际流转过程中,在易飞系统中应注意这些必需数据的登记。就目前了解发现,前期数据的遗失无法避免,但通过逐步整理完善近期数据,从而可以推导估算前期数据。 2、如何将所需信息从大量的数据中提取出来? 数据源的逐步完善使得数据库不断庞大,每个部门在使用时所需的信息不同。解决这一问题的关键在于编写合适的提取公式。成本计算的基本方法有直接成本计算法、间接成本计算法、完工成本及未完工成本计算法。在实际了解过程中,仓库、财务部、技术部对于同一产品的核算有所出入。如果各部门的数据来源是一致的,就可能是计算公式的不同造成了计算结果的差异,那么采用何种计算方式更贴近于实际,使得各使用者得到的信息是准确的、一致的。 二、仓库管理 通过实地了解原材料仓库、半成品仓库及成品仓库发现以下问题: 1、原材料仓库的摆放存在不足。 原材料的摆放不得当造成盘点不便,很多材料只能大概估算,久而久之造成账表与实物的不符,存在较大差异。造成该问题有几个方面的原因。例如:钢材仓库中,货架适用于长度6米的钢材,采购部门与仓库的衔接不当造成采购入库的钢材长度有8米、16米甚至更

焦炉砌筑工程施工方案

焦炉砌筑施工方案 一、砌筑前应具备的条件: 1)砌筑平台和抵抗墙经验收合格符合设计要求。 2)下喷管的位置标高经过检查验收。 3)炉体的纵横中心线、炉端碳化室中心线,正面线已固定好。 4)观测炉体下沉的沉陷埋没点已作好。 5)斜烟囱以下部位的耐火砖全部运到耐火材料仓库,蓄热室及斜烟道预砌筑已全部完成,运砖和砖加工结束。 6)泥浆的加水量、稠度和粘结时间已予确定。 二、焦炉炉体施工流程: 焦炉炉体施工流程图见下页 焦炉炉体应全炉同步向上砖筑。 当炉墙采用逐层画配列线的方法砌筑时,施工程序应为:测量放线——配砖

——砌筑——勾缝——清扫——检查。 (3)炉体砌筑质量的检查与控制 焦炉砌体结构复杂,孔洞密布,几何尺寸的精度要求很高,因此,使用科学合理的检测方法和控制手段对保证焦炉的砌筑质量至关重要,以下对焦炉施工时对,砌体三向(高向、纵向、横向)尺寸采取的主要检控方法: 1)高向尺寸系通过逐段控制各部位砌体表面的标高来保证。首先,将焦炉各部位砌体的设计标高投放在两端抵抗墙上,然后以此为标准,标志在机侧,焦侧的直立标杆上,并画出砖层线,砌筑时使横列标板对准砖层线,拉线(8号尼龙线)砌砖。拉线时的拉力不应低于40N,为避免尼龙线下垂,炉墙中使用腰线板予以控制。该板由2、3、4、5mm等不同厚度的层板或塑料板做成,施工时操作人员可根据墙体表面的标高情况选用。 砌筑过程中,要按规定的检查部位进行全炉标高的测检。每道墙的测点不得小于5个。此外,还应在规定的检查层之间选择一定的砖层数自检,增加检查密度,以达到各部位砌体的标高均符合设计要求。 2)、纵向尺寸是以严格控制炉墙中心线间距来保证的,方法是将焦炉各部位墙中心线精确地投设在机侧,焦侧的直立标杆上,放线尺寸允许误差为0.5mm。每次放线高度为1.2m左右,随砌砖进程分段陆续完成,并经常用标准尺杆校核,及时调整,使中心线间距始终控制在十分精确的程度。 砌砖时,上好横列标板,并将画在该板上的炉墙中心线对准直立标杆上的中心线。拧紧卡具。接着按横列标板上刻画的墙宽尺寸线,两面拉线砌筑。 墙宽尺寸误差的检查用1/2墙宽检测法。该法系将比墙宽度长120mm的横列标板固定在直立标杆上,使标板上的中心与标杆上的中心线对准。在标板两端比墙宽尺寸大40mm处挂上细尼龙线。拉紧后用钢板垂直地靠拢墙面对准尼龙线进行量尺检查,检查时,被检查的位置是随机的,但每面墙的检查点不得少于10个。检查部位除规定外,还应在规定的检查层之间选定一定数量的砖层进行自检。 3)横向尺寸的控制是借助画配列线的方法来实现。首先将一层墙每块砖的排列位置线精确地刻画在长尺杆上,然后以焦炉纵向中心线为基准,沿炉墙长度方向搁放尺杆,用角尺把尺杆上的排砖线画在下部砌好的墙面上。所画墨线就是垂直缝的中心线。砌砖时,应按此墨线使砖缝匀开,而且砖的边棱不得超过该线。采取这种逐层画配列线的方法控制每块砖的砌砖位置,可确保砌体内孔洞的横向尺寸的准确性,故不需另做检查。 焦炉砖砌体所有砖缝均应泥浆饱满和严密。砖缝一般不允许有不饱满现象。对无法用挤浆法砌筑的砖,其垂直缝的泥浆饱满度也不应低于95%,砌砖过程中必须认真勾缝,逐层清扫,保证砌体的清洁和孔道的畅通。 (4)炉底及滑动层的施工

焦炉煤气制氢新工艺模板

焦炉煤气变压吸附制氢新工艺的开发与应用 焦炉煤气变压吸附(PSA)制氢工艺利用焦化公司富余放散的焦炉煤气, 从杂质极多、难提纯的气体中长周期、稳定、连续地提取纯氢, 不但解决了焦化公司富余煤气放散燃烧对大气的污染问题;而且还减少了大量焦炭能源的耗用及废水、废气、废渣的排污问题; 是一个综合利用、变废为宝的环保型项目; 同时也是一个低投入、高产出、多方受益的科技创新项目。该装置首次采用先进可靠的新工艺, 其经济效益、社会效益可观, 对推进国内PSA技术进步也有重大意义。 1942年德国发表了第一篇无热吸附净化空气的文献、20世纪60年代初, 美国联合碳化物(Union Carbide)公司首次实现了变压吸附四床工艺技术工业化, 进入20世纪70年代后, 变压吸附技术获得了迅速的发展。装置数量剧增, 装置规模不断扩大, 使用范围越来越广, 主要应用于石油化工、冶金、轻工及环保等领域。本套大规模、低成木提纯氢气装罝, 是用难以净化的焦炉煤气为原料, 国内还没有同类型的装置, 而且走在了世界同行业的前列。 1、焦炉煤气PSA制氢新工艺。 传统的焦炉煤气制氢工艺按照正常的净化分离步骤是: 焦炉煤气首先经过焦化系统的预处理, 脱除大部分烃类物质; 经初步净化后的原料气再经过湿法脱硫、干法脱萘、压缩机、精脱萘、精脱硫和变温吸附(TSA)系统, 最后利用PSA制氢工艺提纯氢气, 整

个系统设备投资大、工业处理难度大、环境污染严重、操作不易控制、生产成本高、废物排放量大, 因此用焦炉煤气PSA制氢在某种程度上受到一定的限制, 因此没有被大规模的应用到工业生产当中。 本装置釆用的生产工艺是当前国内焦炉煤气PSA制氢工艺中较先进的生产工艺, 它生产成本低、效率高, 能解决焦炉煤气制氢过程中杂质难分离的问题, 从而推动了焦炉煤气PSA制氢的发展。该工艺的特点是: 焦炉煤气压缩采用分步压缩法、冷冻净化及二段脱硫法等新工艺技术。 1.1工艺流程。 PSA制氢新工艺如图1所示。 该裝罝工艺流程分为5个工序: A、原料气压缩工序(简称100#工序), B、冷冻净化分离(简称200#工序) , C、PSA-C/R工序及精脱硫工序( 简称300#工序) , D、半成品气压缩( 简称400#工序) E、PSA-H2工序及脱氧工序(简称500#工序) 。 裝置所用的原料气来自焦炉煤气, 因净化难度高, 故气体质量较差, 分离等级较低。表1为原料煤气组成。

生产运营主要数据的计算方法

生产运营主要数据的计算方法 一、生产周期:生产周期是指从原材料投入生产的时候起,到成品完工的时候 为止,其间经历的全部日历时间。机械产品的生产周期通常包括毛坯制造、机械加工、部件装置和总装配等工艺阶段经历的时间,以及各工艺阶段之间的停顿时间之和。 1、生产时间:计划期有效工作时间=计划期制度工作时间×时间利用系数=F×K; 计划期制度工作时间(分钟)=(365天-法定节假日天数-休假天数)×8小时×生产班次×60分钟; 2、产品均衡生产批量=每月最大生产批量×0.8(系数); 3、顺序移动生产; 4、平行移动生产: tmax 最长的单件工序时间 5、平行顺序移动生产: 二、生产节拍: 节拍就是流水线上前后出产两件相同产品之间的时间间隔。节拍是一种期量标准,是流水线设计的重要参数,它决定了流水线的生产能力,以及生产的速度和效率。(1)计算流水线的节拍:流水线的平均节拍可按下式计算:r =Te/N =Toβ/N r——流水线的平均节拍 N ——计划期制品的产量 Te——计划期流水线的有效工作时间 To ——计划期流水线的制度工作时间 β——工作时间有效利用系数; (2)进行工序同期化:进行工序同期化时,先要粗算一下各工序的设备负荷,凡工序时间大于节拍或大于(n×r)的(r是节拍,n是整数),都要采取措施以压缩这些工序的工序时间。 (3)确定各工序的工作地数(设备数量),计算设备的负荷率。设备负荷率决定了流水线工作的连续程度。一般当负荷率低于75%时,宜组织间断流水线。如果线上大多数工序的工时定额均超过流水线的平均节拍,可以采用两条流水线。 1、生产节拍(R)=计划期有效工作时间(分钟)/计划期产品产量(件)=T/Q; 2、生产节奏(Rg)=生产节拍×产品批量=R×N; 三、生产能力:

7米焦炉施工方案

一、编制依据 1.设计院提供的焦炉冷态砌筑施工图纸及有关资料; 2.我公司多年焦炉砌筑的施工经验总结及操作制度; 3.施工现场的实际情况; 4.《工业炉砌筑工程质量验收规范》(GB50309—2007); 5.《工业炉砌筑工程施工及验收规范》(GB50211—2004); 6.焦耐院提供的《筑炉规程》。 二、工程概况及施工平面布置 1工程概况 1.1工程概述 孝义金达焦化工程JNX3-70-1D型焦炉是炭化室高7m,60孔的大型焦炉。其主要特点:双联火道、废气循环、多段加热、焦炉煤气下喷、贫煤气和空气侧入、下调、蓄热室分格的复热式焦炉。本工程共建2*60孔焦炉及配套的生产、生活辅助设施,形成150万t/a生产能力。焦炉施工包括:焦炉本体砌筑、烟道、炉门、上升管、桥管、保护板无石棉硅钙板粘结、加煤口盖座、轨枕工程施工,一座焦炉耐火材料砌筑总量为24254.3t。 1.2施工特点 1.2.1焦炉结构复杂,砌筑量大,特异型砖号多,焦炉属特大型工业炉,施工中搭设上料平台及砌砖用脚手架工程量很大; 1.2.2焦炉生产工艺为煤在密封条件下加热干馏生成焦碳,并回收煤气等附属产品,要求筑炉施工满足工艺要求,特别是立火道和炭化室墙面保证设计要求; 1.2.3空气、废气在蓄热室进行热交换,必须防止各部气体窜漏,施工中必须保证砌体的气密性,灰浆饱满,勾缝密实; 1.2.4焦炉本体砌筑为保证护炉铁件安装,其外形几何尺寸应符合设计

要求。施工中要控制好各中心尺寸及孔洞的位置尺寸,减少系统误差。

1.3本工程与以往工程的不同点 1.3.1小烟道结构不同:小烟道炉箅子砖采用多型号大调节孔并设置调节砖。 1.3.2蓄热室结构不同:蓄热室为分格式结构,所以码放格子砖与隔墙砌筑必须同时进行,另外主墙和单墙都有衬砖、隔墙槽。 1.3.3斜道结构不同:斜道部位结构设计复杂,斜道口的形状多变并增加二次加热道。 1.3.4燃烧室结构不同:在立火道高度方向1/3处、2/3处增设了两层助燃空气口,每个立火道隔墙上设置了助燃空气道,使立火道在整个高度上加热更加均匀、高效。 1.4焦炉主要结构参数(见焦炉主要结构参数表) 焦炉主要结构参数表 1.5焦炉本体主要工程实物量(见JNX3-70-1D型焦炉60孔砖量汇总表)

焦炉煤气变压吸附制氢新工艺的开发与应用

平顶山市三源制氢有限公司由中国神马集团、平顶山煤业集团有限责任公司合作建设,该公司年产万纯氢,采用地焦炉煤气变压吸附()制氢项目是一个综合利用、变废为宝地环保型工程.它直接把两大公司地主生产系统联在一起,充分利用了平顶山煤业集团天宏焦化公司富余放散地焦炉煤气,从杂质极多、难提纯地气体中长周期、稳定、连续地提取纯氢,以较低地生产成本解决了河南神马尼龙化工公司因扩产万尼龙盐而急需解决地原料问题.项目地建成投产,不仅解决了平顶山煤业集团天宏焦化公司富余煤气放散燃烧对大气地污染问题;而且还减少了河南神马尼龙化工公司因扩产需增加地高额投资和大量耗用焦炭能源及废水、废气、废渣地排污问题;同时也是一个低投入、高产出、多方受益地科技创新项目.该装置规模为目前国内最大,首次采用先进可靠地新工艺,其经济效益、社会效益可观,对推进国内技术进步也有重大意义. 年德国发表了第一篇无热吸附净化空气地文献,世纪年代初,美国联合碳化物()公司首次实现了变压吸附四床工艺技术地工业化,进入世纪年代后,变压吸附技术获得了迅速地发展.装置数量剧增,装置规模不断扩大,使用范围越来越广,主要应用于石油化工、冶金、轻工及环保等领域.平顶山三源制氢公司这套大规模低成本提纯氢气装置,是以一种难以净化地焦炉煤气为原料,在国内还没有同类型地装置,特别是其产品——高纯氢用于技术水平居世界前列地尼龙盐公司,更是国内首创,走在了世界同行业地前列.资料个人收集整理,勿做商业用途 焦炉煤气制氢新工艺 传统地焦炉煤气制氢工艺按照正常地净化分离步骤是:焦炉煤气首先经过焦化系统地预处理,脱除大部分烃类物质;经初步净化后地原料气再经过湿法脱硫、干法脱萘、压缩机、精脱萘、精脱硫和变温吸附()系统,最后利用制氢工艺提纯氢气,整个系统设备投资大、工业处理难度大、环境污染严重、操作不易控制、生产成本高、废物排放量大,因此用焦炉煤气制氢在某种程度上受到一定地限制,所以没有被大规模地应用到工业生产当中.资料个人收集整理,勿做商业用途平顶山市三源制氢有限公司所采用地生产工艺是对四川同盛科技有限责任公司提供地工艺方案进行优化后地再组合,是目前国内焦炉煤气制氢工艺中最先进地生产工艺,它生产成本低、效率高,能解决焦炉煤气制氢过程中杂质难分离地问题,从而推动了焦炉煤气制氢地发展.该工艺地特点是:焦炉煤气压缩采用分步压缩法、冷冻净化及二段脱硫法等新工艺技术.资料个人收集整理,勿做商业用途 工艺流程 制氢新工艺如图(略)所示. 该装置工艺流程分为个工序:①原料气压缩工序(简称工序),②冷冻净化分离(简称工序),③工序及精脱硫工序(简称工序),④半成品气压缩(简称工序),⑤工序及脱氧工序(简称工序).资料个人收集整理,勿做商业用途 装置所用地原料气来自平顶山煤业集团天宏焦化公司地焦炉煤气,该公司地焦炉煤气主要用于锅炉、化工产品原料气及城市煤气;因净化难度高,故气体质量较差,分离等级较低,因此杂质地净化分离均以该公司使用地这套工艺装置来实现.表为原料煤气组成.资料个人收集整理,勿做商业用途 表原料煤气组成 组成 体积分数 续表 组成萘总焦油苯 ()×× 质量浓度 · 工序中,首先把焦炉煤气通过螺杆压缩机对煤气进行加压,将煤气压力从加压至,并经冷却器冷却至℃后输出.经压缩冷却后地煤气含有机械水、焦油、萘、苯等组分,易对后工序吸附剂造成中毒或吸附剂性能下降,该装置设计冰机冷冻分离工序(冷却器为一开一备)对上述杂质进行脱除,此时,重组分物质被析出停留在分离器内,当冷却器前后压差高于设定值或运行一段时间后,自动切换至另一个系统,对停止运行地系统进入加热吹扫,利用低压蒸汽对冷却器和分离器内附着地重组分进行吹除,完成后处于待用状态,经分离后,仍有微量重组分杂质蒸汽带入煤气中,随着装置运行时间地增长,会逐步造成后续工段吸附剂中毒,所以,在冷冻分离后增加了除油器,主要

以制造BOM为核心的制造工艺数据管理

干货推荐|以制造BOM为核心的制造工艺数据管理 2017-09-28 文/贾晓亮张振明田锡天许建新 生产数据。对于制造企业信息化而言,建立以制造BOM为核心的产品数据流是一项核心工作。本文基于 对产品生命周期各阶段BOM的研究,分析了制造BOM的内涵、结构,提出以制造BOM为核心的制造工艺数据管理,并面向制造企业数据管理的需求,对以制造工艺数据为基础的制造数据管理进行了论述。 来源:互联网 0引言 离散型制造企业在生产过程中,需要准确的产品结构、零件分类、工艺路线、工艺 装备、材料定额和工时定额信息。物料清单BOM ( Bill of Material ,BOM )是目前企业组织产品数据的重要形式,它可能包含产品设计信息和工艺信息等,是联系设计、工艺、生产等部门的重要纽带。制造企业在生产中需要可显示产品制造的阶层关系、用料依据等的BOM,它是计算成本的重要基础数据。由于BOM的复杂性,采用手工进行数据的汇总,不但费时、费力、易出错,而且很难满足应用的需求,这已成为制约企业实现信息化的瓶颈问题。对于制造企业信息化而言,建立以BOM为核心的产品数据流是一项核心工作。 1 BOM的概念和内涵 从概念上,BOM是指构成一个物料项的所有子物料项的列表。所谓物料项是指所 有在产品的制造过程中出现的物体形态实体,这些实体包括原材料、标准 件、成品、零件、装配件、构型件、工装、工具和夹具等,它们是组织产品的设计、工

艺、生产等所有与产品相关活动的依据。每个物料项本质都是一个对象, 具有属性和方法,属性包括产品数据的全部内容,并依赖于产品生命周期不同阶段和不同制造企业具体环境。物料项之间的语义关系也十分丰富,如零件和数字模型及图纸的描述关系、零件和原材料间的加工关系、零件和工装夹具之间的基准依赖关系、子物料项与父物料项间的装配关系、功能相同的两个物料项间的互换关系等。产品的生命周期过程,就是物料项依据不同的语义关系相互作用的过程。 目前,制造企业在信息化过程中分别在PDM、CAPP、ERP系统中进行BOM 的管理。实际上,制造企业的产品设计数据、工艺数据、生产数据之间具有一致性和传递性,但由于BOM的阶段性和多视图的特性,对BOM的本质及其如何组织、管理产品数据还需进行深入研究。按照产品生命周期不同阶段对BOM进行划分,可得到不同的阶段和视图,如工程BOM(Engineering Bill of Material , EBOM )、工艺BOM (( Planning Bill of Material ,PBOM )、制造BOM (Manufacturing Bill of Material ,MBOM )、客户BOM ( Customer Bill of Material,CBOM )等。这些BOM分别反映了产品数据在不同时期的内容和结构,同时它们之间的数据演变和传递构成了产品数据流。 (1) EBOM EBOM是产品在工程设计阶段的BOM形式。它主要反映产品的设计结构和物料项的设计属性。物料项的设计属性是产品功能要求的具体体现,如重量要求、寿命要求、外观要求等。它包含物料项的图纸信息,即物料项的原始几何信息和结构关系。EBOM是设计部门向工艺、生产、采购等部门传递产品数据的主要形式和手段,EBOM 是产品数据的源头。

紫光均酐实习报告doc

紫光均酐实习报告 篇一:南京紫光均酐实习报告 2. 均苯四甲酸二酐(均酐)生产工艺介绍 均酐生产的主要原料为均四甲苯和空气中的氧为原料(辅料为活性炭、硅胶),进入装填有催化剂的列管式反应器,在催化剂V2O5的作用下生成均苯四甲酸(PMA)和均苯四甲酸二酐(PMDA)。(1)、均酐 气绝缘漆、固体润滑剂、环氧树脂固化剂、增塑剂和聚酯树脂的交联剂等。 (2)、辅料: ①、均四甲苯:白色结晶状物质,熔点:79.38℃,沸点:196.99℃。 ②、活性炭:黑色微细粉末,无臭无味。(用于脱色)(767型,上海焦化厂活性炭厂)(江苏溧阳市活性炭联合公司)③、硅胶:粗孔不规则硅胶(ψ1-3)(青岛海洋化工厂)(上海硅胶厂) ④、催化剂:V系催化剂 (黑龙江省石油化学研究院)(南京工业大学)反应方程式: OO CH3 CH3

CH33 + 6O2 +6H2O O O (3)生产流程原料线 化料槽→输送泵→计量罐→计量泵→过滤器→汽化混合器→浮球液位计 O2线 罗茨风机→空气缓冲罐→三捕→二捕→一捕→空气预热器→二换→一换→汽化器混合气线 汽化器→反应器→一换→二换→热管换热器→一捕→二捕→三捕→四捕→水洗塔废水处理线 废水→集水池→隔油池→催化氧化塔→中和池→混凝沉淀→UBF 厌氧池→好氧池→气浮→达标排放 (4)生产工段 生产工段分为氧化、水解、精制、干燥四个工段。 ①、氧化工序 固体的均四甲苯经蒸汽加热融化,汽化与热空气混合,在固定床氧化反应器中,催化氧化生成均酐及副产物,经换热冷却在捕集器中凝华捕集得到均酐粗产品。

主反应:副反应: ②、水解工序 粗的均酐产品在水解釜中加一定量的水和活性炭,加热水解后,经热过滤除去活性炭冷却结晶后再经过离心机甩干,得均苯四甲酸粗产品。 ③、脱水、升华工序 四酸的粗产品在脱水釜中,在加热真空条件下除去粗产品中的游离的水和分子水生产粗酐,同时脱去低沸点副产物。脱水后由于表面有一定量的硅胶,在升华釜内加热和高真空条件下升华,结晶得产品。该过程为物理过程,通过升华使产品的纯度提高。 升华工序是一个物理过程:本工序是通过升华使产品纯度提高。④、干燥工序 四酸粗产品在一定真空度和温度条件下,干燥一定时间,除去表面离子水,得到符合要求的产品。 另一种干燥方法是闪蒸。利用高速流动的热空气,使物料悬浮于空气中,在气力输送状态下完成干燥过程。 本工艺氧化工序为连续生产,捕集器采用两套切换操作。一套捕集,一套出料备用。水解工序及脱水、升华工序为间歇操作。 3、三废的来源及处理原理、方法(1)、废气 废气主要来自氧化工段。捕集器末凝华的尾气(主要)

高炉炼铁工艺流程(经典之作)

本次将高炉炼铁工艺流程分为以下几部分: 一、高炉炼铁工艺流程详解 二、高炉炼铁原理 三、高炉冶炼主要工艺设备简介 四、高炉炼铁用的原料 附:高炉炉本体主要组成部分介绍以及高炉操作知识 工艺设备相见文库文档: 一、高炉炼铁工艺流程详解 高炉炼铁工艺流程详图如下图所示:

炼铁过程实质上是将铁从其自然形态——矿石等含铁化合物中还原出来的过程。 炼铁方法主要有高炉法、直

接还原法、熔融还原法等,其原理是矿石在特定的气氛中(还原物质CO、H2、C;适宜温度等)通过物化反应获取还原后的生铁。生铁除了少部分用于铸造外,绝大部分是作为炼钢原料。 高炉炼铁是现代炼铁的主要方法,钢铁生产中的重要环节。这种方法是由古代竖炉炼铁发展、改进而成的。尽管世界各国研究发展了很多新的炼铁法,但由于高炉炼铁技术经济指标良好,工艺简单,生产量大,劳动生产率高,能耗低,这种方法生产的铁仍占世界铁总产量的95%以上。 炼铁工艺是是将含铁原料(烧结矿、球团矿或铁矿)、燃料(焦炭、煤粉等)及其它辅助原料(石灰石、白云石、锰矿等)按一定比例自高炉炉顶装入高炉,并由热风炉在高炉下部沿炉周的风口向高炉内鼓入热风助焦炭燃烧(有的高炉也喷吹煤粉、重油、天然气等辅助燃料),在高温下焦炭中的碳同鼓入空气中的氧燃烧生成的一氧化碳和氢气。原料、燃料随着炉内熔炼等过程的进行而下降,在炉料下降和上升的煤气相遇,先后发生传热、还原、熔化、脱炭作用而生成生铁,铁矿石原料中的杂质与加入炉内的熔剂相结合而成渣,炉底铁水间断地放出装入铁水罐,送往炼钢厂。同时产生高炉煤气,炉渣两种副产品,高炉渣铁主要矿石中不还原的杂质和石灰石等熔剂结合生成,自渣口排出后,经水淬处理后全部作为水泥生产原料;产生的煤气从炉顶导出,经除尘后,作为热风炉、加热炉、焦炉、锅炉等的燃料。炼铁工艺流程和主要排污节点见上图。

焦炉工艺

焦炉工艺 焦炉又称炼焦炉,煤炼焦的设备。是焦化技术中的关键。煤焦化技术的应用已有200多年的历史,其炉子的结构形式经历了许多变化。初期炼焦仿造烧木炭的过程采用成堆干馏。18世纪中期,开始演变成砖砌的半封闭式长窑炉。1763年开始采用全封闭式圆窑即蜂窝炉。成堆干馏和窑炉干馏共同的特点是内部加热,即炭化和燃烧在一起,靠燃烧一部分煤和干馏煤气直接加热其余的煤而干馏成焦。19世纪中期,焦炉技术发生转折性变革,从窑炉发展到外部加热的炭化室炼焦阶段,出现倒焰炉。这种焦炉是将成焦的炭化室和加热的燃烧室用墙隔开,在隔墙上部设有通道,炭化室内煤的干馏气经此通道直接流入燃烧室,与来自燃烧室顶部风道的空气混合,自上而下地流动燃烧,这种炉子已经具备了现代焦炉最基本的特征。19世纪70年代,建成了回收化学产品的焦炉,使炼焦走向生产多种产品的重要阶段。此后不久,1883年建成了利用烟气废热的蓄热式焦炉,至此,焦炉在总体上基本定型。 现代焦炉炉体由炭化室、燃烧室和蓄热室三个主要部分构成。一般,炭化室宽0.4~0.5m、长10~17m、高4~7.5m,顶部设有加煤孔和煤气上升管(在机侧或焦侧),两端用炉门封闭。燃烧室在炭化室两侧,由许多立火道构成。蓄热室位于炉体下部,分空气蓄热室和贫煤气蓄热室。 现代化焦炉主要部分用硅砖砌筑,火道温度可达到1400℃。成焦时间因炭化室宽度和火道温度不同,一般为13~18h。焦炉机械有装煤车、推焦车、导焦车和熄焦车等。由装煤车把煤装入炭化室,炼成的焦炭用推焦车推出,赤热的焦炭经导焦车落入熄焦车内,经水熄或回收热能的干法熄焦。熄过的焦炭放到焦台上。焦炭经过筛选后作为产品外送。 为了改善炼焦生产条件,现代焦炉操作除了机械化、自动化之外,还建有防治烟尘和处理污水装置。电子计算机也已开始用于焦炉操作。炉子向大型化发展,炭化室有效容积增加到50m3。为了提高焦炉生产能力,采取降低炉墙 焦炉炉体为双联火道、废气循环、宽炭化室、宽蓄热室、焦炉煤气下喷的单热式焦炉。熄焦采用湿法熄焦;装煤采用捣固侧装方式;装煤、推焦设有地面除尘站 3.2.5.1备煤车间 备煤包括煤的堆存、配煤、粉碎和输送。 ●煤场 精煤由本公司或外地洗煤厂购进,从外省购进的洗精煤用火车运进厂内的经卸料槽后用皮带运至精煤堆场,汽车可直接运送至精煤堆场;本地精煤由矿区各洗煤厂汽运至精煤堆场。煤场主要用于贮存各种炼焦煤。

以制造BOM为核心的制造工艺数据管理

干货推荐 | 以制造BOM为核心的制造工艺数据管理 2017-09-28 文/贾晓亮张振明田锡天许建新 制造BOM可显示产品制造的阶层关系、工艺路线、工艺装备、材料等,是离散型制造企业重要的基础和生产数据。对于制造企业信息化而言,建立以制造BOM为核心的产品数据流是一项核心工作。本文基于对产品生命周期各阶段BOM的研究,分析了制造BOM的内涵、结构,提出以制造BOM为核心的制造工艺数据管理,并面向制造企业数据管理的需求,对以制造工艺数据为基础的制造数据管理进行了论述。 来源:互联网 0 引言 离散型制造企业在生产过程中,需要准确的产品结构、零件分类、工艺路线、工艺装备、材料定额和工时定额信息。物料清单BOM(Bill of Material,BOM)是目前企业组织产品数据的重要形式,它可能包含产品设计信息和工艺信息等,是联系设计、工艺、生产等部门的重要纽带。制造企业在生产中需要可显示产品制造的阶层关系、用料依据等的BOM,它是计算成本的重要基础数据。由于BOM的复杂性,采用手工进行数据的汇总,不但费时、费力、易出错,而且很难满足应用的需求,这已成为制约企业实现信息化的瓶颈问题。对于制造企业信息化而言,建立以BOM为核心的产品数据流是一项核心工作。 1 BOM的概念和内涵 从概念上,BOM是指构成一个物料项的所有子物料项的列表。所谓物料项是指所有在产品的制造过程中出现的物体形态实体,这些实体包括原材料、标准件、成品、零件、装配件、构型件、工装、工具和夹具等,它们是组织产品的设计、工艺、生产等所有与产品相关活动的依据。每个物料项本质都是一个对象,具有属性和方法,属性包括产品数据的全部内容,并依赖于产品生命周期不同阶段和不同制造企业具体环境。物料项之间的语义关系也十分丰富,如零件和数字模型及图纸的描述关系、零件和原材料间的加工关系、零件和工装夹具之间的基准依赖关系、子物料项与父物料项间的装配关系、功能相同的两个物料项间的互换关系等。产品的生命周期过程,就是物料项依据不同的语义关系相互作用的过程。 目前,制造企业在信息化过程中分别在PDM、CAPP、ERP系统中进行BOM的管理。实际上,制造企业的产品设计数据、工艺数据、生产数据之间具有一致性和传递性,但由于BOM的阶段性和多视图的特性,对BOM的本质及其如何组织、管理产品数据还需进行深入研究。按照产品生命周期不同阶段对BOM进行划分,可得到不同的阶段和视图,如工程BOM(Engineering Bill of Material,EBOM)、工艺BOM((Planning Bill of Material,PBOM)、制造BOM(Manufacturing Bill of Material,MBOM)、客户BOM(Customer Bill of Material,CBOM)

相关主题
文本预览
相关文档 最新文档