当前位置:文档之家› 扫描电镜技术及其在材料科学中的应用

扫描电镜技术及其在材料科学中的应用

扫描电镜技术及其在材料科学中的应用
扫描电镜技术及其在材料科学中的应用

扫描电镜在材料分析中的应用

摘要:随着科学技术的发展进步,人们不断需要从更高的微观层次观察、认识周围的物质世界。细胞、微生物等微米尺度的物体直接用肉眼观察不到,显微镜的发明解决了这个问题。目前,纳米科技成为研究热点,集成电路工艺加工的特征尺度进入深亚微米,所有这些更加微小的物体光学显微镜也观察不到,必须使用电子显微镜。电子显微镜可分为扫描电了显微镜简称扫描电镜(SEM)和透射电子显微镜简称透射电镜(TEM)两大类。本文主要介绍扫描电子显微镜工作原理、结构特点及其发展,阐述了扫描电子显微镜在材料科学领域中的应用。

关键词:电子显微镜;扫描电镜;材料;应用

引言:

自从1965年第一台商品扫描电镜问世以来,经过40多年的不断改进,扫描电镜的分辨率从第一台的25nm提高到现在的0.01nm,而且大多数扫描电镜都能通X射线波谱仪、X射线能谱仪等组合,成为一种对表面微观世界能过经行全面分析的多功能电子显微仪器。扫描电镜已成为各种科学领域和工业部门广泛应用的有力工具。从地学、生物学、医学、冶金、机械加工、材料、半导体制造、陶瓷品的检验等均大量应用扫描电镜作为研究手段。

在材料领域中,扫描电镜技术发挥着极其重要的作用,被广泛应用于各种材料的形态结构、界面状况、损伤机制及材料性能预测等方面的研究。利用扫描电镜可以直接研究晶体缺陷及其生产过程,可以观察金属材料内部原子的集结方式和它们的真实边界,也可以观察在不同条件下边界移动的方式,还可以检查晶体在表面机械加工中引起的损伤和辐射损伤等。

1.扫描电镜的原理

扫描电镜(Scanning Electron Microscope),简写为SEM,是一个复杂的系统,浓缩了电子光学技术、真空技术、精细机械结构以及现代计算机控制技术。

扫描电镜的基本工作过程如图1,用电子束在样品表面扫描,同时,阴极射线管内的电子束与样品表面的电子束同步扫描,将电子束在样品上激发的各种信号用探测器接收,并用它来调制显像管中扫描电子束的强度,在阴极射线管的屏幕上就得到了相应衬度的扫描电子显微像。电子束在样品表面扫描,与样品发生各种不同的相互作用,产生不同信号,获得的相应的显微像的意义也不一样。入射电子与试样相互作用产生图2所示的信息种类[1-4]。

这些信息的二维强度分布随试样表面的特征而变(这些特征有表面形貌、成分、晶体取向、电磁特性等),是将各种探测器收集到的信息按顺序、成比率地转换成视频信号,再传送到同步扫描的显像管并调制其亮度,就可以得到一个反应试样表面状况的扫描图如果将探测器接收到的信号进行数字化处理即转变成数字

信号,就可以由计算机做进一步的处理和存储扫描电镜主要是针对具有高低差较大、粗糙不平的厚块试样进行观察,因而在设计上突出了景深效果,一般用来分析断口以及未经人工处理的自然表面。

图1 扫描电子显微镜的工作原理图2 电子束探针照射试样产生的各种信息

扫描电子显微镜(SEM)中的各种信号及其功能如表1所示

表1 扫描电镜中主要信号及其功能

2.扫描电镜的构成

图3给出了电镜的电子光学部分的剖面图。主要包括以下几个部分:

1.电子枪——产生和加速电子。由灯丝系统和加速管两部分组成

2.照明系统——聚集电子使之成为有一定强度的电子束。由两级聚光镜组合而

成。

3.样品室——样品台,交换,倾斜和移动样品的装置。

4.成像系统——像的形成和放大。由物镜、中间镜和投影镜组成的三级放大系统。

调节物镜电流可改变样品成像的离焦量。调节中间镜电流可以改变整个系统的放大倍数。

5.观察室——观察像的空间,由荧光屏组成。

6.照相室——记录像的地方。

7.除了上述的电子光学部分外,还有电气系统和真空系统。提供电镜的各种电压、

电流及完成控制功能[3]。

图3 电镜的电子光学部分剖面图

3.样品的制备

试样制备技术在电子显微术中占有重要的地位,它直接关系到电子显微图像的观察效果和对图像的正确解释。如果制备不出适合电镜特定观察条件的试样,即使仪器性能再好也不会得到好的观察效果。扫描电镜的有关制样技术是以透射电镜、光学显微镜及电子探针X射线显微分析制样技术为基础发展起来的,有些方面还兼具透射电镜制样技术,所用设备也基本相同。但因扫描电镜有其本身的特点和观察条件,只简单地引用已有的制样方法是不够的。扫描电镜的特点是:

1.观察试样为不同大小的固体(块状、薄膜、颗粒),并可在真空中直接进行观察。

2.试样应具有良好的导电性能,不导电的试样,其表面一般需要蒸涂一层金属导电膜。

3.试样表面一般起伏(凹凸)较大。

4.观察方式不同,制样方法有明显区别。

5.试样制备与加速电压、电子束流、扫描速度(方式)等观察条件的选择有密切关系。

上述项目中对试样导电性要求是最重要的条件。在进行扫描电镜观察时,如试样表面不导电或导电性不好,将产生电荷积累和放电,使得入射电子束偏离正常路径,最终造成图像不清晰乃至无法观察和照相。

以导电性块状材料为例(导电性材料主要是指金属,一些矿物和半导体材料也具有一定的导电性),介绍制备的具体过程。这类材料的试样制备最为简单。只要使试样大小不得超过仪器规定(如试样直径最大为φ25mm,最厚不超过20mm等),然后用双面胶带粘在载物盘,再用导电银浆连通试样与载物盘(以确保导电良好),等银浆干了(一般用台灯近距离照射10分钟,如果银浆没干透的话,在蒸金抽真空时将会不断挥发出气体,使得抽真空过程变慢)之后就可放到扫描电镜中直接进行观察。但在制备试样过程中,还应注意:

1.为减轻仪器污染和保持良好的真空,试样尺寸要尽可能小些。

2.切取试样时,要避免因受热引起试样的塑性变形,或在观察面生成氧化层。要防止机械损伤或引进水、油污及尘埃等污染物。

3.观察表面,特别是各种断口间隙处存在污染物时,要用无水乙醇、丙酮或超声波清洗法清理干净。这些污染物都是掩盖图像细节,引起试样荷电及图像质量变坏的原因。

4.故障构件断口或电器触点处存在的油污、氧化层及腐蚀产物,不要轻易清除。观察这些物质,往往对分析故障产生的原因是有益的。如确信这些异物是故障后才引入的,一般可用塑料胶带或醋酸纤维素薄膜粘贴几次,再用有机溶剂冲洗即可除去。

5.试样表面的氧化层一般难以去除,必要时可通过化学方法或阴极电解方法使试样表面基本恢复原始状态。

4.样品的测试与分析

测试与分析是扫描电镜技术中最重要环节之一,测试出我们想要的图像并做出分析总结是扫描电镜工作的目的。扫描电镜的测试步骤主要分为:

1.电子束合轴:调整电子束对中(合轴)的方法有机械式和电磁式。

①机械式是调整合轴螺钉

②电磁式则是调整电磁对中线圈的电流,以此移动电子束相对光路中心位置达到合轴目的

2.放入试样:将试样固定在试样盘上,并进行导电处理,使试样处于导电状态。将试样盘装入样品更换室,预抽三分钟,然后将样品更换室阀门打开,将试样盘放在样品台上,在抽出试样盘的拉杆后关闭隔离阀。

3.高压选择:扫描电镜的分辨率随加速电压增大而提高,但其衬度随电压增大反而降低,并且加速电压过高污染严重,所以一般在20kV下进行初步观察,而后根据不同的目的选择不同的电压值。

4.聚光镜电流的选择:聚光镜电流与像质量有很大关系,聚光镜电流越大,

放大倍数越高。同时,聚光镜电流越大,电子束斑越小,相应的分辨率也会越高。

5.光阑选择:光阑孔一般是400μ、300μ、200μ、100μ四档,光阑孔径越小,景深越大,分辨率也越高,但电子束流会减小。一般在二次电子像观察中选用300μ或200μ的光阑。

6.聚焦与像散校正:聚焦分粗调、细调两步。由于扫描电镜景深大、焦距长,所以一般采用高于观察倍数二、三档进行聚焦,然后再回过来进行观察和照像。即所谓“高倍聚焦,低倍观察”。像散校正主要是调整消像散器,使其电子束轴对称直至图像不飘移为止。

4.亮度与对比度的选择:二次电子像的对比度受试样表面形貌凸凹不平而引起二次电子发射数量不同的影响。反差与亮度的选择则是当试样凸凹严重时,衬度可选择小一些,以达明亮对比清楚,使暗区的细节也能观察清楚。也可以选择适当的倾斜角,以达最佳的反差。

当所以参数都调节到合适样品观察的位置时即可观测,并拍照储存用于日后的分析工作。

5.扫描电镜在材料科学中的应用

扫描电镜结合上述各种附件,其应用范围很广,包括断裂失效分析、产品缺陷原因分析、镀层结构和厚度分析、涂料层次与厚度分析、材料表面磨损和腐蚀分析、耐火材料的结构与蚀损分析等。

5.1. 材料的组织形貌观察

材料剖面的特征、零件内部的结构及损伤的形貌,都可以借助扫描电镜来判断和分析反射式的光学显微镜直接观察大块试样很方便,但其分辨率、放大倍数和景深都比较低而扫描电子显微镜的样品制备简单,可以实现试样从低倍到高倍的定位分析,在样品室中的试样不仅可以沿三维空间移动,还能够根据观察需要进行空间转动,以利于使用者对感兴趣的部位进行连续、系统的观察分析;扫描电子显微图像因真实、清晰,并富有立体感,在金属断口(图4)和显微组织三维形态(图5)的观察研究方面获得了广泛地应用。

图4 SEM观察环氧树脂断口图图5 SEM观察集成电路芯片结构图

5.1.1观察材料的表面形貌

图6 热轧态Mg 侧剥离面SEM 形貌

热轧包铝镁板(轧制温度400℃、压下率45%)Mg 侧剥离面SEM 形貌如图6所示。由图可清楚的观察到在剥离面上存在大量撕裂棱、撕裂平台,在撕裂平台上还存在许多放射状小条纹和韧窝。

5.1.2观察材料第二相

图7 AZ31镁合金SEM 高倍显微组织

从图7中可以清楚的观察到破碎后的第二相Mg 17Al 12尺寸约为4μm,在“大块”

Mg 17Al 12附近有许多弥散分布的的小颗粒,尺寸在0.5μm 左右,此为热轧后冷却过

程中由α-Mg 基过饱和固溶体中析出的二次Mg 17Al 12相,呈这种形态分布的细小第

二相Mg 17Al 12能有效的阻碍位错运动,提高材料强度,起到弥散强化的作用,而不

会明显降低AZ31镁合金的塑性。

5.1.3观察材料界面

破碎的Mg 17Al 12

析出相

图8 Mg/Al 轧制界面线扫描[1]

图8是Mg/Al轧制复合界面的线扫描图像,从图中我们可以看到,穿过Mg和Al的界面进行线扫描,可以得到,在Al的一侧,Mg含量低,在Mg一侧,Al几乎为零;但在界面处,Mg和Al各大约占一半,说明在界面处发生了扩散,形成了Mg和Al的扩散层。

5.1.4观察材料断口

(a)铸态(b)热轧态

图9 AZ31镁合金拉伸断口形貌

AZ31镁合金铸态试样拉伸断口SEM扫描形貌如图所示。从图9(a)可以观察到明显的解理断裂平台,在最后撕裂处也存在少量韧窝,基本上属于准解理断裂,

塑性较差。这是因为铸态AZ31镁合金晶界处存在粗大的脆性第2相Mg

17Al

12

,在拉

伸变形过程中容易破碎形成裂纹源。热轧态AZ31镁合金拉伸试样断口处有明显的

缩颈现象,其宏观断口SEM扫描形貌如图9(b)所示,呈现出以韧窝为主的延性断口形貌特征,韧窝大小为5~20

材料科学基础习题与答案

第二章思考题与例题 1. 离子键、共价键、分子键和金属键的特点,并解释金属键结合的固体材料的密度比离子键或共价键固体高的原因 2. 从结构、性能等方面描述晶体与非晶体的区别。 3. 何谓理想晶体何谓单晶、多晶、晶粒及亚晶为什么单晶体成各向异性而多晶体一般情况下不显示各向异性何谓空间点阵、晶体结构及晶胞晶胞有哪些重要的特征参数 4. 比较三种典型晶体结构的特征。(Al、α-Fe、Mg三种材料属何种晶体结构描述它们的晶体结构特征并比较它们塑性的好坏并解释。)何谓配位数何谓致密度金属中常见的三种晶体结构从原子排列紧密程度等方面比较有何异同 5. 固溶体和中间相的类型、特点和性能。何谓间隙固溶体它与间隙相、间隙化合物之间有何区别(以金属为基的)固溶体与中间相的主要差异(如结构、键性、性能)是什么 6. 已知Cu的原子直径为A,求Cu的晶格常数,并计算1mm3Cu的原子数。 7. 已知Al相对原子质量Ar(Al)=,原子半径γ=,求Al晶体的密度。 8 bcc铁的单位晶胞体积,在912℃时是;fcc铁在相同温度时其单位晶胞体积是。当铁由bcc转变为fcc时,其密度改变的百分比为多少 9. 何谓金属化合物常见金属化合物有几类影响它们形成和结构的主要因素是什么其性能如何

10. 在面心立方晶胞中画出[012]和[123]晶向。在面心立方晶胞中画出(012)和(123)晶面。 11. 设晶面(152)和(034)属六方晶系的正交坐标表述,试给出其四轴坐标的表示。反之,求(3121)及(2112)的正交坐标的表示。(练习),上题中均改为相应晶向指数,求相互转换后结果。 12.在一个立方晶胞中确定6个表面面心位置的坐标,6个面心构成一个正八面体,指出这个八面体各个表面的晶面指数,各个棱边和对角线的晶向指数。 13. 写出立方晶系的{110}、{100}、{111}、{112}晶面族包括的等价晶面,请分别画出。 14. 在立方晶系中的一个晶胞内画出(111)和(112)晶面,并写出两晶面交线的晶向指数。 15 在六方晶系晶胞中画出[1120],[1101]晶向和(1012)晶面,并确定(1012)晶面与六方晶胞交线的晶向指数。 16.在立方晶系的一个晶胞内同时画出位于(101),(011)和(112)晶面上的[111]晶向。 17. 在1000℃,有W C为%的碳溶于fcc铁的固溶体,求100个单位晶胞中有多少个碳原子(已知:Ar(Fe)=,Ar(C)=) 18. r-Fe在略高于912℃时点阵常数a=,α-Fe在略低于912℃时a=,求:(1)上述温度时γ-Fe和α-Fe的原子半径R;(2)γ-Fe→α-Fe转变时的体积变化率;(3)设γ-Fe→α-Fe转变时原子半径不发生变化,求此转变时的体积变

扫描电镜及其在储层研究中的应用分析

扫描电镜测试技术原理及其在储层研究中的应用 1、扫描电镜的结构和工作原理 扫描电镜的主要构成分为四部分:镜筒、电子信号的显示与记录系统、电子信号的收集与处理系统、真空系统及电源系统(图1)。以下是各部分的简介和工作原理。 1.1扫描电镜结构 1.1.1镜筒 镜筒包括电子枪、聚光镜、物镜及扫描系统,其作用是产生很细的电子束(直径约几个nm),并且使该电子束在样品表面进行扫描,同时激发出各种信号。 1.1.2电子信号的收集与处理系统 在样品室中,扫描电子束与样品发生相互作用后产生多种信号,其中包括二次电子、背散射电子、X射线、吸收电子、俄歇(Auger)电子等。在上述信号中,最主要的是二次电子,它是被入射电子所激发出来的样品原子中的外层电子,产生于样品表面以下几nm 至几十nm 的区域,其产生率主要取决于样品的形貌和成份。通常所说的扫描电镜图像指的就是二次电子像,它是研究样品表面形貌的最有用的电子信号。检测二次电子的检测器的探头是一个闪烁体,当电子打到闪烁体上时,就在其中产生光,这种光被光导管传送到光电倍增管,光信号即被转变成电流信号,再经前置放大及视频放大,将电流信号转变成电压信号,最后被送到显像管的栅极。 1.1.3电子信号的显示与记录系统 扫描电镜的图像显示在阴极射线管(显像管)上,并由照相机拍照记录。显像管有两个,一个用来观察,分辨率较低,是长余辉的管子;另一个用来照相记录,分辨率较高,是短余辉的管子。 1.1.4真空系统及电源系统 扫描电镜的真空系统由机械泵和油扩散泵组成,其作用是使镜筒内达到10 托的真空度。电源系统则供给各部件所需的特定电源。

图1 扫描电镜结构图 1.2扫描电镜的基本原理 扫描电镜的电子枪发射出电子束,电子在电场的作用下加速,经过两次电磁透镜的作用后在样品表而聚焦成极细的电子束。该细小的电子束在末透镜的上方的双偏转线圈作用下在样品表而进行扫描,被加速的电子与样品相互作用,激发出各种信号,如二次电子,背散射电子,吸收电子、X射线、俄歇电子、阴极发光等。这些信号被按顺序、成比例的交换成视频信号、检测放大处理成像,从而在荧光屏上观察到样品表而的各种特征图像。 2、扫描电镜在矿物岩石学领域的应用 2.1矿物研究 不同矿物在扫描电镜中会呈现出其特征的形貌,这是在扫描电镜中鉴定矿物的重要依据。如高岭石在扫描电镜中常呈假六方片状、假六方板状、假六方似板状;埃洛石常呈管状、长管状、圆球状;蒙脱石为卷曲的薄片状;绿泥石单晶呈六角板状,集合体呈叶片状堆积或定向排列等。王宗霞等在扫描电镜下观察了硅藻上的形貌,硅藻上多呈圆盘状、板状,根据这一特征即可将它鉴定出来。 矿物特征及残余结构可以推断其成岩环境和搬运演化历史,扫描电镜可对矿 物的结构和成分进行分析,为推断矿物的成岩环境和搬运演化历史提供基础资

材料科学基础习题及答案

习题课

一、判断正误 正确的在括号内画“√”,错误的画“×” 1、金属中典型的空间点阵有体心立方、面心立方和密排六方三种。 2、位错滑移时,作用在位错线上的力F的方向永远垂直于位错线并指向滑移面上的未滑移区。 3、只有置换固溶体的两个组元之间才能无限互溶,间隙固溶体则不能。 4、金属结晶时,原子从液相无序排列到固相有序排列,使体系熵值减小,因此是一个自发过程。 5、固溶体凝固形核的必要条件同样是ΔG<0、结构起伏和能量起伏。 6三元相图垂直截面的两相区内不适用杠杆定律。 7物质的扩散方向总是与浓度梯度的方向相反。 8塑性变形时,滑移面总是晶体的密排面,滑移方向也总是密排方向。 9.晶格常数是晶胞中两相邻原子的中心距。 10.具有软取向的滑移系比较容易滑移,是因为外力在在该滑移系具有较大的分切应力值。11.面心立方金属的滑移面是{110}滑移方向是〈111〉。 12.固溶强化的主要原因之一是溶质原子被吸附在位错附近,降低了位错的易动性。13.经热加工后的金属性能比铸态的好。 14.过共析钢的室温组织是铁素体和二次渗碳体。 15.固溶体合金结晶的过程中,结晶出的固相成份和液相成份不同,故必然产生晶内偏析。16.塑性变形后的金属经回复退火可使其性能恢复到变形前的水平。 17.非匀质形核时液体内部已有的固态质点即是非均匀形核的晶核。 18.目前工业生产中一切强化金属材料的方法都是旨在增大位错运动的阻力。 19、铁素体是α-Fe中的间隙固溶体,强度、硬度不高,塑性、韧性很好。 20、体心立方晶格和面心立方晶格的金属都有12个滑移系,在相同条件下,它们的塑性也相同。 21、珠光体是铁与碳的化合物,所以强度、硬度比铁素体高而塑性比铁素体差。 22、金属结晶时,晶粒大小与过冷度有很大的关系。过冷度大,晶粒越细。 23、固溶体合金平衡结晶时,结晶出的固相成分总是和剩余液相不同,但结晶后固溶体成分是均匀的。 24、面心立方的致密度为0.74,体心立方的致密度为0.68,因此碳在γ-Fe(面心立方)中的溶解度比在α-Fe(体心立方)的小。 25、实际金属总是在过冷的情况下结晶的,但同一金属结晶时的过冷度为一个恒定值,它与冷却速度无关。 26、金属的临界分切应力是由金属本身决定的,与外力无关。 27、一根曲折的位错线不可能是纯位错。 28、适当的再结晶退火,可以获得细小的均匀的晶粒,因此可以利用再结晶退火使得铸锭的组织细化。 29、冷变形后的金属在再结晶以上温度加热时将依次发生回复、再结晶、二次再结晶和晶粒长大的过程。 30、临界变形程度是指金属在临界分切应力下发生变形的程度。 31、无限固溶体一定是置换固溶体。 32、金属在冷变形后可形成带状组织。 33、金属铅在室温下进行塑性成型属于冷加工,金属钨在1000℃下进行塑性变形属于热加工。

《材料科学与工程基础》习题和思考题及答案

《材料科学与工程基础》习题和思考题及答案第二章 2-1.按照能级写出N、O、Si、Fe、Cu、Br原子的电子排布(用方框图表示)。 2-2.的镁原子有13个中子,11.17%的镁原子有14个中子,试计算镁原子的原子量。 2-3.试计算N壳层内的最大电子数。若K、L、M、N壳层中所有能级都被电子填满时,该 原子的原子序数是多少? 2-4.计算O壳层内的最大电子数。并定出K、L、M、N、O壳层中所有能级都被电子填满 时该原子的原子序数。 2-5.将离子键、共价键和金属键按有方向性和无方向性分类,简单说明理由。2-6.按照杂化轨道理论,说明下列的键合形式: (1)CO的分子键合(2)甲烷CH的分子键合 24 (3)乙烯CH的分子键合(4)水HO的分子键合 242 (5)苯环的分子键合(6)羰基中C、O间的原子键合 2-7.影响离子化合物和共价化合物配位数的因素有那些? 2-8.试解释表2-3-1中,原子键型与物性的关系? 332-9.0?时,水和冰的密度分别是1.0005 g/cm和0.95g/cm,如何解释这一现象? +2-10.当CN=6时,K离子的半径为0.133nm(a)当CN=4时,半径是多少?(b)CN=8时,半 径是多少?

32-11.(a)利用附录的资料算出一个金原子的质量?(b)每mm 的金有多少个原子?(c)根据金 21的密度,某颗含有10个原子的金粒,体积是多少?(d)假设金原子是球形 (r=0.1441nm),Au21并忽略金原子之间的空隙,则10个原子占多少体积?(e)这些金原子体积占总体积的多 少百分比? 2+2-2-12.一个CaO的立方体晶胞含有4个Ca离子和4个O离子,每边的边长是0.478nm, 则CaO的密度是多少? 2-13.硬球模式广泛的适用于金属原子和离子,但是为何不适用于分子? 2-14.计算(a)面心立方金属的原子致密度;( b)面心立方化合物NaCl的离子致密度(离 子半径r+=0.097,r-=0.181);(C)由计算结果,可以引出什么结论? NaCl 470 2-15.铁的单位晶胞为立方体,晶格常数 a=0.287nm,请由铁的密度算出每个 单位晶胞所含 的原子个数。 2-16.钛的单位晶胞含有两个原子,请问此单位晶胞的体积是多少? 2-17.计算面心立方、体心立方和密排六方晶胞的致密度。 2-18.在体心立方结构晶胞的(100)面上按比例画出该面上的原子以及八面体和四面体间隙。 2-19.键合类型是怎样影响局部原子堆垛的? 2-20.厚度0.08mm、面积670mm2的薄铝片(a)其单位晶胞为立方体, a=0.4049nm,则此薄片

材料科学与工程概述

第1节材料科学与工程概述 1.1.1材料科学的内涵 材料科学就是从事对材料本质的发现、分析认识、设计及控制等方面研究的一门科学。其目的在于揭示材料的行为,给予材料结构的统一描绘或建立模型,以及解释结构与性能之间的内在关系。材料科学的内涵可以认为是由五大要素组成,他们之间的关联可以用一个多面体来描述(图1-1)。其中使用效能是材料性能在工作状态(受力、气氛、温度)下的表现,材料性能可以视为材料的固有性能,而使用效能则随工作环境不同而异,但它与材料的固有性能密切相关。理论及材料与工艺设计位于多面体的中心,它直接和其它5个要素相连,表明它在材料科学中的特殊地位。 材料科学的核心内容是结构与性能。为了深入理解和有效控制性 能和结构,人们常常需要了解各种过程的现象,如屈服过程、断裂 过程、导电过程、磁化过程、相变过程等。材料中各种结构的形成 都涉及能量的变化,因此外界条件的改变也将会引起结构的改变, 从而导致性能的改变。因此可以说,过程是理解性能和结构的重要 环节,结构是深入理解性能的核心,外界条件控制着结构的形成和 过程的进行。 材料的性能是由材料的内部结构决定的,材料的结构反映了材料 的组成基元及其排列和运动的方式。材料的组成基元一般为原子、 离子和分子等,材料的排列方式在很大程度上受组元间结合类型的 影响,如金属键、离子键、共价键、分子键等。组元在结构中不是 静止不动的,是在不断的运动中,如电子的运动、原子的热运动等。 描述材料的结构可以有不同层次,包括原子结构、原子的排列、相 结构、显微结构、结构缺陷等,每个层次的结构特征都以不同的方 式决定着材料的性能。 物质结构是理解和控制性能的中心环节。组成材料的原子结构,电子围绕着原子核的运动情况对材料的物理性能有重要影响,尤其是电子结构会影响原子的键合,使材料表现出金属、无机非金属或高分子的固有属性。金属、无机非金属和某些高分子材料在空间均具有规则的原子排列,或者说具有晶体的格子构造。晶体结构会影响到材料的诸多物理性能,如强度、塑性、韧性等。石墨和金刚石都是由碳原子组成,但二者原子排列方式不同,导致强度、硬度及其它物理性能差别明显。当材料处于非晶态时,与晶体材料相比,性能差别也很大,如玻璃态的聚乙烯是透明的,而晶态的聚乙烯是半透明的。又如某些非晶态金属比晶态金属具有更高的强度和耐蚀性能。此外,在晶体材料中存在的某些排列的不完整性,即存在结构缺陷,也对材料性能产生重要影响。 我们在研究晶体结构与性能的关系时,除考虑其内部原子排列的规则性,还需要考虑其尺寸的效应。从聚集的角度看,三维方向尺寸都很大的材料称为块体材料,在一维、二维或三维方向上尺寸变小的材料叫做低维材料。低维材料可能具有块体材料所不具备的性质,如零维的纳米粒子(尺寸小于100nm)具有很强的表面效应、尺寸效应和量子效应等,使其具有独特的物理、化学性能。纳米金属颗粒是电的绝缘体和吸光的黑体。以纳米微粒组成的陶瓷具有很高的韧性和超塑性。纳米金属铝的硬度为普通铝的8倍。具有高强度特征的一维材料的有机纤维、光导纤维,作为二维材料的金刚石薄膜、超导薄膜等都具有特殊的物理性能。 1.1.2 材料科学的确立与作用 (1)材料科学的提出 “材料科学”的明确提出要追朔到20世纪50年代末。1957年10月4日前苏联发射了第一颗人造卫星,重80千克,11月3日发射了第二颗人造卫星,重500千克。美国于1958年1月31日发射的“探测者1号”人造卫星仅8千克,重量比前苏联的卫星轻得多。对此美国有关部门联合向总统提出报告,认为在科技竞争中美国之所以落后于苏联,关键在先进材料的研究方面。1958年3月18日总统通过科学顾问委员会发布“全国材料规划”,决定12所大学成立材料研究实验室,随后又扩大到17所。从那时起出现了包括多领域的综合性学科--“材料科学与工程学科”。 (2)材料科学的形成 材料科学的形成主要归功于如下五个方面的基础发展: 各类材料大规模的应用发展是材料科学形成的重要基础之一。18世纪蒸汽机的发明和19世纪电动机的发明,使材料在新品种开发和规模生产等方面发生了飞跃,如1856年和1864年先后发明了转炉和平炉炼钢,大大促进了机械制造、铁路交通的发展。随之不同类型的特殊钢种也相继出现,如1887年高锰钢、1903年硅钢及1910年镍铬不锈钢等,与此同时,铜、铅、锌也得到大量应用,随后铝、镁、钛和稀有金属相继问世。20世纪初,人工合成高分子材料问世,如1909年的酚醛树脂(胶木),1925年的聚苯乙烯,1931年的聚氯乙烯以及1941年的尼龙等,发展十分迅速,如今世界年产量在1亿吨以上,论体积产量已超过了钢。无机非金属材料门类较多,一直占有特殊的地位,其中一些传统材料资源丰富,性能价格比在所有材料中最有竞争能力。20世纪中后期,通过合成原料和特殊制备方法,制造出一系列具有不可替代作用的功能材料和先进结构材料。如电子陶瓷、铁氧体、光学玻璃、透明陶瓷、敏感及光电功能薄膜材料等。先进结构

《材料科学基础》经典习题及答案全解

材料科学与基础习题集和答案 第七章回复再结晶,还有相图的内容。 第一章 1.作图表示立方晶体的()()()421,210,123晶面及[][][]346,112,021晶向。 2.在六方晶体中,绘出以下常见晶向[][][][][]0121,0211,0110,0112,0001 等。 3.写出立方晶体中晶面族{100},{110},{111},{112}等所包括的等价晶面。 4.镁的原子堆积密度和所有hcp 金属一样,为0.74。试求镁单位晶胞的体积。已知Mg 的密度3 Mg/m 74.1=m g ρ,相对原子质量为24.31,原子半径r=0.161nm 。 5.当CN=6时+Na 离子半径为0.097nm ,试问: 1) 当CN=4时,其半径为多少?2) 当CN=8时,其半径为多少? 6. 试问:在铜(fcc,a=0.361nm )的<100>方向及铁(bcc,a=0.286nm)的<100>方向,原子的线密度为多少? 7.镍为面心立方结构,其原子半径为nm 1246.0=Ni r 。试确定在镍的 (100),(110)及(111)平面上12mm 中各有多少个原子。 8. 石英()2SiO 的密度为2.653Mg/m 。试问: 1) 13 m 中有多少个硅原子(与氧原子)? 2) 当硅与氧的半径分别为0.038nm 与0.114nm 时,其堆积密度为多少(假设原子是球形的)? 9.在800℃时1010个原子中有一个原子具有足够能量可在固体内移 动,而在900℃时910个原子中则只有一个原子,试求其激活能(J/ 原子)。 10.若将一块铁加热至850℃,然后快速冷却到20℃。试计算处理前后空位数应增加多少倍(设铁中形成一摩尔空位所需要的能量为104600J )。

材料科学基础第一章全部作业

(一) 1 谈谈你对材料学科及材料四要素之间的关系的认识 2 金属键与其它结合键有何不同,如何解释金属的某些特性? 3 说明空间点阵、晶体结构、晶胞三者之间的关系。 4 晶向指数和晶面指数的标定有何不同?其中有何须注意的问题? 5 画出三种典型晶胞结构示意图,其表示符号、原子数、配位数、致密度各是什么? 6 画出立方晶系中(011),(312),[211],[211],[101],(101) 7, 画出六方晶系中(1120),(0110),(1012),(110),(1012) 8. 原子间的结合键共有几种?各自特点如何? 9.在立方系中绘出{110}、{111}晶面族所包括的晶面,及(112)和(120)晶面。标出具有下列密勒指数的晶面和晶向: a)立方晶系(421),() 123,(130),[211],[311];

10.在立方系中绘出{110}、{111}晶面族所包括的晶面,及(112)和(120)晶面。 11.计算面心立方结构(111)、(110)与(100)面的面密度和面间距。 12. 标出具有下列密勒指数的晶面和晶向: a)立方晶系(421),()123,(130),[211],[311]; b)六方晶系()2111, ()1101,()3212,[2111],1213????。 13 在体心立方晶系中画出{111}晶面族的所有晶面。 14 画出<110>晶向族所有晶向

15.写出密排六方晶格中的[0001],(0001),()1120,()1100,()1210 16. 在一个简单立方晶胞内画出一个(110)晶面和一个[112]晶向。 17. 标出具有下列密勒指数的晶面和晶向: 立方晶系(421),()123,(130),[211],[311]; 18.计算晶格常数为a 的体心立方结构晶体中八面体间隙的大小。 19.画出面心立方晶体中(111)面上的[112]晶向。 20.已知某一面心立方晶体的晶格常数为a ,请画出其晶胞模型并分别计算该晶体 的致密度、{111}晶面的面密度以及{110}晶面的面间距。 21.表示立方晶体的(123),[211],()012 22. 写出密排六方晶格中()1120,()1100,()1210[2111],1213???? 23. 画出密排六方晶格中的[0001], ,()0110,()1010,[2110],[1120] 24 在面心立方晶胞中的(1 1 1)晶面上画出[110]晶向 25 指出在一个面心立方晶胞中的八面体间隙的数目,并写出其中一个八 面体间隙的中心位置坐标。假设原子半径为r ,计算八面体间隙的半径。 26.画出密排六方晶格中的(0001),()1120,()1100,()1210 27.立方晶系中画出(010),(011),(111),(231),[231],[321] 29.计算晶格常数为a 的面心立方结构晶体中四面体间隙和八面体间隙的大小。(4分) 30.写出立方晶系{}110、{}123晶面族的所有等价面 31.立方晶胞中画出以下晶面和晶向:()102,(112),(213) ,[110], 32.六方晶系中画出以下晶面和晶向:(2110),(1012),1210????,0111???? 33.写出立方晶系{}100、{}234晶面族的所有等价面 34.画出立方晶胞内(111),[112], 35.画出六方晶胞内(1011),[1123]

材料科学基础习题及答案

《材料科学基础》习题及答案 第一章 结晶学基础 第二章 晶体结构与晶体中的缺陷 1 名词解释:配位数与配位体,同质多晶、类质同晶与多晶转变,位移性转变与重建性转变,晶体场理论与配位场理论。 晶系、晶胞、晶胞参数、空间点阵、米勒指数(晶面指数)、离子晶体的晶格能、原子半径与离子半径、离子极化、正尖晶石与反正尖晶石、反萤石结构、铁电效应、压电效应. 答:配位数:晶体结构中与一个离子直接相邻的异号离子数。 配位体:晶体结构中与某一个阳离子直接相邻、形成配位关系的各个阴离子中心连线所构成的多面体。 同质多晶:同一化学组成在不同外界条件下(温度、压力、pH 值等),结晶成为两种以上不同结构晶体的现象。 多晶转变:当外界条件改变到一定程度时,各种变体之间发生结构转变,从一种变体转变成为另一种变体的现象。 位移性转变:不打开任何键,也不改变原子最邻近的配位数,仅仅使结构发生畸变,原子从原来位置发生少许位移,使次级配位有所改变的一种多晶转变形式。 重建性转变:破坏原有原子间化学键,改变原子最邻近配位数,使晶体结构完全改变原样的一种多晶转变形式。 晶体场理论:认为在晶体结构中,中心阳离子与配位体之间是离子键,不存在电子轨道的重迭,并将配位体作为点电荷来处理的理论。 配位场理论:除了考虑到由配位体所引起的纯静电效应以外,还考虑了共价成键的效应的理论 图2-1 MgO 晶体中不同晶面的氧离子排布示意图 2 面排列密度的定义为:在平面上球体所占的面积分数。 (a )画出MgO (NaCl 型)晶体(111)、(110)和(100)晶面上的原子排布图; (b )计算这三个晶面的面排列密度。 解:MgO 晶体中O2-做紧密堆积,Mg2+填充在八面体空隙中。 (a )(111)、(110)和(100)晶面上的氧离子排布情况如图2-1所示。 (b )在面心立方紧密堆积的单位晶胞中,r a 220= (111)面:面排列密度= ()[] 907.032/2/2/34/222==?ππr r

扫描电镜的基本结构和工作原理

扫描电镜的基本结构和工作原理 扫描电子显微镜利用细聚焦电子束在样品表面逐点扫描,与样品相互作用产行各种物理信号,这些信号经检测器接收、放大并转换成调制信号,最后在荧光屏上显示反映样品表面各种特征的图像。扫描电镜具有景深大、图像立体感强、放大倍数范围大、连续可调、分辨率高、样品室空间大且样品制备简单等特点,是进行样品表面研究的有效分析工具。 扫描电镜所需的加速电压比透射电镜要低得多,一般约在1~30kV,实验时可根据被分析样品的性质适当地选择,最常用的加速电压约在20kV左右。扫描电镜的图像放大倍数在一定范围内(几十倍到几十万倍)可以实现连续调整,放大倍数等于荧光屏上显示的图像横向长度与电子束在样品上横向扫描的实际长度之比。扫描电镜的电子光学系统与透射电镜有所不同,其作用仅仅是为了提供扫描电子束,作为使样品产生各种物理信号的激发源。扫描电镜最常使用的是二次电子信号和背散射电子信号,前者用于显示表面形貌衬度,后者用于显示原子序数衬度。 扫描电镜的基本结构可分为电子光学系统、扫描系统、信号检测放大系统、图像显示和记录系统、真空系统和电源及控制系统六大部分。这一部分的实验内容可参照教材第十二章,并结合实验室现有的扫描电镜进行,在此不作详细介绍。 三、扫描电镜图像衬度观察 1.样品制备 扫描电镜的优点之一是样品制备简单,对于新鲜的金属断口样品不需要做任何处理,可以直接进行观察。但在有些情况下需对样品进行必要的处理。 1) 样品表面附着有灰尘和油污,可用有机溶剂(乙醇或丙酮)在超声波清洗器中清洗。 2) 样品表面锈蚀或严重氧化,采用化学清洗或电解的方法处理。清洗时可能会失去一些表面形貌特征的细节,操作过程中应该注意。 3) 对于不导电的样品,观察前需在表面喷镀一层导电金属或碳,镀膜厚度控制在5-10nm 为宜。 2.表面形貌衬度观察 二次电子信号来自于样品表面层5~l0nm,信号的强度对样品微区表面相对于入射束的取向非常敏感,随着样品表面相对于入射束的倾角增大,二次电子的产额增多。因此,二次电子像适合于显示表面形貌衬度。 二次电子像的分辨率较高,一般约在3~6nm。其分辨率的高低主要取决于束斑直径,而实际上真正达到的分辨率与样品本身的性质、制备方法,以及电镜的操作条件如高匝、扫描速度、光强度、工作距离、样品的倾斜角等因素有关,在最理想的状态下,目前可达的最佳分辩率为lnm。 扫描电镜图像表面形貌衬度几乎可以用于显示任何样品表面的超微信息,其应用已渗透到许多科学研究领域,在失效分析、刑事案件侦破、病理诊断等技术部门也得到广泛应用。在材料科学研究领域,表面形貌衬度在断口分析等方面显示有突出的优越性。下面就以断口分析等方面的研究为例说明表面形貌衬度的应用。 利用试样或构件断口的二次电子像所显示的表面形貌特征,可以获得有关裂纹的起源、裂纹扩展的途径以及断裂方式等信息,根据断口的微观形貌特征可以分析裂纹萌生的原因、裂纹的扩展途径以及断裂机制。图实5-1是比较常见的金属断口形貌二次电子像。较典型的

材料科学与工程基础习题答案 (1)

第一章 原子排列与晶体结构 1. [110], (111), ABCABC…, 0.74 , 12 , 4 , a r 42= ; [111], (110) , 0.68 , 8 , 2 , a r 43= ; ]0211[, (0001) , ABAB , 0.74 , 12 , 6 , 2a r = 。 2. 0.01659nm 3 , 4 , 8 。 3. FCC , BCC ,减少 ,降低 ,膨胀 ,收缩 。 4. 解答:见图1-1 5. 解答:设所决定的晶面为(hkl ),晶面指数与面上的直线[uvw]之间有hu+kv+lw=0,故有: h+k-l=0,2h-l=0。可以求得(hkl )=(112)。 6 解答:Pb 为fcc 结构,原子半径R 与点阵常数a 的关系为a r 42 = ,故可求得a =0.4949×10-6 mm 。则(100)平面的面积S =a 2 = 0.244926011×0-12mm 2,每个(100)面上的原子个数为2。 所以1 mm 2上的原子个数 s n 1 = =4.08×10 12 。 第二章 合金相结构 一、 填空 1) 提高,降低,变差,变大。 2) (1)晶体结构;(2)元素之间电负性差;(3)电子浓度 ;(4)元素之间尺寸差别 3) 存在溶质原子偏聚 和短程有序 。 4) 置换固溶体 和间隙固溶体 。 5) 提高 ,降低 ,降低 。 6) 溶质原子溶入点阵原子溶入溶剂点阵间隙中形成的固溶体,非金属原子与金属原子半径的比值大于0.59时形成的复杂结构的化合物。 二、 问答 1、 解答: α-Fe 为bcc 结构,致密度虽然较小,但是它的间隙数目多且分散,间隙半径很小,四面体间隙半径为0.291Ra ,即R =0.0361nm ,八面体间隙半径为0.154Ra ,即R =0.0191nm 。氢,氮,碳,硼由于与α-Fe 的尺寸差别较大,在α-Fe 中形成间隙固溶体,固溶度很小。α-Fe 的八面体间隙的[110]方向R=0.633 Ra ,间隙元素溶入时只引起一个方向上的点阵畸变,故多数处于α-Fe 的八面体间隙中心。B 原子较大,有时以置换方式溶入α-Fe 。 由于γ-Fe 为fcc 结构,间隙数目少,间隙半径大,四面体间隙半径为0.225 Ra ,即R =0.028nm ,八面体间隙半径为0.414 Ra ,即R =0.0522nm 。氢,氮,碳,硼在γ-Fe 中也是形成间隙固溶体,其固溶度大于在α-Fe 中的固溶度,氢,氮,碳,硼处于γ-Fe 的八面体间隙中心。 2、简答:异类原子之间的结合力大于同类原子之间结合力;合金成分符合一定化学式;低于临界温度(有序化温度)。 第三章 纯金属的凝固 1. 填空 1. 结构和能量。 2 表面,体积自由能 , T L T r m m ?-= σ2, ()2 2 3316T L T G m m k ??=?σπ。 3 晶核长大时固液界面的过冷度。 4 减少,越大,细小。 5. 快速冷却。 二、 问答 1 解答: 凝固的基本过程为形核和长大,形核需要能量和结构条件,形核和长大需要过冷度。细化晶粒的基本途径可以通过加大过冷度,加入形核剂,振动或搅拌。 2 解答: 根据金属结晶过程的形核和长大理论以及铸锭的散热过程,可以得出通常铸锭组织的特点为最外层为细小等轴晶,靠内为柱状晶,最内层为粗大等轴晶。 3 解答: 液态金属结晶时,均匀形核时临界晶核半径r K 与过冷度?T 关系为 T L T r m m ?-= σ2,临界形核功?G K 等于 ()22 3316T L T G m m k ?? =?σπ。异质形核时固相质点可作为晶核长大,其临界形核功较小, ()k m m k G T L T G ?+-=??+-=?4cos cos 323164cos cos 3232 2 33* θθσπθθ,θ为液相与非均匀形核核 心的润湿角。 形核率与过冷度的关系为: ]exp[)( kT G kT G C N k A ?+?-=,其中N 为形核率,C 为常数,ΔG A 、ΔG k 分别表示形核时原子 扩散激活能和临界形核功。在通常工业凝固条件下形核率随过冷度增大而增大。

《材料科学与工程基础》习题和思考题及答案

《材料科学与工程基础》习题和思考题及答案 第二章 2-1.按照能级写出N、O、Si、Fe、Cu、Br原子的电子排布(用方框图表示)。 2-2.的镁原子有13个中子,11.17%的镁原子有14个中子,试计算镁原子的原子量。 2-3.试计算N壳层内的最大电子数。若K、L、M、N壳层中所有能级都被电子填满时,该原子的原子序数是多少? 2-4.计算O壳层内的最大电子数。并定出K、L、M、N、O壳层中所有能级都被电子填满时该原子的原子序数。 2-5.将离子键、共价键和金属键按有方向性和无方向性分类,简单说明理由。 2-6.按照杂化轨道理论,说明下列的键合形式: (1)CO2的分子键合(2)甲烷CH4的分子键合 (3)乙烯C2H4的分子键合(4)水H2O的分子键合 (5)苯环的分子键合(6)羰基中C、O间的原子键合 2-7.影响离子化合物和共价化合物配位数的因素有那些? 2-8.试解释表2-3-1中,原子键型与物性的关系? 2-9.0℃时,水和冰的密度分别是1.0005 g/cm3和0.95g/cm3,如何解释这一现象? 2-10.当CN=6时,K+离子的半径为0.133nm(a)当CN=4时,半径是多少?(b)CN=8时,半径是多少? 2-11.(a)利用附录的资料算出一个金原子的质量?(b)每mm3的金有多少个原子?(c)根据金的密度,某颗含有1021个原子的金粒,体积是多少?(d)假设金原子是球形(r Au=0.1441nm),并忽略金原子之间的空隙,则1021个原子占多少体积?(e)这些金原子体积占总体积的多少百分比? 2-12.一个CaO的立方体晶胞含有4个Ca2+离子和4个O2-离子,每边的边长是0.478nm,则CaO的密度是多少? 2-13.硬球模式广泛的适用于金属原子和离子,但是为何不适用于分子? 2-14.计算(a)面心立方金属的原子致密度;(b)面心立方化合物NaCl的离子致密度(离子半径r Na+=0.097,r Cl-=0.181);(C)由计算结果,可以引出什么结论?

材料科学与工程基础实验讲义

材料科学与工程基础实验讲义

华南农业大学材料与能源学院 现代材料科学与工程基础实验讲义 供材料科学专业本科生使用 胡航 2016-02-30

实验一 金属纳米颗粒的化学法制备 一、实验内容与目的 1. 了解并掌握金属纳米颗粒的化学法制备过程并制备Au 或Ag 纳米颗粒。 2. 了解金属纳米颗粒的光学特征。 二、实验原理概述 化学制备法是制备金属纳米微粒的一种重要方法,在基础研究和实际应用中被广泛采用。贵金属纳米颗粒的化学法制备主要有溶胶凝胶法、电镀法、氧化还原法等。其中氧化还原法又包括热分解和辐照分解等。贵金属纳米颗粒具有广泛的应用,如生物医学领域的杀菌,物理化学领域的催化等。本实验以金胶为例介绍交替法制备贵金属纳米颗粒,并以硝酸银在烷基胺中的热分解为例介绍表面活性剂中氧化还原法制备贵金属纳米颗粒。 1. 胶体金属(Au 、Ag )的成核与生长 总的来说,化学法制备金属纳米粒子都是让还原剂提供电子给溶液中带正电荷的金属离子形成金属原子。如,对于制备胶体金,如果采用柠檬酸三钠作为还原剂,其反应过程如下: 2H O -42223222222Δ HAuCl + HOC(CH )(CO )Au +Cl +CO +HCO H+CO(CH )(CO )+......??→粒子 2. 硝酸银热分解法制备银纳米粒子 热分解法制备金属纳米颗粒原理简单,实验过程易操作。对制备数纳米到数十纳米尺寸范围的纳米颗粒有较大优势。硝酸银在烷基胺中加热搅拌可形成澄清透明溶液。温度上升到150~200 °C 时,溶液颜色由浅色到深色快速变化,生成的银纳米颗粒被烷基胺包裹,稳定在溶液中。通过对样品洗涤、离心沉淀,可获得烷基胺包裹的银纳米粒子。 三、实验方法与步骤 (一)实验仪器与材料 硝酸银,柠檬酸三钠,油胺或十八胺,十八烯(ODE ),无水乙醇,配有温度调控和磁力搅拌的油浴加热器,三颈瓶,抽气头,滤膜,温度计套管,10 mL 量筒,分析天平,玻璃滴管,离心管,离心机,电热干燥箱 (二)实验方法与操作步骤

材料科学基础习题与答案

- 第二章 思考题与例题 1. 离子键、共价键、分子键和金属键的特点,并解释金属键结合的固体材料的密度比离子键或共价键固体高的原因 2. 从结构、性能等方面描述晶体与非晶体的区别。 3. 何谓理想晶体何谓单晶、多晶、晶粒及亚晶为什么单晶体成各向异性而多晶体一般情况下不显示各向异性何谓空间点阵、晶体结构及晶胞晶胞有哪些重要的特征参数 4. 比较三种典型晶体结构的特征。(Al 、α-Fe 、Mg 三种材料属何种晶体结构描述它们的晶体结构特征并比较它们塑性的好坏并解释。)何谓配位数何谓致密度金属中常见的三种晶体结构从原子排列紧密程度等方面比较有何异同 5. 固溶体和中间相的类型、特点和性能。何谓间隙固溶体它与间隙相、间隙化合物之间有何区别(以金属为基的)固溶体与中间相的主要差异(如结构、键性、性能)是什么 6. 已知Cu 的原子直径为A ,求Cu 的晶格常数,并计算1mm 3Cu 的原子数。 ( 7. 已知Al 相对原子质量Ar (Al )=,原子半径γ=,求Al 晶体的密度。 8 bcc 铁的单位晶胞体积,在912℃时是;fcc 铁在相同温度时其单位晶胞体积是。当铁由 bcc 转变为fcc 时,其密度改变的百分比为多少 9. 何谓金属化合物常见金属化合物有几类影响它们形成和结构的主要因素是什么其性能如何 10. 在面心立方晶胞中画出[012]和[123]晶向。在面心立方晶胞中画出(012)和(123)晶面。 11. 设晶面(152)和(034)属六方晶系的正交坐标表述,试给出其四轴坐标的表示。反之,求(3121)及(2112)的正交坐标的表示。(练习),上题中均改为相应晶向指数,求相互转换后结果。 12.在一个立方晶胞中确定6个表面面心位置的坐标,6个面心构成一个正八面体,指出这个八面体各个表面的晶面指数,各个棱边和对角线的晶向指数。 13. 写出立方晶系的{110}、{100}、{111}、{112}晶面族包括的等价晶面,请分别画出。

材料科学基础课后习题答案

《材料科学基础》课后习题答案 第一章材料结构的基本知识 4. 简述一次键和二次键区别 答:根据结合力的强弱可把结合键分成一次键和二次键两大类。其中一次键的结合力较强,包括离子键、共价键和金属键。一次键的三种结合方式都是依靠外壳层电子转移或共享以形成稳定的电子壳层,从而使原子间相互结合起来。二次键的结合力较弱,包括范德瓦耳斯键和氢键。二次键是一种在原子和分子之间,由诱导或永久电偶相互作用而产生的一种副键。 6. 为什么金属键结合的固体材料的密度比离子键或共价键固体为高? 答:材料的密度与结合键类型有关。一般金属键结合的固体材料的高密度有两个原因:(1)金属元素有较高的相对原子质量;(2)金属键的结合方式没有方向性,因此金属原子总是趋于密集排列。相反,对于离子键或共价键结合的材料,原子排列不可能很致密。共价键结合时,相邻原子的个数要受到共价键数目的限制;离子键结合时,则要满足正、负离子间电荷平衡的要求,它们的相邻原子数都不如金属多,因此离子键或共价键结合的材料密度较低。 9. 什么是单相组织?什么是两相组织?以它们为例说明显微组织的含义以及显微组织对性能的影响。 答:单相组织,顾名思义是具有单一相的组织。即所有晶粒的化学组成相同,晶体结构也相同。两相组织是指具有两相的组织。单相组织特征的主要有晶粒尺寸及形状。晶粒尺寸对材料性能有重要的影响,细化晶粒可以明显地提高材料的强度,改善材料的塑性和韧性。单相组织中,根据各方向生长条件的不同,会生成等轴晶和柱状晶。等轴晶的材料各方向上性能接近,而柱状晶则在各个方向上表现出性能的差异。对于两相组织,如果两个相的晶粒尺度相当,两者均匀地交替分布,此时合金的力学性能取决于两个相或者两种相或两种组织组成物的相对量及各自的性能。如果两个相的晶粒尺度相差甚远,其中尺寸较细的相以球状、点状、片状或针状等形态弥散地分布于另一相晶粒的基体内。如果弥散相的硬度明显高于基体相,则将显著提高材料的强度,同时降低材料的塑韧性。 10. 说明结构转变的热力学条件与动力学条件的意义,说明稳态结构和亚稳态结构之间的关系。 答:同一种材料在不同条件下可以得到不同的结构,其中能量最低的结构称为稳态结构或平衡太结构,而能量相对较高的结构则称为亚稳态结构。所谓的热力学条件是指结构形成时必须沿着能量降低的方向进行,或者说结构转变必须存在一个推动力,过程才能自发进行。热力学条件只预言了过程的可能性,至于过程是否真正实现,还需要考虑动力学条件,即反应速度。动力学条件的实质是考虑阻力。材料最终得到什么结构取决于何者起支配作用。如果热力学推动力起支配作用,则阻力并不大,材料最终得到稳态结构。从原则上讲,亚稳态结构有可能向稳态结构转变,以达到能量的最低状态,但这一转变必须在原子有足够活动能力的前提下才能够实现,而常温下的这种转变很难进行,因此亚稳态结构仍可以保持相对稳定。 第二章材料中的晶体结构 1. 回答下列问题: (1)在立方晶系的晶胞内画出具有下列密勒指数的晶面和晶向: 32)与[236] (001)与[210],(111)与[112],(110)与[111],(132)与[123],(2 (2)在立方晶系的一个晶胞中画出(111)和(112)晶面,并写出两晶面交线的晶向指数。 解:(1)

材料科学基础作业解答分析

第一章 1.简述一次键与二次键各包括哪些结合键?这些结合键各自特点如何? 答:一次键——结合力较强,包括离子键、共价键和金属键。 二次键——结合力较弱,包括范德瓦耳斯键和氢键。 ①离子键:由于正、负离子间的库仑(静电)引力而形成。特点:1)正负离子相间排列,正负电荷数相等;2)键能最高,结合力很大; ②共价键:是由于相邻原子共用其外部价电子,形成稳定的电子满壳层结构而形成。特点:结合力很大,硬度高、强度大、熔点高,延展性和导电性都很差,具有很好的绝缘性能。 ③金属键:贡献出价电子的原子成为正离子,与公有化的自由电子间产生静电作用而结合的方式。特点:它没有饱和性和方向性;具有良好的塑性;良好的导电性、导热性、正的电阻温度系数。 ④范德瓦耳斯键:一个分子的正电荷部位和另一个分子的负电荷部位间的微弱静电吸引力将两个分子结合在一起的方式。也称为分子键。特点:键合较弱,易断裂,可在很大程度上改变材料的性能;低熔点、高塑性。 2.比较金属材料、陶瓷材料、高分子材料在结合键上的差别。 答:①金属材料:简单金属(指元素周期表上主族元素)的结合键完全为金属键,过渡族金属的结合键为金属键和共价键的混合,但以金属键为主。 ②陶瓷材料:陶瓷材料是一种或多种金属同一种非金属(通常为氧)相结合的化合物,其主要结合方式为离子键,也有一定成分的共价键。 ③高分子材料:高分子材料中,大分子内的原子之间结合方式为共价键,而大分子与大分子之间的结合方式为分子键和氢键。④复合材料:复合材料是由二种或者二种以上的材料组合而成的物质,因而其结合键非常复杂,不能一概而论。 3. 晶体与非晶体的区别?稳态与亚稳态结构的区别? 晶体与非晶体区别: 答:性质上,(1)晶体有整齐规则的几何外形;(2)晶体有固定的熔点,在熔化过程中,温度始终保持不变;(3)晶体有各向异性的特点。

简述扫描电镜的构造及成像原理资料讲解

简述扫描电镜的构造及成像原理,试分析其与透射电镜在样品表征方面的异同 1、扫描电镜的构造 扫描电镜由电子光学系统、信号收集和图像显示系统、和真空系统三部分组成。 1.1 电子光学系统(镜筒) 电子光学系统包括电子枪、电磁透镜、扫描线圈和样品室。 1.1.1 电子枪扫描电子显微镜中的电子枪与透射电镜的电子枪相似,只是加速电压比透射电镜低。 1.1.2 电磁透镜扫描电子显微镜中各电磁透镜都不作成像透镜用,而是做聚光镜用,它们的功能只是把电子枪的束斑逐级聚焦缩小,使原来直径约为50um的束斑缩小成一个只有数个纳米的细小斑点,要达到这样的缩小倍数,必须用几个透镜来完成。扫描电子显微镜一般都有三个聚光镜,前两个聚光镜是强磁透镜,可把电子束光斑缩小,第三个聚光镜是弱磁透镜,具有较长的焦距。布置这个末级透镜(习惯上称之物镜)的目的在于使样品室和透镜之间留有一定空间,以便装入各种信号探测器。扫描电子显微镜中照射到样品上的电子束直径越小,就相当于成像单元的尺寸越小,相应的分辨率就越高。采用普通热阴极电子枪时,扫描电子束的束径可达到6nm左右。若采用六硼化镧阴极和场发射电子枪,电子束束径还可进一步缩小。

1.1.3 扫描线圈扫描线圈的作用是使电子束偏转,并在样品表面作有规则的扫动,电子束在样品上的扫描动作和显像管上的扫描动作保持严格同步,因为它们是由同一扫描发生器控制的。 1.1.4 样品室样品室内除放置样品外,还安置信号探测器。各种不同信号的收集和相应检测器的安放位置有很大关系,如果安置不当,则有可能收不到信号或收到的信号很弱,从而影响分析精度。样品台本身是一个复杂而精密的组件,它应能夹持一定尺寸的样品,并能使样品作平移、倾斜和转动等运动,以利于对样品上每一特定位置进行各种分析。新式扫描电子显微镜的样品室实际上是一个微型试验室,它带有许多附件,可使样品在样品台上加热、冷却和进行机械性能试验(如拉伸和疲劳)。 1.2 信号的收集和图像显示系统 二次电子、背散射电子和透射电子的信号都可采用闪烁计数器来检测。信号电子进入闪烁体后即引起电离,当离子和自由电子复合后就产生可见光。可见光信号通过光导管送入光电倍增器,光信号放大,即又转化成电流信号输出,电流信号经视频放大器放大后就成为调制信号。如前所述,由于镜筒中的电子束和显像管中电子束是同步扫描的,而荧光屏上每一点的亮度是根据样品上被激发出来的信号强度来调制的,因此样品上各点的状态各不相同,所以接收到的信号也不相同,于是就可以在显像管上看到一幅反映试样各点状态的扫描电子显微图像。 1.3 真空系统 为保证扫描电子显微镜电子光学系统的正常工作,对镜筒内的真空度有一定的要求。一般情况下,如果真空系统能提供1.33×10-2 -1.33×10-3 Pa的真空度时,就可防止样品的污染。如果真空度不足,除样品被严重污染外,还会出现灯丝寿命下降,极间放电等问题。 2、扫描电镜的成像原理 扫描电镜是由电子枪发射并经过聚焦的电子束在样品表面扫描,激发样品产生各种物理信号,经过检测、视频放大和信号处理,在荧光屏上获得能反映样品表面各种特征的扫描图像。 3、分析扫描电镜与透射电镜在样品表征方面的异同 3.1 结构差异 主要体现在样品在电子束光路中的位置不同,透射电镜的样品在电子束中间,电子源在样品上方发射电子,经过聚光镜,然后穿透样品后,有后续的电磁透镜继续放大电子光束,最后投影在荧光屏幕上;扫描电镜的样品在电子束末端,

相关主题
文本预览
相关文档 最新文档