当前位置:文档之家› 3 Synthesis of mesoporous NiO with crystalline walls by a simple sol gel route

3 Synthesis of mesoporous NiO with crystalline walls by a simple sol gel route

3  Synthesis of mesoporous NiO with crystalline walls by a simple sol gel route
3  Synthesis of mesoporous NiO with crystalline walls by a simple sol gel route

ORIGINAL PAPER

Synthesis of mesoporous NiO with crystalline walls by a simple sol–gel route

Chaoquan Hu ?Zhenghong Gao ?Xiaorui Yang

Received:22November 2006/Accepted:18September 2007/Published online:10October 2007óSpringer Science+Business Media,LLC 2007

Abstract Mesoporous NiO particles with crystalline walls were prepared by a simple sol-gel technique.X-ray diffraction (XRD),N 2adsorption–desorption,?eld emis-sion scanning electron microscopy (FESEM),transmission electron microscopy (TEM)have been used to investigate the mesoporous NiO particles.The as-prepared mesopor-ous NiO possessed narrow pore in the range of mesopores and was stable up to 700o C.Various characterization results showed that the mesostructure was formed through the aggregation of nanocrystals and stearic acid in the precursor played an important role in formation of the ?nal mesoporous structures.Mesoporous Ni particles have also been successfully synthesized by reduction of the obtained mesoporous NiO at 700o C for 30min.

Keywords Sol–gel method áMesoporous materials áCrystalline walls áNickel oxide áNickel

1Introduction

Since the discovery of surfactant-templated mesoporous silicates [1],there has been considerable interest in the synthesis of mesoporous materials using surfactant mole-cules as template [2].Recently,mesostructured materials research has been extended to non-silica oxides due to the fact that new physical and chemical properties can be obtained from this special pore structure and these prop-erties can be used in many ?elds,such as catalysis,separation process,biology,and environmental monitoring

[3–11].The obtained mesoporous metal oxides usually consist of amorphous walls and the crystallization by cal-cination results in the collapse of the mesoporous structure [12].However,many applications require crystalline materials of speci?c crystalline structure.Therefore,syn-thesis of mesoporous oxides with cryastalline walls would be much more desirable for their applications.

Among all oxides,nickel oxide (NiO)has been widely used in catalysis,battery cathodes,gas sensors,and mag-netic materials [13–16].Since the catalytic reactions take place on the surface of the catalysts,the reaction rates are greatly related to the surface area of the catalysts.Metal oxide catalysts prepared by calcination hydrate or hydroxides always possess small surface area due to the sintering of the ?ne particles and exhibit poor catalytic properties.For wide applications of NiO in the catalytic ?eld,it is worthwhile to synthesize mesoporous NiO with a relatively large surface area and crystalline walls.

Sol–gel process has been proven to be a useful technique for generating metal oxides with unusual properties [17–20].The sol–gel process always includes four steps:hydrolysis,polycondensation,drying,and thermal decomposition.The properties of the ?nal products strongly depend on the pre-cursors of the metal.It is reported that stearic acid (SA)has strong ability to disperse metal precursors due to its car-boxylic acid group and long carbon chain [21–22].The mixing process is performed in a melted state,therefore,metallic ions were well dispersed and separated by stearic acid in the mixing system.The component in the ?nal products was uniformly even in the resulting mixture after removing organic substance by calcination.Herein,we successfully prepared mesoporous NiO with crystalline walls by the utilization of SA combined with a sol–gel pro-cess.The obtained NiO was characterized by X-ray diffraction,scanning electron microscopy,transmission

C.Hu áZ.Gao (&)áX.Yang

Department of Chemistry,Institute of Science,Tianjin University,Tianjin 300072,People’s Republic of China e-mail:zh_gao@https://www.doczj.com/doc/485696260.html,

J Sol-Gel Sci Technol (2007)44:171–176DOI 10.1007/s10971-007-1632-9

electron microscopy,selected-area electron diffraction,and nitrogen adsorption-desorption.Furthermore,mesoporous metal Ni was also synthesized by reduction of the as-prepared mesoporous NiO at700o C.

2Experimental

All chemical reagents in this experiment were of analytical grade and used as received without further puri?cation. Mesoporous NiO powders were prepared by a stearic acid sol–gel method using stearic acid,Ni(NO3)26H2O as raw materials.Firstly,25g of stearic acid was melted at80o C by heating.Secondly,10g of Ni(NO3)26H2O was added to the molten stearic acid.Then the solution was heated at120o C for about3h to obtain a sol,which was then cooled to room temperature naturally and the gel was formed.Finally,the gel precursor was calcined at600o C for5h with a heating rate of2o C/min to obtain the mesoporous NiO powders.

The phase structure of all the samples was analyzed by an X-ray diffractometer(XRD,X’Pert MPD Pro,PANalytical, the Netherlands).Textural properties(surface area and pore volume)were determined at77K using N2in a conventional volumetric technique by a Quantachrom Instruments.Before analysis the samples were dried at130o C and evacuated overnight at200o C under vacuum.The surface area was calculated using the BET method based on adsorption data in the partial pressure range of0.1–0.3.The pore size distri-bution was calculated from the desorption branch of the N2 isotherm with the Barrett-Joyner-Halenda(BJH)method. The sample morphology was examined by a?eld emission scanning electron microscope(FESEM,JEOL JSM-6700F). Transmission electron microscopy(TEM)images were taken with a JEOL JSM-2010equipped with electron dif-fraction(ED)and operated under an accelerating voltage of 200kV.

Temperature-programmed reduction(TPR)experiments were carried out in a?ow system comprising of a4mm i.d. quartz-U tube.The20mg sample mounted on quartz wool was dehydrated at150o C for30min under argon stream and then cooled to room temperature before reduction.The sample was then reduced up to700o C with a heating rate of10o C/min using5%H2/Ar as the reducing gas at a?ow rate of30ml/min.The outlet of the reactor was connected to a thermal conductivity detector(TCD)and was descri-bed as a signal of consumption of hydrogen.

3Results and discussion

Figure1shows the XRD patterns of the NiO powders after calcination at600o C for5h.The low-angle XRD pattern (Fig.1a)of the particles has only one broad diffraction peak with a d spacing of3.5nm.Owing to the broadness of this re?ection,it is dif?cult to index the patterns of any particular phase.However,the absence of other diffraction peaks in the low-angle XRD pattern may indicate the dis-order mesostructure.In the wide-angle region of the XRD pattern(Fig.1b),the as-prepared products exhibit diffrac-tion peaks indexed to NiO with the cubic phase with lattice constant a=0.4175nm,which is very close to the repor-ted data(JCPDS4-0835).Interestingly,the diffraction peaks are broad even calcination at600o C,indicating the small grain size.The XRD patterns results suggest that mesoporous NiO particles with crystalline walls were obtained under present conditions.

Figure2shows the N2adsorption-desorption isotherm and BJH pore size distribution of the as-prepared meso-porous NiO powders.In terms of shape,the isotherm can be classi?ed as type IV,with a distinct hysteresis loop observed in the range of0.4–0.8P/P0(Fig.2a),which was associated with the?lling and emptying of mesopores by capillary condensation[23].The apparent step in the adsorption branch combined with the sharp decline in the desorption branch is an obvious indication of mesoporos-ity.Furthermore,the capillary condensation step was very sharp,indicating a narrow distribution of mesopore size. The pore size distribution of the NiO sample is shown in Fig.2b.A narrow peak appeared in the pore size region of 2–6nm and its top value was located at3nm.The BET surface area and total pore volume of as-prepared NiO were77.5m2/g and0.15cm3/g,respectively.

In order to obtain the insight information about the surface morphology and particle size of the sample,both FESEM and TEM analyses were performed.Figure3 shows the FESEM images of the as-prepared NiO powders. As shown in Fig.3a,aggregated nanocrystals with sphe-roidal morphology were produced after calcination at600 o C for5h.Further magni?ed image(Fig.3b)shows that the spherical particles are homogeneous.The TEM image (Fig.4a)of the mesoporous NiO particles reveals the presence of many irregularly sized mesopores.This irreg-ular pore system may bring about a certain degree of short-range structural order and result in the presence of a broad shoulder at low angles in the XRD pattern shown in Fig.1a.In addition,the TEM clearly showed that the mesopores are between the nanocrystals.From the selec-ted-area electron diffraction(SAED)pattern presented in Fig.4b,all of electron diffraction rings can be indexed to the cubic phase NiO,which also agree very well with the XRD analysis.The current results indicate that the random network surrounding the mesopores consists of NiO nanocrystals and further con?rm the mesoporous NiO particles with crystalline walls.

Based on the FESEM and TEM observations,the for-mation mechanism of the mesoporous structure of the NiO

Fig.1Low-angle(a)and wide-

angle(b)XRD patterns of the

as-prepared NiO powders

Fig.2N2adsorption and desorption isotherm(a)and pore size distribution(b)of the NiO powders

Fig.3FESEM image of the as-prepared NiO powders at different magni?cation

Fig.4TEM(a)and selected-

area electron diffraction

(SAED)pattern(b)of the

nanocrystalline mesoporous

NiO calcined at600o C

nanocrystal can be mainly ascribed to the aggregation of the nanocrystalline NiO particles.Regarding the aggregation process,it is believed that SA in the precursor plays a very important role in the formation of the ?nal mesoporous structure.When the amount of SA was less than 8g in the precursor,the ?nal product was mainly the large particles (Fig.5a),in which the nanoparticles were inhomogeneous.And there was no any diffraction peaks in the low-angle XRD pattern (Fig.5b),which are characteristic of meso-porous structure.The current results indicate that enough amount of SA is necessary for the dispersion of the metal ions in the precursor.Consequently,the mesoporous for-mation mechanism can be summarized as follows:?rst,nickel ions were well dispersed with enough amount of SA in the precursor.Second,the SA was removed by calcination from the precursor and uniform NiO nanocrystals were formed.In the meanwhile,the nanocrystalline NiO particles were easy to aggregate at high temperature driven by the tendency of the solid phase in the system to achieve a min-imum surface area energy.The close-packed agglomeration of these uniform nanoparticles caused the formation of the mesoporous structure.

For the wide applications of metal oxides as catalysts,the thermal stability is very important for achieving excellent catalytic performance.In present work,the mesoporous NiO powders were obtained at 600o C,which indicates that the mesosturucture was thermally stable up to 600o C.Interestingly,the diffraction peak (Fig.6)in the low-angle XRD pattern still existed even calcination at 700o C for 5h,which indicating the excellent thermal stability of the mesoporous NiO particles.However,the diffraction peak shifts to lower angle with the d spacing becoming larger.The increased d spacing is consistent with the collapse of walls between neighboring pores leading to materials with larger pore sizes [24].

Since the as-prepared product has excellent thermal stability,we speculated that if mesoporous Ni could be obtained by the reduction of the mesoporous NiO.In order to determine the reduction temperature,TPR experiment was carried out.Figure 7shows the TPR-H 2curve for the

mesoporous NiO powders under study.It shows that NiO could be reduced completely into metal Ni at 700o C.The symmetric high temperature peak indicates homogeneous NiO particles in the as-prepared mesoporous NiO powders,which is consistent with the above discussions.Figure 8shows the XRD patterns of the metal Ni,which was obtained by reducing the NiO using 5%H 2/Ar as the reducing gas at 700o C for 30min.The XRD patterns

of

Fig.5FESEM image (a)and low-angle XRD pattern (b)of the product calcined from the precursor containing 8g

SA

Fig.6Low-angle XRD pattern of the mesoporous NiO after calcination at 700o C for 5

h

Fig.7TPR-H 2curve for the mesoporous NiO powders

the as-prepared Ni exhibit one a broad shoulder at low angle (Fig.8a)and three peaks indexed to the metal Ni (JCPDS 87–0712)at wide angles (Fig.8b).Figure 9shows the N 2adsorption-desorption isotherm and BJH pore size distribution of the as-prepared Ni powders.As shown in Fig.9(right),a wide peak appeared in the pore size region of 5–30nm,which is in the range of mesopores.These results reveal that mesoporous Ni was successfully obtained from the reduction of the mesoporous NiO at 700o

C.It should be noted that the pore size changed after the reduction of NiO,which may be related to the water vapor produced during the reduction process.The presence of water may lead to the random growth of the particles and result in an inhomogeneous distribution of the particles in the product.Further studies are still necessary to under-stand the exact reasons.4Conclusions

A very simple sol–gel method has been successfully applied to the preparation of mesoporous NiO with crys-talline walls.The strong interaction between Ni and SA

make nickel ions well dispersed and NiO particles in the ?nal products were uniformly after the removing SA by calcination.The as-prepared mesoporous NiO possessed narrow pore in the range of mesopores and was stable up to 700o C.The formation mechanism of the mesoporous structure was based on the aggregations of the nanocrys-tals.Mesoporous Ni particles have also been successfully synthesized by reduction of the obtained mesoporous NiO at 700o C for 30min.The mesoporous NiO and Ni,which was stable up to 700o C,can be considered as a potential candidate for a multitude of applications,such as catalysts,battery cathodes,p-type transparent conducting ?lms,magnetic materials,gas sensors,active optical ?bers,and solid oxide fuel cell (SOFC)electrodes.Furthermore,this simple method is expected to allow fabrication of other inorganic materials with mesoporous structures.

References

1.Kresge CT,Leonowicz MEL,Roth WJ,Vartuli JC,Beck JS (1992)Nature 359:710

2.Ying JY,Mehnert CP,Wong MS (1999)Angew Chem Int Ed

38:56

Fig.8Low-angle (a)and wide-angle (b)XRD patterns of the Ni powders reduced from the mesoporous NiO

powders

Fig.9N 2adsorption and desorption isotherm (left)and pore size distribution (right)of the Ni powders obtained from the reduction of mesoporous NiO at 700o C

3.Wan Y,Yang H,Zhao D(2006)Acc Chem Res39:423

4.Joo SH,Choi SJ,Oh L,Kwak J,Liu Z,Terasaki O,Ryoo R

(2001)Nature412:169

5.Zou X,Conradsson T,Klingstedt M,Dadachov MS,O’Keeffe M

(2005)Nature437:716

6.Corma A,Atienzar P,Garcia H,Chane-Ching JY(2004)Nature

Mater3:394

7.Yoshitake H,Aoki Y,Hemmi S(2006)Micorpor Mesopor Mater

93:294

8.Chaubal NS,Sawant MR(2006)J Mol Catal A261:232

9.Perkas N,Minh DP,Gallezot P,Gedanken A,Besson M(2005)

Appl Catal B59:121

10.Tursiloadi S,Yamanaka Y,Hirashima H(2006)J Sol–Gel Sci

Techn38:5

11.Nelson PA,Elliott JM,Attard GS,Owen JR(2002)Chem Mater

14:524

12.Shibata H,Mihara H,Muka T,Ogura T,Kohno H,Ohkubo T,

Sakai H,Abe M(2006)Chem Mater18:2256

13.Alejandre A,Medina F,Salagre P,Fabregat A,Sueiras JE(1998)

Appl Catal B18:30714.Soriano L,Abbate M,Vogel J,Fuggle JC(1993)Chem Phys Lett

208:460

15.Makhlouf SA,Parker FT,Spada FE,Berkowitz AE(1997)J Appl

Phys81:5561

16.Biju V,Khadar MA(2001)Mater Sci Eng A304–306:814

17.Cui H,Zayat M,Levy D(2006)J Sol–Gel Sci Techn40:83

18.Li B,Wang X,Yan M,Li L(2003)Mater Chem Phys78:184

19.Jitianu A,Altindag Y,Zaharescu M,Wark M(2003)J Sol–Gel

Sci Techn26:483

20.Parala H,Devi A,Bhakta R,Fischer RA(2002)J Mater Chem

12:1625

21.Hao J,Wang X,Chen R,Li L(2005)Mater Chem Phys90:282

22.Yang J,Li D,Wang X,Yang XJ,Lu LD(2002)J Solid State

Chem165:193

23.Keshavaraja A,Ramaswamy V,Soni HS,Ramaswamy AV,

Ratnasamy P(1995)J Catal157:501

24.Wang YQ,Yin LX,Palchik O,Rosenfeld Hacohen Y,Koltypin Y,

Gedanken A(2001)Langmuir17:4131

The way常见用法

The way 的用法 Ⅰ常见用法: 1)the way+ that 2)the way + in which(最为正式的用法) 3)the way + 省略(最为自然的用法) 举例:I like the way in which he talks. I like the way that he talks. I like the way he talks. Ⅱ习惯用法: 在当代美国英语中,the way用作为副词的对格,“the way+ 从句”实际上相当于一个状语从句来修饰整个句子。 1)The way =as I am talking to you just the way I’d talk to my own child. He did not do it the way his friends did. Most fruits are naturally sweet and we can eat them just the way they are—all we have to do is to clean and peel them. 2)The way= according to the way/ judging from the way The way you answer the question, you are an excellent student. The way most people look at you, you’d think trash man is a monster. 3)The way =how/ how much No one can imagine the way he missed her. 4)The way =because

透明导电薄膜研究进展

氧化锌基透明导电薄膜研究 汇报人:卢龙飞 导师:齐暑华 学号:2014201921 摘要:本文简要介绍了氧化锌基导电薄膜的基本特征、发展近况,并对其前景进行了展望。关键词:氧化锌导电薄膜参杂 Progess in research of ZnO based transparentconductinve films Abstract:Basic traits and latest development of ZnO based conductive thin films are introduced in this paper,and the prospect of ZnO conductive films was also forecased. Keywords:ZnO conductive thin films doping 0.引言 透明导电氧化物薄膜(transparent conductive oxide films)[1-3],简称TCO,由于本身的透明性和导电性,迅速发展成为重要的功能薄膜材料,在透明电极(太阳能电池、显示器、发光二极管LED、触摸屏等)、面发热膜(除霜玻璃)、红外反射族(汽车贴膜、建筑窗坡璃)、防静电膜、电磁屏蔽膜、电致变色密、气敏传感器、高密度存储、低波长激光器、光纤通信等领域得到广泛的应用透明导电材料是一类对可见光具有高透光率,同时又具有高导电率的特殊材料由于其特有的光电性能,透明导电材料在电子信息技术光电技术新能源技术以及国防技术中具有广泛的应用[4-7]。自20世纪80年代以来,人们开始关注Zn O薄膜。相比氧化铟锡(ITO)而言,ZnO具有原材料廉价无毒沉积温度低等优点,并且在H2等离子体环境下具有更好的稳定性尽管ITO薄膜目前仍是工业化应用最多的透明导电材料,但研究表明,在ZnO中通过掺杂Al、Ga、In等元素能有效提高薄膜光电性能,未来有望替代ITO成为最具竞争力的透明导电材料早期研究者大多在硬质材料衬底如硅片玻璃陶瓷上制备ZnO基透明导电薄膜。然而,科学技术的发展,越来越多的电子器件开始朝柔性化超薄化方向发展,比如触摸屏太阳能电池等,使得对柔性透明导电薄膜的需求日益迫切柔性透明导电薄膜有许多独特优点,例如可绕曲质量小不易碎易于大面积生产成本低便于运输等。因此,开发具有实用前景并且性能优异的柔性透明导电薄膜具有非常重要的现实意义。 1.ZnO基本特征 氧化锌(ZnO, Zinc Oxide)是一种新型的宽带隙II-VI 族化合物半导体材料,兼具有光电、压电、热电以及铁电等特性,可以方便地制备成薄膜以及各种形态的纳米结构。ZnO主要有四方岩盐矿立方闪锌矿和六方纤锌矿3种结构,通常情况下以纤锌矿结构存在,属六方晶系热稳定性好熔点1975℃,常温下禁带宽度为3.37eV对应于近紫外光阶段,作为一种压电材料,具有激活能大(60 meV)、压电常数大、发光性能强、热电导高等特点[8]。ZnO存在很多浅施主缺陷主要有氧空位V0和锌间隙Zni,使得ZnO偏离化学计量比表现为n型本身就有透明导电性,但高温下400K电稳定性不好同时红外反射率较低。 ZnO有较大的耦合系数;ZnO中掺杂Li 或Mg 时可作为铁电材料;ZnO与Mn元素合金化后是一种具有磁性的半导体材料;高质量的单晶或纳米结构ZnO可用于蓝光或紫外发光二极管(LEDs)和激光器(LDs);通过能带工程,如在ZnO中掺入适量的MgO或CdO形成三元合金,可以实现其禁带宽度在2.8~4.0 eV 之间的调控。通过掺杂III 族元素(B、Al、Ga、In、Sc、Y)或IV 族元素(Si、Ge、Ti、Zr、Hf)以及VII 族元素(F)之后,ZnO有优良的导电性,同时也有可见光高透过性,可用作透明导电氧化物薄膜材料,应用于平板显示器、薄膜太阳电池等多个领域[9]。ZnO基薄膜在氢等离子气氛下的化学稳定性良好,并且原材料丰富、价廉、无毒,所以近年来ZnO基透明导电薄膜被研究应用于薄膜太阳电池的透明电极[10]。 2.透明导电薄膜

金属氧化物透明导电材料地基本原理

金屬氧化物透明導電材料的基本原理 一、透明導電薄膜簡介 如果一種薄膜材料在可見光範圍內(波長380-760 nm)具有80%以上的透光率,而且導電性高,其比電阻值低於1×10-3 ·cm,則可稱為透明導電薄膜。Au, Ag, Pt, Cu, Rh, Pd, A1, Cr等金屬,在形成3-15 nm厚的薄膜時,都有某種程度的可見光透光性,因此在歷史上都曾被當成透明電極來使用。但金屬薄膜對光的吸收太大,硬度低而且穩定性差,因此人們開始研究氧化物、氮化物、氟化物等透明導電薄膜的形成方法及物性。其中,由金屬氧化物構成的透明導電材料(transparent conducting oxide, 以下簡稱為TCO),已經成為透明導電膜的主角,而且近年來的應用領域及需求量不斷地擴大。首先,隨著3C產業的蓬勃發展,以LCD為首的平面顯示器(FPD)產量逐年增加,目前在全球顯示器市場已佔有重要的地位,其中氧化銦錫(In2O3:Sn, 意指摻雜錫的氧化銦,以下簡稱為ITO)是FPD的透明電極材料。另外,利用SnO2等製成建築物上可反射紅外線的低放射玻璃(low-e window),早已成為透明導電膜的最大應用領域。未來,隨著功能要求增加與節約能源的全球趨勢,兼具調光性與節約能源效果的electrochromic (EC) window (一種透光性可隨施加的電壓而變化的玻璃)等也可望成為極重要的建築、汽車及多種日用品的材料,而且未來對於可適用於多種場合之透明導電膜的需求也會越來越多。 二、常用的透明導電膜

一些目前常用的透明導電膜如表1所示,我們可看出TCO佔了其中絕大部分。這是因為TCO具備離子性與適當的能隙(energy gap),在化學上也相當穩定,所以成為透明導電膜的重要材料。 表1 一些常用的透明導電膜 三、代表性的TCO材料 代表性的TCO材料有In2O3, SnO2, ZnO, CdO, CdIn2O4, Cd2SnO4,Zn2SnO4和In2O3-ZnO等。這些氧化物半導體的能隙都在3 eV以上,所以可見光(約1.6-3.3 eV)的能量不足以將價帶(valence band)的電子激發到導帶(conduction band),只有波長在350-400nm(紫外線)以下的光才可以。因此,由電子在能帶間遷移而產生的光吸收,在可見光範圍中不會發生,TCO對可見光為透明。

初中语法祈使句专项讲解

初中语法祈使句专项讲解 1、祈使句的概念表示请求、命令、建议、祝愿、邀请或要求的句子叫祈使句。用于祈使句句首的动词总是用原形,不能用其他形式。如:Shut the door! 把门关上!Have a cup of coffee! 喝杯咖啡吧!Let them go by train、叫他们坐火车去吧。祈使句的主语通常为第二人称(you),但一般都被省略,只有在特殊的情况下才把主语(you)补充出来。如:You be quiet! 你安静! You go and tell him, Chris、克立斯,你去告诉他。You wait here for a moment、你在这儿等一会儿。有时祈使句的主语也可以是everybody, somebody, anybody, nobody等不定代词。如:Stand up, everybody! 全体起立!Nobody move、任何人都不许动。 2、祈使句表示强调为了加强祈使句的语气,我们通常是在祈使句的动词原形前加上助动词do,此时通常译为“一定”“务必”等。如:Do be careful、务必要小心。Do let me go、一定让我去。副词never和always有时可用于祈使句句首,表示强调。如:Never do that again、再不要这样做了。Always look in the mirror before starting to drive、一定要先看看反光镜再开车。 3、祈使句的否定式构成祈使句否定式的方法很简单,那就是在动词原形前加don’t不管祈使句所用的动词为什么性质动

词,情况都是一样。如:Open the window、把窗户打开。 →Don’t open the window、别把窗户打开。Come next Monday、下周星期一来。对于以let us或let’s开头的祈使句,其否定式通常是在不定式之前放一个not。如:Let’s tell him the truth、我们把实情告诉他吧。→Let’s not tell him the truth、我们不要把实情告诉他。但在日常口语中,我们也可以把don’t放在let’s之前。如:Let’s don’t tell him the truth、我们不要把实情告诉他) 4、祈使句与连用please为了使祈使句的语气变得委婉,我们可以在祈使句的句首或句末加上please若加在句首,其后不用逗号;若加在句末,则通常会在please前加一个逗号。如:Step this way, please、请这边走。Please type your letter、请把你的信打出来。Open the window, please、请把窗户打开。如果是否定祈使句,则通常将please加在don’t之前。如:Please don’t get angry、请不要生气。Please don’t telephone before8 a、 m、早8点以前请不要打电话。 5、祈使句的时间概念祈使句所表示的时间总是指将来,所以与它连用的句子原则上要用将来时态来与它呼应。如:Give me a hand, will you? 帮我一个忙,好吗?由于give me a hand表示隐含将来意义,所以句中的will you 不能改为do you。Try again and you will succeed、你再试就会成功。由于句中的 try again隐含将来意义,所以句中用了you will succeed,而

The way的用法及其含义(二)

The way的用法及其含义(二) 二、the way在句中的语法作用 the way在句中可以作主语、宾语或表语: 1.作主语 The way you are doing it is completely crazy.你这个干法简直发疯。 The way she puts on that accent really irritates me. 她故意操那种口音的样子实在令我恼火。The way she behaved towards him was utterly ruthless. 她对待他真是无情至极。 Words are important, but the way a person stands, folds his or her arms or moves his or her hands can also give us information about his or her feelings. 言语固然重要,但人的站姿,抱臂的方式和手势也回告诉我们他(她)的情感。 2.作宾语 I hate the way she stared at me.我讨厌她盯我看的样子。 We like the way that her hair hangs down.我们喜欢她的头发笔直地垂下来。 You could tell she was foreign by the way she was dressed. 从她的穿著就可以看出她是外国人。 She could not hide her amusement at the way he was dancing. 她见他跳舞的姿势,忍俊不禁。 3.作表语 This is the way the accident happened.这就是事故如何发生的。 Believe it or not, that's the way it is. 信不信由你, 反正事情就是这样。 That's the way I look at it, too. 我也是这么想。 That was the way minority nationalities were treated in old China. 那就是少数民族在旧中

祈使句用法

祈使句的用法 1. 祈使句的定义祈使句是用来发出命令或指示,提出要求、建议、劝告等的句子。祈使句的第二人称主语you 通常不表示出来,而是以动词原形开头。例如:Be careful.小心。Have a coffee, please.请喝 杯咖啡。Don't worry. 不要担心。 2. 祈使句的主语一、省略第二人称的主语 Look out! There's a car coming. 小心!有车来了。 Don't touch me. 别碰我。 二、祈使句如需要强调对方时,亦可把you 说出来。 You be quiet! 你们安静! Don't you open the door你不要开门。 祈使句亦可用第三人称作主语。 Somebody open the door(. 注意:要用动词原形)来个人把门打开。 Henry read the poem first. (注意:要用动词原形)亨利先读这首诗。 Parents with children go to the front. 带孩子的家长到前面去。 Don't an ybody open the door.(注意:要用don't 而不是用does n't)谁 也不要开门。 3.祈使句的否定

祈使句的否定形式一般是在谓语动词前加上do not或don't(口语中), 有时也可用never。若祈使句有主语,否定词don't或never要置于主语之前。 Do not come in uni ess asked.非请莫入。 Don't you believe i t .决不要相信它。 Don't anyone make any no ise .谁也不要吵吵闹闹。 Never be iate again next time. 下一次千万不要再迟到了。 4.祈使句的否定:iet let在祈使句中的否定形式有以下三种: 一、Don't iet Do n' t let the baby fall不要让婴儿摔下来。 Don' t let yourself be eate n by an amateU别让你自己别业余的人吃 掉。 二、Let …not Let ' s not think about it. I am tired of think about it. 咱们别再想那件事了。我已经厌倦了。 Let us not talk about that matter. 咱们别再谈论那个问题了。 三、Let…no (少用) Let there be no mistake about it. 以后别再犯这种错误了。 5.祈使句:动词原形多数的祈使句是以动词原形开头的

(完整版)the的用法

定冠词the的用法: 定冠词the与指示代词this ,that同源,有“那(这)个”的意思,但较弱,可以和一个名词连用,来表示某个或某些特定的人或东西. (1)特指双方都明白的人或物 Take the medicine.把药吃了. (2)上文提到过的人或事 He bought a house.他买了幢房子. I've been to the house.我去过那幢房子. (3)指世界上独一无二的事物 the sun ,the sky ,the moon, the earth (4)单数名词连用表示一类事物 the dollar 美元 the fox 狐狸 或与形容词或分词连用,表示一类人 the rich 富人 the living 生者 (5)用在序数词和形容词最高级,及形容词等前面 Where do you live?你住在哪? I live on the second floor.我住在二楼. That's the very thing I've been looking for.那正是我要找的东西. (6)与复数名词连用,指整个群体 They are the teachers of this school.(指全体教师) They are teachers of this school.(指部分教师) (7)表示所有,相当于物主代词,用在表示身体部位的名词前 She caught me by the arm.她抓住了我的手臂. (8)用在某些有普通名词构成的国家名称,机关团体,阶级等专有名词前 the People's Republic of China 中华人民共和国 the United States 美国 (9)用在表示乐器的名词前 She plays the piano.她会弹钢琴. (10)用在姓氏的复数名词之前,表示一家人 the Greens 格林一家人(或格林夫妇) (11)用在惯用语中 in the day, in the morning... the day before yesterday, the next morning... in the sky... in the dark... in the end... on the whole, by the way...

透明导电薄膜的研究现状及应用

透明导电薄膜的研究现状及应用 李世涛乔学亮陈建国 (武汉华中科技大学模具技术国家重点实验室) 摘要:综述了当前透明导电薄膜的最新研究和应用状况,重点讨论了ITO膜的光电性能和当前的研究焦点。指出了目前需要进一步从材料选择、工艺参数制定、多层膜光学设计等方面来提高透明导电膜的综合性能,使其可见光平均透光率达到92%以上,从而满足高尖端技术的需要。 关键词:透明导电,薄膜,平均透光率,ITO,电导率 1 前言 透明导电薄膜的种类有很多,但氧化物膜占主导地位(例如ITO和AZO膜)。氧化铟锡(IndiumTinOxide简称为ITO)薄膜、氧化锌铝(Al-dopedZnO,简称AZO)膜都是重掺杂、高简并n型半导体。就电学和光学性能而言,它是具有实际应用价值的透明导电薄膜。金属氧化物透明导电薄膜(TCO:TransparentandConductiveOxide的缩写)的研究比较早,Bakdeker于1907年第一个报道了CdO透明导电薄膜。从此人们就对透明导电薄膜产生了浓厚的兴趣,因为从物理学角度看,透明导电薄膜把物质的透明性和导电性这一矛盾两面统一起来了。1950年前后出现了硬度高、化学稳定的SnO2基和综合光电性能优良的In2O3基薄膜,并制备出最早有应用价值的透明导电膜NESA(商品名)-SnO2薄膜。ZnO基薄膜在20世纪80年代开始研究得火热。TCO薄膜为晶粒尺寸数百纳米的多晶;晶粒取向单一,目前研究较多的是ITO、FTO(Sn2O:F)。1985年,TakeaOjioSizoMiyata首次用汽相聚合方法合成了导电的PPY-PVA复合膜,从而开创了导电高分子的光电领域,更重要的是他们使透明导电膜由传统的无机材料向加工性能较好的有机材料方面发展。 透明导电膜以其接近金属的导电率、可见光范围内的高透射比、红外高反射比以及其半导体特性,广泛地应用于太阳能电池、显示器、气敏元件、抗静电涂层以及半导体/绝缘体/半导体(SIS)异质结、现代战机和巡航导弹的窗口等。由于ITO薄膜材料具有优异的光电特性,因而近年来得以迅速发展,特别是在薄膜晶体管(TFT)制造、平板液晶显示(LCD)、太阳电池透明电极以及红外辐射反射镜涂层、火车飞机用玻璃除霜、建筑物幕墙玻璃等方面获得广泛应用,形成一定市场规模。 制备透明导电薄膜的方法很多:物理汽相沉积(PVD)(喷涂法、真空蒸发、磁控溅射、高密度等离子体增强(HDPE)蒸发、脉冲激光沉积(PulsedLaserDeposition,简称PLD)技术、化学汽相沉积(CVD)、原子层外延(ALE)技术、反应离子注入以及溶胶-凝胶(Sol-Gel)技术等。然而,适合于批量生产且已经形成产业的工艺,只有磁控溅射法和溶胶-凝胶法。特别是,溅射法由于具有良好的可控性和易于获得大面积均匀的薄膜,而被广泛应用于显示器件中ITO薄膜的制备。美欧和日本均在发展ITO产业,其中日本夏普、日本电气和东芝三大公司都在其工厂内开发ITO薄膜。深圳几家导电玻璃公司在进口和国产生产线上制造LCD用导电玻璃。而AZO薄膜由于其在实用上还有许多问题,现在还处于研究阶段。综上所述,ITO薄膜性能优异,制

祈使句语法

祈使句的常见用法 几种形式: 1. 肯定祈使句(谓语动词用动词原形)。 Be careful!小心! 2. 否定祈使句(在谓语动词前加Do not / Don't / Never)。 Don't open the door. 不要开门。 3. Let开头的祈使句(Let's / Let sb +动词原形)。 Let me have a try. 让我试试吧。 4. “No +名词或动名词”也可以构成祈使句。用于“指示标牌、布告”等,意为“禁止、不许”。 No spitting!不准随地吐痰! No admittance except on business! 非公莫入! 5. 无动词祈使句。有些用于口号、告示的祈使句不用动词,使语言更加简洁明了。如: After you! 您先请! Bottoms up! 干杯! 注意: 1. 祈使句一般不出现主语you。但是,为了加强语气或要特别指明向谁提出命令或要求时,需加主语you,有时还可以同时加称呼语。如:Tom, you water the flowers! 汤姆,你浇花! Come in, everybody! 大家都进来! 2. 祈使句后也可加简略问句,不表示反义,而是表示语气。如: Show me how to use this water pump, won't you? 教我怎样使用这台抽水泵,好吗?Let's make sure the lights are turned off and the door is locked, shall / shan't we? 让我们核实一下是否关灯和锁门了,好吗? Let me tidy the lab instead of you, may I? 我替你收拾实验室,好吗? 3. 祈使句也可用于表示祝愿。如: Wish you a good journey. 祝你旅途愉快。 Allow me to propose a toast to our friendship!为我们的友谊干杯!

“the way+从句”结构的意义及用法

“theway+从句”结构的意义及用法 首先让我们来看下面这个句子: Read the followingpassageand talkabout it wi th your classmates.Try totell whatyou think of Tom and ofthe way the childrentreated him. 在这个句子中,the way是先行词,后面是省略了关系副词that或in which的定语从句。 下面我们将叙述“the way+从句”结构的用法。 1.the way之后,引导定语从句的关系词是that而不是how,因此,<<现代英语惯用法词典>>中所给出的下面两个句子是错误的:This is thewayhowithappened. This is the way how he always treats me. 2.在正式语体中,that可被in which所代替;在非正式语体中,that则往往省略。由此我们得到theway后接定语从句时的三种模式:1) the way+that-从句2)the way +in which-从句3) the way +从句 例如:The way(in which ,that) thesecomrade slookatproblems is wrong.这些同志看问题的方法

不对。 Theway(that ,in which)you’re doingit is comple tely crazy.你这么个干法,简直发疯。 Weadmired him for theway inwhich he facesdifficulties. Wallace and Darwingreed on the way inwhi ch different forms of life had begun.华莱士和达尔文对不同类型的生物是如何起源的持相同的观点。 This is the way(that) hedid it. I likedthe way(that) sheorganized the meeting. 3.theway(that)有时可以与how(作“如何”解)通用。例如: That’s the way(that) shespoke. = That’s how shespoke.

【CN109727706A】一种柔性透明导电薄膜及其制备方法【专利】

(19)中华人民共和国国家知识产权局 (12)发明专利申请 (10)申请公布号 (43)申请公布日 (21)申请号 201910174410.0 (22)申请日 2019.03.08 (71)申请人 华南协同创新研究院 地址 523808 广东省东莞市松山湖高新技 术产业开发区生产力大厦168室 (72)发明人 朱立新 吴良辉 李要山  (74)专利代理机构 广州市华学知识产权代理有 限公司 44245 代理人 宫爱鹏 (51)Int.Cl. H01B 5/14(2006.01) H01B 13/00(2006.01) H01B 1/02(2006.01) (54)发明名称 一种柔性透明导电薄膜及其制备方法 (57)摘要 本发明公开了一种柔性透明导电薄膜及其 制备方法,包括如下步骤:(1)将银纳米线加入到 无水乙醇中,超声分散均匀,将上述分散液通过 真空抽滤到有机系滤膜表面,之后将滤膜干燥, 得到银纳米线分散均匀的滤膜A;(2)将液体硅橡 胶与相应的交联剂混合均匀,之后通过旋涂将混 合物均匀地分散到金属薄膜表面,再经固化处 理,得到薄膜B;(3)将滤膜A有银纳米线的一侧和 薄膜B有固化后硅橡胶的一侧紧密贴合,经压力 处理,将滤膜上的银纳米线膜转移到硅橡胶薄膜 表面;(4)将步骤(3)的样品浸泡在稀酸溶液中, 使得硅橡胶薄膜表面的金属薄膜完全溶解,即得 到柔性透明导电薄膜。本发明制备的超薄柔性透 明导电薄膜导电均匀、 柔性好。权利要求书1页 说明书4页 附图2页CN 109727706 A 2019.05.07 C N 109727706 A

权 利 要 求 书1/1页CN 109727706 A 1.一种柔性透明导电薄膜的制备方法,其特征在于,包括如下步骤: (1)将银纳米线加入到无水乙醇中,超声分散均匀,将上述分散液通过真空抽滤到有机系滤膜表面,之后将滤膜干燥,得到银纳米线分散均匀的滤膜A; (2)将液体硅橡胶与相应的交联剂混合均匀,之后通过旋涂将混合物均匀地分散到金属薄膜表面,再经固化处理,得到薄膜B; (3)将滤膜A有银纳米线的一侧和薄膜B有固化后硅橡胶的一侧紧密贴合,经压力处理,将滤膜上的银纳米线膜转移到硅橡胶薄膜表面; (4)将步骤(3)的样品浸泡在稀酸溶液中,使得硅橡胶薄膜表面的金属薄膜完全溶解,即得到柔性透明导电薄膜。 2.根据权利要求1所述的制备方法,其特征在于,步骤(1)所述滤膜A表面银纳米线的沉积量为100~500mg/m2。 3.根据权利要求2所述的制备方法,其特征在于,步骤(2)交联剂与液体硅橡胶的比例为2~10wt%。 4.根据权利要求3所述的制备方法,其特征在于,步骤(2)所述的液体硅橡胶为聚二甲基硅氧烷、二羟基聚二甲基硅氧烷、聚甲基氢硅氧烷中的一种;所述交联剂为过氧化二苯甲酰、2、5-二甲基地-5-二叔丁基过氧己烷、甲基乙烯基双吡咯烷酮硅烷、甲基三乙氧基硅烷、乙烯基三乙氧基硅烷、四甲氧基硅烷中的一种。 5.根据权利要求4所述的制备方法,其特征在于,步骤(1)所述的有机系滤膜为聚四氟乙烯滤膜、聚丙烯滤膜、尼龙滤膜、聚砜滤膜、再生纤维素滤膜中的任意一种。 6.根据权利要求1~5任意一项所述的制备方法,其特征在于,步骤(2)固化温度为40~80℃,固化时间为12~24h。 7.根据权利要求6所述的制备方法,其特征在于,步骤(3)所述的压力为1~5MPa,压力处理时间为12~24h。 8.根据权利要求7所述的制备方法,其特征在于,步骤(2)所述的金属薄膜为镁、铝、铁、铜、锌、锡中的任意一种;所述的旋涂速度为2000~6000rpm。 9.根据权利要求8所述的制备方法,其特征在于,步骤(4)所述的稀酸溶液为稀盐酸、稀硫酸、稀硝酸中的任意一种,稀酸溶液的浓度为1~5mol/L,浸泡时间为12~24h。 10.权利要求1~9任意一项方法制备的柔性透明导电薄膜。 2

祈使句的用法讲解

祈使句的用法讲解 1、概述 祈使句(imperative sentence)表命令、警告、提醒、建议、请求、叮嘱、号召等,谓语动词用 原形。主语you通常省略,句末用叹号或句号。 Knock at the door before entering, please.进来时请敲门!(建议) it.尝点这种果汁,也许你会要。(建议) Try some of this juice---perhaps you’ll take Look out! There is a train coming.注意!火车来了!(提醒) Wear strong shoes as we shall do a lot of walking. 请穿结实的鞋子,因为我们要走许多的路。(叮嘱) At the beginning, collect as many stamps as you can. 开始时,尽可能多多地收集邮票。(建议)Leave her where she is ! 让她留在原地!(命令) Put your coat at once. We must hurry.立刻穿上衣服。我们必须快点。(命令) Give blood if you can and many lives will be saved.如果你能,来献血吧,这会挽救很多人的 生命。(号召) 2、祈使句的另外表达方式 (1)“No+名词或动名词” 表示祈使句 “No+名词或动名词”结构表示禁止的祈使,一般用于指示、标牌、布告等。 No smoking! 禁止吸烟!No spitting!不准随地吐痰! No litter! 不准乱扔果皮纸屑!No entry!不许入内! No thoroughfare!禁止通行!No scribbling on the wall!墙上不准涂写! No admittance except on business!非公莫入! (2)“have d one…”结构表示祈使句 这种结构相当于stop doing,意为“禁止”。有时表示“结束、停止”。 Have done scolding him. 不要再责备他了。 Have done!住手! Have done running!跑完了!(别跑了!) (3)“be+V-ed”结构表示祈使句 Be guided by reason!理智些!Be seated! 请坐! Be persuaded by your father! 听你父亲的话!Be gone! 滚! (4)“be+ V-ing”  结构表示祈使句 be looking out of the window! 勿将头伸出窗外! Don’t Do be doing your homework when I come in.我进来时,你一定在做作业吧! (5)无动词祈使句 一般来讲,祈使句都要有动词,但是有些用于口号、告示等的祈使句却是没有动词。主要 有:名词短语;介词短语;名词+代词/副词/形容词;形容词+名词/代词;副词+with 等。 Don’t all speak at once! O ne at a time, please.不要一起说,一次一个! 再给我一星期,我就会完成任务。 One more week, and we’ll accomplish the task. Patience! 耐心点!Your turn. 轮到您了。After you! 您先请! Now for it! 干起来吧!On with your cap. 带上帽子。Danger!危险! Poison!有毒!Over! 完毕!Bottom up!干杯! None of that again! 不要在那样!None of your nonsense!不要胡说八道! Hand up!举起手来!Hands off!无动手! Off with it!把它拿下来!Up with the box!把箱子放下!

way 用法

表示“方式”、“方法”,注意以下用法: 1.表示用某种方法或按某种方式,通常用介词in(此介词有时可省略)。如: Do it (in) your own way. 按你自己的方法做吧。 Please do not talk (in) that way. 请不要那样说。 2.表示做某事的方式或方法,其后可接不定式或of doing sth。 如: It’s the best way of studying [to study] English. 这是学习英语的最好方法。 There are different ways to do [of doing] it. 做这事有不同的办法。 3.其后通常可直接跟一个定语从句(不用任何引导词),也可跟由that 或in which 引导的定语从句,但是其后的从句不能由how 来引导。如: 我不喜欢他说话的态度。 正:I don’t like the way he spoke. 正:I don’t like the way that he spoke. 正:I don’t like the way in which he spoke. 误:I don’t like the way how he spoke. 4.注意以下各句the way 的用法: That’s the way (=how) he spoke. 那就是他说话的方式。 Nobody else loves you the way(=as) I do. 没有人像我这样爱你。 The way (=According as) you are studying now, you won’tmake much progress. 根据你现在学习情况来看,你不会有多大的进步。 2007年陕西省高考英语中有这样一道单项填空题: ——I think he is taking an active part insocial work. ——I agree with you_____. A、in a way B、on the way C、by the way D、in the way 此题答案选A。要想弄清为什么选A,而不选其他几项,则要弄清选项中含way的四个短语的不同意义和用法,下面我们就对此作一归纳和小结。 一、in a way的用法 表示:在一定程度上,从某方面说。如: In a way he was right.在某种程度上他是对的。注:in a way也可说成in one way。 二、on the way的用法 1、表示:即将来(去),就要来(去)。如: Spring is on the way.春天快到了。 I'd better be on my way soon.我最好还是快点儿走。 Radio forecasts said a sixth-grade wind was on the way.无线电预报说将有六级大风。 2、表示:在路上,在行进中。如: He stopped for breakfast on the way.他中途停下吃早点。 We had some good laughs on the way.我们在路上好好笑了一阵子。 3、表示:(婴儿)尚未出生。如: She has two children with another one on the way.她有两个孩子,现在还怀着一个。 She's got five children,and another one is on the way.她已经有5个孩子了,另一个又快生了。 三、by the way的用法

【开题报告】ZnO-SnO2透明导电薄膜光电特性研究

开题报告 电气工程与自动化 ZnO-SnO2透明导电薄膜光电特性研究 一、选题的背景与意义: 随着电子信息产业的迅猛发展,透明导电薄膜材料被广泛应用于半导体集成电路、平面显示器、抗静电涂层等诸多领域,市场规模巨大。 1. 透明导电薄膜的概述 自然界中往往透明的物质不导电,如玻璃、水晶、水等,导电的或者说导电性好的物质往往又不透明,如金属材料、石墨等。但是在许多场合恰恰需要某一种物体既导电又透明,例如液晶显示器、等离子体显示器等平板显示器和太阳能电池光电板中的电极材料就是需要既导电又透明的物质。透明导电薄膜是薄膜材料科学中最重要的领域之一,它的基本特性是在可见光范围内,具有低电阻率,高透射率,也就是说,它是一种既有高的导电性,又对可见光有很好的透光性,而对红外光有较高反射性的薄膜。正是因为它优异的光电性能,它被广泛的应用在各种光电器件中,例如:平面液晶显示器(LCD),太阳能电池,节能视窗,汽车、飞机的挡风玻璃等。自从1907年Badeker制作出CdO透明导电薄膜以后,人们先后研制出了In2O3,SnO2,ZnO等为基体的透明导电薄膜。目前世界研究最多的是掺锡In2O3(简称ITO)透明导电薄膜,掺铝ZnO(简称AZO)透明导电薄膜。同时,人们还开发了CdInO4、Cd2SnO4、 Zn2SnO4等多元透明氧化物薄膜。 2. SnO2基薄膜 SnO2(Tin oxide,简称TO)是一种宽禁带半导体材料,其禁带宽度Eg=3.6eV,n 型半导体。本征SnO2薄膜导电性很差,因而得到广泛应用的是掺杂的SnO2薄膜。对于SnO2来说,五价元素的掺杂均能在禁带中形成浅施主能级,从而大大改善薄膜的导电性能。目前应用最多、应用最广的是掺氟二氧化锡(SnO2:F,简称FTO)薄膜和掺锑二氧化锡(SnO2:Sb,简称ATO)薄膜。SnO2:Sb薄膜中的Sb通常以替代原子的形式替代Sn的位置。掺杂Sb浓度不同,电阻率不同,最佳Sb浓度为0.4%-3%(mol)的范围对应电阻率为10-3Ω·cm,可见光透过率在80%-90%。SnO2:F薄膜热稳定性好、化学稳定性好、硬度高、生产设备简单、工艺周期短、原材料价格廉价、生产成本

透明导电薄膜

透明导电薄膜 引言:透明导电薄膜作为一种具有低电阻和高透光率的薄膜材料。被应用于显示器、太阳能电池、抗静电涂层、带电防护膜等各种光电材料中。目前广泛研究和应用的透明导电薄膜主要为In2O3∶Sn(ITO)、Sb∶SnO2(ATO)和ZnO∶A1(ZAO)等无机氧化物透明导电薄膜。氧化物薄膜具有透光性好、电阻率低和化学稳定性较好等优点但是作为无机材料,氧化物薄膜的脆性大、韧性差、合成温度高、且和柔性衬底的结合性较差。这些缺点限制了它们的进一步应用。例如.可折叠显示屏上要求透明导电薄膜具有可弯曲性.飞机有机玻璃窗户表面用于加热除霜的薄膜必须与有机基底结合牢固等。 薄膜的组成,设备和制作工艺 首先在室温下将3-巯丙基三甲氧基硅烷(MPTMS)和醋酸以一定物质的量比混合.并搅拌5 h后得到无机前驱体溶液。然后,用传统乳液聚合法制备得到十二烷基苯磺酸(DBSA)掺杂的导电聚苯胺。将一定量的导电聚苯胺溶于氯仿和间甲酚的混合溶剂中,并搅拌3 h;然后混合聚苯胺溶液和无机前驱体溶液。搅拌并陈化6 h后得到有机一无机杂化溶胶溶液实验中醋酸和MPTMS的物质的量比为0.1~1.0,定义为H1~H10:间甲酚与MPTMS的物质的量比为3~7,定义为M3~M7:聚苯胺和二氧化硅的质量比为15/85~50/50,定义为P15~P50。其中,溶胶溶液的浓度为0.5mol.L-1。 实验采用提拉法制备薄膜将用超声清洗并干燥的普通载玻片在杂化溶胶溶液中浸泡20 s后匀速提拉.控制提拉速度为1mm.s-1。然后将沉积有薄膜的载玻片在80℃烘箱中干燥30 min,并在室温中冷却后,重复浸渍提拉干燥过程,制备5层厚度的导电薄膜,最后在80℃烘箱中干燥。 薄膜分析方法、结果及性能 图1为3-巯丙基三甲氧基硅烷(MPTMS)、十二烷基苯磺酸掺杂的聚苯胺(DBSA—PANI)和H4M5P30干凝胶样品的红外光谱图。在MPTMS的红外图谱中,2850和810 cm一分别为硅氧烷的C,H和SiO,C振动吸收峰 1 084 cm一为Si,O基团的吸收峰。在2566 cm处的一个小吸收峰为MPTMS有机链中SH 的吸收峰。同时在DBSA.PANI的红外谱图中,1575和l471 cm一处的吸收峰分别对应聚苯胺中C=C吸收的醌式和苯式结构。为导电聚苯胺的特征吸收峰。此外l 122、l 327和l026 em一处的吸收峰分别为N-Q=N、C—N和S=O吸收峰。当导电聚苯胺和无机前驱体反应杂化后.聚苯胺链中C=C吸收的醌式和苯式结构所对应的峰位移至1580和1454.1 327 cm一所对应的C.N双峰红移至1 249 Cm.同时MPTMS中2 566 cm 所对应的SH吸收峰消失.说明3一巯丙基三甲氧基硅烷中的SH基团已和聚苯胺中氨基基团形成键合.得到杂化结构。另外在杂化干凝胶的红外谱图中,1 149和1 031 cm处出现了一个较大的双峰结构,主要为Si.0.Si结构的振动吸收峰此峰覆盖了聚苯胺的N=Q=N吸收峰原MPTMS 在810 cm 处的SiO—C吸收峰消失。Si.0一si峰的出现和SiO.C峰的消失充分说明硅的网络结构的形成从红外谱图分析看出,用溶胶一凝胶法可以得到无机网络完整的PANI—SiO 杂化材料。

相关主题
文本预览
相关文档 最新文档