=60)num=0;//防止首次上电时读取出错??while(1){if(num{display(num);num++;delay(5);delay1(DELAY_" />
当前位置:文档之家› 51内部eeprom读写,实现掉电存储

51内部eeprom读写,实现掉电存储

51内部eeprom读写,实现掉电存储
51内部eeprom读写,实现掉电存储

主函数:

#include

#include"EEPROM.h"

#include"smg.h"

void main()

{

num=byte_read(DEBUG_Data_Memory_Begin_Sector_addr);//字节读(程序开始时读取EEPROM中数据)

if(num>=60)num=0;//防止首次上电时读取出错??

while(1)

{

if(num<60)

{

display(num);

num++;delay(5);

delay1(DELAY_CONST);

sector_erase(DEBUG_Data_Memory_Begin_Sector_addr);//擦出扇区

byte_program (DEBUG_Data_Memory_Begin_Sector_addr,num);//字节编程}

if(num==60)num=0;

}

}

EEPROM.h:

/*STC89C51RC,STC89LE51RC 0x2000 共八个扇区

STC89C52RC,STC89LE52RC 0x2000 共八个扇区

STC89C54RD+,STC89LE54RD+ 0x8000 共五十八个扇区

STC89C55RD+,STC89LE55RD+ 0x8000 共五十八个扇区

STC89C58RD+,STC89LE58RD+ 0x8000 共五十八个扇区*/

#include

#include

//sfr定义特殊功能寄存器

sfr ISP_DA TA =0xe2;//ISP/IAP 操作时的数据寄存器,从Flash 读出的数据放在此处,向Flash 写的数据也需放在此处

sfr ISP_ADDRH =0xe3;//ISP/IAP 操作时的地址寄存器高八位

sfr ISP_ADDRL =0xe4;//ISP/IAP 操作时的地址寄存器低八位

sfr ISP_CMD =0xe5;//ISP/IAP 操作时的命令模式寄存器,须命令触发寄存器触发方可生效

sfr ISP_TRIG =0xe6;//ISP/IAP 操作时的命令触发寄存器

sfr ISP_CONTR =0xe7;//ISP/IAP 控制寄存器

/* 定义命令*/

#define uchar unsigned char /*8bit无符号整型*/

#define uint unsigned int /*16bit无符号整型*/

#define READ_AP_and_Data_Memory_Command 0x01 /*字节读数据存储区*/

#define PROGRAM_AP_and_Data_Memory_Command 0x02 /*字节编程数据存储区*/

#define SECTOR_ERASE_AP_and_Data_Memory_Command 0x03 /*扇区擦除数据存储*/

#define DEBUG_Data_Memory_Begin_Sector_addr 0x2000//扇区地址

#define DELAY_CONST 60000//延时

#define WAIT_TIME 0x01

uchar num;

/* 打开ISP,IAP 功能*/

void ISP_IAP_enable(void)

{

EA=0;/* 关中断*/

ISP_CONTR=ISP_CONTR & 0x18; /* 0001,1000 */

ISP_CONTR=ISP_CONTR|W AIT_TIME;

ISP_CONTR=ISP_CONTR|0x80; /* 1000,0000 */

}

/* 关闭ISP,IAP 功能*/

void ISP_IAP_disable(void)

{

ISP_CONTR=ISP_CONTR&0x7f;/* 0111,1111 */

ISP_TRIG=0x00;

EA=1;/* 开中断*/

}

/* 字节读*/

uchar byte_read(uint byte_addr)

{

ISP_ADDRH = (uchar)(byte_addr >> 8);

ISP_ADDRL = (uchar)(byte_addr & 0x00ff);

ISP_CMD = ISP_CMD&0xf8;/* 1111,1000 */

ISP_CMD = ISP_CMD|READ_AP_and_Data_Memory_Command;/* 0000,0001 */

ISP_IAP_enable();

ISP_TRIG = 0x46;

ISP_TRIG = 0xb9;

_nop_();

ISP_IAP_disable();

return (ISP_DA TA);

}

/* 扇区擦除*/

void sector_erase(uint sector_addr)

{

uint get_sector_addr=0;

get_sector_addr=(sector_addr & 0xfe00); /* 1111,1110,0000,0000; 取扇区地址*/ ISP_ADDRH = (uchar)(get_sector_addr >> 8);

ISP_ADDRL = 0x00;

ISP_CMD = ISP_CMD&0xf8;/* 1111,1000 */

ISP_CMD =

ISP_CMD|SECTOR_ERASE_AP_and_Data_Memory_Command;/* 0000,0011 */ ISP_IAP_enable();

ISP_TRIG = 0x46;/* 触发ISP_IAP命令*/

ISP_TRIG = 0xb9;/* 触发ISP_IAP命令*/

_nop_();

ISP_IAP_disable();

}

/* 字节编程*/

void byte_program(uint byte_addr, uchar original_data)

{

ISP_ADDRH = (uchar)(byte_addr >> 8);

ISP_ADDRL = (uchar)(byte_addr & 0x00ff);

ISP_CMD = ISP_CMD & 0xf8; /* 1111,1000 */

ISP_CMD = ISP_CMD |

PROGRAM_AP_and_Data_Memory_Command; /* 0000,0010 */

ISP_DA TA = original_data;

ISP_IAP_enable();

ISP_TRIG = 0x46; /* 触发ISP_IAP命令*/

ISP_TRIG = 0xb9; /* 触发ISP_IAP命令*/

_nop_();

ISP_IAP_disable();

}

void delay1(uint counter)

{

uint temp=0;

for(temp=counter;temp>0;temp--)

{

_nop_();

_nop_();

_nop_();

}

}

Smg.h:

/****************************************************************************** ****

* 标题: 试验数码管上显示数字( 单片机直接实现位选共阴极) *

* 用573锁存器控制和单片机脚直接位选控制(非译码器控制)数码管*

******************************************************************************* ****/

#include

#include

#define uchar unsigned char

#define uint unsigned int

uchar code smg_duan[]={0x3f,0x06,0x5b,0x4f,0x66,0x6d,0x7d,0x07,0x7f,0x6f,0x40}; //段码0-9.

uchar code smg_wei[]={0xfe,0xfd,0xfb,0xf7,0xef,0xdF,0xbF,0x7F}; //位选控制查表的方法控制

void delay(uint i)

{

uchar j;

for(i;i>0;i--)

for(j=200;j>0;j--);

}

void display(uint dat)//数码管显示函数

{

uint i;

uint LedOut[10];

LedOut[0]=smg_duan[dat%10000/1000];//(若要显示小数点,则|0x80)

LedOut[1]=smg_duan[dat%1000/100];

LedOut[2]=smg_duan[dat%100/10];

LedOut[3]=smg_duan[dat%10];

for( i=0; i<4; i++)

{

P0=LedOut[i];

P2=smg_wei[i];//使用查表法进行位选

delay(10);//扫描间隔时间,数码管每位显示的时间,太长会数码管会有闪烁感}

}

单片机EEPROM的使用函数

/******************************************************************** 这是EEROM.h文件 ********************************************************************/ #ifndef _EEPROMus_h //对EEROM进行操作 #define _EEPROMus_h #include #include extern void EEw(unsigned int m,unsigned int,unsigned char w); //将第m扇区的第n个存储空间数据改成w extern void EEr(unsigned int m,unsigned int n,unsigned char *r); //将第m扇区的第n个存储空间数据读到r extern void EEe(unsigned int m); //删除第m扇区内的内容 extern void EEwa(unsigned int m,unsigned int n,unsigned char w[]); //在m扇区,从0x00写到第n个,写数组w里的数 extern void EEra(unsigned int m,unsigned int n,unsigned char r[]); //在m扇区,从0x00读到第n个,读到数组r里 #endif /******************************************************************** 这是EEPROM.c文件 ********************************************************************/ /******************************************************************** IAP_CONTR: B7: 0:禁止IAP 1:允许IAP B6和B5配合让程序从AP区和ISP监控区复位及程序的开始 B4:当IAP_TRIG触发的5a/a5失败,则为1,且由软件清零 B3:/ B2B1B0:设置CPU等待时间 IAP_TRIG: 每次发送命令后要用此寄存器发送5a,然后a5后,命令生效 IAP_CMD: 对IAP进行命令输入: 0x00:无操作 0x01:读 0x02:写

静态存储器-实验报告

计算机科学与技术系 实验报告 专业名称计算机科学与技术 课程名称计算机组成与结构 项目名称静态随机存储器实验 班级 学号 姓名 同组人员无 实验日期 2015-10-24

一、实验目的与要求 掌握静态随机存储器RAM 工作特性及数据的读写方法 二、实验逻辑原理图与分析 2.1 实验逻辑原理图及分析 实验所用的静态存储器由一片6116(2K ×8bit)构成(位于MEM 单元),如下 图所示。6116有三个控制线:CS(片选线)、OE(读线)、WE(写线),当片选有效(CS=0)时,OE=0时进行读操作,WE=0时进行写操作,本实验将CS 常接地线。 由于存储器(MEM)最终是要挂接到CPU 上,所以其还需要一个读写控制逻辑,使得CPU 能控制MEM 的读写,实验中的读写控制逻辑如下图所示,由于T3的参与,可以保证MEM 的写脉宽与T3一致,T3由时序单元的TS3给出。IOM 用来选择是对I/O 还是对MEM 进行读写操作,RD=1时为读,WR=1时为写。 XMRD XIOR XIOW XMWR RD IOM WE T3 读写控制逻辑 实验原理图如下如所示,存储器数据线接至数据总线,数据总线上接有8 个LED 灯显示D7…D0的内容。地址线接至地址总线,地址总线上接有8个LED 灯显示A7…A0的内容,地址由地址锁存器(74LS273,位于PC&AR 单元)给出。数据开关(位于IN 单元)经一个三态门(74LS245)连至数据总线,分时给出地址和数据。地址寄存器为8位,接入6116的地址A7…A0,6116的高三位地址A10…A8接地,所以其实际容量为256字节。

8051单片机的内部结构

8051是MCS-51系列单片机的典型产品,我们以这一代表性的机型进行系统的讲解。 8051单片机包含中央处理器、程序存储器(ROM)、数据存储器(RAM)、定时/计数器、并行接口、串行接口和中断系统等几大单元及数据总线、地址总线和控制总线等三大总线,现在我们分别加以说明: 中央处理器(CPU)是整个单片机的核心 部件,是8位数据宽度的处理器,能处理 8位二进制数据或代码,CPU负责控制、 指挥和调度整个单元系统协调的工作,完 成运算和控制输入输出功能等操作。 ·数据存储器(RAM): 8051内部有128个8位用户数据存储 单元和128个专用寄存器单元,它们是统 一编址的,专用寄存器只能用于存放控制 指令数据,用户只能访问,而不能用于存 放用户数据,所以,用户能使用的的RAM 只有128个,可存放读写的数据,运算的 中间结果或用户定义的字型表。 ·程序存储器(ROM): 8051共有4096个8位掩膜ROM,用于存放用户程序,原始数据或表格。 ·定时/计数器(ROM): 8051有两个16位的可编程定时/计数器,以实现定时或计数产生中断用于控制程序转向。 ·并行输入输出(I/O)口: 8051共有4组8位I/O口(P0、P1、P2或P3),用于对外部数据的传输。 ·全双工串行口: 8051内置一个全双工串行通信口,用于与其它设备间的串行数据传送,该串行口既可以 用作异步通信收发器,也可以当同步移位器使用。 ·中断系统: 8051具备较完善的中断功能,有两个外中断、两个定时/计数器中断和一个串行中断,可 满足不同的控制要求,并具有2级的优先级别选择。 ·时钟电路: 8051内置最高频率达12MHz的时钟电路,用于产生整个单片机运行的脉冲时序,但8051 单片机需外置振荡电容。

计算机组成原理存储器读写和总线控制实验实验报告

信息与管理科学学院计算机科学与技术 实验报告 课程名称:计算机组成原理 实验名称:存储器读写和总线控制实验 姓名:班级:指导教师:学号: 实验室:组成原理实验室 日期: 2013-11-22

一、实验目的 1、掌握半导体静态随机存储器RAM的特性和使用方法。 2、掌握地址和数据在计算机总线的传送关系。 3、了解运算器和存储器如何协同工作。 二、实验环境 EL-JY-II型计算机组成原理实验系统一套,排线若干。 三、实验内容 学习静态RAM的存储方式,往RAM的任意地址里存放数据,然后读出并检查结果是否正确。 四、实验操作过程 开关控制操作方式实验 注:为了避免总线冲突,首先将控制开关电路的所有开关拨到输出高电平“1”状态,所有对应的指示灯亮。 本实验中所有控制开关拨动,相应指示灯亮代表高电平“1”,指示灯灭代表低电平“0”。连线时应注意:对于横排座,应使排线插头上的箭头面向自己插在横排座上;对于竖排座,应使排线插头上的箭头面向左边插在竖排座上。 1、按图3-1接线图接线: 2、拨动清零开关CLR,使其指示灯显示状态为亮—灭—亮。 3、往存储器写数据:

以往存储器的(FF ) 地址单元写入数据“AABB ”为例,操作过程如下: 4、按上述步骤按表3-2所列地址写入相应的数据 表3-2 5、从存储器里读数据: 以从存储器的(FF ) 地址单元读出数据“AABB ”为例,操作过程如下: (操作) (显示) (操作) (显示) (操作) (显6、按上述步骤读出表3-2数据,验证其正确性。 五、实验结果及结论 通过按照实验的要求以及具体步骤,对数据进行了严格的检验,结果是正确的,具体数据如图所示:

单片机内的Flash与EEPROM作用及区别(精)

单片机内的 Flash 与 EEPROM 作用及区别 单片机运行时的数据都存在于 RAM (随机存储器中, 在掉电后 RAM 中的数据是无 法保留的,那么怎样使数据在掉电后不丢失呢?这就需要使用 EEPROM 或FLASHROM 等 存储器来实现。在传统的单片机系统中, 一般是在片外扩展存储器, 单片机与存储器之间通 过 IIC 或 SPI 等接口来进行数据通信。这样不光会增加开发成本,同时在程序开发上也要花 更多的心思。在 STC 单片机中内置了 EEPROM (其实是采用 IAP 技术读写内部 FLASH 来 实现 EEPROM ,这样就节省了片外资源,使用起来也更加方便。下面就详细介绍 STC 单 片机内置 EEPROM 及其使用方法。 flash 是用来放程序的,可以称之为程序存储器,可以擦出写入但是基本都是整个扇区进行的 . 一般来说单片机里的 flash 都用于存放运行代码,在运行过程中不能改; EEPROM 是用来保存用户数据,运行过程中可以改变,比如一个时钟的闹铃时 间初始化设定为 12:00,后来在运行中改为 6:00,这是保存在 EEPROM 里, 不怕掉电,就算重新上电也不需要重新调整到 6:00 下面是网上详细的说法,感觉不错:

FLASH 和 EEPROM 的最大区别是 FLASH 按扇区操作, EEPROM 则按字节操作, 二者寻址方法不同,存储单元的结构也不同, FLASH 的电路结构较简单,同样容量占芯片面积较小,成本自然比 EEPROM 低,因而适合用作程序存储器, EEPROM 则更多的用作非易失的数据存储器。当然用 FLASH 做数据存储器也行, 但操作比EEPROM 麻烦的多,所以更“人性化”的 MCU 设计会集成 FLASH 和 EEPROM 两种非易失性存储器,而廉价型设计往往只有 FLASH ,早期可电擦写型 MCU 则都是EEPRM 结构,现在已基本上停产了。 在芯片的内电路中, FLASH 和 EEPROM 不仅电路不同,地址空间也不同,操作方法和指令自然也不同, 不论冯诺伊曼结构还是哈佛结构都是这样。技术上, 程序存储器和非易失数据存储器都可以只用 FALSH 结构或 EEPROM 结构, 甚至可以用“变通”的技术手段在程序存储区模拟“数据存储区” ,但就算如此,概念上二者依然不同,这是基本常识问题。 EEPROM :电可擦除可编程只读存储器, Flash 的操作特性完全符合 EEPROM 的定义,属 EEPROM 无疑,首款 Flash 推出时其数据手册上也清楚的标明是EEPROM ,现在的多数 Flash 手册上也是这么标明的,二者的关系是“白马”和 “马” 。至于为什么业界要区分二者, 主要的原因是 Flash EEPROM 的操作方法和传统 EEPROM 截然不同,次要的原因是为了语言的简练,非正式文件和口语中Flash EEPROM 就简称为 Flash , 这里要强调的是白马的“白” 属性而非其“马” 属性以区别 Flash 和传统 EEPROM 。 Flash 的特点是结构简单, 同样工艺和同样晶元面积下可以得到更高容量且大数据量 下的操作速度更快,但缺点是操作过程麻烦,特别是在小数据量反复重写时, 所以在 MCU 中 Flash 结构适于不需频繁改写的程序存储器。 很多应用中,需要频繁的改写某些小量数据且需掉电非易失,传统结构的EEPROM 在此非常适合, 所以很多 MCU 内部设计了两种 EEPROM 结构, FLASH

Eeprom的读写

所看过的对24系列I2C读写时序描述最准确最容易理解的资料,尤其是关于主从器件的应答描述和页写描述,看完后明白了很多。关于页写的描述,网络上绝大部分范程都没提到页写时的数据地址必须是每页的首地址才能准确写入,而且如果写入超过一页的数据会循环覆盖当前页的数据。 关于IIC总线 I2C总线:i2c总线是Philips 公司首先推出的一种两线制串行传输总线。它由一根数据线(SDA)和一根时钟线(SDL)组成。i2c总线的数据传输过程如图3所示,基本过程为: 1、主机发出开始信号。 2、主机接着送出1字节的从机地址信息,其中最低位为读写控制码(1为读、0为写),高7位为从机器件地址代码。 3、从机发出认可信号。 4、主机开始发送信息,每发完一字节后,从机发出认可信号给主机。 5、主机发出停止信号。 I2C总线上各信号的具体说明: 开始信号:在时钟线(SCL)为高电平其间,数据线(SDA)由高变低,将产生一个开始信号。 停止信号:在时钟线(SCL)为高电平其间,数据线(SDA)由低变高,将产生一个停止信号。 应答信号:既认可信号,主机写从机时每写完一字节,如果正确从机将在下一个时钟周期将数据线(SDA)拉低,以告诉主机操作有效。在主机读从机时正确读完一字节后,主机在下一个时钟周期同样也要将数据线(SDA)拉低,发出认可信号,告诉从机所发数据已经收妥。(注:读从机时主机在最后1字节数据接收完以后不发应答,直接发停止信号)。 注意:在I2C通信过程中,所有的数据改变都必须在时钟线SCL为低电平时改变,在时钟线SCL为高电平时必须保持数据SDA信号的稳定,任何在时钟线为高电平时数据线上的电平改变都被认为是起始或停止信号。 作为一种非易失性存储器(NVM),24系列EEPROM使用的很普遍,一般作为数据量不太大的数据存储器。下面总结一下其应用的一些要点。从命名上看,24CXX中XX的单位是kbit,如24C08,其存储容量为8k bit,即1k Byte=1024 Byte。 一、工作条件 1.工作电压(VCC) 24CXX:4.5V-5.5V 24CXX-W:2.5V-5.5V 24CXX-R:1.8V-5.5V 2.输入电平定义(VIH,VIL) VIH:0.7VCC-VCC+1 VIL:-0.45V-0.3VCC 二、硬件连接 1.上拉电阻RP的取值 由于I2C总线电容要满足小于400pf的条件。从以下波形可以看出,上拉电阻越大,总线的电容越小,可以实现的数据传输率就越大,可达400khz。 [点击图片可在新窗口打开] 2.写保护脚 芯片写保护脚是高电平有效,即WP接高电平时禁止写入

STC单片机EEPROM读写程序

/* STC89C54RD+的flash空间从0x4000~0xf3ff 共90个扇区,每扇区512字节*/ // #define BaseAddr 0x1000 /* 51rc */ // #define EndSectoraddr 0x3d00 /* 51rc */ // #define EndAddr 0x3fff /* 51rc 12K eeprom */ #define BaseAddr 0x4000 #define EndSectoraddr 0xf200 #define EndAddr 0xf3ff #define UseAddr 0x1000 /* ------------- 定义扇区大小------------- */ #define PerSector 512 /* 用户程序需要记忆的数组, 用户实际使用了n-1个数据,数组长度规整到 2 4 8 16 32 64 上*/ uchar Ttotal[16] = { 0x55, /* 作为判别引导头使用,用户程序请不要修改它*/ /* 用户保存记忆的数据*/ 0x01, /* 用途说明....*/ 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f, }; uint timerForDelay, /* 专供延时用的变量*/ i, /* 循环变量*/ EepromPtr; /* eeprom读写指针*/ /* --------------- 命令定义--------------- */ #define RdCommand 0x01 /* 字节读*/ #define PrgCommand 0x02 /* 字节写*/

实验五存储器读写实验报告

实验五存储器读写实验报告 实验报告 课程名:《计算机组成原理》题目:实验五存储器读写班级:计算机+ 自动化0901班姓名:张哲玮,郑俊飞 《计算机组成原理》实验报告- 1 - 实验五、存储器读写实验 一、目的与要求 (1)掌握存储器的工作特性 (2)熟悉静态存储器的操作过程,验证存储器的读写方法 二、实验原理及原理图 (1)?静态存储器芯片6116的逻辑功能 6116是一种数据宽度为8位(8个二进制位),容量为2048字节的静态存储器芯片,封在24引脚的封装中,封装型式如图2-7所示。6116芯片有8根双向三态数据线D7-D0,所谓三态是指输入状态,输出状态和高阻状态,高阻状态数据线处于一种特殊的“断开”状态;11根地址线A10-A0,指示芯片内部2048个存储单元号;3根控制线CS片选控制信号,低电平时,芯片可进行读写操作,高电平时,芯片保存信息不能进行读写;WE 为写入控制信号,低电平时,把数据线上的信息存入地址线A10-A0指示的存储单元中;0E为输出使能控制信号,低电平时,把地址线A10-A0指示的存储单元中的数据读出送到数据线上。

6116芯片控制信号逻辑功能表 (2).存储器实验单元电路 因为在计算机组成原理实验中仅用了256个存储单元,所以6116芯片的3根地址线A11-A8接地也没有多片联用问题,片选信号CS接地使芯片总是处于被选中状态。芯片的WE和0E信号分别连接实验台的存储器写信号M-W和存储器读信号M-Ro这种简化了控制过程的实验电路可方便实验进行。 存储器部件电路图 (3)?存储器实验电路 存储器读\写实验需三部分电路共同完成:存储器单元(MEM UNIT),地址寄存器单元(ADDRESS UNIT)和输入,输出单元(INPUT/OUTPIT UNIT).存储器单元6116芯片为中心构成,地址寄存器单元主要由一片74LS273组成,控制信号B-AR的作用是把总线上的数据送入地址寄存器,向存储器单元电路提供地址信息,输入,输出单元作用与以前相同。

51单片机内部EEPROM的应用

用51hei-5板子学习单片机内部EEPROM的应用 STC89C51、52内部都自带有2K字节的EEPROM,54、55和58都自带有16K字节的EEPRO M,STC单片机是利用IAP技术实现的EEPROM,内部Flash擦写次数可达100,000 次以上,先来介绍下ISP与IAP的区别和特点。 ISP:In System Programable 是指在系统编程,通俗的讲,就是片子已经焊板子上,不用取下,就可以简单而方便地对其进行编程。比如我们通过电脑给STC单片机下载程序,或给AT89S51单片机下载程序,这就是利用了ISP技术。 IAP:In Application Programable 是指在应用编程,就是片子提供一系列的机制(硬件/软件上的)当片子在运行程序的时候可以提供一种改变flash数据的方法。通俗点讲,也就是说程序自己可以往程序存储器里写数据或修改程序。这种方式的典型应用就是用一小段代码来实现程序的下载,实际上单片机的ISP功能就是通过IAP技术来实现的,即片子在出厂前就已经有一段小的boot程序在里面,片子上电后,开始运行这段程序,当检测到上位机有下载要求时,便和上位机通信,然后下载数据到存储区。大家要注意千万不要尝试去擦除这段ISP引导程序,否则恐怕以后再也下载不了程序了。STC单片机内部有几个专门的特殊功能寄存器负责管理ISP/IAP 功能的,见表1。 表1 ISP/IAP相关寄存器列表 名称地址功能描述D7D6D5D4D3D2D1D0复位值ISP_DATA E2h Flash数据寄存器1111 1111 ISP_ADDRH E3h Flash高字节地址寄 存器0000 0000 ISP_ADDRL E4h Flash低字节地址寄 存器0000 0000 ISP_CMD E5h Flash命令模式寄存 器 ----------MS2MS1MS0xxxx x000 ISP_TRIG E6h Flash命令触发寄存 器 xxxx xxxx ISP_CONTR E7h ISP/IAP 控制寄存器ISPEN SWBS SWRST----WT2WT1WT0000x x000 ISP_DATA:ISP/IAP操作时的数据寄存器。

计算机组成原理实验五存储器读写实验

实验五 存储器读写实验实验目的 1. 掌握存储器的工作特性。 2. 熟悉静态存储器的操作过程,验证存储器的读写方法。 二、实验原理 表芯片控制信号逻辑功能表

2. 存储器实验单元电路 芯片状态 控制信号状态 DO-D7 数据状态 M-R M -W 保持 1 1 高阻抗 读出 0 1 6116-^总钱 写人 1 0 总线-*6116 无效 报警 ^2-10 D7—DO A7—A0

團2-8存储器实验电路逻辑图 三、实验过程 1. 连线 1) 连接实验一(输入、输出实验)的全部连线。 2) 按逻辑原理图连接M-W M-R 两根信号低电平有效信号线 3) 连接A7-A0 8根地址线。 4) 连接B-AR 正脉冲有效信号 2. 顺序写入存储器单元实验操作过程 1) 把有B-AR 控制开关全部拨到0,把有其他开关全部拨到1,使全部信号都处 于无效 状态。 2) 在输入数据开关拨一个实验数据,如“ 00000001”即16进制的01耳 把IO-R 控制开关拨下,把地址数据送到总线。 3) 拨动一下B-AR 开关,即实现“1-0-1 ”产生一个正脉冲,把地址数据送地 址寄存器保存。 4) 在输入数据开关拨一个实验数据,如“ 10000000',即16进制的80耳 把IO-R 控 制开关拨下,把实验数据送到总线。 3. 存储器实验电路 0 O O 0 0 olo O O O O 0 00 OUTPUT L/O :W 8-AR £ ■」2 ■七 ol^Fgr' L P O 74LS273 A7- AO vz 0 o|o 0 r 6116 A7 INPUT D7-O0 [olololololololol T2

51单片机CPU的内部结构

51单片机CPU的内部结构 在前面的课程中,我们已知道了单片机内部有一个8位的CPU,同时知道了CPU 内部包含了运算器,控制器及若干寄存器。在这节课,我们就与大家一起来讨论一下51单片机CPU的内部结构及工作原理。 从上图中我们可以看到,在虚线框内的就是CPU的内部结构了,8位的MCS-51单片机的CPU内部有数术逻辑单元ALU(Arithmetic Logic Unit)、累加器A (8位)、寄存器B(8位)、程序状态字PSW(8位)、程序计数器PC(有时也称为指令指针,即IP,16位)、地址寄存器AR(16位)、数据寄存器DR(8位)、指令寄存器IR(8位)、指令译码器ID、控制器等部件组成。 1、运算器(ALU)的主要功能 A)算术和逻辑运算,可对半字节(一个字节是8位,半个字节就是4位)和单字节数据进行操作。 B)加、减、乘、除、加1、减1、比较等算术运算。 C)与、或、异或、求补、循环等逻辑运算。 D)位处理功能(即布尔处理器)。 由于ALU内部没有寄存器,参加运算的操作数,必须放在累加器A中。累加器A 也用于存放运算结果。 例如:执行指令 ADD A,B 执行这条指令时,累加器A中的内容通过输入口In_1输入ALU,寄存器B通过内部数据总线经输入口In_2输入ALU,A+B的结果通过ALU的输出口Out、内部

数据总线,送回到累加器A。 2、程序计数器PC PC的作用是用来存放将要执行的指令地址,共16位,可对64K ROM直接寻址,PC低8位经P0口输出,高8位经P2口输出。也就是说,程序执行到什么地方,程序计数器PC就指到哪里,它始终是跟蹿着程序的执行。我们知道,用户程序是存放在内部的ROM中的,我们要执行程序就要从ROM中一个个字节的读出来,然后到CPU中去执行,那么ROM具体执行到哪一条呢?这就需要我们的程序计数器PC来指示。 程序计数器PC具有自动加1的功能,即从存储器中读出一个字节的指令码后,PC自动加1(指向下一个存储单元)。 3、指令寄存器IR 指令寄存器的作用就是用来存放即将执行的指令代码。 在这里我们先简单的了解下CPU执行指令的过程,首先由程序存储器(ROM)中读取指令代码送入到指令寄存器,经译码器译码后再由定时与控制电路发出相应的控制信号,从而完成指令的功能。关于指令在单片机内部的执行过程,我们在后面将会以另一节课来进行详细的讲解。 4、指令译码器ID 用于对送入指令寄存器中的指令进行译码,所谓译码就是把指令转变成执行此指令所需要的电信号。当指令送入译码器后,由译码器对该指令进行译码,根据译码器输出的信号,CPU控制电路定时地产生执行该指令所需的各种控制信号,使单片机正确的执行程序所需要的各种操作。 5、地址寄存器AR(16位) AR的作用是用来存放将要寻址的外部存储器单元的地址信息,指令码所在存储单元的地址编码,由程序计数器PC产生,而指令中操作数所在的存储单元地址码,由指令的操作数给定。从上图中我们可以看到,地址寄存器AR通过地址总线AB与外部存储器相连。 6、数据寄存器DR 用于存放写入外部存储器或I/O端口的数据信息。可见,数据寄存器对输出数据具有锁存功能。数据寄存器与外部数据总线DB直接相连。 7、程序状态字PSW 用于记录运算过程中的状态,如是否溢出、进位等。 例如,累加器A的内容83H,执行: ADD A,#8AH ;累加器A与立即数8AH相加,并把结果存放在A中。 指令后,将产生和的结果为[1]0DH,而累加器A只有8位,只能存放低8位,即0DH,元法存放结果中的最高位B8。为些,在CPU内设置一个进位标志位C,当执行加法运算出现进位时,进位标志位C为1。 8、时序部件 由时钟电路和脉冲分配器组成,用于产生微操作控制部件所需的定时脉冲信号在后面的课程中我们将会安排一节课来讲解这些专用的寄存器。

STC单片机EEPROM的应用和程序

STC单片机EEPROM的应用和程序 (2009-04-22 21:58:34) 转载▼ 标签: 杂谈 分类:Program 最近,由于工作的需要,用STC89C52来开发新产品,要用天STC的Eeprom的功能,上网也找了一点资料,得到很大帮助,真的非常感谢。程序是我在网上摘录的,调试通过了,不过我产品在用动态扫描显示的,由于在Eeprom擦除时要用几十毫秒,会有一闪烁的。不过这是正常的。 单片机运行时的数据都存在于RAM(随机存储器)中,在掉电后RAM 中的数据是无 法保留的,那么怎样使数据在掉电后不丢失呢?这就需要使用EEPROM 或FLASHROM 等存储器来实现。在传统的单片机系统中,一般是在片外扩展存储器,单片机与存储器之间通过IIC 或SPI 等接口来进行数据通信。这样不光会增加开发成本,同时在程序开发上也要花更多的心思。在STC 单片机中内置了EEPROM(其实是采用IAP 技术读写内部FLASH 来 实现EEPROM),这样就节省了片外资源,使用起来也更加方便。下面就详细介绍STC 单片机内置EEPROM 及其使用方法。 STC 各型号单片机内置的EEPROM 的容量各有不同,见下表: (内部EEPROM 可以擦写100000 次以上) 上面提到了IAP,它的意思是"在应用编程",即在程序运行时程序存储器可由程序自 身进行擦写。正是是因为有了IAP,从而可以使单片机可以将数据写入到程序存储器中,使得数据如同烧入的程序一样,掉电不丢失。当然写入数据的区域与程序存储区要分开来,以使程序不会遭到破坏。 要使用IAP 功能,与以下几个特殊功能寄存器相关: ISP_DATA:ISP/IAP 操作时的数据寄存器。 ISP/IAP 从Flash 读出的数据放在此处,向Flash 写的数据也需放在此处 ISP_ADDRH:ISP/IAP 操作时的地址寄存器高八位。 ISP_ADDRL:ISP/IAP 操作时的地址寄存器低八位。 ISP_CMD:ISP/IAP 操作时的命令模式寄存器,须命令触发寄存器触发方可生效。 ISP_TRIG:ISP/IAP 操作时的命令触发寄存器。 当ISPEN(ISP_CONTR.7)=1 时,对ISP_TRIG 先写入0x46,再写入0xb9,ISP/IAP 命令才会生效。 单片机芯片型号起始地址内置EEPROM 容量(每扇区512 字节) STC89C51RC,STC89LE51RC 0x2000 共八个扇区 STC89C52RC,STC89LE52RC 0x2000 共八个扇区 STC89C54RD+,STC89LE54RD+ 0x8000 共五十八个扇区 STC89C55RD+,STC89LE55RD+ 0x8000 共五十八个扇区 STC89C58RD+,STC89LE58RD+ 0x8000 共五十八个扇区 寄存器标识地址名称7 6 5 4 3 2 1 0 初始值 ISP_DATA 0xE2 ISP/IAP闪存数据寄存器11111111 ISP_ADDRH 0xE3 ISP/IAP 闪存地址高位00000000

52单片机内部EEPROM

#include #include #define uchar unsigned char #define uint unsigned int sbit en=P2^7; sbit rs=P2^6; sbit rw=P2^5; void delay(unsigned char z) { unsigned char j,i; for (i=0;i> 8); //送地址高字节

51内部eeprom读写,实现掉电存储

主函数: #include #include"EEPROM.h" #include"smg.h" void main() { num=byte_read(DEBUG_Data_Memory_Begin_Sector_addr);//字节读(程序开始时读取EEPROM中数据) if(num>=60)num=0;//防止首次上电时读取出错?? while(1) { if(num<60) { display(num); num++;delay(5); delay1(DELAY_CONST); sector_erase(DEBUG_Data_Memory_Begin_Sector_addr);//擦出扇区 byte_program (DEBUG_Data_Memory_Begin_Sector_addr,num);//字节编程} if(num==60)num=0; } } EEPROM.h: /*STC89C51RC,STC89LE51RC 0x2000 共八个扇区 STC89C52RC,STC89LE52RC 0x2000 共八个扇区 STC89C54RD+,STC89LE54RD+ 0x8000 共五十八个扇区 STC89C55RD+,STC89LE55RD+ 0x8000 共五十八个扇区 STC89C58RD+,STC89LE58RD+ 0x8000 共五十八个扇区*/ #include #include //sfr定义特殊功能寄存器 sfr ISP_DA TA =0xe2;//ISP/IAP 操作时的数据寄存器,从Flash 读出的数据放在此处,向Flash 写的数据也需放在此处 sfr ISP_ADDRH =0xe3;//ISP/IAP 操作时的地址寄存器高八位 sfr ISP_ADDRL =0xe4;//ISP/IAP 操作时的地址寄存器低八位 sfr ISP_CMD =0xe5;//ISP/IAP 操作时的命令模式寄存器,须命令触发寄存器触发方可生效 sfr ISP_TRIG =0xe6;//ISP/IAP 操作时的命令触发寄存器 sfr ISP_CONTR =0xe7;//ISP/IAP 控制寄存器 /* 定义命令*/

实验一 存储器实验

实验一存储器实验 1.FPGA中LPM_ROM定制与读出实验 一.实验目的 1、掌握FPGA中lpm_ROM的设置,作为只读存储器ROM的工作特性与配置方法。 2、用文本编辑器编辑mif文件配置ROM,学习将程序代码以mif格式文件加载于 lpm_ROM中; 3、在初始化存储器编辑窗口编辑mif文件配置ROM; 4、验证FPGA中mega_lpm_ROM的功能。 二.实验原理 ALTERA的FPGA中有许多可调用的LPM (Library Parameterized Modules)参数化的模块库,可构成如lpm_rom、lpm_ram_io、lpm_fifo、lpm_ram_dq的存储器结构。CPU 中的重要部件,如RAM、ROM可直接调用她们构成,因此在FPGA中利用嵌入式阵列块EAB 可以构成各种结构的存储器,lpm_ROM就是其中的一种。lpm_ROM有5组信号:地址信号address[ ]、数据信号q[ ]、时钟信号inclock、outclock、允许信号memenable,其参数都就是可以设定的。由于ROM就是只读存储器,所以它的数据口就是单向的输出端口,ROM中的数据就是在对FPGA现场配置时,通过配置文件一起写入存储单元的。图3-1-1中的lpm_ROM有3组信号:inclk——输入时钟脉冲;q[23、、0]——lpm_ROM的24位数据输出端;a[5、、0]——lpm_ROM的6位读出地址。 实验中主要应掌握以下三方面的内容: ⑴ lpm_ROM的参数设置; ⑵ lpm_ROM中数据的写入,即LPM_FILE初始化文件的编写; ⑶lpm_ROM的实际应用,在GW48_CP+实验台上的调试方法。 三.实验步骤 (1)用图形编辑,进入mega_lpm元件库,调用lpm_rom元件,设置地址总线宽度address[] 与数据总线宽度q[],分别为6位与24位,并添加输入输出引脚,如图3-1-1设置与连接。 (2)设置图3-1-1为工程。 (3)在设置lpm_rom数据参数选择项lpm_file的对应窗口中(图3-1-2),用键盘输入 lpm_ROM配置文件的路径(rom_a、mif),然后设置在系统ROM/RAM读写允许,以便能

AT24C02EEPROM读写程序

;--------------------------------------------------------------------------------------------------------------------- ;本程序是针对AT89S52单片机编制的EEPROM读写程序(2013.8.4测试通过) ;本程序在4MHZ、12MHZ和24MHZ分别测试通过 ;AT24C02的A0、A1、A2均接GND,设备地址高7位为(1010)000;WP接GND,充许对EEPROM正常读写 ;本程序仅作学习交流之用。 ;--------------------------------------------------------------------------------------------------------------------- SCl equ P2.0 ;SCL接A T89S52的P2.0端口,作为EEPROM的串行输入时钟 SDA equ P2.1 ;SDA接AT89S52的P2.1端口,作为主机与EEPROM之间信息串行传输总线WRITEDATA equ 08H;拟写入EEPROM的数据在主机中的存贮单元地址 READDATA equ 09H ;从EEPROM读取的数据存放到主机存贮单元地址EPROMADDRESS equ 0AH;拟随机读写EEPROM的存贮单元地址 ;------------------------------------------------ ORG 00H LJMP MAIN ;------------------------------------------------ ORG 50H MAIN: MOV SP,#20H;防止堆栈影响已用内存数据 ;以下为写EEPROM过程 mov EPROMADDRESS,#09H;该地址可以随意输入(00H~FFH),但读和写的地址须相同 MOV WRITEDA TA,#01010010B;该数字可以随意输入,并将读和写的数据进行比较;如读数正确则按将读出数据在P1口输出,可在P1口各位分别接LED灯直观显示出来。 LCALL WRITEEEPROMR ;以下为读EEPROM过程 mov EPROMADDRESS,#09H;该地址可以随意输入(00H~FFH),但读和写的地址须相同 LCALL READEEPROMR ;以下为EEPROM读写操作验证 MOV A,WRITEdata MOV B,A MOV A,READDATA CJNE A,B,MAIN1 MOV P1,READDATA;写入数和读出数相等时,读出的数据在P1口输出并按位分别控制LED灯直观显示 sJMP $ MAIN1: MOV P1,#00H;写入数和读出数相等时,LED灯全亮 ;以下可接其它主程序,此处暂为死循环 SJMP $ ;--------------------------------------------------------------------------------------------------------------------- ;WRITEEEPROMR是随机写EEPROM(AT24C02)子程序 ;入口1:EEPROMADRESS(拟读写EEPROM存贮单元地址,00~FFH) ;入口2:WRITEDATA(拟写入EEPROM的字节数据在主机的存放地址)

计算机组成原理实验五存储器读写实验

实验五 存储器读写实验 一、实验目的 1.掌握存储器的工作特性。 2.熟悉静态存储器的操作过程,验证存储器的读写方法。 二、实验原理 1.静态存储器芯片的6116的逻辑功能

2.存储器实验单元电路

3.存储器实验电路 三、实验过程 1.连线 1)连接实验一(输入、输出实验)的全部连线。 2)按逻辑原理图连接M-W、 M-R 两根信号低电平有效信号线。 3)连接A7-A0 8根地址线。 4)连接B-AR正脉冲有效信号 2.顺序写入存储器单元实验操作过程 1)把有B-AR控制开关全部拨到0,把有其他开关全部拨到1,使全部信号都处 于无效状态。 2)在输入数据开关拨一个实验数据,如“00000001”,即16进制的01H。 把IO-R控制开关拨下,把地址数据送到总线。 3)拨动一下B-AR开关,即实现“1-0-1”,产生一个正脉冲,把地址数据送地 址寄存器保存。 4)在输入数据开关拨一个实验数据,如“10000000”,即16进制的80H。 把IO-R控制开关拨下,把实验数据送到总线。

5)拨动M—W控制开关,即实现“1—0—1”,产生一个负脉冲,把实验数据存 入存储器的01H号单元。 6)按表2-11所示的地址数据和实验数据,重复上面(1)、(2)、(3)、(4)4 个步骤,顺序在存储器单元中存放不同的实验数据。 表2-11 推荐的典型实验数 3.顺序读出存储器单元实验操作过程 (1)在输入数据开关上拨一个地址(如00000001,即16进制数01H),拨下IO —R开关把地址数据送人总线。 (2)拨动一下B—AR开关,即实现“0—1—0”,产生一个正脉冲,把地址数据送地址寄存器(AR)保存。 (3)把IO—R开关拨上,切断输入开关与总线的联系。 (4)拨下M—R控制开关,把实验数据从存储器的01H号单元赌场送总线,验证实验数据是否与表2-11中的内容相符合。 (5)拨动IO—R开关,即实现“1—0—1”,产生一个负脉冲,把从存储器读出的实验数据从总线送输出显示电路L7—L0。 (6)拨上M—R控制开关,使存储器处于保持状态。 (7)重复上面的(1)—(6)6个步骤,按顺序从地址01H—05H的存储器单元中读出实验数据送输出显示电路L7—L0,验证读出数据与表2-11中的内容是否相符。

IC读写EEPROM问题总结

I C读写E E P R O M问题 总结 文件管理序列号:[K8UY-K9IO69-O6M243-OL889-F88688]

2017年6月30日星期五 目的:利用TMS320F2801芯片上外设I2C(2线串口)读写EEPROM数据(24LC128) 关键点1:24LC时钟频率400KHz,寄存器设置如下: I2caRegs.I2CPSC.all = 9; // Prescaler - need 7-12 Mhz on module clk I2caRegs.I2CCLKL = 10; // NOTE: must be non zero I2caRegs.I2CCLKH = 5; // NOTE: must be non zero 时钟频率也可设为200KHz,三个参数分别为9、20、20(CPU时钟频率为100MHz)(未测试?) 关键点2:波形分析 问题:I2C模块是不是只有I2CCNT 减到0才会发出停止信号 I2C模块是硬件的,当检测到发送完了就会发结束自动发信号,不需要人为干预 问题1:字节写操作正常,但是字节读函数出错 原因:写EEPROM是在七位器件地址后添加写标志,而读EEPROM需要在七位器件地址后添加写标志。 关键点:读EEPROM数据需要发送两次命令。第一次为写地址(此地址会被赋值给EEPROM内的地址指针),因此需要添加写标志;第二次为读数据,将写标志改为读标志。

问题2:主机接收时,SDA数据线上有数据传输,且I2CDRR接收数据寄存器有数据更新,但寄存器显示不可读,即CPU认为一直没接收到数据,一直停在下面语句 while 关键点:初始化设置时采用的是FIFO接收方式,因此无效,应查询FIFO 接收中断位while方式查询位。 此位只有在非FIFO中断接收方式时才有效。 问题3:断续单字节读写正常,但是采用连续的单字节读写出错。 原因:EEPROM写过程的结束并不是I2C总线写结束就结束,实际上I2C 总线的写入数据先被保存到了EEPROM内部的缓冲区,当遇到I2C结束条件后,EEPROM才启动内部写过程,这个过程才是保存数据的过程。非常悲哀的是这个过程比较长,官方文档标注为5ms。如果在这5ms以内对EEPROM芯片访问将被忽略。 关键点:读写EEPROM应延时至少5ms,软件延时10ms do{}while(EEPROM_Timer <= 10); //10ms 问题4:查询EEPROM写过程是否结束造成死机,只能查询EEPROM读过程。 官方文档说EEPROM内部写周期最长为5ms,在很多情况下是远远低于 5ms的,为了节约时间,官方给出一个解决办法。当写周期完毕后就开始进行应答查询,来确定EEPROM写周期何时结束。所谓应答查询官方解释为:就是向EEPROM发送一个I2C起始条件后发送器件地址和一个读写标

相关主题
文本预览
相关文档 最新文档