当前位置:文档之家› 某SUV汽车多连杆后独立悬架设计与分析本科毕业论文

某SUV汽车多连杆后独立悬架设计与分析本科毕业论文

某SUV汽车多连杆后独立悬架设计与分析本科毕业论文
某SUV汽车多连杆后独立悬架设计与分析本科毕业论文

某SUV汽车多连杆后独立悬架设计与分析

摘要

近年来,随着汽车工业的快速发展,人们对汽车的操纵稳定性和乘坐舒适性的要求越来越高,因此对汽车的悬架系统也提出了更高的要求。多连杆式独立悬架以其综合指标过硬、兼顾操控性和行驶舒适性在内的多种特性受到广大消费者的青睐。然而多年以来,结构复杂、成本高昂、舒适性较好的多连杆式独立悬架只用于豪华轿车,或少部分定位较高端的中高级别轿车。伴随着汽车制造技术的不断提升,零部件单位生产成本逐步降低,汽车厂商们开始更多的在低端轿车上装备这种结构复杂、性能优异的悬架,以此来提高车辆在行驶过程中的综合表现,并在同级别车型中形成鹤立鸡群的效应。我这次设计的奔驰GLK300的悬架系统正是符合大众的需求,采用多连杆式独立悬架。

本次设计的主要内容是:奔驰GLK300SUV的后悬架系统的设计,后悬架采用目前较为流行的多连杆式独立悬架系统。减振器采用双作用液力减振器,并对其进行参数计算。对导向机构和横向稳定杆进行结构计算及强度校核。采用CATIA软件对多连杆式独立悬架的零件进行建模并对悬架进行装配。同时采用CATIA软件对悬架的性能进行分析,论证悬架系统设计参数的合理正确性。

在这次设计中,采用了性能较好的多连杆式独立悬架系统,虽然多连杆式独立悬架还未广泛应用于中低端轿车,但随着成本的降低,此悬架系统将越来越多的得到使用。通过CATIA软件对悬架系统的建模及对其进行仿真优化,验证了多连杆式独立悬架的优异性能。因此,这次设计的悬架系统具有广泛的发展前景。

关键词:多连杆;独立悬架;仿真优化;CATIA

A SUV multi-link independent rear suspension of automobile

design and analysis

Abstract

In recent years, with the rapid development of automobile industry, people on the handling stability and riding comfort of the increasingly high demand, so the car's suspension system is also put forward higher requirements. Multi-link independent suspension with its comprehensive index, consideration of different characteristics of excellent handling and ride comfort, favored by the vast number of consumers. However, over the years, complex structure, high cost, comfort good multi-link independent suspension is used only for luxury cars, or a few more high-end positioning in high-grade car. Along with the automobile manufacturing technology continues to improve, spare parts production costs per unit decrease gradually, the automobile manufacturers began more equipment of this structure in the low-end cars complex, excellent performance of suspension, in order to improve the comprehensive performance of vehicles in the process, and the effect of forming in the same stand head and shoulders above others don't models. Suspension system I the design of the Mercedes-Benz GLK300 is in line with the needs of the public, the multi-link independent suspension.

The design of the main content is: the design of rear suspension system of the Mercedes-Benz GLK300SUV, rear suspension uses the popular multi-link independent suspension system. Damper adopts double acting hydraulic shock absorber, and parameter calculation of its. The guide mechanism and a transverse stable rod structure calculation and strength check. The components of CATIA software for multi-link independent suspension modeling and assembly of suspension. At the same time were analyzed by CATIA software performance of suspension, reasonable design parameter argumentation suspension system.

In this design, the multi-link independent suspension system with better performance, although the multi-link independent suspension is not widely used in the low-end cars, but with lower costs, this suspension system will be more and more use. Through the CATIA software model of suspension system and simulation and optimization of its, verify the

multi-link independent suspension performance. Therefore, the design of the suspension system has a broad development prospects.

Keywords:Connecting rod;independent suspension ;Simulation optimization;CATIA

目录

引言 ....................................................................................................................................... - 7 -第1章概述 ..................................................................................................................... - 11 -悬架系统概述 ...................................................................................................................... - 11 -第2章悬架分类及选择................................................................................................. - 14 -2.1 非独立悬架 ................................................................................................................. - 14 -2.2 独立悬架 ..................................................................................................................... - 14 -

2.2.1 横臂式悬挂系统 ........................................................................................... - 14 -

2.2.2 多连杆式悬挂系统 ....................................................................................... - 15 -

2.2.3 纵臂式悬挂系统 ........................................................................................... - 15 -

2.2.4 烛式悬挂系统 ............................................................................................... - 15 -

2.2.5 麦弗逊式悬挂系统 ....................................................................................... - 15 -

2.2.6 主动悬挂系统 ............................................................................................... - 16 -2.3 辅助元件 ..................................................................................................................... - 16 -

2.3.1 横向稳定器 ................................................................................................... - 16 -

2.3.2 缓冲块 ........................................................................................................... - 17 -第3章悬架参数计算..................................................................................................... - 18 -3.1 参数选定 ..................................................................................................................... - 18 -

3.1.1 自振频率 ....................................................................................................... - 18 -

3.1.2 悬架刚度 ....................................................................................................... - 18 -

3.1.3 悬架静挠度 ................................................................................................... - 18 -

3.1.4 悬架动挠度 ................................................................................................... - 19 -第4章弹性元件的设计计算......................................................................................... - 20 -

4.1 弹簧中径、钢丝直径、及结构形式 ......................................................................... - 20 -4.2 弹簧圈数 ..................................................................................................................... - 20 -第5章悬架导向机构设计............................................................................................. - 22 -

5.1 导向机构设计要求 ..................................................................................................... - 22 -5.2 导向机构的布置参数 ..................................................................... 错误!未定义书签。

5.2.1侧倾中心 ............................................................................... 错误!未定义书签。

5.2.2侧倾轴线 ............................................................................... 错误!未定义书签。

5.2.3纵倾中心 ............................................................................... 错误!未定义书签。

5.2.4抗制动纵倾性 ....................................................................... 错误!未定义书签。

5.3.悬架导向机构结构形式选择 .......................................................... 错误!未定义书签。第6章减振器设计 ......................................................................................................... - 23 -

6.1 减振器概述 ................................................................................................................. - 23 -6.2 减振器分类 ................................................................................................................. - 23 -

6.3 减振器主要性能参数 ................................................................................................. - 24 -

6.3.1 相对阻尼系数ψ............................................................................................ - 24 -

6.3.2 减振器阻尼系数δ ........................................................................................ - 25 -6.4 最大卸荷力F0 ............................................................................................................ - 25 -6.5 筒式减振器主要尺寸 ................................................................................................. - 26 -

6.5.1 筒式减振器工作直径D ............................................................................... - 26 -

6.5.2 油筒直径Dc ................................................................................................. - 26 -第7章横向稳定杆设计................................................................................................. - 27 -第8章平顺性分析 ......................................................................................................... - 29 -8.1 平顺性概念 ................................................................................................................. - 29 -8.2 汽车的等效振动分析 ................................................................................................. - 29 -8.3 车身加速度的幅频特性 ............................................................................................. - 32 -8.4 相对动载,对的幅频特性 ......................................................................................... - 32 -8.5 影响平顺性的因素 ..................................................................................................... - 32 -第9章多连杆独立悬架三维图..................................................................................... - 33 -9.1 CATIA软件的简介 ...................................................................................................... - 33 -9.2 悬架三维图 ................................................................................................................. - 33 -结论与展望

致谢 (9)

参考文献 (10)

附录 (11)

引言

近年来,随着汽车工业的快速发展,人们对汽车的操纵稳定性和乘坐舒适性提出了更高的要求,而车辆悬架决定和影响车辆行驶的平顺性、操纵稳定性和乘坐舒适性。

当前非独立悬架系统逐步被淘汰,独立悬架系统因其车轮触地性良好、乘坐舒适性及操纵安定性大幅提升、左右两轮可自由运动、轮胎与地面的自由度大、车辆操纵性较好等优点目前被汽车厂家普遍采用。而在独立悬架系统中,麦弗逊式悬架系统与拖拽臂式悬挂系统的使用居多。作为综合性能更好的多连杆式独立悬挂系统因为制造成本的原因,应用的还不是很广泛。但随着汽车制造技术的不断提升,汽车厂商们得以逐渐降低零部件的生产成本,多连杆式独立悬架系统将会得到广泛的使用。

作为汽车研究的一大热点,有关悬架的期刊或论文虽然较多,但国内关于悬架系统的专著却是屈指可数。无论是在图书馆,还是在网上查找,可查阅的书籍都为数不多。

第1章概述

悬架系统概述

悬架是汽车的车架与车桥或车轮之间的一切传力连接装置的总称,其作用是传递作用在车轮和车架之间的力和力扭,并且缓冲由不平路面传给车架或车身的冲击力,并衰减由此引起的震动,以保证汽车能平顺地行驶。

图1-1 梅赛德斯-奔驰CLK车型多连杆悬架

悬架是汽车中的一个重要总成,它把车架与车轮弹性地联系起来,关系到汽车的多种使用性能。从外表上看如图1-1,轿车悬架仅是由一些杆、筒以及弹簧组成,但千万不要以为它很简单,相反轿车悬架是一个较难达到完美要求的汽车总成,这是因为悬架既要满足汽车的舒适性要求,又要满足其操纵稳定性的要求,而这两方面又是互相对立的。比如,为了取得良好的舒适性,需要大大缓冲汽车的震动,这样弹簧就要设计得软些,但弹簧软了却容易使汽车发生刹车“点头”、加速“抬头”以及左右侧倾严重的不良倾向,不利于汽车的转向,容易导致汽车操纵不稳定等。

悬架最主要作用是传递作用在车轮和车身之间的一切力和力矩,比如支撑力、制动力和驱动力等,并且缓和由不平路面传给车身的冲击载荷、衰减由此引起的振动、保证乘员的舒适性、减小货物和车辆本身的动载荷。悬架与汽车的多种使用性能有关,为满足这些性能,悬架系统必须能满足这些性能的要求:首先,悬架系统要保证汽车有良好的行驶平顺性,对以载人为主要目的的轿车来讲,乘员在车中承受的振动加速度不能超过国标规定的界限值。其次,悬架要保证车身和车轮在共振区的振幅小,振动衰减快。再次,要能保证汽车有良好的操纵稳定性,一方面悬架要保证车轮跳动时,车轮定位参数不发生很大的变化,另一方面要减小车轮的动载荷和车轮跳动量。还有就是要保证车身在制动、转弯、加速时稳定,减小车身的俯仰和侧倾。最后要保证悬架系统的可靠性,有足够的刚度、强度和寿命。所以,汽车悬架是保证乘坐舒适性的重要部件。

现代汽车的悬架尽管有各种不同的结构形式,但一般都由弹性元件、减振装置和导向机构三部分组成。由于汽车行驶的路面不可能绝对平坦,路面作用于车轮上的垂直反力往往是冲击性的,特别是在坏路面上高速行驶时,这种冲击力将达到很大的数值。冲击力传到车架和车身时,可能引起汽车基件的早期损坏,传给乘员和货物时,将使乘员感到极不舒服,货物也可能受到损伤。为了缓和冲击,在悬架中必须装有弹性元件,使车架(或车身)与车桥(或车轮)之间作弹性联系。但弹性系统在受到冲击后,将产生振动。在持续的振动易使乘员感到不舒适和疲劳。故悬架还应当具有减振作用,使振动迅速衰减。为此,在许多结构形式的汽车悬架中都设有专门的减振器。车轮相对于车架和车身跳动时,车轮的运动轨迹应符合一定的要求,否则对汽车行驶性能有不利的影响。因此,悬架中某些传力构件同时还承担着使车轮按一定轨迹相对于车架和车身跳动的任务,因而这些传力构件还起导向作用的导向机构。在多数的轿车和客车上,为防止车身在转向行驶等情况下发生大的横向倾斜,在悬架中还设有辅助弹性元件横向稳定杆。

汽车悬架和悬挂质量、非悬挂质量构成了一个振动系统,该振动系统的特性很大程度上决定了汽车的行驶平顺性,并进一步影响到汽车的行驶车速、燃油经济性和运营经济性。该振动系统也决定了汽车承载系和行驶系许多零部件的动载,并进而影响到这些零件的使用寿命。此外,悬架对整车操纵稳定性、抗纵倾能力也起着决定性的作用。因而在设计悬架时必须考虑以下几个方面的要求:

(1)通过合理设计悬架的弹性特性及阻尼特性确保汽车具有良好的行驶平顺性,具有较低的振动频率、较小的振动加速度值和合适的减振性能,并能避免在悬架的压缩伸张行程极限点发生硬冲击,同时还要保证轮胎具有足够的接地能力;

(2)合理设计导向机构,以确保车轮与车架或车身之间所有力和力矩的可靠传递,保证车轮跳动时车轮定位参数的变化不会过大,并且能满足汽车具有良好的操纵稳定性要求;

(3)导向机构的运动应与转向杆系的运动相协调,避免发生运动干涉,否则可能引起转向轮摆振;

(4)侧倾中心及纵倾中心位置恰当,汽车转向时具有抗侧倾能力,汽车制动和加速时能保持车身的稳定,避免发生汽车在制动和加速时的车身纵倾(即所谓“点头”和“后仰”);

(5)悬架构件的质量要小尤其是其非悬挂部分的质量要尽量小;

(6)便于布置,在轿车设计中特别要考虑给发动机及行李箱留出足够的空间;

(7)所有零部件应具有足够的强度和使用寿命;

(8)制造成本低;

(9)便于维修、保养。

为了满足汽车具有良好的行使平顺性,要求由簧上质量与弹性元件组成的振动系统的固有频率应适应于合适的频段,并尽可能的低。前后悬架的固有频率的匹配应合理,对轿车,要求前悬架的固有频率略低于后悬架的固有频率,还要求尽量避免悬架撞击悬

架。在簧上质量变化的情况下,车身的高度变化要小,因此,要用非线性弹性特性的悬架。

汽车在不平的路面上行使时,由于悬架的弹性作用,使汽车产生垂直振动,为了迅速衰减这种振动和抑制车身、车轮的共振,减小车轮的振幅,悬架应装有减振器,并使之具有合理的阻尼。利用减振器的阻尼作用,使汽车的振动幅度连续减小,直至振动停止。

要正确的选择悬架的方案参数,在车轮上下跳动时,使主销的定位参数变化车架、车轮运动与到导向机构运动要协调,避免前轮摆振;汽车转向时,应使之具有不足转向特性。

独立悬架导向杆系数铰接处多用橡胶的衬套,能隔绝车轮来自不平路面上的冲击向车身的传递。

悬架设计的主要目的之一是确保汽车良好的行驶平顺性,也是汽车的重要使用性能之一,汽车行驶时振动越剧烈,则平顺性越差,不仅影响到成员的乘坐舒适性和货物的安全可靠的运输,还影响到汽车的多种使用性能的发挥和系统寿命,也影响汽车的燃油经济性和运输效率。由于汽车行驶平顺性涉及的对象是“路面---汽车---人”构成的系统,因此影响汽车行驶平顺性的主要因素是路面的不平(它是震动的起源)和汽车的悬架、轮胎、座椅、车身等总成部件的特性---包括刚度、频率、阻尼和惯性参数(质量、转动惯量等)产生变化和破坏。为此,通过对影响汽车平顺性因素的分析,建立具有代表性的二由度汽车振动系统动力学模型,并运用随机振动理论,计算出悬架动挠度、车轮与路面间的相对动载荷、响应均方根值等参量,同时利用汽车主要参数数据,利用MATLAB对汽车平顺性进行仿真,通过仿真分析各种因素和主要参数对汽车平顺性的影响,以达到参数调整和优化设计的目的。此外,本文通过对汽车平顺性进行预估,可以提高汽车设计质量,缩短研发和设计周期,具有极其重要的理论意义和实用价值。

第2章悬架分类及选择

2.1 非独立悬架

非独立悬挂系统的结构特点是两侧车轮由一根整体式车架相连,车轮连同车桥一起通过弹性悬挂系统悬挂在车架或车身的下面。非独立悬挂系统具有结构简单、成本低、强度高、保养容易、行车中前轮定位变化小的优点,但由于其舒适性及操纵稳定性都较差,在现代轿车中基本上已不再使用,多用在货车和大客车上。

非独立悬架独立悬架

2.2 独立悬架

独立悬挂系统是每一侧的车轮都是单独地通过弹性悬挂系统悬挂在车架或车身下

面的。其优点是:质量轻,减少了车身受到的冲击,并提高了车轮的地面附着力;可用刚度小的较软弹簧,改善汽车的舒适性;可以使发动机位置降低,汽车重心也得到降低,从而提高汽车的行驶稳定性;左右车轮单独跳动,互不相干,能减小车身的倾斜和震动。不过,独立悬挂系统存在着结构复杂、成本高、维修不便的缺点。现代轿车大都是采用独立式悬挂系统,按其结构形式的不同,独立悬挂系统又可分为横臂式、纵臂式、多连杆式、烛式以及麦弗逊式悬挂系统等。

与非独立悬架相比其优点有:

1)非悬挂质量小,悬架所受带的并传给车身的冲击载荷小,有利于提高汽车的行驶平顺性及轮胎的接地性能;

2)左右车轮的跳动没有直接的相互影响,可减少车身的倾斜和振动;

3)占用横向空间少,便于发动机布置,可以降低发动机的安装位置,从而降低汽车质心位置,有利于提高汽车的行驶稳定性;易于实现驱动车轮转向

2.2.1 横臂式悬挂系统

横臂式悬挂系统是指车轮在汽车横向平面内摆动的独立悬挂系统,按横臂数量的多少又分为双横臂式和单横臂式悬挂系统。单横臂式具有结构简单,侧倾中心高,有较强的抗侧倾能力的优点。但随着现代汽车速度的提高,侧倾中心过高会引起车轮跳动时轮距变化大,轮胎磨损加剧,而且在急转弯时左右车轮垂直力转移过大,导致后轮外倾增大,减少了后轮侧偏刚度,从而产生高速甩尾的严重工况。单横臂式独立悬挂系统多应用在后悬挂系统上,但由于不能适应高速行驶的要求,目前应用不多。双横臂式独

立悬挂系统按上下横臂是否等长,又分为等长双横臂式和不等长双横臂式两种悬挂系统。等长双横臂式悬挂系统在车轮上下跳动时,能保持主销倾角不变,但轮距变化大(与单横臂式相类似),造成轮胎磨损严重,现已很少用。对于不等长双横臂式悬挂系统,只要适当选择、优化上下横臂的长度,并通过合理的布置、就可以使轮距及前轮定位参数变化均在可接受的限定范围内,保证汽车具有良好的行驶稳定性。目前不等长双横臂式悬挂系统已广泛应用在轿车的前后悬挂系统上,部分运动型轿车及赛车的后轮也采用这一悬挂系统结构。

2.2.2 多连杆式悬挂系统

多连杆式悬挂系统是由(3—5)根杆件组合起来控制车轮的位置变化的悬挂系统。多连杆式能使车轮绕着与汽车纵轴线成二定角度的轴线内摆动,是横臂式和纵臂式的折衷方案,适当地选择摆臂轴线与汽车纵轴线所成的夹角,可不同程度地获得横臂式与纵臂式悬挂系统的优点,能满足不同的使用性能要求。多连杆式悬挂系统的主要优点是:车轮跳动时轮距和前束的变化很小,不管汽车是在驱动、制动状态都可以按司机的意图进行平稳地转向,其不足之处是汽车高速时有轴摆动现象。

2.2.3 纵臂式悬挂系统

纵臂式独立悬挂系统是指车轮在汽车纵向平面内摆动的悬挂系统结构,又分为单纵臂式和双纵臂式两种形式。单纵臂式悬挂系统当车轮上下跳动时会使主销后倾角产生较大的变化,因此单纵臂式悬挂系统不用在转向轮上。双纵臂式悬挂系统的两个摆臂一般做成等长的,形成一个平行四杆结构,这样,当车轮上下跳动时主销的后倾角保持不变。双纵臂式悬挂系统多应用在转向轮上。

2.2.4 烛式悬挂系统

烛式悬挂系统的结构特点是车轮沿着刚性地固定在车架上的主销轴线上下移动。烛式悬挂系统的优点是:当悬挂系统变形时,主销的定位角不会发生变化,仅是轮距、轴距稍有变化,因此特别有利于汽车的转向操纵稳定和行驶稳定。但烛式悬挂系统有一个大缺点:就是汽车行驶时的侧向力会全部由套在主销套筒的主销承受,致使套筒与主销间的摩擦阻力加大,磨损也较严重。烛式悬挂系统现已应用不多。

2.2.5 麦弗逊式悬挂系统

麦弗逊式悬挂系统的车轮也是沿着主销滑动的悬挂系统,但与烛式悬挂系统不完全相同,它的主销是可以摆动的,麦弗逊式悬挂系统是摆臂式与烛式悬挂系统的结合。与双横臂式悬挂系统相比,麦弗逊式悬挂系统的优点是:结构紧凑,车轮跳动时前轮定位参数变化小,有良好的操纵稳定性,加上由于取消了上横臂,给发动机及转向系统的布置带来方便;与烛式悬挂系统相比,它的滑柱受到的侧向力又有了较大的改善。麦弗逊式悬挂系统多应用在中小型轿车的前悬挂系统上,保时捷911、国产奥迪、桑塔纳、夏利、富康等轿车的前悬挂系统均为麦弗逊式独立悬挂系统。虽然麦弗逊式悬挂系统并不是技术含量最高的悬挂系统结构,但它仍是一种经久耐用的独立悬挂系统,具有很强的道路适应能力。

2.2.6 主动悬挂系统

主动悬挂系统是近十几年发展起来的、由电脑控制的一种新型悬挂系统。它汇集了力学和电子学的技术知识,是一种比较复杂的高技术装置。例如装置了主动悬挂系统的法国雪铁龙桑蒂雅,该车悬挂系统系统的中枢是一个微电脑,悬挂系统上的5种传感器分别向微电脑传送车速、前轮制动压力、踏动油门踏板的速度、车身垂直方向的振幅及频率、转向盘角度及转向速度等数据。电脑不断接收这些数据并与预先设定的临界值进行比较,选择相应的悬挂系统状态。同时,微电脑独立控制每一只车轮上的执行元件,通过控制减振器内油压的变化产生抽动,从而能在任何时候、任何车轮上产生符合要求的悬挂系统运动。因此,桑蒂雅轿车备有多种驾驶模式选择,驾车者只要扳动位于副仪表板上的“正常”或“运动”按钮,轿车就会自动设置在最佳的悬挂系统状态,以求最好的舒适性能。主动悬挂系统具有控制车身运动的功能。当汽车制动或拐弯时的惯性引起弹簧变形时,主动悬挂系统会产生一个与惯力相对抗的力,减少车身位置的变化。例如德国奔驰2000款Cl型跑车,当车辆拐弯时悬挂系统传感器会立即检测出车身的倾斜和横向加速度。电脑根据传感器的信息,与预先设定的临界值进行比较计算,立即确定在什么位置上将多大的负载加到悬挂系统上,使车身的倾斜减到最小。

我此次设计所选择的悬架为多连杆式独立悬架系统。

2.3 辅助元件

2.3.1 横向稳定器

为了降低汽车固有振动频率以改善行驶平顺性,现代轿车的悬架垂直刚度都较小,使得汽车的侧倾角刚度值也很小,导致汽车转弯时车身侧倾严重,影响了汽车行驶过程中的稳定性。因此,现代汽车大多都装有横向稳定杆如图2-1所示以此来加大悬架的侧倾角刚度从而改善汽车行驶稳定性。选择恰当的前、后悬架的侧倾角刚度比值,也有助于使汽车获得所需要的不足转向特性。通常,在汽车的前、后悬架中都装有横向稳定杆,或者只在前悬架中安装横向稳定杆。

汽车转弯时产生侧倾力矩,使内外侧车轮的负荷发生转移,并且影响车轮侧偏角刚度和车轮侧偏角的变化。前后轴车轮负荷的转移大小,主要取决于前后悬架的侧倾角刚度值。当前后悬架侧倾角刚度值大于后悬架的侧倾角刚度值时,前轴的负荷大于后轴车轮的负荷转移,并使前轮侧倾角大于后轮的侧倾角,以保证汽车具有不足转向特性。在汽车悬架上设计横向稳定器,能增大前悬架的侧倾角刚度。

2.3.2 缓冲块

缓冲块一般有两种,即橡胶制造和多孔聚氨酯制造。

缓冲块通常采用如图2-2的橡胶制造。橡胶制造的通过硫化将橡胶与钢板连为一体,再焊接在钢板上的螺钉将缓冲块固定在车身上,起到限制悬架最大行程的作用。

有些汽车装用的缓冲块为多孔聚氨脂制造。它兼由辅助弹性元件的作用。多孔聚氨脂是一种很高强度的和耐磨性能的复合材料。这种材料起泡时形成了致密的耐磨外层,它保护内部的发泡不受损失。由于在材料中有封闭的气泡,在载荷下压缩,但其外轮廓尺寸变化却不大,这点与橡胶不同。

综合考虑,本次设计选择多孔聚氨脂制成的缓冲块。

图2-2缓冲块

第3章 悬架参数计算

3.1 参数选定

3.1.1 自振频率

汽车前、后悬架与其簧上质量组成的振动系统的固有频率,是影响汽车行驶平顺性

的主要参数之一。由于现代汽车的质量分配系数ε近似等于1,因此汽车前、后轴上方

车身两点的振动不存在联系。

用途不同的汽车,对平顺性的要求也不同。以运送人为主的乘用车,对平顺性的要

求最高,客车次之,货车更次之。对发动机排量在1.6L 以下的乘用车,前悬架满载偏

频要求在1.00~1.45Hz ,后悬架则要求在1.17~1.58Hz 。原则上,乘用车的发动机排

量越大,悬架的偏频应越小,要求满载前悬架偏频在0.80~1.15Hz ,后悬架则要求在

0.98~1.30Hz 。货车满载时,前悬架偏频要求在1.50~2.10Hz ,而后悬架则要求在1.70~

2.17Hz 。偏频越小,则平顺性越好。选定偏频以后,即可计算出悬架的静挠度。

我设计所选择的后悬架偏频为:n=1.1。

3.1.2 悬架刚度

依据悬架刚度公式可得: m n K 2)2(π= (3-1)

式中:m ——簧载质量

K ——悬架的角刚度 n ——悬架的偏频, 后轮簧载质量:

(3-2)

后悬架的理论刚度: (3-3) mm l 350= mm a 200= ?=10α

后悬架的实际刚度: (3-4)

3.1.3 悬架静挠度

悬架的静挠度c f 是指汽车满载静止时悬架上的载荷w F 与此时悬架刚度c 之比,即

c f =w F /c (3-5)

当采用弹性特性为线性变化的悬架时,后悬架的静挠度可表示为:

K mg f c = (3-6)

m K n π21=kg m b a b m m r 2.105165755.224.12480=-?=-+?=满后mm

N m n K 8.501632.10511.122222=??==)()(后后ππmm N a l K K 11483810cos 20035064625cos =??=='α后后

式中:g ——重力加速度, g=981cm/s 2

后悬架的静挠度:

mm K g m f 6.2058.5016398102.1051=÷?==后后后 (3-7)

图3-1 悬架自振频率

3.1.4 悬架动挠度

悬架的动挠度d f 是指从满载静平衡位置开始悬架压缩到结构允许的最大变形时,车轮中心相对车架(或车身)的垂直位移。为了防止汽车行驶过程中频繁撞击限位块,悬架应当有足够的动挠度,对于轿车

c d f f 的值应不小于0.5,大客车应不小于0.75,载货汽车1.0,而行驶路况恶劣的越野车,这个值还要大一些。 我设计的是乘用车的悬架,所以

c d f f 的值应不小于0.5。

后悬架的动挠度:

mm f f c d 8.1026.2055.05.0=?=≥

(3-8) 所以后悬架的动挠度取120mm 。

第4章 弹性元件的设计计算

4.1 弹簧中径、钢丝直径、及结构形式

悬架单侧最大工作载荷F 1由下式求得:

(4-1) 悬架单侧最小工作载荷F 2由下式求得: (4-2) 弹簧指数(旋绕比)取C=6,

则曲度系数'K 由下式求得:

(4-3) 查表得钢丝拉伸强度极限MPa B 1200=σ

则许用应力[]τ由下式得出:

[]MPa B 60012005.05.0=?==στ

(4-4) 弹簧的簧丝直径d 由下式得出:

(4-5) 则弹簧中径2D 由下式可得出:

(4-6) 计算弹簧刚度弹K :

(4-7) 本次设计弹簧所才用的结构形式为螺旋弹簧。

4.2 弹簧圈数

工作圈数取6=Z

则弹簧总圈数1Z 由下式得出:

82621=+=+=Z Z

(4-8)

N m m b a b F r 5256210652480755

.224.12101=???

? ??-?=???? ??-?+=满

N

m m b a b F r 3793210651830755.224.12102=???

? ??-?=????

??-?+=空2525

.16615

.04641

64615.04414=+-?-?=+--='C C C K []mm

C F K d 134.1260014.3648232525.1882≈=????=≥'τπmm

Cd D 781362=?==mm

N l a K K 98966350200264625

222=??

?

???=??? ??=后弹

弹簧节距P 由下式得出:

(4-9)

两圈间隙δ由下式得出:

mm d P 131326=-=-=δ (4-10)

弹簧的自由高度由下式得出:

mm d PZ H 5.227135.18265.110=?+?=+=

(4-11)

mm D P 2637832===

第5章悬架导向机构设计

5.1 导向机构设计要求

悬架的分类及形式的选择依据主要是悬架导向机构的结构形式,导向机构承担着

悬架中除垂向力之外的所有作用力和力矩,并且决定了悬架跳动时车轮的运动轨迹和

车轮定位角的变化。因此在设计独立悬架的导向机构时,应使其满足以下要求:

(1)当车轮与车身产生相对运动时,保证轮距变化在一定的范围之内,以免轮胎过早

磨损。

(2)当车轮上下跳动时,前轮定位参数要有合理的变化特性;

(3)转弯时,应使车轮与车身倾斜方向相同,增加汽车的不足转向效应;

(4)车辆加速和制动时能保持车身稳定,减少车身纵倾的可能性;

(5)制动时,悬架导向机构的运动应使车身具有抗点头的作用;加速时有抗

俯仰的作用;

(6)行程恰当的侧倾中心,保证悬架有足够的侧倾刚度;

(7)各铰接点处受力尽量小,减少橡胶元件的弹性变形,以保证导向精度;

(8)导向杆系有足够的强度、刚度和疲劳强度。

多杆式独立悬架中多采用螺旋弹簧,因而对于侧向力,垂直力以及纵向力需加设导向装置即采用杆件来承受和传递这些力。因而一些轿车上为减轻车重和简化结构采用多杆式悬架。

多连杆式导向机构在独立式后悬架得到了广泛的应用,主要有四连杆式和五连杆式,适用于要求为车轮提供纵向力、侧向控制和承受制动力矩的场合。多连杆式导向机构给与设计者以很大的设计空间,通过优化设计可以对侧倾中心位置,抗点头、抗后蹲以及侧倾转向性能都能有很好的控制,以获得更好的乘坐舒适性以及NVH特性。缺点是价格昂贵,主要用于高性能轿车,如梅赛德斯-奔驰CLK车型。随着技术水平的提高,多连杆式导向机构有向中级桥车普及的趋势,如马自达3和速腾也都采用了多连杆式导向机构。

图2为本田雅阁车型用多连杆导向机构悬架

第6章减振器设计

6.1 减振器概述

为加速车架与车身的振动的衰减,以改善汽车的行使平顺性,在大多数汽车的悬架系统内部装有减振器。在麦弗逊式悬架中,减振器与弹性元件是串联的安装。

汽车悬架系统中广泛的采用液力减振器。液力减振器的工作原理是,当车架和车桥作往复的相对运动而活塞在钢筒内作往复的运动时,减振器壳底内的油液便反复的通过一些窄小的空隙流入另一内腔。此时孔壁与油液间的摩擦及液体分子内摩擦便形成对振动的阻尼力,使车身和车架的振动能量转化成为热能被油液和减振器壳所吸引,然后散到大气中。减振器的阻尼力的大小随车架和车桥相对速度的增减而增减,并且与油液的黏度有关。要求油液的黏度受温度的变化的影响近可能的小,且具有抗氧化性,抗汽化以及对各种金属和非金属零件不起腐蚀的作用等性能。

减振器的阻尼力越大,振动消除的越快,但却使串联的弹性元件的作用发挥的作用不能充分的发挥,同时,过大的阻尼力还可能导致减振器连接零件及车架的损坏。为解决弹性元件与减振器之间的这一矛盾,对减振器提出了如下的要求:

1.再悬架的压缩行程内,减振器的阻尼力应该小,以充分利用弹性元件来缓和冲击。

2.在悬架的伸张行程内,减振器的阻尼力应该大,以要求迅速的减振。

3.当车桥与车架的相对速度较大时,减振器能自动加大液流通道的面积,使阻尼力始终保持在一定的限度之内,以避免承受过大的冲击载荷。

6.2 减振器分类

减振器大体可以分为两大类,即摩擦式减振器和液力减振器。筒式减振器的质量仅为摆臂式的约1/2,并且制造方便,工作寿命长,因此现代汽车都采用筒式减振器。

而筒式减振器最常用的三种结构型式包括:双筒式、单筒充气式和双筒充气式。

双筒充气式减振器的基本构造、尺寸等与双筒式减振器一样,所不同的只是在工作缸。

筒与贮油筒之间充以低压气体。由于气压低,将活塞向外推出的力就很小。双筒充气式减振器具有以下优点:

1.在小振幅时阀的响应也比较敏感;

2.改善了坏路上的阻尼特性;

3.提高了行驶平顺性;

4.气压损失时,仍可发挥减振功能;

5.与单筒充气式减振器相比,占用轴向尺寸小,由于没有浮动活塞,摩擦也较小。

设计减振器时应当满足的基本要求是,在使用期间保证汽车的行驶平顺性的性能稳定;有足够的使用寿命。所以本设计采用双筒充气式减振器。

6.3 减振器主要性能参数

6.3.1 相对阻尼系数ψ 减振器的性能通常用阻力-速度特性图表示。如下图6-1所示。该图具有如下的点:阻力-速度特性由四段近似的直线线段组成,其中的压缩行程和伸张行程的阻力——速度各占两段;各段特性的指明时,减振器的阻尼系数是指当卸荷阀开启前的阻尼系数而言。通常的压缩行程的阻尼系数δy=Fy/Vy 与伸张行程的阻尼系数δs=Fs/Vs 不等。

图6-1减振器特性

(a )阻力——位移特性 (b )阻力——速度特性

汽车悬架有阻尼后,簧上质量的振动是周期衰减的振动,用相对阻尼系数ψ来表示评定振动衰减的快慢程度。ψ的表达方式为: ()m K SU 2δψ=

式中 SU K ——悬架系统的垂直刚度;

m ——簧上质量;

相对阻尼系数的物理意义是:减振器的阻尼作用在于不同的刚度c 和不同的簧载质量m 的悬架系统匹配时,会产生不同的阻尼效果。ψ值小则反之。通常情况下,将压缩行程时的阻尼系数ψy 取的小些,将伸张行程时的阻尼系数ψs 取的大些。两者之间的保持ψy=(0.25~0.50)φs 的关系。

设计时,先取ψy 与ψs 的平均值ψ。对于无内摩擦的弹性元件悬架,取ψ=0.25~

0.35;对于有内摩擦的弹性元件悬架,ψs >0.3;为了避免悬架碰撞车架,取ψy=0.5φs 。本次设计取ψs 取0.4。

对于我选用的后悬架相对阻尼系数ψ后=0.2;

平均相对阻尼系数ψ由下式计算得出:

()()3.022.04.02=+=+=//y s ψψψ (6-1)

6.3.2 减振器阻尼系数δ 减振器阻尼系数m K SU ψδ2=。因悬架系统固有频率m K SU =ω,所以理论上ωψδm 2=。实际上,应该根据减振器的布置特点确定减振器的阻尼系数。例如,减振器如下图6-2安装时,减振器阻尼系数用下式计算 αωψδ2cos 2/m =

后悬架的单个减振器阻尼系数由下式得出:

220.34357NS mm

δψ==?=前

(6-2)

图6-2减振器安装位置

在下摆臂长度n 不变的条件下,改变减振器下横摆臂上的固定点位置或者减振器轴线与铅直线之间的夹角α,会影响减振器阻尼系数的变化。

6.4 最大卸荷力F0

为减小传到车身上的冲击,当减振器活塞振动速度达到一定值时,减振器打开卸荷阀。此时的活塞速度称为卸荷速度x v 。在减振器安装如图6-2所示时, n a A v x αωcos =

(6-3) 式中:

A ——车身振幅,取±40mm ;

ω——为悬架系统的固有频率;

x v 为卸荷速度,一般为0.15~0.30m/s ;

如已知伸张时的阻尼系数δs ,在伸张行程的最大卸荷力x s v F δ=0,

本次设计取后悬架卸荷速度x v 为: s

m v x 3.0=后 (6-4)

优秀毕业论文(设计)评选办法【模板】

优秀毕业论文(设计)评选办法 为规范校级优秀毕业论文(设计)评选工作,激励本科学生在毕业论文(设计)过程中勤奋钻研、勇于创新,不断提高毕业论文(设计)的质量,特制定本办法。 一、评选时间 校级优秀毕业论文(设计)每年评选一次。每次评选的具体时间由当年相关工作通知的时间而定。 二、评选标准 (一)各院系在评选校级优秀毕业论文(设计)的过程中,要坚持科学、公正、公开的原则,认真评选出体现专业培养水平的好作品,杜绝简单摊派完成任务式的现象。院系如认为评选推荐的校级优秀毕业论文(设计)数量达不到学校分配的指标数,可以少报。 (二)凡推荐为校级优秀毕业论文(设计)的作品,综合成绩应达到优秀等级。校级优秀毕业论文(设计)评选的标准如下: 1、论文类 按期圆满完成教学计划规定的任务。选题新颖,具有一定的现实意义和理论意义,立论正确,观点新颖,结构合理,内容充实,计算与分析论证可靠、严密,思路、条理清晰,逻辑严密,重点突出,资料翔实,语言流畅,结论正确合理,格式规范。 能熟练地综合运用所学基础理论和专业知识,具有较强的独立分析问题和解决问题的能力,有较高的学术水平和一定的创新意识。外文资料翻译通顺正确,毕业论文创作全过程的信息化水平较高。答辩时概念清楚,语言表达准确,具备较好的语言表达能力。 2、设计类 按期圆满完成教学计划规定的任务。设计方案具有一定的创新意识,设计说明书完备,设计方案较为科学,计算、实验分析严密、正确,结论合理,数据可靠。艺术类设计版面及其它相应表现手段完整、规范,整体制作效果好。 整个设计过程充分体现出作者科学严谨的工作态度和较强的动手能力。答辩时概念清楚,思维清晰,能正确回答问题。毕业设计创作全过程的信息化水平较高。 三、评优名额和办法 (一)学校根据当年毕业生人数和专业结构情况,确定评优比例(原则上控制在应届本科毕业生人数的3%)。 (二)每届学生的毕业论文(设计)答辩工作结束后,由院系毕业论文(设计)答辩委员会向院系提名推荐校级优秀毕业论文(设计),院系毕业论文(设计)工作委员会应对提名推荐的优秀毕业论文(设计)进行讨论评审,择优推荐。 (三)推荐参评校级优秀毕业论文(设计)的作品,由作者按照校级优秀毕业论文(设计)格式要求(见附件1),缩写至4000字左右。 (四)各院系推荐校级优秀毕业论文(设计)时,须向教务处实践教学科提交如下推荐材料: 1、校级优秀毕业论文(设计)推荐汇总表; 2、校级优秀毕业论文(设计)推荐表; 3、本科毕业论文(设计)开题报告(复印件); 4、本科毕业论文(设计)考核评议书(复印件); 5、优秀毕业论文(设计)缩写文本的打印稿和电子稿。

汽车悬架设计毕业论文

汽车悬架设计毕业论文 目录 摘要............................................ 错误!未定义书签。目录............................................................ I 绪论 (1) 1.1汽车悬架概述 (1) 1.2论文研究的背景及意义 (2) 1.3 毕业论文研究容 (2) 第2章汽车悬架概述 (3) 2.1悬架基本概念 (3) 2.1.1悬架概念 (3) 2.1.2悬架最主要的功能 (3) 2.1.3悬架基本组成 (3) 2.1.4悬架类型 (4) 2.2悬架系统研究与设计的领域 (4) 2.3悬架设计要求 (4) 2.4悬架的主要特性 (5) 2.4.1 悬架的垂直弹性特性 (5) 2.4.2 减振器的特性 (6) 2.5 本章小结 (6) 第3章悬架对汽车主要性能的影响 (7) 3.1悬架对汽车平顺性的影响 (7) 3.1.1悬架弹性特性对汽车行驶平顺性的影响 (7) 3.1.2悬架系统中的阻尼对汽车行驶平顺性的影响 (10) 3.1.3非簧载质量对汽车行驶平顺性的影响 (11) 3.1.4改善平顺性的主要措施 (12) 3.2悬架与汽车操纵稳定性 (12) 3.2.1 汽车的侧倾 (12) 3.2.2侧倾时垂直载荷对稳态响应的影响 (14) 3.3本章小结 (16) 第4章悬架主要参数的确定 (16) 4.1 悬架静挠度的计算 (17) 4.2 悬架动挠度的计算 (17)

第5章双横臂独立悬架导向机构的设计 (19) 5.1 导向机构设计要求 (19) 5.2导向机构的布置参数 (19) 5.2.1侧倾中心 (19) 5.2.2侧倾轴线 (20) 5.2.3纵倾中心 (20) 5.2.4悬架横臂的定位角 (21) 5.2.5纵向平面上、下横臂的布置方案 (21) 5.2.6横向平面上、下横臂的布置方案 (22) 5.2.7水平面上、下横臂摆动轴线的布置方案 (23) 5.2.8上、下横臂长度的确定 (24) 5.3 前轮定位参数与主销轴的布置 (25) 5.3.1主销偏移距 (25) 5.3.2四个前轮定位参数的初步选取 (26) 第6章弹性元件的计算 (28) 6.1 螺旋弹簧的刚度 (28) 6.1.1螺旋弹簧的刚度 (28) 6.1.3弹簧校核 (31) 6.2 小结 (31) 第7章振器的结构类型与主要参数的选择 (32) 7.1 减振器的分类 (32) 7.2 双筒式液力减振器工作原理 (32) 7.3 减震器参数的设计计算 (35) 7.3.1相对阻尼系数的确定 (35) 7.3.2减震器阻尼系数的确定 (35) 7.3.3减震器最大卸荷力的确定 (36) 7.3.4减震器工作缸直径的确定 (37) 第8章横向稳定杆设计计算 (39) 8.1 横向稳定杆的作用 (39) 8.2 横向稳定杆参数的选择 (39) 第9章导向机构的仿真设计 (41) 9.1 仿真设计及分析 (41) 9.1.2前轮外倾角(camber)变化 (43) 9.1.3前轮前束角(toe)的变化 (43) 9.1.4主销倾角(kingpin)的变化 (44)

麦弗逊悬架学位毕业设计

麦弗逊悬架学位毕业设计 High quality manuscripts are welcome to download

摘要随着汽车工业技术的发展,人们对汽车的行驶平顺性,操纵稳定性以及乘坐舒适性和安全性的要求越来越高。汽车行驶平顺性反映了人们的乘坐舒适性,而舒适性则与悬架密切相关。因此,悬架系统的开发与设计具有很大的实际意义。 本次设计主要研究的是比亚迪F3轿车的前、后悬架系统的硬件选择设计,计算出悬架的刚度、静挠度和动挠度及选择出弹簧的各部分尺寸,并且通过阻尼系数和最大卸荷力确定了减振器的主要尺寸,最后进行了横向稳定杆的设计以及汽车平顺性能的分析。本设计在轿车前后悬架的选型中均采用独立悬架。其中前悬架采用当前家庭轿车前悬流行的麦弗逊悬架。前、后悬架的减振器均采用双向作用式筒式减,后悬则采用半拖曳臂式独立悬架振器。这种结构的设计,有效的提高了乘座的舒适性和驾驶稳定性。 1绪论: 悬架的功用 悬架是车架(或承载式车身)与车桥(或车轮)之间弹性连接装置的总称。 1.传递它们之间一切的力(反力)及其力矩(包括反力矩)。 2.缓和,抑制由于不平路面所引起的振动和冲击,以保证汽车良好的平顺 性,操纵稳定性。 3.迅速衰减车身和车桥的振动。 悬架系统的在汽车上所起到的这几个功用是紧密相连的。要想迅速的衰减振动、冲击,乘坐舒服,就应该降低悬架刚度。但这样,又会降低整车的操纵稳定

性。必须找到一个平衡点,即保证操纵稳定性的优良,又能具备较好的平顺性。 悬架结构形式和性能参数的选择合理与否,直接对汽车行驶平顺性、操纵稳定性和舒适性有很大的影响。由此可见悬架系统在现代汽车上是重要的总成之一。 悬架的组成 现代汽车,特别是乘用车的悬架,形式,种类,会因不同的公司和设计单位,而有不同形式。 但是,悬架系统一般由弹性元件、减振器、缓冲块、横向稳定器等几部分组成等。 它们分别起到缓冲、减振、力的传递、限位和控制车辆侧倾角度的作用。 弹性元件又有钢板弹簧、空气弹簧、螺旋弹簧以及扭杆弹簧等形式,现代轿车悬架多采用螺旋弹簧,个别高级轿车则使用空气弹簧。螺旋弹簧只承受垂直载荷,缓和及抑制不平路面对车体的冲击,具有占用空间小,质量小,无需润滑的优点,但由于本身没有摩擦而没有减振作用。这里我们选用螺旋弹簧。 减振器是为了加速衰减由于弹性系统引起的振动,减振器有筒式减振器,阻力可调式新式减振器,充气式减振器。它是悬架机构中最精密和复杂的机械件。 导向机构用来传递车轮与车身间的力和力矩,同时保持车轮按一定运动轨迹相对车身跳动,通常导向机构由控制摆臂式杆件组成。种类有单杆式或多连杆式的。钢板弹簧作为弹性元件时,可不另设导向机构,它本身兼起导向作用。有些轿车和客车上,为防止车身在转向等情况下发生过大的横向倾斜,在悬架系统中

悬架设计开题报告

本科毕业设计(论文)手册 (理工科类专业用) 毕业设计(论文)题目__工程自卸车底盘悬架系统设计_____专题题目______________________________________________________ 设计(论文)起止日期:年月日至年月日 __学院__专业__年级__班 学生姓名______ 指导教师_________ 教研室(系)主任____________ 教学院长____________ 年月日____2012.2.26 ___

须知 一、本手册第1页是毕业设计(论文)任务书,由指导教师填写;第2页是开题报告;第3页是答辩申请事项。答辩时学生须向答辩委员会(或答辩小组)提交本手册,作为答辩评分的参考材料,没有本手册不得参加答辩。本手册可以使用电子版打印,但签署姓名和日期处必须手工填写。本手册最后装入学生毕业设计(论文)档案袋。 二、毕业设计(论文)期间,要求学生每天出勤不少于6小时,在校外进行毕业设计(论文)或实习(调研)者,应遵守有关单位的作息时间,学生如事假(病假)必须按规定的程序办理请假手续,凡未获准请假擅自停止工作者,按旷课论处。 三、学生在毕业设计(论文)中,要严格遵守纪律、服从领导、爱护仪器设备,遵守操作规程和各项规章制度;自觉保持工作场所的肃静和清洁,不做与毕业设计(论文)工作无关的事情。 四、学生要尊敬指导教师、虚心请教,并主动接受老师的随时检查。 五、学生要独立完成毕业设计(论文)任务,在毕业设计(论文)过程中要有严谨的科学态度和朴实的工作作风,严禁抄袭和弄虚作假。 六、毕业设计(论文)成绩评定标准按五级:优秀(90分以上)、良好(80分以上)、中等(70分~79分)、及格(60分~69分)、不及格(59分以下)。

皮卡总体设计论文汽车毕业设计

皮卡总体设计论文汽车毕业设计 第一章总体设计 汽车总体设计是汽车设计工作中十分重要的一环。汽车使用性能、外廓尺寸、重量、外形和生产成本与总体设计有密切关系。汽车性能的好坏不仅取决于各部件性能如何,而且在很大程度上取决于各部件的协调和配合,取决于总布置。在汽车设计开始阶段应该有一个很好的总体设计,使整车设计有一个统一的目标、统一的设想和统一的指挥。 §1.1 汽车类型的选择 用途可分为轿车、客车、载货汽车、越野汽车、牵引汽车、专用汽车、自卸汽车、农用汽车等。另外,随着时代的进步和技术的发展出现了以新能源为动力的电动汽车、燃料电池汽车等。我们本次设计的是一款柴油皮卡车,经技舒适,具有良好的动力性、制动性、安全性,这就是我们本次设计所贯穿的主线。 §1.2 汽车形式的选择 §1.2.1轴数 汽车的轴数(二轴、三轴或四轴)是根据汽车的用途、总重、使用条件、公路车辆的法规限制和轮胎负荷能力来确定的。 我国公路干线和桥梁所允许的双轴汽车后轴的单轴负荷为130kN,前轴的单轴负荷允许为60kN,三轴汽车的双后轴负荷为240kN。双轴汽车总重一般不超过180~190 kN,而三轴汽车的总重不超过320 kN。总重更大的公路用车可采用四轴。因本次设计的车型质量较轻,故采用两轴。

§1.2.2驱动形式 驱动形式常用4×2、4×4、6×6等代号表示。其中第一个数字表示汽车车轮总数,第二个表示驱动轮数。4×2式汽车结构最简单,汽车自重较轻,制造成本低,油耗量也较小,故在轿车和总重小于190 kN的公路用车上得到最广泛的采用。因本次设计车型总重不高,所以采用4×2形式。 §1.2.3布置形式 汽车布置形式是指发动机、驱动轴和车身的相互位置关系和布置特点而言的。汽车的使用性能除取决于整车和各总成的有关参数外,起布置形式对使用性能也有重要影响。 皮卡属于客货两用车,一般采用发动机前置后轮驱动(FR)。该布置有如下优点:轴荷分配合理,因而有利于提高轮胎的使用寿命;前轮不驱动,因此不需要采用等速万向节,有利于减少制造成本;操纵机构简单;采暖机构简单,且管路短供暖效率高;发动机冷却条件好;上坡行驶时,因驱动轮上的附着力增大,故爬坡能力强;变速器与主减速器分开,故拆装、维修容易;发动机的接近性良好。主要缺点是:因为车身地板下方有传动轴,所以地板上有凸起的通道,并使后排座椅中部坐垫的厚度减薄,影响了乘坐舒适性;汽车正面与其他物体发生碰撞时,易导致发动机进入车厢,会使前排乘员受到严重伤害;汽车的总长、轴距均较长,整车整备质量增大,同时影响到汽车的燃油经济性和动力性。总体还是应用很广泛的。 §1.3 汽车主要技术参数确定 §2.3.1汽车主要尺寸的确定 汽车主要尺寸是指汽车的外廓尺寸、轴距、轮距、车厢尺寸等。 1.外廓尺寸 汽车的长、宽、高称为汽车外廓尺寸。应根据汽车的用途、道路条件、吨位(或载客数)、外型设计、公路限制和结构布置等因素来确定。在总体设计时要力求减少汽车的外廓尺寸,以减轻汽车自重,提高汽车的动力性、经济性和机动性。本次设计参考日产锐骐皮卡初步确定: La=4980mm,Ba=1690mm,Ha=1650mm

汽车悬架优化设计_毕业设计论文

4.4.4主销内倾角的优化 (23) 4.4.5轮距优化 (23) 4.4.6各定位参数同时优化 (24) 4.4.6.1前束优化后的图形 (25) 4.4.6.2车轮外倾角优化后的图形 (25) 4.4.6.3主销后倾角优化后的图形 (25) 4.4.6.4主销内倾角优化后的图形 (25) 4.4.6.5轮距变化优化后的图形 (26) 4.4.6.6各参数优化前后的数值表 (26) 4.4.6.7小结 (27) 结论 (27) 致谢 (27) 参考文献 (27)

引言 汽车悬架是汽车一个非常重要的部件。汽车悬架是汽车的车架与车桥或车 轮之间的一切传力连接装置的总称,其作用是传递作用在车轮和车架之间的力和 力扭,并且缓冲由不平路面传给车架或车身的冲击力,并衰减由此引起的震动, 以保证汽车能平顺地行驶。另外,悬架系统能配合汽车的运动产生适当的反应, 当汽车在不同路况作加速、制动、转向等运动时,能提供足够的安全性,保证操 纵不失控。所以,悬架是汽车底盘中最重要、也是汽车改型设计中经常需要进行 重新设计的部件。汽车行驶中路面的不平坦、凸起和凹坑使车身在车轮的垂直作 用力下起伏波动,产生振动与冲击;加减速及制动和转弯使车身产生俯仰和侧倾 振动。这些振动与冲击会严重影响车辆的平顺性和操纵稳定性等重要性能。悬架作为上述各种力和力矩的传动装置,其传递特性能的好坏是影响汽车行驶平顺性 和操纵稳定性最重要、最直接的因素。只有当汽车底盘配备了性能优良的悬架, 才会得到整车性能优良的汽车。 悬架按照结构分大体可以分为独立式悬架和非独立式悬架。非独立悬架具有结构简单、成本低、强度高、保养容易、行车中前轮定位变化小的优点,但由 于其舒适性及操纵稳定性都较差,在现代轿车中基本上已不再使用,多用在货车和大客车上。独立悬架是每一侧的车轮都是单独地通过弹性悬架悬挂在车架或车 身下面的。其优点是:质量轻,减少了车身受到的冲击,并提高了车轮的地面附 着力;可用刚度小的较软弹簧,改善汽车的舒适性;可以使发动机位置降低,汽 车重心也得到降低,从而提高汽车的行驶稳定性;左右车轮单独跳动,互不相干,能减小车身的倾斜和震动。不过,独立悬架存在着结构复杂、成本高、维修不便 的缺点。现代轿车大都是采用独立式悬架,按其结构形式的不同,独立悬架又可分为横臂式、纵臂式、多连杆式、烛式以及麦弗逊式悬架等。麦弗逊悬架因为其 结构简单、制造成本低、节省空间方便发动机布置等优点被广泛地运用。大到宝马M3,保时捷911这类高性能车,小到菲亚特STILO,福特FOCUS,甚至国产的哈飞面包车前悬挂都是采用的麦弗逊式设计。 当前,中国汽车企业大多侧重于汽车整车的研发,而忽视了汽车主要零部件和相关配套产业的提供。然而从某种意义上讲,整车对于汽车产业不是最重要的,最重要的还是汽车关键零部件的创新和发展。关键零部件的科技含量综合体现汽车整车的创新能力和品牌建设能力。我国在底盘的集成设计及开发领域开发 设计起步较晚,设计和制造水平远远落后于国外发达国家。国内大多数整车及零部件制造企业都没有掌握悬架系统的自主设计和开发技术,大多数为引进外国技术进行复制开发和生产,几乎可以说国内企业的底盘技术基本上都是照搬过外 的,没有任何自己的技术。 在现代的工程研究领域,计算机仿真己成为热门研究课题。借助计算机的快速计算能力,人们不仅可以求出所需要的数值结果,还可以模拟出工程中的具体情况,以便人们可以直观的进行分析研究,我们称为计算机仿真技术。今天的机械系统仿真技术研究中,大多以多体系统理论作为研究上的理论基础。计算多体系统动力学的产生极大地改变了传统机构动力学分析的面貌,使工程师从传统的手工计算中解放了出来,只需根据实际情况建立合适的模型,就可由计算机自动求解,并可提供丰富的结果分析和利用手段;对于原来不可能求解或求解极为困 难的大型复杂问题,现可利用计算机的强大计算功能顺利求解;而且现在的动力学分析软件提供了与其它工程辅助设计或分析软件的强大接口功能,它与其它工

汽车租赁管理系统毕业设计论文

1 引言 汽车租赁业是社会高度发展的产物,它借助租赁特有优势推动汽车产业发展并带动消费,还起到提高资源利用率、降低环境污染的作用,对国民经济发展有着不可替代的作用。1989年8月1日始建了国内第一家汽车租赁公司,从最初的一家公司70辆车起步至今,在短短的十来年时间里,在国家工商部门注册的汽车租赁公司就已经有近500多家,运营车辆5万多辆,全国汽车租赁市场的营业额约为17—22亿元,随着汽车租赁业的高速发展,预计到2015年,国内汽车租赁市场的营业总额将达到180亿元。 在国外,有遍及全球的汽车租赁管理系统网络,如全球最大的汽车租赁公司赫兹公司有遍及美、加、英、爱尔兰等国的5000多个汽车租赁点,业务遍及全球140多个国家,全球营运车辆超过55万辆;世界第二大汽车租赁公司AVIS 可以在全球174 个国家布局,使它的会员做到一国入会,各国租车,已发展到“一地租车,异地还车和修车”的程度。在国外,异地租赁是通常现象,这源于汽车的普及率和人们对汽车租赁的认知程度都已经达到了一定高度。除此以外还有24小时预定服务,包括网络、电话预订;30公里以内免费送取车,24小时紧急,路上救援服务;信用卡及网上收费。 在我国,由于租车用户对汽车的喜好及用途各有不同,而往往在汽车租赁公司挑选汽车时间过于长,而且没有满意的车辆还会去其他公司挑选,这样不仅仅浪费了时间同时也影响了客户心情,而且在价格方面各个公司也有所不同,顾客有时也会出现现金不足等其他情况。鉴于以上情况的发生,汽车租赁管理系统的开发已属必然,汽车租赁管理系统的开发可以在网站上直接选择自己喜爱的车型,同时也可以时时了解到租金问题,也可以了解汽车的性能等其他客户锁关心的信息。 汽车租赁管理系统结合我国汽车租赁业的发展特点而进行开发,主要功能有系统

车辆工程毕业设计86低速载货汽车车架及悬架系统

第1章前言 车架和悬架系统是汽车设计的重要部分,因为它们的好坏直接关系到汽车各个方面(操控、性能、安全、舒适)性能。 现代汽车绝大多数都具有作为整车骨架的车架。汽车绝大多数部件和总成都是通过车架来固定其位置的,如发动机、传动系统、悬架、转向系统、驾驶室、货箱和有关操纵机构。车架是支撑连接汽车的各零部件,并承受来自车内、外的各种载荷,所以在车辆总体设计中车架要有足够的强度和刚度,以使装在其上面的有关机构之间的相对位置在汽车行驶过程中保持不变并使车身的变形最小,车架的刚度不足会引起振动和噪声,也使汽车的乘坐舒适性、操纵稳定性及某些机件的可靠性下降。过去对车辆车架的设计与计算主要考虑静强度。当今,对车辆轻量化和降低成本的要求越来越高,于是对车架的结构形式设计有高的要求。首先要满足汽车总布置的要求。汽车在复杂多边的行驶过程中,固定在车架上的各总成和部件之间不应发生干涉。汽车在崎岖不平的道路上行驶时,车架在载荷作用下可能产生扭转变形以及在纵向平面内的弯曲变形;车架布置的离地面近一些,以使汽车重心位置降低,有利于提高汽车的行驶稳定性。[]1 悬架是车架(或承载式车身)与车桥(或车轮)之间的一切传力连接装置的总称。它的功用是把路面作用于车轮上的垂直反力(支撑力)、纵向反力(驱动力和制动力)和侧向反力以及这些反力所造成的力矩传递到车架(或承载式车身)上,以保证汽车的正常行驶。在进行设计时,要满足以下几点要求: a.规范合理的型式和尺寸选择,结构和布置合理。 b.保证整车良好的平顺性能。 c.工作可靠,结构简单,装卸方便,便于维修、调整。 d.尽量使用通用件,以便降低制造成本。 e.在保证功能和强度的要求下,尽量减小整备质量。 f.其它有关产品技术规范和标准。[]2 目前,农用运输车不能满足“三农”市场需求,突出表现为一般产品生产能力过剩,技术水平低,质量和维修服务水平差,价格较高,而市场急需的高质量经济型产品不能满足需求。结合生产实际,在农用运输车基础上对低速载货汽车车架及悬架系统进行了设计。

轻型悬架汽车设计论文

轻型悬架汽车设计论文 轻型汽车悬架设计 THE DESIGN OF A LIGHT TRUCK`S SUSPENSION 2009 年6月 西南交通大学本科毕业设计(论文) 第?页 摘要 首先根据设计给定的四个参数对整车进行总体设计,包括整车的尺寸参数、质量参数和性 能参数,在选择这些参数的时候可以通过国家标准以及相关的经验参数得到,在选择之后进 行了相关的验证,保证各参数能达到各项性能的基本要求。在总体设计完成之后,对前后悬 架进行方案的选择,本设计前悬架采用麦弗逊独立悬架,后悬架采用纵置钢板弹簧。然后对 悬架的性能参数进行选择,包括前后悬架的偏频、相对阻尼系数、非簧载质量以及影响操稳 性的侧倾中心高度和侧倾刚度,还有影响纵向稳定性的纵倾中心高度等。在选择完基本参数 后,对悬架的弹性元件(前悬架为螺旋弹簧。后悬架为钢板弹簧)进行设计计算,包括刚度 和强度等的校核,使设计的弹簧能满足设计的偏频要求。之后设计前独立悬架的导向机构,

设计包括侧倾中心、纵倾中心以及下控制臂的位置等。为前、后悬架匹配减振器,计算减振 器的尺寸,并且验算减振器是否满足强度要求。由于麦弗逊悬架的侧倾刚度较小,为了满足 汽车不足转向性能要求,设计时,为前悬架匹配了一个横向稳定杆,提高它的侧倾刚度,满 足不足转向性能要求。 由于悬架结构的运动学特性关系到汽车操纵稳定性、转向轻便性、行驶舒适性、轮胎寿命 以及汽车布置设计中的运动干涉等诸多方面,是汽车设计过程中十分重要的问题,欲设计合 乎需要的悬架结构,必须准确分析悬架结构的运动特性。所以为了研究悬架结 构的运动学特 性, 关键词: 麦弗逊悬架动态特性 西南交通大学本科毕业设计(论文) 第V页 Abstract This article is mainly about to study the method of designing a light truck’s front and back suspension, also the article analyze the relation between suspension movement and front wheel alignment parameters. First, it designs the scheme of whole car based on the four parameters whic h was already been given, this including the whole car’s size parameters, weight parameters, and property parameters. we may

麦弗逊悬架的结构设计毕业设计

毕业设计 卓越工程师培养(海格班) 麦弗逊悬架的结构设计

毕业设计(论文)原创性声明和使用授权说明 原创性声明 本人郑重承诺:所呈交的毕业设计(论文),是我个人在指导教师的指导下进行的研究工作及取得的成果。尽我所知,除文中特别加以标注和致谢的地方外,不包含其他人或组织已经发表或公布过的研究成果,也不包含我为获得及其它教育机构的学位或学历而使用过的材料。对本研究提供过帮助和做出过贡献的个人或集体,均已在文中作了明确的说明并表示了谢意。 作者签名:日期: 指导教师签名:日期: 使用授权说明 本人完全了解大学关于收集、保存、使用毕业设计(论文)的规定,即:按照学校要求提交毕业设计(论文)的印刷本和电子版本;学校有权保存毕业设计(论文)的印刷本和电子版,并提供目录检索与阅览服务;学校可以采用影印、缩印、数字化或其它复制手段保存论文;在不以赢利为目的前提下,学校可以公布论文的部分或全部内容。 作者签名:日期:

学位论文原创性声明 本人郑重声明:所呈交的论文是本人在导师的指导下独立进行研究所取得的研究成果。除了文中特别加以标注引用的内容外,本论文不包含任何其他个人或集体已经发表或撰写的成果作品。对本文的研究做出重要贡献的个人和集体,均已在文中以明确方式标明。本人完全意识到本声明的法律后果由本人承担。 作者签名:日期:年月日 学位论文版权使用授权书 本学位论文作者完全了解学校有关保留、使用学位论文的规定,同意学校保留并向国家有关部门或机构送交论文的复印件和电子版,允许论文被查阅和借阅。本人授权大学可以将本学位论文的全部或部分内容编入有关数据库进行检索,可以采用影印、缩印或扫描等复制手段保存和汇编本学位论文。 涉密论文按学校规定处理。 作者签名:日期:年月日 导师签名:日期:年月日

毕业设计论文 SUV车身总布置设计

摘要 SUV设计处处强调以人为本,安全、舒适、环保、节能一直是轿车设计的主题和追求的目标。人机工程布置设计不仅关系到有效利用车内空间及提高乘坐舒适性、安全性,而且还会影响到整车内外造型效果,进一步影响到整车的总性能和商品性,所以人机工程学在SUV设计开发过程中的应用研究占据着重要的地位。 本文首先对传统的车身设计方法和现代车身方法进行了比较,并说明了本文采用的设计方法。 本次设计根据汽车造型设计的发展和车身设计方法的原则进行了汽车造型设计。然后进行车身总布置参数的确定及整车坐标零线的确定,还应用到人机工程学确定人体模型和驾驶员最舒适姿势。接着确定了H点,座椅设计,眼椭圆设计还有头部包络面和包络线。最后各个附件的设计及确定。 关键词:人机工程学;车身总布置;眼椭圆

Abstract The design of modern everwhere emphasized people-oriented,of safety,comfort,environmental protection,energy saving has been the subject of goals.Ergonomic layout design is not related to the effective use of the car space and improve the comfort,safety,but also affect the modeling results both inside and outside the vehicle,and further affect the overall vehicle performance and commercial,so Ergonomics In the process of car design and development of applied research occuppies an important position. In this paper,the body design of the traditional methods and modern methods of the body,and that the design methods used in this paper. The automotive design is based on the development of automotive design and body design principles,then make sure of the total layout parameters and the zero line of the vehicle coordinates,also apply ergonomics to determine the models and most comfortable body position.And determine the H point,seat design,the eyellipse design,the envelope surface and the envelope surface and envelope curve.Finally,design and identify the various accessories. Key word:Ergonomices;Auto Body layout;eyellipse

汽车悬架系统设计毕业设计和分析

轿车动力总成悬置系统优化设计研究 摘要 随着社会的日益进步和科学技术的不断发展,人们对汽车舒适性的要求也越来越高,良好的平顺性和低噪声是现代汽车的一个重要标志。NVH已经成为衡量汽车质量水平的重要指标之一。而动力总成是汽车最重要的振源之一。如何合理设计动力总成悬置系统能明显降低汽车动力总成和车体的振动已经成为一个重要的课题。 本课题研究的目的是在现有动力总成悬置系统的基础上,优化动力总成悬置系统参数,达到提高整车平顺性和降低噪声的目的。 对动力总成悬置系统进行优化仿真,通过比较优化前的性能可知,优化后悬置系统隔振性能明显改善。 关键词:动力总成;悬置系统;优化

Investigation on Optimization Design of Plant Mounting System of a Passenger Car Abstract With the increasing social progress and the continuous development of science and technology, people on the requirements of automotive comfort become more sophisticated and good ride comfort and low noise is an important sign of the modern automobile. NVH levels have become an important measure of vehicle quality indicator. The vehicle powertrain is one of the most important vibration source. How to design mounting system can significantly reduce the vehicle powertrain and body vibration has become an important issue. This study is aimed at existing powertrain mounting system, based on parameters optimization of powertrain mounting system, to improve vehicle ride comfort and reduce noise. On the optimization of powertrain mounting system simulation, the performance by comparing the known before the optimization, the optimized mounting system significantly improved. Key words: Powertrain;Mounting system;Optimization

麦弗逊悬架学位毕业设计

摘要 随着汽车工业技术的发展,人们对汽车的行驶平顺性,操纵稳定性以及乘坐舒适性和安全性的要求越来越高。汽车行驶平顺性反映了人们的乘坐舒适性,而舒适性则与悬架密切相关。因此,悬架系统的开发与设计具有很大的实际意义。 本次设计主要研究的是比亚迪F3轿车的前、后悬架系统的硬件选择设计,计算出悬架的刚度、静挠度和动挠度及选择出弹簧的各部分尺寸,并且通过阻尼系数和最大卸荷力确定了减振器的主要尺寸,最后进行了横向稳定杆的设计以及汽车平顺性能的分析。本设计在轿车前后悬架的选型中均采用独立悬架。其中前悬架采用当前家庭轿车前悬流行的麦弗逊悬架。前、后悬架的减振器均采用双向作用式筒式减,后悬则采用半拖曳臂式独立悬架振器。这种结构的设计,有效的提高了乘座的舒适性和驾驶稳定性。

1绪论: 1.1悬架的功用 悬架是车架(或承载式车身)与车桥(或车轮)之间弹性连接装置的总称。 1.传递它们之间一切的力(反力)及其力矩(包括反力矩)。 2.缓和,抑制由于不平路面所引起的振动和冲击,以保证汽车良好的平 顺性,操纵稳定性。 3.迅速衰减车身和车桥的振动。 悬架系统的在汽车上所起到的这几个功用是紧密相连的。要想迅速的衰减振动、冲击,乘坐舒服,就应该降低悬架刚度。但这样,又会降低整车的操纵稳定性。必须找到一个平衡点,即保证操纵稳定性的优良,又能具备较好的平顺性。 悬架结构形式和性能参数的选择合理与否,直接对汽车行驶平顺性、操纵稳定性和舒适性有很大的影响。由此可见悬架系统在现代汽车上是重要的总成之一。 1.2 悬架的组成 现代汽车,特别是乘用车的悬架,形式,种类,会因不同的公司和设计单位,而有不同形式。 但是,悬架系统一般由弹性元件、减振器、缓冲块、横向稳定器等几部分组成等。

毕业设计-汽车悬架设计

2012年毕业设计论文 题目:电动汽车多功能转向系统(悬架设计)学生: 专业:车辆工程 班级: 学号: 指导老师:

目录 摘要 ........................................................................................................................................... - 4 - Abstract ..................................................................................................................................... - 5 - 前言 ........................................................................................................................................... - 6 - 设计背景:.......................................................................................................................... - 6 - 课题来源及要求: ............................................................................................................... - 6 - 主要内容:.......................................................................................................................... - 7 - 产品展示:.......................................................................................................................... - 7 - 第一章悬架分析选型 ............................................................................................................... - 9 - 1.1悬架结构方案选择......................................................................................................... - 9 - 1.1.1 设计对象车型参数..................................................................................................... - 9 - 1.1.2 独立悬架与非独立悬架结构形式的选择 .............................................................. - 9 - 1.1.3 悬架具体结构形式的选择 ..................................................................................- 10 - 1.1.4 弹性原件选择....................................................................................................- 10 - 1.1.5 减振元件选择....................................................................................................- 10 - 1.2传力构件及导向机构 ....................................................................................................- 10 - 1.3横向稳定器 ..................................................................................................................- 11 - 1.4 下摆臂类型选择...........................................................................................................- 11 - 第二章悬架主要参数确定.........................................................................................................- 12 - 2.1悬架挠度计算...............................................................................................................- 12 - 2.1.1悬架静挠度 f的计算.........................................................................................- 12 - c 2.1.2 悬架动挠度 f计算 ...........................................................................................- 13 - d 2.1.3 悬架刚度计算....................................................................................................- 14 - 第三章弹性元件设计................................................................................................................- 15 - 3.1 螺旋弹簧的刚度...........................................................................................................- 15 - 3.2 计算螺旋弹簧的直径....................................................................................................- 15 - 3.3 螺旋弹簧校核 ..............................................................................................................- 16 - 3.3.1 螺旋弹簧刚度校核.............................................................................................- 16 - 3.3.2 弹簧表面剪切应力校核......................................................................................- 16 - 第四章减振器设计 ...................................................................................................................- 17 - 4.1 减振器结构类型的选择 ................................................................................................- 17 - 4.2 减振器参数的设计 .......................................................................................................- 18 - 4.2.1 相对阻尼系数ψ ................................................................................................- 18 - 4.2.2 减振器阻尼系数 的确定..................................................................................- 18 - 4.2.3 减振器最大卸荷力 F的确定 .............................................................................- 19 - 4.2.4 减振器工作缸直径D的确定...............................................................................- 19 - 4.3 横向稳定杆的设计 .......................................................................................................- 21 - 4.3.1 横向稳定杆的作用.............................................................................................- 21 - 4.3.2 横向稳定杆参数的选择......................................................................................- 21 - 第五章麦弗逊式独立悬架导向机构设计....................................................................................- 21 -

相关主题
文本预览
相关文档 最新文档