当前位置:文档之家› 随机信号分析(第3版)第三章 习题答案

随机信号分析(第3版)第三章 习题答案

随机信号分析(第3版)第三章 习题答案
随机信号分析(第3版)第三章 习题答案

信号处理-习题(答案)

数字信号处理习题解答 第二章 数据采集技术基础 2.1 有一个理想采样系统,其采样角频率Ωs =6π,采样后经理想低通滤波器H a (j Ω)还原,其中 ?? ???≥Ω<Ω=Ωππ 3032 1 )(,,j H a 现有两个输入,x 1(t )=cos2πt ,x 2(t )=cos5πt 。试问输出信号y 1(t ), y 2(t )有无失真?为什么? 分析:要想时域采样后能不失真地还原出原信号,则采样角频率Ωs 必须大于等于信号谱最高角频率Ωh 的2倍,即满足Ωs ≥2Ωh 。 解:已知采样角频率Ωs =6π,则由香农采样定理,可得 因为x 1(t )=cos2πt ,而频谱中最高角频率ππ π32 621 =< =Ωh , 所以y 1(t )无失真; 因为x 2(t )=cos5πt ,而频谱中最高角频率ππ π32 652 => =Ωh , 所以y 2(t )失真。 2.2 设模拟信号x (t )=3cos2000πt +5sin6000πt +10cos12000πt ,求: (1) 该信号的最小采样频率; (2) 若采样频率f s =5000Hz ,其采样后的输出信号; 分析:利用信号的采样定理及采样公式来求解。 ○ 1采样定理 采样后信号不失真的条件为:信号的采样频率f s 不小于其最高频

率f m 的两倍,即 f s ≥2f m ○ 2采样公式 )()()(s nT t nT x t x n x s === 解:(1)在模拟信号中含有的频率成分是 f 1=1000Hz ,f 2=3000Hz ,f 3=6000Hz ∴信号的最高频率f m =6000Hz 由采样定理f s ≥2f m ,得信号的最小采样频率f s =2f m =12kHz (2)由于采样频率f s =5kHz ,则采样后的输出信号 ? ?? ? ????? ??-???? ????? ??=? ??? ????? ??+???? ????? ??-???? ????? ??=? ??? ????? ??++???? ????? ??-+???? ????? ??=? ??? ????? ??+???? ????? ??+???? ????? ??=? ?? ? ??====n n n n n n n n n n n f n x nT x t x n x s s nT t s 522sin 5512cos 13512cos 10522sin 5512cos 35112cos 105212sin 5512cos 3562cos 10532sin 5512cos 3)()()(πππππππππππ 说明:由上式可见,采样后的信号中只出现1kHz 和2kHz 的频率成分, 即 kHz f f f kHz f f f s s 25000200052150001000512211 ======,, 若由理想内插函数将此采样信号恢复成模拟信号,则恢复后的模拟信号

随机信号分析期末总复习提纲重点知识点归

第 一 章 1.1不考 条件部分不考 △雅柯比变换 (随机变量函数的变换 P34) △随机变量之间的“不相关、正交、独立” P51 (各自定义、相关系数定义 相互关系:两个随机变量相互独立必定互不相关,反之不一定成立 正交与不相关、独立没有明显关系 结合高斯情况) △随机变量的特征函数及基本性质 (一维的 P53 n 维的 P58) △ 多维高斯随机变量的概率密度和特征函数的矩阵形式、三点性质 P61 ( )()() () ( ) ()()2 2 1 () 2112 2 22 11 ,,exp 2 2exp ,,exp 22T T x m X X X X X n n X T T jU X X X X X n X M X M f x f x x U U u Q u j m Q u u E e jM U σπσμ---?? --??= = -????? ? ?? ?? ?? ??=-==- ?? ??? ????? ?? C C C u u r u u r u u r u u r u u r u u r L u r u r u u r u r L 另外一些性质: []()20XY XY X Y X C R m m D X E X m ??=-=-≥??

第二章 随机过程的时域分析 1、随机过程的定义 从三个方面来理解①随机过程(),X t ζ是,t ζ两个变量的函数②(),X t ζ是随时间t 变化的随机变量③(),X t ζ可看成无穷多维随机矢量在0,t n ?→→∞的推广 2、什么是随机过程的样本函数?什么是过程的状态?随机过程与随机变量、样本函数之间的关系? 3、随机过程的概率密度P7 4、特征函数P81。(连续、离散) 一维概率密度、一维特征函数 二元函数 4、随机过程的期望、方差、自相关函数。(连续、离散) 5、严平稳、宽平稳的定义 P83 6、平稳随机过程自相关函数的性质: 0点值,偶函数,周期函数(周期分量),均值 7、自相关系数、相关时间的定义 P88 2 2 2() ()()()()(0)()X X X X X X X X X X C R m R R R R τττρτσ σ--∞= = -∞= 非周期 相关时间用此定义(00()d τρττ∞ =?) 8、两个随机过程之间的“正交”、“不相关”、“独立”。 (P92 同一时刻、不同时刻) 9、两个随机过程联合平稳的要求、性质。P92

随机信号分析基础学习知识课后学习材料

第一章 1、有朋自远方来,她乘火车、轮船、汽车或飞机的概率分别是0.3,0.2,0.1和0.4。如果她乘火车、轮船或者汽车来,迟到的概率分别是0.25,0.4和0.1,但她乘飞机来则不会迟到。如果她迟到了,问她最可能搭乘的是哪种交通工具? 解:()0.3P A = ()0.2P B = ()0.1P C = ()0.4 P D = E -迟到,由已知可得 (|)0.25(|)0.4 (|)0.1(|)0 P E A P E B P E C P E D ==== 全概率公式: ()()()()()P E P EA P EB P EC P ED =+++ 贝叶斯公式: ()(|)()0.075 (|)0.455()()0.165(|)()0.08 (|)0.485 ()0.165 (|)()0.01 (|)0.06 ()0.165(|)() (|)0 ()P EA P E A P A P A E P E P E P E B P B P B E P E P E C P C P C E P E P E D P D P D E P E ?= ===?===?===?== 综上:坐轮船 3、设随机变量X 服从瑞利分布,其概率密度函数为2 2 22,0 ()0,0X x x X x e x f x x σσ-??>=?? ,求期望()E X 和方差()D X 。 考察: 已知()x f x ,如何求()E X 和()D X ? 2 22 2 2 2()()()[()]()()()()()()()x x E X x f x dx D X E X m X m f x dx D X E X E X E X x f x dx ∞ -∞ ∞ -∞ ∞-∞ =?=-= -=-?=??? ? 6、已知随机变量X 与Y ,有1,3,()4,()16,0.5XY EX EY D X D Y ρ=====,令 3,2,U X Y V X Y =+=-试求EU 、EV 、()D U 、()D V 和(,)Cov U V 。 考察随机变量函数的数字特征

随机信号分析(常建平-李海林版)课后习题答案.docx

由于百度文库格式转换的原因,不能整理在一个word 文档里面,下面是三四章的答案。给大家造成的不便,敬请谅解 随机信号分析 第三章习题答案 、随机过程 X(t)=A+cos(t+B),其中A 是均值为2,方差为1的高斯变量,B 是(0,2π)上均匀分布的随机变量,且A 和B 独立。求 (1)证明X(t)是平稳过程。 (2)X(t)是各态历经过程吗?给出理由。 (3)画出该随机过程的一个样本函数。 (1) (2) 3-1 已知平稳过程()X t 的功率谱密度为232 ()(16) X G ωω=+,求:①该过程的平均功率? ②ω取值在(4,4)-范围内的平均功率? 解 [][]()[]2 ()cos 2 11 ,cos 5cos 22 X E X t E A E t B A B R t t EA τττ =++=????+=+=+与相互独立 ()()()2 1521()lim 2T T T E X t X t X t X t dt A T -→∞??=<∞ ???==?是平稳过程

()()[]()()41122 11222222 2 4 2' 4(1)24()()444(0)4 1132 (1)2244144 14(2)121tan 132 24X X X E X t G d R F G F e R G d d d arc x x τ τωωωωω ππωωπωωπ ω π ωω∞ ----∞∞ -∞-∞∞--∞∞ ?????==?=???+?? ====+==??+ ?==??= ++?? = ? ????P P P P 方法一() 方:时域法取值范围为法二-4,4内(频域的平均率法功) 2 d ω =

数字信号处理(方勇)第三章习题答案

数字信号处理(方勇)第三章习题答案

3-1 画出) 5.01)(25.01() 264.524.14)(379.02()(2 1 1 211------+--+--=z z z z z z z H 级联型网络 结构。 解: 2 3-2 画出112112(23)(465) ()(17)(18) z z z H z z z z --------+= --+级联型网络结构。 解: () x n () y n 24 3-3 已知某三阶数字滤波器的系统函数为 12 11252333()111(1)(1) 322 z z H z z z z -----++= -++,试画出其并联型网 络结构。 解:将系统函数()H z 表达为实系数一阶,二阶子 系统之和,即:

()H z 1 1122111111322 z z z z ----+= +-++ 由上式可以画出并联型结构如题3-3图所示: ) 题3-3图 3-4 已知一FIR 滤波器的系统函数为 121()(10.70.5)(12) H z z z z ---=-++,画出该FIR 滤波器 的线性相位结构。 解: 因为1 21123()(10.70.5)(12)1 1.30.9H z z z z z z z ------=-++=+-+, 所 以由第二类线性相位结构画出该滤波器的线性相位结构,如题3-4图所示:

() x n 1-1 -1 z - 题3-4图 3-5 已知一个FIR 系统的转移函数为: 12345()1 1.25 2.75 2.75 1.23H z z z z z z -----=+--++ 求用级联形式实现的结构流图并用 MATLAB 画出其零点分布及其频率响应曲线。 解: 由转移函数可知,6=N ,且)(n h 偶对称,故 为线性相位系统,共有5个零点,为5阶系统,因而必存在一个一阶系统,即1±=z 为系统的零点。而最高阶5 -z 的系数为+1,所 以1-=z 为其零点。)(z H 中包含1 1-+z 项。所以: 11()()(1)H z H z z -=+。 1() H z 为一四阶子系统,设

随机信号分析(常建平,李林海)课后习题答案第三章 习题讲解

、随机过程 X(t)=A+cos(t+B),其中A 是均值为2,方差为1的高斯变量,B 是(0,2π)上均匀分布的随机变量,且A 和B 独立。求 (1)证明X(t)是平稳过程。 (2)X(t)是各态历经过程吗?给出理由。 (3)画出该随机过程的一个样本函数。 (1) (2) 3-1 已知平稳过程()X t 的功率谱密度为 2 32 ()(16) X G ωω= +,求:①该过程的平均功率? ②ω取值在(4,4)-范围内的平均功率? 解 [][]()[]2 ()cos 2 11 ,cos 5cos 22 X E X t E A E t B A B R t t EA τττ =++=????+=+=+与相互独立 ()()()2 1521()lim 2T T T E X t X t X t X t dt A T -→∞??=<∞ ???==?是平稳过程

()()[]() ()41122 11222222 2 4 2' 4(1)24()()444(0)4 1132 (1 )2244144 14(2)121tan 132 24X X X E X t G d R F G F e R G d d d arc x x τ τωωωωω ππωωπωωπ ω π ωω∞ ----∞∞ -∞-∞∞--∞∞ ?????==?=???+?? ====+==??+ ?== ??= ++?? =? ????P P P P 方法一() 方:时域法取值范围为法二-4,4内(频域的平均率法功) 2 d ω =

3-7如图3.10所示,系统的输入()X t 为平稳过程,系统的输出为()()()Y t X t X t T =--。证明:输出()Y t 的功率谱密度为()2()(1cos )Y X G G T ωωω=- [][]: ()[()()] {()()}{()(}2()()() ()()()() ()2(()[)()(()()]()())Y X X X Y X X Y Y Y X X X Y Y j T j T R E Y t Y t E X t X t T X t X t T R R R R E Y t Y t G F R T T e e G R G R G G G G ωωτττττωτωττωττττωωωω-??=+=--+-+-=--=+=-??∴=-+-=已知平稳过程的表达式 利用定义求利用傅解系统输入输出立叶平变稳 换的延时特性 2()2()22()(1cos ) j T j T X X X e e G G G T ωωωωωω-?? +-????=-

信号分析第三章答案

第三章习题参考解答 3.1 求下列信号展开成傅里叶级数,并画出响应相应的幅频特性曲线。 解 (a) ?-= T t jk dt e t x T k X 0 11)(1 )(ωω?-= τ ω011dt Ae T t jk 2 121τωτωτ k Sa e T A k j -= )2(1T πω= t jk k j k e e k Sa T A t x 11212)(ωωτ τωτ ?= ∴-∞ -∞ =∑ 3.1

解 (b) ?-=T t jk dt e t x T k X 0 11)(1)(ωω?-= T t jk dt te T A T 011 ω? --?=T t jk e td jk T A 01 2][1 1ωω ? -+ -=T t jk dt e T jk A k j A 02 112ωωπk jA π2= )2(1T πω= ?= T dt t x T X 0 )(1)0(2 A = ∑∞ ≠-∞=+=∴) 0(122)(k k t jk e k jA A t x ωπ 解 (c) ?-= T t jk dt e t x T k X 0 11)(1 )(ωωdt e T T t jk T T ωπ--?= ? 44 2cos 1dt e e T t k j t k j T T ][2 1111)1()1(44 ωω+---+=? ][)1(121][)1(1214)1(4)1(14)1(4)1(11111T k j T k j T k j T k j e e k j T e e k j T ωωωωωω++-----?+-?+--?= 2)1sin()1(212)1sin()1(21ππππ--+++=k k k k π2) 1(412)1(4 1-++=k Sa k Sa t jk k e k Sa k Sa t x 1)2 )1(2)1((41)(ωππ-++=∴∑∞ -∞= )2(1T πω=

随机信号李晓峰版第一章习题答案

随机信号分析 第一章 1. 2. 3. 4. 5. 6. 7. 8. 设随机试验X 的分布律为 求X 的概率密度和分布函数,并给出图形。 解:()()()())0.210.520.33i i i f x p x x x x x δ δδδ=-=-+-+-∑( ()()()())0.210.520.33i i i F x p u x x u x u x u x =-=-+-+-∑( 9.

10. 设随机变量X 的概率密度函数为()x f x ae -=, 求:(1)系数a ;(2)其分布函数。 解:(1)由 ()1f x dx ∞ -∞ =? () ()2x x x f x dx ae dx a e dx e dx a ∞ ∞ ∞ ---∞ -∞ -∞ ==+=? ?? ? 所以12a = (2)()1()2 x x t F x f t dt e dt --∞ -∞= =? ? 所以X 的分布函数为 ()1,02 11,02 x x e x F x e x -?

求:(1)X 与Y 的联合分布函数与密度函数;(2)X 与Y 的边缘分布律;(3)Z XY =的分布律;(4)X 与Y 的相关系数。 解:(1) ()() ()()()()()() ,,0.07,10.18,0.15,10.081,10.321,0.201,1ij i j i j F x y p u x x y y u x y u x y u x y u x y u x y u x y =--=+++-+-++-+--∑∑ ()() ()()()()()(),,0.07,10.18,0.15,10.081,10.321,0.201,1ij i j i j f x y p x x y y x y x y x y x y x y x y δδδδδδδ=--=+++-+-++-+--∑∑ (2)X 的分布律为(i ij j P P ?=∑) ()()00.070.180.150.4010.080.320.200.60P X P X ==++===++= Y 的分布律为 ()()()10.070.080.1500.180.320.5010.150.200.35 P Y P Y P Y =-=+===+===+= (3)Z XY =的分布律为

随机信号分析 第三版 第一章 习题答案

1. 2. 3. 4. 5. 6. 有四批零件,第一批有2000个零件,其中5%是次品。第二批有500个零件,其中40%是次品。第三批和第四批各有1000个零件,次品约占10%。我们随机地选择一个批次,并随机地取出一个零件。 (1) 问所选零件为次品的概率是多少? (2) 发现次品后,它来自第二批的概率是多少? 解:(1)用i B 表示第i 批的所有零件组成的事件,用D 表示所有次品零件组成的事件。 ()()()()1 2 3 4 1 4 P B P B P B P B ==== ()()()()1234100 200 0.050.42000500100 100 0.1 0.1 10001000P D B P D B P D B P D B === ===== ()1111 0.050.40.10.10.1625 4444 P D =?+?+?+?= (2)发现次品后,它来自第二批的概 率为,

()()()2220.250.4 0.615 0.1625 P B P D B P B D P D ?= = = 7. 8. 9. 设随机试验X 的分布律为 求X 的概率密度和分布函数,并给出图形。 解:()()()()0.210.520.33f x x x x δδδ=-+-+- ()()()()0.210.520.33F x u x u x u x =-+-+- 10. 11. 设随机变量X 的概率密度函数为()x f x ae -=,求:(1)系数a ;(2)其分布函数。 解:(1)由()1f x dx ∞-∞ =? ()0 ()2x x x f x dx ae dx a e dx e dx a ∞ ∞ ∞ ---∞ -∞ -∞ ==+=???? 所以12 a = (2)()1()2 x x t F x f t dt e dt --∞ -∞==? ? 所以X 的分布函数为

第三章 随机信号分析 总结

第三章 总结 对随机的东西只能作统计描述。 1).统计特性( 概率密度与概率分布); 2).数字特征( 均值、方差、相关函数等)。 节1 随机过程概念 一、随机过程定义 二、随机过程统计特性的描述 1.随机过程的概率分布函数 2.随机过程的概率密度函数 三、随机过程数字特征的描述 1、数学期望: 性质:① E[k] = k ② E[ξ(t) + k] = E[ξ(t)] + k ③ E[ kξ(t)] = k E[ξ(t)] ④ E[ξ 1(t) + …+ξ n (t)] = E[ξ 1 (t)] + …+E[ ξ n (t)] ⑤ ξ 1(t)与ξ 2 (t)统计独立时,E[ξ 1 (t)ξ 2 (t)] = E[ξ 1 (t)] E[ξ 2 (t)] 2、方差: 性质:① D[k] = 0 ② D[ξ(t) + k] = D[ξ(t)] ③ D[kξ(t)] = K2 D[ξ(t)] ④ξ 1(t)ξ 2 (t)统计独立时, D[ξ 1 (t)+ξ 2 (t)] = D[ξ 1 (t)] + D[ξ 2 (t)] 3、相关函数和协方差函数 节2 平稳随机过程概念 一、定义:狭义平稳、广义平稳 广义平稳条件:

① 数学期望与方差是与时间无关的常数; ② 相关函数仅与时间间隔有关。 二、性能讨论 1、各态历经性(遍历性):其价值在于可从一次试验所获得的样本函数 x(t) 取时间平均来得到它的数字特征(统计特性) 2、相关函数R(τ)性质 ① 对偶性(偶函数) R(τ)=E[ξ(t)ξ(t+τ)]=E[ξ(t 1-τ)ξ(t 1 )]= R(-τ) ② 递减性 E{[ξ(t) ±ξ(t+τ)]2} = E[ξ2(t)±2 ξ(t) ξ(t+τ) + ξ2(t+τ) ] = R(0)±2R(τ) + R(0) ≥ 0 ∴R(0)≥±R(τ) R(0)≥|R(τ)| 即τ=0 处相关性最大 ③ R(0)为 ξ ( t ) 的总平均功率。 ④ R(∞)=E2{ξ(t)}为直流功率。 ⑤ R(0) - R(∞)= E[ξ 2(t)]- E2[ξ(t)]=σ2为交流功率 3、功率谱密度Pξ(ω) 节3 几种常用的随机过程 一、高斯过程 定义: 任意n维分布服从正态分布的随机过程ξ(t)称为高斯过程(或正态随机过程)。 ① 高斯过程统计特性是由一、二维数字特征[a k, δ k 2, b jk ]决定的 ②若高斯过程满足广义平稳条件,也将满足狭义平稳条件。 ③若随机变量两两间互不相关,则各随机变量统计独立。二、零均值窄带高斯过程 定义、零均值平稳高斯窄带过程 同相随机分量 ξ c (t), 正交随机分量 ξ s (t) 结论:零均值窄带高斯平稳过程 ξ( t ) ,其同相分量 ξ c ( t ) 和正交分量 ξ s ( t )

数字信号处理习题解答

第一章 2、已知线性移不变系统的输入为()x n ,系统的单位抽样相应为()h n ,试求系统的输出()y n 。 (2)3()(),x n R n = 4()()h n R n = 解:此题考察线性移不变系统的输出为激励与单位抽样相应的卷积,即:()()*(){1,2,3,3,2,1}y n x n h n == 4、判断下列每个序列的周期性,若是周期性的,试确定其周期。 3()cos( ) 78 x n A n ππ=- 解:03 ()cos() 78 314 N=2/2/73 14,3x n A n k k k k ππππωπ=-==∴=是周期的,周期是。 6、试判断系统的线性和移不变性。 ()2 (2) ()y n x n =???? 解:()2 ()y n x n =???? ()[]()[]2111)(n x n x T n y == ()()[]()[]2 222n x n x T n y == ()()()[]()[]2 12121n bx n ax n by n ay +=+ ()()[] ()()[] ()[]()[]()()()()[]()() n by n ay n bx n ax T n x n abx n bx n ax n bx n ax n bx n ax T 2121212 22 12 21212 +≠+++=+=+即 ()[]()[]()()[] ()[]() 系统是移不变的即∴-=--=--=-m n y m n x T m n x m n y m n x m n x T 2 2 8、以下序列是系统的单位抽样响应()h n ,试说明系统的因果性和稳定性。 (4)3()n u n - 解: 因果性:当0n <时,()0h n ≠,∴是非因果的; 稳定性:0123|()|3332 n h n ??? ∞ --=-∞=+++ = ∑,∴是稳定的。 11、有一理想抽样系统,抽样角频率为6s πΩ=,抽样后经理想低通滤波器()a H j Ω还原,其中 1 ,3()2 0,3a H j ππ?Ω==∴=<==?? ? ?? ? π ππππ πππΩΩ 第二章 1、求以下序列的z 变换,并求出对应的零极点和收敛域。 (1)|| (),||1n x n a a =< 解:由Z 变换的定义可知: 1 1 212 ()111(1)(1) 1(1)1 ()() n n n n n n n n n n n n n n n X z a z a z a z a z a z az a a az az az z a z a z z a a ∞ -∞ ----=-∞ =-∞=∞ ∞ -==-= ?= +=+-=+= -----= --∑∑∑∑∑ ∞ ====<<< 3/4 , 为右边序列 系统不是线性系统∴0 00()sin[()] sin[] x n N A n N A N n ωφωωφ+=++=++02N k ωπ=0 2k N πω=

数字信号处理(方勇)第三章习题答案

3-1 画出) 5.01)(25.01() 264.524.14)(379.02()(2 1 1 211------+--+--=z z z z z z z H 级联型网络结构。 解: 24 3-2 画出112112(23)(465) ()(17)(18) z z z H z z z z --------+=--+级联型网络结构。 解: () x n () y n 24 3-3 已知某三阶数字滤波器的系统函数为12 11252333()111(1)(1) 322 z z H z z z z -----++=-++,试画出其并联型网络结构。 解:将系统函数()H z 表达为实系数一阶,二阶子系统之和,即: ()H z 1 1122111111322 z z z z ----+= +-++ 由上式可以画出并联型结构如题3-3图所示:

) 题3-3图 3-4 已知一FIR 滤波器的系统函数为1 21()(10.70.5)(12)H z z z z ---=-++,画出该FIR 滤波器的线性相位结构。 解: 因为1 21123()(10.70.5)(12)1 1.30.9H z z z z z z z ------=-++=+-+,所以由第二类 线性相位结构画出该滤波器的线性相位结构,如题3-4图所示: () x n 1-1 -1 z - 题3-4图 3-5 已知一个FIR 系统的转移函数为: 12345()1 1.25 2.75 2.75 1.23H z z z z z z -----=+--++ 求用级联形式实现的结构流图并用MATLAB 画出其零点分布及其频率响应曲线。 解: 由转移函数可知,6=N ,且)(n h 偶对称,故为线性相位系统,共有5个零点,为5 阶系统,因而必存在一个一阶系统,即1±=z 为系统的零点。而最高阶5 -z 的系数为 +1,所以1-=z 为其零点。)(z H 中包含1 1-+z 项。所以:11()()(1)H z H z z -=+。 1()H z 为一四阶子系统,设1 2341()1H z bz cz bz z ----=++++,代入等式,两边相 等求得1 2341()10.2530.25H z z z z z ----=+-++,得出系统全部零点,如图3-5(b )

随机信号分析与应用第一章答案

随即信号分析与应用习题答案 马文平 李冰冰 田红心 朱晓明 第一章 1.1 (1)答: (2)答:T 连续而E 离散,从而此过程为离散型随即过程。 (3)答:由于样本函数未来得值不能由过去的情况准确的预测,从而此过程为不确定随机过程。 1.2 答:已知A~N(0,1),B~N(0,1)且A 、B 相互独立。 故 22221212 12121(,)()*())exp()2222 AB A B x x x x f x x f x f x π+==--=- 11 12 ()Bt ()Bt X t A X t A =+?? =+? ? [X(1t ),X(2t )]是(A ,B )的线性变换 ∴[X(1t ),X(2t )]服从二维正太分布 1 1 X 2 1(X)exp()22T X K X f K π-= -,其中K = 11 122122K K K K ?? ??? 而 222(){[()()]}1x t E X t E x t δ=-=+ 12111212(,){[()()][()()]}1X x x K t t E X t m t X t m t t t =--=+

∴2 111 2 222 1t 1t K K ?=+??=+??且1221121K K t t ==+ 最后将k 代入1 1 2 1()exp()22T x X K X f x K π-= -即可得到答案。 1.4 (1)答:该过程式确定性随机过程 (2)答:X(t)的分布函数为0 x<1 0.6 1 x<2F ()0.9 2 x<31 3 x X t ??≤? =?≤??≤? ∴X(t)的一维概率密度函数为X ()0.6(1)0.3f t t δδ δ=-+(x-2)+0.1(x-3) 1.6 答: 222 12122211222222221212121222E[X(t)] = E[A +B ]()()47R (,)[()()] [(A +B )(A +B )] [],16.1B B B X t t tE A t E B t t t t E X t X t E t t t t E A t t ABt t ABt t B t t A B A =+=+===+++= 2 互不相关 E()=D(A)+[E(A)]E()=D()+[E()2222X 1212121212121122121222 12122 4 ()51 .1282851(,)[(()())()()] (,)()() 0.12(,)0.12X x x X x x X t X R t t t t t t t t t t K t t E X t m t X t m t R t t m t m t t t t t K t t t t δ=∴+++=--=-=+==+2](,)=16 1.7

随机信号分析理论的应用综述

随机信号分析理论的应用综述 (结课论文) 学院: 系别:电子信息工程 班级: 姓名: 学号: 指导老师:

目录 第一章概述 1.1 随机信号分析的研究背景 1.2 随机信号分析的主要研究问题 第二章随机信号分析的主要内容 2.1 随机信号分析的主要研究内容 2.2 随机信号分析的基本研究方法 第三章随机信号分析的应用实例 3.1均匀分布白噪声通过低通滤波器 3.2语音盲分离 3.3系统辨识 3.4基于bartlett的周期图法估计功率谱 3.5基于MATLAB_GUI的Kalman滤波程序第四章展望 参考文献

第一章概述 1.1随机信号分析的研究背景 在一般的通信系统中,所传输的信号都具有一定的不确定性,因此都属于随机信号,否则不可能传递任何信息,也就失去了通信的意义。随机信号是一种不能用确定的数学关系式来描述的、无法预测未来时刻精准值的信号,也无法用实验的方法重复实现。 随机信号是客观上广泛存在的一类信号,它是持续时间无限长,能量无限大的功率信号,这类信号的分析与处理主要是研究它们在各种变化域中的统计规律,建立相应的数学模型,以便定性和定量的描述其特性,给出相关性能指标,并研究如何改善对象的动静态性能等。随机信号分析内容涉及线性系统与信号、时间序列分析、数字信号处理、自适应滤波理论、快速算法、谱估计等方面的知识。 我们所学的是从工程应用的角度讨论随机信号的理论分析和研究方法,主要以分析随机信号与系统的相互作用为主要内容。 近年来,随着现代通讯和信息理论的飞速发展,对随机信号的研究已渗透到的各个科学技术领域,随机信号的处理是现代信号处理的重要理论基础和有效方法之一。 1.2主要研究问题 对随机过程(信号)的分析来讲,我们往往不是对一个实验结果(一个实现或一个具体的函数波形)感兴趣,而是关心大量实验结果的某些平均量(统计特性),因而随机过程(信号)的描述方式以及推演方式都应以统计特性为出发点。这样,尽管从个别的实现看不出什么规律性的东西,但从统计的角度却表现出一定的规律性,即统计规律性,它是本门学科一个最根本的概念。 随机信号分析重点研究一般化(抽象化)的系统干扰和信号,往往仅给出他们的系统函数模型和数学模型,而不是讨论具体的系统,更不会局限于一些具体的电路系统上。

信号处理与数据分析第三章作业答案(A).邱天爽.

Homework6 3.7 试计算下列连续时间信号的拉普拉斯变换,确定其收敛域,画出零极图。 (1)23()e ()e ()t t x t u t u t --=+;(6)2()||e ()t x t t u t =- Answer: (1)(t)x 的拉普拉斯变换为: ()()()()()23023002(e +e )e d e 2e 311232556t t st s t s t X s t s s s s s s s ∞ ---∞∞ -+-+=????=-++-+????=++++=++? ,收敛域为[]Re 2s >- Re[s ]Im[s ] (6)显然 ()()()[]2221 e e ,Re 22t t t u t t u t s s -=--←?→-<- Re[s ]Im[s ]

3.8 求下列拉普拉斯变换的逆变换。 (3)21(),Re[]1(1)9 s X s s s += <-++;(5)21(),3Re[]256s X s s s s +=-<<-++ Answer: (3)根据常见函数拉普拉斯逆变换, ()()()[]121e cos 3,Re 1(1)9t s x t t u t s s -=←?→>-+ 根据时域尺度变换性质()()[]1,Re 1x t X s s -?-<-,因此 ()()()()[]12211e cos 3,Re 1(1)9(1)9 t s s x t t u t s s s --+---=--←?→=<---+++ 再根据线性性质得到()X s 的拉普拉斯逆变换为:()()()()()e cos 3e cos 3t t x t t u t t u t --=---=-- (5)对()X s 进行部分分式展开,可得21()32 X s s s =-++ 根据收敛域可知()x t 必为双边信号,因此()()() 322e e t t x t u t u t --=+-

随机信号分析第一章习题讲解

1-9 已知随机变量X 的分布函数为 2 0,0(),01 1, 1X x F x kx x x ? 求:①系数k ; ②X 落在区间(0.3,0.7)内的概率; ③随机变量X 的概率密度。 解: 第①问 利用()X F x 右连续的性质 k =1 第②问 {}{}{} ()() 0.30.70.30.70.70.30.7P X P X F P X F =<<=<≤-=- 第③问 201 ()()0 X X x x d F x f x else dx ≤

1-10已知随机变量X 的概率密度为()() x X f x ke x -=-∞<<+∞(拉普拉斯分布),求: ①系数k ②X 落在区间(0,1)内的概率 ③随机变量X 的分布函数 解: 第①问 ()1 1 2 f x dx k ∞ -∞==? 第②问 {}()()()21 1221x x P x X x F x F x f x dx <≤=-=? 随机变量X 落在区间12(,]x x 的概率12{}P x X x <≤就是曲线()y f x =下的曲边梯形的面积。 {}{}()() 1 0101011 12 P X P X f x dx e -<<=<≤==-? 第③问 ()102 10 2 x x e x f x e x -?≤??=? ?>?? ()00()1100 2 2111010 2 22 x x x x x x x x F x f x dx e dx x e x e dx e dx x e x -∞ -∞---∞=??≤≤????==? ? ??+>->????? ???

随机信号分析课后习题答案

随机信号分析 第三章习题答案 、随机过程 X(t)=A+cos(t+B),其中A 是均值为2,方差为1的高斯变量,B 是(0,2π)上均匀分布的随机变量,且A 和B 独立。求 (1)证明X(t)是平稳过程。 (2)X(t)是各态历经过程吗?给出理由。 (3)画出该随机过程的一个样本函数。 (1) (2) 3-1 已知平稳过程()X t 的功率谱密度为2 32 ()(16) X G ωω=+,求:①该过程的平均功率? ②ω取值在(4,4)-范围内的平均功率? 解 [][]()[]2 ()cos 2 11 ,cos 5cos 22 X E X t E A E t B A B R t t EA τττ =++=????+=+=+与相互独立 ()()()2 1 521()lim 2T T T E X t X t X t X t dt A T -→∞??=<∞ ???==?是平稳过程

()()[]() ()41122 11222222 2 4 2' 4(1)24()()444(0)4 1132 (1 )2244144 14(2)121tan 132 24X X X E X t G d R F G F e R G d d d arc x x τ τωωωωω ππωωπωωπω π ωω∞ ----∞∞ -∞-∞∞--∞∞ ?????==?=???+?? ====+==??+ ?== ??= ++?? =? ????P P P P 方法一() 方:时域法取值范围为法二-4,4内(频域的平均率法功) 2 d ω =

3-7如图3.10所示,系统的输入()X t 为平稳过程,系统的输出为 ()()()Y t X t X t T =--。证明:输出()Y t 的功率谱密度为()2()(1cos )Y X G G T ωωω=- [][]: ()[()()] {()()}{()(}2()()() ()()()() ()2(()[)()(()()]()())Y X X X Y X X Y Y Y X X X Y Y j T j T R E Y t Y t E X t X t T X t X t T R R R R E Y t Y t G F R T T e e G R G R G G G G ωωτττττωτωττωττττωωωω-??=+=--+-+-=--=+=-??∴=-+-=已知平稳过程的表达式 利用定义求利用傅解系统输入输出立叶平变稳 换的延时特性 2()2()22()(1cos ) j T j T X X X e e G G G T ωωωωωω-?? +-????=-

随机信号分析

第三章随机信号分析 知识结构-随机过程的基本概念和统计特征 -平稳随机过程与各态历经性 -平稳随机过程的自相关函数和功率谱密度-高斯过程及其应用 -随机过程通过线形系统 教学目的-了解随机信号的概念和基本分析方法; -掌握随机过程数字特征、平稳随机过程的相关函数与功 率谱密度的关系及其计算 -掌握平稳随机过程通过线性系统的性质和相应计算。 教学重点-随机过程的基本概念和数字特征 -自相关函数与功率谱密度的关系(即维纳-辛钦定理) -平稳随机过程通过线形系统 教学难点-各态历经性的理解 -随机过程的自相关函数的性质 -维纳-辛钦定理 教学方法及课时-多媒体授课(4学时)(2个单元) 备注(在上课之前最好让学生复习一下“概率论”) 单元四(2学时) §3.1 引言(随机信号的范畴和基本分析方法) 本节知识要点:研究随机信号的意义和基本方法 随机过程是信号和噪声通过通信系统的过程,因此,分析与研究通信系统,总离不开对信号和噪声的分析。通信系统中遇到的信号,通常总带有某种随机性,即它们的某个或几个参数不能预知或不可能完全预知(如能预知,通信就失去意义)。我们把这种具有随机性的信号称为随机信号。通信系统中还必然遇到噪

声,例如自然界中的各种电磁波噪声和设备本身产生的热噪声、散粒噪声等,它们更不能预知。凡是不能预知的噪声就统称为随机噪声,或简称为噪声。 从统计数学的观点看,随机信号和噪声统称为随机过程。因而,统计数学中有关随机过程的理论可以运用到随机信号和噪声分析中来。其基本分析方法主要是通过分析其基本的数字特征,如均值、方差、相关函数等来实现的。 §3.2 随机过程的基本概念 本节知识要点:随机过程概念及其基本数字特征 1、随机过程的一般概念 通信过程中的随机信号和噪声均可归纳为依赖于时间参数t的随机过程。这种过程的基本特征是,它是时间t的函数,但在任一时刻观察到的值却是不确定的,是一个随机变量。或者,它可看成是一个由全部可能实现构成的总体,每个实现都是一个确定的时间函数,而随机性就体现在出现那一个实现是不确定的。 例如,设有n台性能相同的通信机,它们的工作条件也相同。现用n部记录仪同时记录各部通信机的输出噪声波形。测试结果将会表明,得到的n张记录图形并不因为有相同的条件而输出相同的波形。恰恰相反,即使n足够的大,也找不到两个完全相同的波形。 图3-1 观察3次的噪声波形 这就是说,通信机输出的噪声电压随时间的变化是不可预知的,因而它是一个随机过程。这样的一次记录就是一个实现,无数个记录构成的总体就是一个随机过程。

相关主题
文本预览
相关文档 最新文档