当前位置:文档之家› 离网光伏发电系统设计案例分析

离网光伏发电系统设计案例分析

离网光伏发电系统设计案例分析
离网光伏发电系统设计案例分析

离网光伏发电供电系统设计案例

1系统原理图

1.1系统实物连接图(图一)

图一

1.2系统连接框图(图二)

图二

1.3系统安装方式

该系统用于医院,故太阳能电池板设计成地面电站安装形式(放于医院大楼屋顶),太阳能电池板固定支架之间采用螺丝固定的方式连接;支架底座考虑到风速及屋顶防水措施保护,采用一次性浇筑好的水泥压块(如图三所示);太阳能电池板之间接头采用MC4公母插头,方便拆卸。

图三

2、系统主要部件设计

2.1太阳能电池板

2.1.1太阳能电池板选型

光伏组件选用多晶硅组件,型号为250Wp的多晶硅组件,每块内部封装156*156多晶电池片60片,该组件拥有高转换效率,确保卓越品质;该组件能够承受高风压、雪压以及极端温度条件;能够达到12年90%和25年80%的输出功率,5年工艺材料的质保。

2.1.2

表六

2.1.3太阳能电池板实物图(如图四所示)

图四

2.2光伏汇流箱

2.2.1光伏汇流箱的选型

对于光伏发电系统,为了减少光伏组件与光伏控制器或者逆变器之间的连接线,方便维护,提供可靠性,一般需要在光伏组件与光伏控制器或者逆变器

之间增加直流汇流装置,故系统中需要增加光伏防雷汇流箱。又根据太阳能电池板的并联数为10并,我们正常把每并电流预设为10A,考虑到控制器是两路输入每路电流50A,故选用两台5进1出的汇流箱。

2.2.2功能特点

满足室内、室外安装要求

最大可接入16路光伏串列,单路最大电流20A

宽直流电压输入,光伏阵列最高输入电压可达1000VDC

光伏专用熔断器

光伏专用高压防雷器,正负极都具有防雷功能

可实现多台机器并联运行

维护简易、快捷

远程监控(选配)

表七

22.4汇流箱实物照片(如图五所示)

图五

2.3储能蓄电池

2.3.1储能蓄电池选型

蓄电池是系统的储能设备,离网光伏发电系统完全依赖于蓄电池组来储能并持续提供能量。该部分的设计将包含电池选型、安装、储能与发电的平衡。离网系统的直流系统电压(蓄电池组电压),按照一般常用值分为 12V、24V、36V、48V、110V、220V,装机功率更大的系统则会选择更高电压,目的是降低电流密度,如 240V、360V 或 600V。本次系统的装机功率为60K,对于离网系统来说,这个装机功率是相对较大的,为了降低电流密度,减少损耗。有必要选择更高的系统直流电压,并使该电压与组件串电压很好的匹配。我们将系统直流额定电压设置为360VDC 。根据负载工作情况所需要消耗的备用能量及安装

面积和成本考量,故选用12V的免维护密封阀控式铅酸电池,根据系统电压和系统所需要的容量以及单个蓄电池容量的分类设定为:系统采用30只串2并的连接方式,串接成360V的系统电压。

2.3.2

表八

2.3.3蓄电池实物照片(如图六所示)

图六

2.4光伏充放电控制器

2.4.1控制器的选型

太阳能充放电控制器,通常被称做能源管理器。太阳能充放电控制器是太阳能光伏电源的核心控制设备。充放电控制器一般采用多路光伏阵列输入、根

据蓄电池组端电压逐路切换的控制方式,这种控制方式起到了类似的 PWM 控制方式(充电电流根据充电状态和电压逐渐增大或逐渐减少),有效的保护蓄电池。根据组件功率对蓄电池的充电电流选择360V150A的控制器来控制充放电管理。其中“360”指蓄电池组额定电压,“150”指能够承受的最大光伏组件输入电流。这种类型控制器共有 3路独立光伏直流输入端。这种大功率的充电控制器,在对蓄电池的充电过程中,根据蓄电池组的实时组压,与内部程序预设比较,来控制电子开关的逐级打开和闭合,以此来控制蓄电池组的充电电流大小和充电电压。这种充电控制方式具有类似 PWM 的充电控制方式功能。使充电效率得到提升,并保护蓄电池在浮充状态不会被过充。

2.4.2控制器的性能特点

(1)共负极控制方式,该系列为共正极控制,多路太阳能电池方阵输入控制;(2)微电脑芯片智能控制,充放电各参数点可设定,适应不同场合的需求;(3)各路充电压检测具有“回差”控制功能,可防止开关进入振荡状态;(4)控制电路与主电路完全隔离,具有极高的抗干扰能力;

(5)采用LCD液晶显示屏,中英文菜单显示;

(6)具有历史记录功能和密码保护功能;

(7)具有电量AH累计功能,包括光伏发电量、负载用电量、蓄电池电量的累计功能;

(8)保护功能齐全,具有多种保护及告警功能;

(9)具有RS485/232通讯接口,便于远程遥信、遥控;

(10)具有多种故障报警无源输出接点功能;

(11)具有时钟显示功能;具有温度补偿功能。

表九

2.4.4控制器实物照片(如图七所示)

图七

2.5离网逆变器

3.5.1离网逆变器选型

逆变器的选型中必须考虑直流输入电压范围与系统设计的直流电压匹配,以免导致的控制混乱,缩短设备寿命,尤其是蓄电池寿命。逆变器的选型逆变器功率必须与负载功率相匹配。根据预设负载的功率为20K的情况以及存在瞬间起动电流波动大的感性负载,考虑后续增加负载及设备稳定性,故选用

360V60K的工频逆变器来转换交流电给负载使用。

32.5.2离网逆变器的性能特点

(1)可靠性:用于新能源发电的电源往往安装于无电山区、牧区、边防、海岛等交通不便地区,一旦电源故障修复就较为困难,因此对电源的可靠性提出较严格的要求,如日夜温差大、高海拔地区空气稀薄而引起的散热、绝缘、以及远途运输问题;

(2)高效率:由于目前新能源发电的每度电成本偏高,太阳能电池电池板的价格昂贵,提高逆变电源的效率可降低太阳能电池板的容量,从而减少投资;(3)具有对蓄电池组过放电保护功能:光伏电站、风力发电电站往往具有专用的控制器对蓄电池的充、放电实时管理,但将蓄电池的过放电保护功能用逆变电源自身的功率器件来实现,不仅可简化电路、降低成本,而且可避免控制器通断直流电而引起拉弧问题,从而提高了系统的可靠性;

表十2.5.4离网逆变器实物照片(如图八所示)

图八

2.6光伏连接线缆

2.6.1线缆的选择

系统的光伏组件安装在户外,要求其有足够的耐候性才能保证使用 25 年以上,暴露在户外的组件与组件之间的连接电缆的耐候性也同样重要。一般这种电缆会使用 TUV 论证的耐紫外线和耐老化电缆。并且光伏系统与公用建筑结合安装,需要考虑建筑的防火安全要求。

(1)组件与组件、到汇流箱之间串联连接电缆,组件与组件之间的串联连接电缆,之间使用组件接线盒的自带电缆光伏组件(已经自带 900mm )的光伏专用电缆,正负两极各一根,并且有明白正负极标记。组件串内连接,直接使用该电缆及自带的连接器,串联连接。对于组件串的最终正负极出线,到汇流箱之间的电缆,则根据不同的情况处理,会直接暴露在阳光下的,采用PV1-F1*4mm2型 TUV 光伏专用电缆。

(2)汇流箱与控制器之间的电缆选择普通10mm2软铜芯电力电缆正负极连线。(3)光伏控制器输出到直流汇流盒采用50mm2软铜芯电力电缆正负极连线。(4)蓄电池之间连接线及蓄电池组到直流汇流盒采用50mm2软铜芯电力电缆正负极连线。

(5)直流汇流盒到离网逆变器电池端采用70mm2软铜芯电力电缆正负极连线。

3、系统材料清单表(表十一)

表十一

该系统年平均发电量:按照当地年平均有效光照5H计算,组件年平均日发电量200KWH电量;

蓄电池有效释放电量72KWH;负载总功率及负载同时启动包括感性负载瞬间冲击不可超过48KW。A/B/C 三相每相带载不可超过16KW。

5kWp光伏太阳能离网发电系统设计方案

5kWp光伏太阳能离网发电系统 设 计 方 案

目录 一、光伏太阳能离网发电系统简介 (2) 二、项目地参数 (2) 三、相关规范和标准 (5) 四、系统组成与原理 (6) 五、设计过程 (8) 1、方案简介 (8) 2、用户信息 (8) 3、蓄电池设计选型 (8) 4、组件设计选型 (12) 5、离网逆变器设计选型 (16) 6、控制器设计选型 (18) 7、交直流断路器 (21) 8、电缆设计选型 (23) 9、方阵支架 (23) 10、配电室设计 (23) 11、接地及防雷 (23) 12、数据采集检测系统 (24) 六、仿真软件模拟设计 (25) 七、设备配置清单及详细参数 (31) 八、系统建设及施工 (31) 九、系统安装及调试 (32) 十、工程预算投资分析报告 (36) 十二、运行及维护注意事项 (38) 十三、设计图纸 (41)

5kWp光伏太阳能离网发电系统配置方案 一、光伏太阳能离网发电系统简介 独立光伏电站是独立光伏系统中规模较大的应用。它的主要特点就是集中供电,如在一个十几户的村庄就可建立光伏电站来利用太阳能,当然这是在该村庄地理位置较偏远,无法直接利用电力公司电能的情况下,所能用到的方法。用这种方式供电便于统一管理和维护。而户用系统是采用分散供电的方式提供电能,如果要在该村庄安装户用光伏系统,这样每一户都得需这么一套光伏系统,它比起独立光伏电站来,所需的元器件规格要小,控制器、逆变器和蓄电池及负载都比较小,但是独立光伏电站和户用光伏系统基本结构是完全一致的。 太阳能光伏建筑一体化(Building Integrated Photovoltaic——BIPV)是应用太阳能发电 的一种新形式,简单的讲就是将太阳能发电系统和建筑的围护结构外表面如建筑幕墙、屋顶等有机的结合成一个整体结构,不但具有围护结构的功能,同时又能产生电能供本建筑及周围用电负载使用。还可通过建筑物输电线路离网发电,向电网提供电能。太阳能光伏方阵与建筑的结合由于不占用额外的地面空间,是光伏发电系统在城市中广泛应用的最佳安装方式,因而备受关注。 二、项目地参数 图片来自Google地球 1、项目地点:江苏省泰州市XX区XX镇; 2、经度:120°12’ ,纬度:32°23’; 3、平均海拔高度:7m;

光伏电站设计方案实例

光伏电站设计方案实例公司内部档案编码:[OPPTR-OPPT28-OPPTL98-OPPNN08]

甘肃某建筑屋顶光伏发电系统初步 设计方案 一、项目背景 1、项目意义 (略) 2、项目建设地基本信息: 、建设地:甘肃某地 、当地地理纬度: 36°左右, 、年平均太阳能辐射资源:㎡·day 、当地气温:最高气温:38°C,最低气温:-20°C 、光伏电站建设布局及占地面积 屋顶面积:58x35=2030平方米, 朝向:正南 设计阵列朝向:正南 三、项目规模 预计最大装机容量:2030m2x130W/m2=264kW 四、方案设计 1、逆变器初选:根据初步预算容量选 用5台50千瓦串接式逆变器。 MPPT范围:350-800V

最大输入电压:1000V 2、组件选择:选用300Wp光伏组件。 3、支架倾角设计:鉴于该建筑朝向东南45度,为了综合考虑朝向非正南对发电的影响,设计光伏支架倾角为30°。 支架结构设计(略) 支架基础设计(略) 4、平面设计及阵列排布 (1)采用光伏组件横向排布,上下2层支架设计,18块一串,阵列总长18米。每个阵列有18x2=36块组件封2串组成,合计10800Wp。

(2)计算阵列占地投影宽度米,遮阴间距米,取值米。错误:上面说,横向排布,上下2层支架设计,18块一串,阵列总长18米。L阵列斜长应为4米。投影宽度米,遮阴间距米.

(3)设计布局8排,共计24个阵列,总设计安装容量 (如果设计布局7排,共计21个阵列,总设计安装容量,前后空间比较大) 5、总平面布置图: 6、电路设计(略) 五、投资预算: 1、静态投资: 序号项目单价(元)合计(万元)1电站单晶硅光伏组件Wp 25台50kVA逆变器等并网配件Wp25 3C型钢支架Wp13屋面混凝土基础Wp 4电缆Wp 接入系统Wp 5其他配件Wp 6安装劳务费等W 7其他Wp 8盈利、税、25%

光伏扶贫项目实施方案【顶级版】

光伏扶贫项目实施方案

一、实施光伏扶贫的重要意义 光伏发电清洁环保,技术可靠,收益稳定,既适合建设户用和村级小电站,也适合建设较大规模的集中式电站,还可以结合农业、林业开展多种“光伏+”应用。在光照资源条件较好的地区因地制宜开展光伏扶贫,既符合精准扶贫、精准脱贫战略,又符合国家清洁低碳能源发展战略;既有利于扩大光伏发电市场,又有利于促进贫困人口稳收增收。 二、光伏扶贫的工作目标 根据国家发展改革委、国务院扶贫办、国家能源局、国家开发银行、中国农业发展银行联合发布的《关于实施光伏发电扶贫工作的意见》(发改能源[2016]621)的指示,在2020年之前,重点在前期开展试点的、光照条件较好的16个省的471个县的约3.5万个建档立卡贫困村,以整村推进的方式,保障200万建档立卡无劳动能力贫困户(包括残疾人)每年每户增加收入3000元以上。其他光照条件好的贫困地区可按照精准扶贫的要求,因地制宜推进实施。 三、光伏扶贫的利好政策 补贴政策:国家发展改革委对光伏电站制定标杆上网电价(如下图),对自发自用余电上网给予每度电0.42元(含税)的度电补贴。 贷款政策:中国农业发展银行出台光伏扶贫贷款管理办法(试行),要求借款人需具有与项目建设或运营相应的权益性资本,所有者权益的来源与构成符合国家相关规定;且项目所在地市(县)政府已按国家发改委等五部门《关于实施光伏发电扶贫工作的意见》(发改能源[2016]621号)要求制定光伏扶贫收入分配管理办法。贷款期限根据借款人综合偿债能力、光伏扶贫项目投资回收期、工程建设进

度等确定,最长可达15年。贷款宽限期,一般为1年,最长可达2年。 四、光伏扶贫的优势 1.电站收益期至少25年,25年持续受益,扶贫不返贫; 2.节能环保,不破坏环境,根据世界自然基金会(WWF)研究结果:从减少二氧化碳效果而言,安装1 平米光伏发电系统相当于植树造林100 平米,目前发展光伏发电等可再生能源是根本上解决雾霾、酸雨等环境问题的有效手段之一; 3.有效解决当地“空壳村”问题,由过去的输血式扶贫,转变成目前造血式扶贫; 4.点对点,精准脱贫,既可按照每一户来建设,又可按照村镇、县区整体建设; 5.拉动当地就业,提升当地GDP,政绩工程,利国利民。 五、光伏扶贫项目资金来源建议 国家专项光伏扶贫资金 财政部专项扶贫发展资金 地方专项扶贫资金 专项扶贫贷款

独立光伏发电系统设计

独立光伏发电系统设计 目录 1引言 (1) 2 独立光伏发电系统工作原理 (1) 3 独立光伏发电系统的设计 (2) 3.1 系统容量的设计 (2) 3.2 太阳能电池组件及方阵的设计 (3) 3.2.1 光伏组件方阵设计需要考虑的问题 (3) 3.2.2 太阳能电池组件(方阵)的方位角与倾斜角 (4) 3.2.3 一般设计方法 (4) 3.3 直流接线箱的选型 (5) 3.4 光伏控制器的选型 (7) 3.6 光伏逆变器的选型 (8) 结论 (9)

独立光伏发电系统设计 摘要 太阳能光伏发电是一种最具可持续发展理想特征的可再生能源发电技术,发展太阳能光伏发电系统也具有很高的可行性,首先能缓解我国目前的能源问题以及日益严重的环境问题,还能解决边远地区居民用电难,成本高的问题。本论文将从小型独立系统的发电原理,系统设计原理,及其本身具有的优势结合其受众群体的所需考虑的各方面因素来设计适合家庭使用的小型系统。通过理论与实际市场调查相结合的方法设计适合全国各地人民使用的优惠且实用的系统。 关键词:小型;独立光伏发电;系统;优惠实用 1引言 当下,许多国家已把发展可再生能源作为未来实现可持续发展的重要方式,而中国也将以太阳能为代表的可再生能源作为未来低碳经济的重要组成部分。近年来,国家财政对太阳能产业的补贴力度逐年增强。独立光伏发电系统是指未与公共电网相连接的太阳能光伏发电系统,其输出功率提供给本地负载(交流负载或直流负载)的发电系统。其主要应用于远离公共电网的无电地区和一些特殊场所,如为公共电网难以覆盖的边远偏僻农村、海岛和牧区提供照明、看电视、听广播等基本生活用电,也可为通信中继站、气象站和边防哨所等特殊处所提供电源。 2 独立光伏发电系统工作原理 通过太阳能电池将太阳辐射能转换为电能的发电系统称为太阳能光伏发电系统。其主要结构由太阳能电池组件(或方阵)、蓄电池(组)、光伏控制器、逆变器(在有需要输出交流电的情况下使用)以及一些测试、监控、防护等附属设施构成。 太阳能电池方阵吸收太阳光并将其转化成电能后,在防反充二极管的控制下为蓄电池组充电。直流或交流负载通过开关与控制器连接。控制器负责保护蓄电池,防止出现过充或过放电状态,即在蓄电池达到一定的放电深度时,控制器将自动切断负载,当蓄电池达到过充电状态时,控制器将自动切断充电电路。有的控制器能够显示独立光伏发电系统的充放电状态,并能贮存必要的数据,甚至还具有遥测、遥信和遥控的功能。在交流光伏发电系统中,DC-AC逆变器将蓄电池组提供的直流电变成能满足交流负载需要的交流电。

离网光伏系统设计

离网光伏发电系统容量设计 一.任务目标 1.掌握容量设计的步骤和思路。 2.掌握光伏发电系统的容量设计方法。 3.了解光伏发电系统容量设计考虑的相关因素。 二.任务描述 光伏发电系统容量设计主要涉及蓄电池容量、蓄电池串并联数、光伏发电系统的发电量、光伏组件串并联数的计算。本实验报告主要以两种常见的计算方法为主。计算过程中需要注意不同容量单位之间的换算。 三.任务实施 1.容量设计的步骤及思路: 光伏发电系统容量设计的主要目的是计算出系统在全年内能够可靠工作所需的太阳能电池组件和蓄电池的数量。主要步骤: 2.蓄电池容量和蓄电池组的设计: (1)基本计算方法及步骤 ①将负载需要的用电量乘以根据实际情况确定的连续阴雨天数得到初步的蓄电池容量。阴雨天数的选择可参照如下:一般负载,如太阳能路灯等,可根据经验或需要在3-7内选取,重要

的负载。如通信、导航、医院救治等,在7-15内选取。 ②蓄电池容量除以蓄电池的允许最大放电深度。一般情况下,浅循环型蓄电池选用50%的放电深度,深循环型蓄电池选用75%的放电深度。 ③综合①②得电池容量的基本公式为 最大放电深度 连续阴雨天数 负载日平均用电量蓄电池容量?= 式中,电量的单位是h A ?,如果电量的单位是h W ?,先将h W ?折算为h A ?,折算关系如下: 系统工作电压 ) 负载日平均用电量(负载平均用电量h W ?= (2)相关因素的考虑 上 ①放电率对蓄电池容量的影响。 蓄电池的容量随着放电率的改变而改变,这样会对容量设计产生影响。计算光伏发电系统的实际平均放电率。 最大放电深度 连续阴雨天数 负载工作时间)平均放电率(?= h 负载工作功率 负载工作时间负载工作功率负载工作时间∑∑?= ②温度对蓄电池容量的影响。 蓄电池的实际容量会随着温度的变化而变化,当温度下降时,蓄电池的实际容量下降;温度升高时,蓄电池的实际容量略有升高。蓄电池的实际容量与温度的关系如图4-3所示曲线所示。

光伏电站设计经验及案例图片

光伏电站设计经验及案例图片与大家分享(转) 在一个论坛上看到这处帖子,感觉很好,收藏与大家分享 以前是一直在设计院做电气设计,我所在设计院是工业院,主要方向是电子、半导体、集成电路等工厂项目,03年就开始做太阳能光伏工厂项目,算是国内光伏行业工厂设计的鼻祖吧。得益于国内光伏行业红红火火的发展势头,国内叫得上名字的光伏工厂基本都是我们的客户。08年金融危机的影响使电池组件外销受阻,大量电池组件厂开始国内自建或合作建光伏电站,以消耗电池产能。由此我所在设计院又开始跟一些光伏工厂合作向光伏系统集成延伸,即进入光伏发电系统设计等。这期间项目以屋顶光伏项目居多。09年底、10年初开始跟某发电集团合作,毕竟是五大发电集团之一,项目基本不愁,都是系统内的。项目规模10MW、5MW都有。我是10年初从设计院派到这个刚成立的合作团队中,至今差不多正好一年。回想这一年还是蛮辛苦的,经常奔波于江苏与北京西北几省。由于都是总包项目,不光是设计那点事,前期资料收集、参加项目各审批会议、各种方案经济比较、并网问题跟各地电网公司的协调、项目设备订货文件编写、后期工地服务、项目验收等等。加上团队人员也少,没有设计院的那样单一只管设计的可能。由于是总包,也不可能像设计院那样把许多细节推给施工单位的可能。 当然这些辛苦还算所值,也学了很多东西。 可能没接触过光伏发电的人觉得这很高深,充满神秘。其实也就那么点事。基础理论还是那些东西。主要包括光伏阵列布置——间距、倾角、日照分析等太阳能辐射相关计算,太阳能辐射计算这个也是成熟理论,找本相关书籍即可。然后是汇流、逆变、升压、并网。逆变技术,我想大部分人大学都学过“电力电子技术”课程,再找出来重温一下。再找些逆变厂家样本看看基本都明白了。升压不用多说,搞电的不陌生了,可看成是配电系统反过来。并网,这个对大多数做35KV以下的供配电设计的人来说比较陌生。这是电力设计院的势力范围,一般非电力设计院是接触不到的。其实这部分内容也很固定,找套电力院图纸仔细研究就明白了,如包括:变电站与中调地调的光纤通信、线路光纤纵差保护、电力调度与数据网、电能质量监测、公用测控、电能采集、远动等。一般说来这部分内容都是委托当地电网公司指定电力院设计的,你只要明白就行。 由于一些原因,我现在不做光伏发电了,给大家发电项目照片看看,有些是我去参观的项目、有些是我自己做的项目。欢迎交流... 光伏电站比较占地方,如10MW的装机容量占地约三四百亩,所以大型地面光伏电站大都选址荒滩戈壁。中国西北地区光照资源好,又多荒滩戈壁,是光伏太阳能建设的合适厂址。

光伏扶贫项目实施方案

徐州市沛县安国镇33MW地面 光伏扶贫项目 实施方案说明 二〇一六年五月 目录

一、综合说明 根据发改能源〔2016〕621号文件《关于实施光伏发电扶贫工作的意见》,为切实贯彻中央扶贫开发工作会议精神,扎实落实《中共中央国务院关于打赢脱贫攻坚战的决定》的要求。拟在徐州市沛县安国镇建设开发建设33MW光伏扶贫项目。此项目可利用当地较好的光照资源条件结合煤矿塌陷区域因地制宜开展光伏扶贫,既符合精准扶贫、精准脱贫战略,又符合国家清洁低碳能源发展战略;既有利于扩大光伏发电市场,又有利于促进贫困人口稳收增收。 本项目位于沛县安国镇,沛县位于徐州市西北部,处于苏、鲁、豫、皖四省交界之地,沛县境内公路四通八达,交通十分便利。 项目地属暖温带半湿润季风气候,四季分明。年平均气13。8℃,年平均降水量757。8毫米,年日照时间2308小时,年平均无霜期260天,年平均相对湿度72%。沛县地区太阳能总辐射量年总量平均值为m2左右,属于太阳能资源较丰富地区。 本拟建工程场区太阳能资源丰富,对外交通便利,开发建设条件优越,是建设太阳能光伏发电站适宜的站址,同时本工程的开发建设是贯彻社会经济可持续发展要求的具体体现,符合国家能源政策的战略方向,可减少化石资源的消耗,减少因燃煤等排放有害气体对环境的污染,对于促进地方经济快速发展将起到积极作用,因此,开发本工程是必要的。 本拟建光伏扶贫项目总规划容量33MWp,共安装124600块标准功率为265Wp的晶体硅光伏组件,预计电站运营期内平均年上网电量为万kWh,年等效满负荷利用小时。 二、项目概况 地理位置 沛县位于江苏省西北端,东靠微山、昭阳两湖,与山东省微山县毗连,西北与山东省鱼台县接壤,西邻丰县,南界铜山县。地处北纬34度28分~34度59分,东经116度41分-117度09分,全境南北长约60公里,东西宽约30公里,总面积1576平方公里。沛县境内无山,全部为冲积平原,海拔由西南部的41米到东北部降至米左右。境内有9条骨干河流,地下水总储量约为亿立方米,属淮河流域泗水水系中的南四湖水系。 沛县濒临北方最大的淡水湖——微山湖,兼有公路、铁路、航运、航空之便。京杭大运河穿境而过;徐沛铁路纵贯南北,与欧亚大陆桥、京九、京沪、京广铁路接轨;正在建设中的穿越全境,10分钟可进入全国高速公路网;1小时可达徐州。徐济高速公路已经开工建设,将结束沛县没有高速公路的历史。丰沛铁路的建设对丰县和沛县的建设将有重大的意义。 地形:沛县地势西南高东北低,为典型的冲积平原形。

光伏发电系统设计方案专业设计书

光伏发电工程 项 目 方 案 设 计 书

目录 一、概述 (4) 1.1项目概况 (4) 1.2编制依据 (4) 二、建设地址资源简述 (4) 2.1日照资源 (4) 2.2接入系统条件 (6) 三、总体方案设计 (6) 3.1光伏工艺部分 (6) 3.2太阳电池组件选型 (7)

3.3光伏阵列设计 (12) 3.4系统效率分析 (15) 四、电气部分 (16) 4.1概述 (16) 4.2系统方案设计选型 (16) 4.3电气主接线 (20) 4.4主要设备选型 (20) 4.5防雷及接地 (30) 4.6电气设备布置 (31) 4.7电缆敷设及电缆防火 (31) 五、工程案例 ........................................................................... 错误!未定义书签。 六、系统配置以及报价.............................................................. 错误!未定义书签。

一、概述 1.1 项目概况 1)建设规模:光伏系统用来供给小区道路亮化用电及楼宇亮化用电。该系统设计使用最大负荷50KVA,为保证系统在连续阴雨天或其它太阳辐射不足情况下正常使用,系统接入市电作为辅助能源,提高系统的稳定性能。为减少系统因直流端电流过大造成的线路损耗,系统采用220V直流接入逆变输出三相380V/220V交流。针对固定式安装电池板,采用最佳倾角进行安装,地区最佳角度为46度(朝向正南),控制柜、逆变器及蓄电池储能系统均须安放于在室。 1.2 编制依据 本初步设计说明书主要根据下列文件和资料进行编制的: 1)GB50054《低压配电设计规》; 2)GB50057《建筑物防雷设计规》; 3)GB31/T316—2004《城市环境照明规》; 4)GBJl33—90《民用建筑照明设计标准》; 5)JGG/T16—921《民用建筑电气设计规》; 6)GBJ16—87《建筑设计防火规》; 7)《中华人民国可再生能源法》; 8)国家发展改革委《可再生能源发电有关管理规定》; 二、建设地址资源简述 2.1日照资源 我国属世界上太阳能资源丰富的国家之一,全年辐射总量在917~2333kWh/㎡年之间。全国总面积2/3 以上地区年日照时数大于2000 小时。

离网光伏系统设计方案

太阳光伏系统设计方案

南京格瑞能源科技有限公司. 总体方案描述一 在能源供应方面必须走可持续发面对化石燃料的逐渐枯竭和人类生态环境的日益恶化, 展的道路,逐渐改变能源消费结构,大力开发利用以太阳能为代表的可再生能源,已逐步成为人们的共识。由于太阳能发电具有节能、环保,安装使用方便,一次投资,长期受益等特点,目前广泛应用在别墅群、旅游渡假村、草原牧区、偏远山村、高山海岛等。太阳太阳能阵列把光能转换为电能,210W单晶太阳电池组件组成太阳电池阵列,采用充电控制器作过充、灯控电池阵列通过防雷汇流箱后,进线通过防雷处理进入光伏控制器,交流电且和市电形成互2%)AC220V频率(50Hz±制进入蓄电池组,逆变器把蓄电池逆变为LED等照明灯使用。共462盏,补,通过AC220V交流配电柜输出配电和后级防雷保护处理后可分别安装在屋顶相应的朝南位120平方米左右,太阳能电池板总共需安装占地面积约(东经)置,电池板支架采用全铝结构,具体方案在图纸深化设计中体现。万泽大厦位于:E °48′光伏组件安装倾角确定为3258°′N(北纬)31°119发电系统包括太阳能电池板、组件支架、防雷汇流箱、蓄电池组,控制器,逆变器及配电箱其附件。系统介绍二 灯后地下车库照明负载总功率采用LED本系统的主要目的是给照明设备供 电, 灯管的LED462盏 12W车道、为5544W,车位共采用,220V,负载需要电压为交流11340,方阵支8小时。根据电量平衡原理,需要太阳电池方阵功率为:Wp负载每天工作㎡。系统设计列。太阳能电池方阵占地面积:9120架的倾角为32°,组件排列方式为6行。蓄电池,控制器,逆变器,以180Ah/DC220V2个阴雨能正常工作,蓄电池配置容量为:及输出控制柜安装在空置房内。 本图供示意参考系统核心配置2.1 名称型号参数备注 单晶210Wp/DC96V 太阳电池组件. 180Ah/DC220V 蓄电池 智能自动控制GESM60/220 控制器DC220V/60A 汇流箱汇流箱6进一出GEHL10-S6 带市DC220V/10KW 逆变器GEII10K/220 正弦波逆变器() 电互补太阳电池组件支架 负载用电(2.2 AC220V)数量工作时间用电功率项目名称总功率

光伏电站设计方案实例

甘肃某建筑屋顶光伏发电系统初步 设计方案 一、项目背景 1、项目意义 (略) 2、项目建设地基本信息: 2.1、建设地:甘肃某地 2.2、当地地理纬度: 36°左右, 2.3、年平均太阳能辐射资源:5.5KWh/㎡·day 2.4、当地气温:最高气温:38°C,最低气温:-20°C 2.5、光伏电站建设布局及占地面积 屋顶面积:58x35=2030平方米, 朝向:正南 设计阵列朝向:正南 三、项目规模 预计最大装机容量:2030m2x130W/m2=264kW 四、方案设计 1、逆变器初选:根据初步预算容量 选用5台50千瓦串接式逆变器。 MPPT范围:350-800V

最大输入电压:1000V 2、组件选择:选用300Wp光伏组件。 3、支架倾角设计:鉴于该建筑朝向东南45度,为了综合考虑朝向非正南对发电的影响,设计光伏支架倾角为30°。 3.1支架结构设计(略) 3.2支架基础设计(略) 4、平面设计及阵列排布 (1)采用光伏组件横向排布,上下2层支架设计,18块一串,阵列总长18米。每个阵列有18x2=36块组件封2串组成,合计10800Wp。

(2)计算阵列占地投影宽度1.75米,遮阴间距2.34米,取值2.45米。错误:上面说,横向排布,上下2层支架设计,18块一串,阵列总长18米。L阵列斜长应为4米。投影宽度3.46米,遮阴间距4.91米.

(3)设计布局8排,共计24个阵列,总设计安装容量259.2kWp (如果设计布局7排,共计21个阵列,总设计安装容量226.8kWp,前后空间比较大) 5、总平面布置图: 6、电路设计(略) 五、投资预算: 1、静态投资: 序号项目单价(元) 合计(万元) 1 259.2kWp电站单晶硅光伏组件 3.20/Wp 82.94 2 5台50kVA逆变器等并网配件 1.00/Wp 25 3 C型钢支架0.5/Wp 13 屋面混凝土基础0.1/Wp 2.59 4 电缆0.2/Wp 5.18

分布式光伏发电系统设计方案(专业)

某学校 512K分布式光伏发电系统设计方案2013年10月10日 项目编号:XXX

目录 1工程概述 (3) 1.1工程名称 (3) 1.2 地理简介 (3) 1.3 气象资料 (3) 2太阳能并网发电系统介绍 (4) 2.1 太阳能并网发电系统工作原理 (4) 2.2 主要组成设备介绍 (4) 3方案设计 (5) 3.1 设计依据 (5) 3.2 设计原则 (5) 3.3 系统选型设计 (6) 3.4 主要设备的选型说明 (6) 3.4.1电池组件 (6)

3.4.2 组件结构图 (7) 3.4.3 并网逆变器 (8) 3.4.4 并网逆变器规格 (9) 4发电量估算 (10) 5系统的社会效益 (10) 5.1社会效益(25年) (10) 6设备材料清单及造价一览表(此报价含税不含物流费用) (11) 7工程业绩表及典型工程 (11) 8合利欧斯优势 (16) 8.1 与保利协鑫(GCL)的合作 (16) 8.2 与河北**的的合作 (17) 1工程概述 1.1工程名称 河南**外国语学校512kW户用分布式光伏发电项目。

1.2 地理简介 郑州位于东经112°42'-114°13' ,北纬34°16'-34°58',东西宽166公里,南北长75公里,总面积约为7446.2平方公里,其中市区面积约1010.3平方公里,山地面积约2377平方公里,水面面积约11.4平方公里。郑州市属北温带大陆性季风气候,冷暖适中、四季分明,春季干旱少雨,夏季炎热多雨,秋季晴朗日照长,冬季寒冷少雨。郑州市冬季最长,夏季次之,春季较短。统计资料表明郑州市的平原和丘陵地区春季开始的时间大致在3月27日,终止于5月20日,历时55天;夏季开始于5月21日,终止于9月7日,历时110天;秋季开始于9月8日,终止于11月9日,历时63天;11月10日至次年的3月26日为冬季,长达137天。处于西部浅山丘陵区的荥阳、巩义、新密和登封四市,年平均气温在14~14.3℃之间。郑州年平均降雨量640.9毫米,无霜期220天,全年日照时间约2400小时。 1.3 气象资料 气象资料以NASA数据库中郑州气象数据为参考。 表1 气象资料表

离网光伏发电系统设计案例分析

离网光伏发电供电系统设计案例 1系统原理图 1.1系统实物连接图(图一) 图一 1.2系统连接框图(图二) 图二

1.3系统安装方式 该系统用于医院,故太阳能电池板设计成地面电站安装形式(放于医院大楼屋顶),太阳能电池板固定支架之间采用螺丝固定的方式连接;支架底座考虑到风速及屋顶防水措施保护,采用一次性浇筑好的水泥压块(如图三所示);太阳能电池板之间接头采用MC4公母插头,方便拆卸。 图三 2、系统主要部件设计 2.1太阳能电池板 2.1.1太阳能电池板选型 光伏组件选用多晶硅组件,型号为250Wp的多晶硅组件,每块内部封装156*156多晶电池片60片,该组件拥有高转换效率,确保卓越品质;该组件能够承受高风压、雪压以及极端温度条件;能够达到12年90%和25年80%的输出功率,5年工艺材料的质保。 2.1.2

表六 2.1.3太阳能电池板实物图(如图四所示) 图四 2.2光伏汇流箱 2.2.1光伏汇流箱的选型 对于光伏发电系统,为了减少光伏组件与光伏控制器或者逆变器之间的连接线,方便维护,提供可靠性,一般需要在光伏组件与光伏控制器或者逆变器

之间增加直流汇流装置,故系统中需要增加光伏防雷汇流箱。又根据太阳能电池板的并联数为10并,我们正常把每并电流预设为10A,考虑到控制器是两路输入每路电流50A,故选用两台5进1出的汇流箱。 2.2.2功能特点 满足室内、室外安装要求 最大可接入16路光伏串列,单路最大电流20A 宽直流电压输入,光伏阵列最高输入电压可达1000VDC 光伏专用熔断器 光伏专用高压防雷器,正负极都具有防雷功能 可实现多台机器并联运行 维护简易、快捷 远程监控(选配)

沿海滩涂建设20MWp并网光伏电站示范工程实施方案书

沿海滩涂建设20MWp跟踪并网光伏电站示范工程实施方案

目录 一、示范工作总体目标................... 错误!未定义书签。 1.1 项目名称............................ 错误!未定义书签。 1.2 项目目标............................ 错误!未定义书签。 二、项目的主要内容..................... 错误!未定义书签。 2.1 项目背景............................ 错误!未定义书签。 2.2 项目的意义.......................... 错误!未定义书签。 三、具体项目情况........................ 错误!未定义书签。 3.1 项目业主单位情况.................... 错误!未定义书签。 3.2 项目地点简介........................ 错误!未定义书签。 3.3 项目工程方案........................ 错误!未定义书签。 3.4 技术方案............................ 错误!未定义书签。 3.5 实施周期及进度计划.................. 错误!未定义书签。 3.6 投资估算与技术分析.................. 错误!未定义书签。 四、保障措施............................ 错误!未定义书签。 4.1 组织协调措施........................ 错误!未定义书签。 4.2 监督管理措施........................ 错误!未定义书签。 4.3 政策、资金等配套措施................ 错误!未定义书签。 五、其它有关分析........................ 错误!未定义书签。 5.1 环境影响和评价...................... 错误!未定义书签。 5.2 社会评价............................ 错误!未定义书签。 5.3 节能减排效益........................ 错误!未定义书签。 六、结论与建议.......................... 错误!未定义书签。金太阳示范工程示范项目汇总表(一)...... 错误!未定义书签。金太阳示范工程示范项目汇总表(二)...... 错误!未定义书签。

光伏发电系统_毕业设计

1. 引言 日常生活和社会生产都离不开能源。人们通过直接或间接利用某些自然资源得到能,因而,把具有某种形式能量资源以及由它加工或转换得到的产品统称为能源。前者叫自然能源或一次能源,如矿物燃料、植物燃料、太阳能、水能、风能、海洋能、地热能和潮汐能等,后者通常又把可再生的自然资源称为新能源,其围包括太阳能、生物质能、风能、地热能和海洋能等。矿物燃料(煤、石油、天然气等)又称为常规能源。 值得注意,几乎所有的自然资源,从广义的角度看都来自太阳能。由大气、陆地、海洋、生物等所接受的太阳能都是各种自然资源的源泉。矿物燃料是古生物长期沉积在地下形成的,它的形成源自远古的太阳能。[9]水的蒸发和凝结,风、雨、冰、雪等自然现象的动力也是靠太阳,因而水能、风能归根到底都来自太阳能。生物质能是通过光合、光化作用转化太阳辐射能取得的。由于太阳和月球对地球水的吸水作用产生潮汐能。 世界上最丰富的永久能源是太阳能。地球截取的太阳能辐射能通量为1.7ⅹ1014kW,比核能、地热和引力能储量总和还要大5000多倍。其中约30%被反射回宇宙空间;47%转变为热,以长波辐射形式再次返回空间;约23%是水蒸发、凝结的动力,风和波浪的动能,植物通过光合作用吸收的能量不到0.5%。地球每年接受的太阳能总量为1ⅹ1018kW·h。这相当于5ⅹ1014桶原油,是探明原油储量的近千倍,是世界年耗总能量的一万余倍。 太阳的能量是如此巨大,正如通常所说的“取之不尽、用之不竭”,但是太阳辐射能的通量密度较低,大气层外为1353W/m2.太通过大气层时会进一步衰减,还会受到天气、昼夜以及空气污染等因素的影响,因而,太阳能对地球又呈现间歇性质,时高时低,时有时无。太阳能须加有储热装置,这些都使太阳能利用系统的初期投资变得昂贵。综上所述,太阳能利用具有以下明显的特点:(1)总能量很大,但太阳能通量密度较低; (2)是可再生的能源,但又具有间歇性; (3)无污染的清洁能源; (4)太阳能本身是免费的,有效利用它的初期投资较高; (5)太阳能热利用较容易实现热能能级的合理匹配,从而做到热尽使用。

光伏离网系统设计思路、常见问题及解决方案

光伏离网系统设计思路、常见问题及解决方案 在现代日常生活中,通常我们认为用电是理所当然的事情,然而,当今世界上却还有超过20亿人生活在缺电或者无电地区。以我们国家为例,由于经济发展水平的差异,西部仍有部分偏远地区的人口没有解决基本用电问题,无法享受现代文明。光伏离网发电不仅可以解决无电或者少电地区居民基本用电问题,还可以清洁高效地利用当地的可在生能源,有效解决能源和环境之间的矛盾。从目前来看,并网系统的研究已获得足够的重视,技术成熟,但离网系统还面临诸多困难,制约了光伏离网的应用和发展。光伏离网是刚性消费需求,客户两极分化,一种是不差钱的“土豪”,最关心是系统的可靠性,主要是私人海岛业主、别墅业主、通信基站、监控系统等,另一种是偏远地区的贫困户,最关心是产品价格。从项目规模上看,一种是针对单个客户的小项目或者单个项目的小工程,另一种是针对特定人群的大项目,如国家无电地区光伏扶贫项目。离网系统对不同的客户,要采取不同的设计方案,尽量满足客户的实际需要。 晶福源公司是国内最大的光伏离网逆变器厂家,每年出货的离网逆变器超过5万多套,占全国总量60%以上,笔者从事光伏离网系统售前技术支持和售后安装指导工作,先后设计过1000多套离网系统,现场调试过100 多套系统,并参观过100多家离网电站,从中总结出一些经验,仅各位参考。 光伏离网发电系统主要由光伏组件,支架,控制器,逆变器,蓄电池以及配电系统组成。系统电气方案设计,主要考虑组件,逆变器(控制器),蓄电池的选型和计算。设计之前,前期工作要做好,需要先了解用户安装地点的气候条件,负载类型和功率;白天和晚上的用电量,当然,用户的

100kW光伏发电方案

光伏发电方案100kW.

100kWp屋顶分布式光伏发电 建设方案 目录 一、项目建设背景及意 义 .......................................................................... (3) 3........................................................................... ..................................................... 1.1项目名称 3........................................................................... .................................................... 1.2项目背景. 3........................................................................... .................................................... 建设意义 .1.34相关技术规范和标 准 ......................................................................... ................................... 二、

5 .......................................................................... ........................................................ 三、设计方案 5 .......................................................................... ................................................... 3.1.系统概述6........................................................................... .......................................... 3.2.光伏阵列方案 6........................................................................... ......................... .3.3.光伏逆变器及并网方案 6........................................................................... ................................................. 3.4.监控装置 . 6.3.5.综 述 .......................................................................... .......................................................... 73.6.原理 图 .......................................................................... ....................................................... 8 四、 ........................................................................ .................................... 设计计算及设备选型 8 .......................................................................... ......................................... 并网逆变器设计4.1 9 .......................................................................... ........................................... 光伏阵列设计4.2. 0 .......................................................................... ...................................... 14.3.光伏阵列汇流箱 214.4.交流配电 柜 .......................................................................... .............................................. 34.5.系统接入电网设 计 .......................................................................... . (1) 3 .......................................................................... .......................................... 14.6.系统监控装置

分布式光伏发电系统设计方案

分布式光伏发电系统 设 计 方 案 编制人: 审核人: 批准人: 20 年月

目录 1 工程概述 (3) 1.1 工程名称 (3) 1.2 地理简介 (3) 1.3 气象资料 (3) 2 太阳能并网发电系统介绍 (4) 2.1 太阳能并网发电系统工作原理 (4) 2.2 主要组成设备介绍 (4) 3 方案设计 (5) 3.1 设计依据 (5) 3.2 设计原则 (5) 3.3 系统选型设计 (6) 3.4 主要设备的选型说明 (6) 4 发电量估算 (11) 5 系统的经济和社会效益 (11) 5.1 经济效益 (11) 6 设备材料清单 (12) 7 工程业绩表及典型工程照片 (12) 8 英利介绍............................................................................................... 错误!未定义书签。 9 附图1 .................................................................................................... 错误!未定义书签。

1 工程概述 1.1 工程名称 河北省分布式光伏发电项目。 1.2 地理简介 项目地点位于河北省保定市,保定市地处太行山东麓,冀中平原西部。北纬38°10′-40°00′,东经113°40′-116°20′之间。北邻北京市和张家口市,东接廊坊市和沧州市,南与石家庄市和衡水市相连,西部与山西省接壤。保定年平均气温12℃,年降水量550毫米,属于温带季风性气候。这里四季分明,冬季寒冷有雪,夏季炎热干燥,春季多风沙,来此旅游一般以夏秋季为宜。 1.3 气象资料 气象资料以NASA数据库中保定市气象数据为参考。 表1 气象资料表

新能源课程设计-离网型光伏发电系统

新能源技术课程设计指导书

1.实验目的与要求 (1)检索资料,了解光伏发电技术的发展状况以及光伏发电原理; (2)掌握光伏电池模型的建立方法,分析、设计仿真模型,并利用MA TLAB 进行仿真实现; (3)掌握光伏电池的测试方法,选择适合的测量器件与量程,验证光伏阵列模拟方法的正确性; (4)分析离网型光伏发电系统的组成,选择合适的电力变换器拓扑结构并进行原理分析、参数计算; (5)查阅相关文献资料,确定系统MPPT 控制策略,建立MPPT 模块仿真模型,并仿真分析; (6)掌握系统联调的方法,调整控制参数。 2.仪器设备 太阳能电池板1 块,万用表2 个,太阳能功率表TENMARS TM-207,滑动变阻器(100 欧姆,200 瓦)1 个,计算机 1 台,系统仿真软件。 3.实验原理 通过集中授课和查阅相关资料了解离网型光伏发电系统的组成和工作原理。具体包括:(1)光伏电池的发电原理和数学模型; (2)DC—DC—AC变换器的拓扑结构、工作原理和参数计算; (3)研究离网型光伏发电系统最大功率跟踪控制的方法; (4)通过将光伏阵列外接一个可变电阻,调节可变电阻,记录不同情况下的电压和电流值,从而得到I/V 特性,将I 和V 相乘后,可得到P,进一步可获得P/V特性,通过光伏 阵列倾角的调节,从而使照射到光伏阵列上的光强产生变化。 4.实验内容与要求 4.1 实验内容 (1)建立光伏阵列数学模型,依托实际光伏电池板参数对光伏电池输出特性进行相关模拟, 研究光强和温度对光伏电池输出特性的影响,并设计实际光伏电池的检测电路进行实验验证;(2)设计离网型光伏发电系统,包括确定DC-DC-AC变换器拓扑结构、计算电力变换电路参数、确定MPPT控制策略; (3)在MA TLAB环境下建立含光伏阵列模块、电力变换电路模块、MPPT控制模块及输出负载的离网型光伏系统模型,系统调试,在光强和温度突变时系统能够快速、准 确、稳定地实现最大功率跟踪控制。 4.2 实验要求 (1)画出系统框图及原理图,实验接线图,软件流程图。 (2)不同实验步骤时接线不同则要按实验步骤分别给出接线图。 (3)给出接线图中所测量参数的测量点,指明所测参数的变化范围。 (4)指明测量每个参数所对应仪表及选用依据。 (5)指明在测量数据之前对实验线路、实验装置所必须的调试整定工作。

相关主题
文本预览
相关文档 最新文档