当前位置:文档之家› 实验三(取样定理与差分脉冲编码调制仿真)

实验三(取样定理与差分脉冲编码调制仿真)

实验三(取样定理与差分脉冲编码调制仿真)
实验三(取样定理与差分脉冲编码调制仿真)

实验四:取样定理与差分脉冲编码调制仿真

实验要求:

1、学生按照实验指导报告独立完成相关实验的内容;

2、上机实验后撰写实验报告,记录下自己的实验过程,记录实验心得。

3、以电子形式在规定日期提交实验报告。

实验指导

一.采样及采样定律

频带为F的连续信号f(t)可用一系列离散的采样值f(t1),f(t1±Δt),f(t1±2Δt),...来表示,只要这些采样点的时间间隔Δt≤1/2F,便可根据各采样值完全恢复原来的信号f(t)。这是时域采样定理的一种表述方式。

时域采样定理的另一种表述方式是:当时间信号函数f(t)的最高频率分量为fM时,f(t)的值可由一系列采样间隔小于或等于1/2fM的采样值来确定,即采样点的重复频率f≥2fM。

(一)、以正弦信号为例

系统仿真框图如下:

各模块参数设置:

连续、离散正弦波及脉冲信号波形的示波器显示图:

(二)、以锯齿波为例

系统仿真框图:

各模块参数设置:

连续、离散锯齿波及采样脉冲信号波形的示波器显示图:

离散锯齿波信号频谱显示图:

二、量化及编码

(一)、PCM概述

脉冲编码调制又称脉码调制,它是一种将模拟信号的抽样量化值变换成代码的编码方式。PCM主要包括抽样、量化与编码三个过程。抽样是把连续时间模拟信号转换成离散时间连续幅度的抽样信号,量化是把离散时间连续幅度的抽样信号转换成离散时间离散幅度的数字信号,编码是把量化后的信号编码成一个二进制码组输出。从通信中的调制概念来看,可以认为PCM编码过程是模拟信号调制一个二进制脉冲序列,载波是脉冲序列,通过调制改变脉冲序列中得码元的取值,所以PCM称为脉冲编码调制。在接收端,二进制码组经解码后形成重建的量化信号,然后经过低通滤波器滤除高频分量以及进行必要的频率失真补偿,便可得到重建新号。

PCM仿真框图:

参数设置:

S1、S2、S3、S4除Variable name与S不同外其余参数设置一样。PCM仿真结果:

(二)、DPCM 差分脉冲编码调制

1、DPCM概述

DPCM(Differential Pulse Code Modulation)差分脉冲编码调制,简称差值编码。在PCM 中,每个波形样值都独立编码,与其他样值无关。而在DPCM中,使用样点之间差值的编码来代替样本本身的编码,可以在量化台阶不变的情况下,是编码位数大量减少,信号带宽大大压缩。

DPCM仿真框图:

参数设置:

S1、S2除Variable name与S不同外其余参数设置一样。DPCM仿真结果:

低通采样

西安邮电大学 《通信原理》软件仿真实验报告 实验名称:低通型采样定理 院系:通信与信息工程学院 专业班级:通工 学生姓名: 学号: (班内序号) 指导教师:张明远 报告日期:2013年10月8日

●实验目的: 1、掌握低通型采样定理; 2、掌握理想采样、自然采样和瞬时采样的特点; 3*、掌握混叠失真和孔径失真。 ●知识要点: 1、低通型采样定理; 2、理想采样及其特点; 3、自然采样及其特点; 4、瞬时采样及其特点; 5*、混叠失真及孔径失真。 ●仿真要求: 建议时间参数:No. of Samples =4096;Sample Rate = 20000Hz 1、记录理想采样时信源、样值序列和恢复信号的波形和频谱; 信源为截止频率200Hz的低通型信号; 系统框图: δ,偏移量为0.05); 其中图符8为信号源(单位冲激信号即()t 图符9为截止频率250Hz,极点个数为6的模拟低通滤波器; 图符0为采样器,采样频率2000Hz; 图符1为保持电路,Hold Value = Zero,Gain = 1; 图符2为截止频率250Hz,极点个数为6的模拟低通滤波器; 频谱选择|FFT|; ●仿真波形及实验分析: 1.理想采样 信源的波形和频谱

样值序列的波形和频谱 恢复信号的波形和频谱 分析:从图可知:理想采样原始信号和恢复信号波形相同,在样值序列中各次谐波与原始信号频谱相同。 2、记录平顶采样时的波形和频谱,并分析不同占空比时其特点: 系统框图

信源波形和频谱 样值序列 恢复序列的波形和频谱:

从图可以看出理想采样时输出波形信号和原始信号相同,而样值序列个次谐波出现衰落。 (2)50%占空比平顶采样 图符31为保持电路,Hold Value = Last Sample; 图符42为截止频率200Hz,极点个数为6的模拟低通滤波器; 图符17为截止频率250Hz,极点个数为6的模拟低通滤波器; 图符18为频率为2000Hz,Pulse Width =1/2000*50%=0.00025的信号;样值序列波形和频谱: 恢复信号波形和频谱:

移动通信原理课程设计-实验报告-

电子科技大学 通信抗干扰技术国家级重点实验室 实验报告 课程名称移动通信原理 实验内容无线信道特性分析; BPSK/QPSK通信链路搭建与误码性能分析; SIMO系统性能仿真分析 课程教师胡苏 成员姓名成员学号成员分工 独立完成必做题第二题,参与选做题SIMO仿 真中的最大比值合并模型设计 参与选做题SIMO仿真中的 等增益合并模型设计 独立完成必做题第一题 参与选做题SIMO仿真中的 选择合并模型设计

1,必做题目 1.1无线信道特性分析 1.1.1实验目的 1)了解无线信道各种衰落特性; 2)掌握各种描述无线信道特性参数的物理意义; 3)利用MATLAB中的仿真工具模拟无线信道的衰落特性。 1.1.2实验内容 1)基于simulink搭建一个QPSK发送链路,QPSK调制信号经过了瑞利衰 落信道,观察信号经过衰落前后的星座图,观察信道特性。仿真参数:信源比特速率为500kbps,多径相对时延为[0 4e-06 8e-06 1.2e-05]秒,相对平均功率为[0 -3 -6 -9]dB,最大多普勒频移为200Hz。例如信道设置如下图所示:

1.1.3实验仿真 (1)实验框图 (2)图表及说明 图一:Before Rayleigh Fading1 #上图为QPSK相位图,由图可以看出2比特码元有四种。

图二:After Rayleigh Fading #从上图可以看出,信号通过瑞利信道后,满足瑞利分布,相位和幅度发生随机变化,所以图三中的相位不是集中在四点,而是在四个点附近随机分布。 图三:Impulse Response #从冲激响应的图可以看出相位在时间上发生了偏移。

实验六频率混叠与采样定理

实验六频率混叠与采样定理 一.实验目的: 熟悉信号采样过程,并通过本实验观察欠采样时信号频谱的混迭现象,了解采样前后信号频谱的变化,加深对采样定理的理解,掌握采样频率的确定方法。二.实验内容和原理: 模拟信号经过(A/D) 变换转换为数字信号的过程称之为采样,信号采样后其频谱产生了周期延拓,每隔一个采样频率fs,重复出现一次。为保证采样后信号的频谱形状不失真,采样频率必须大于信号中最高频率成份的两倍,这称之为采样定理。 a) 正常采样b) 欠采样 x(t)=3sin(2π·f·t) 采样频率=5120Hz,取信号频率f=150Hz(正常采样)和f=3000Hz(欠采样)两种情况进行采样分析。 三.实验仿真 1.Matlab源代码: x=-10:0.1:10; m=0:0.05:10; y1=sin(2*pi*x); y2=sin(4*pi*x); y3=sin(6*pi*x); y4=sin(8*pi*x); y5=sin(9*pi*x); y6=sin(12*pi*x); transf1=abs(fft(y1))/100; transf2=abs(fft(y2))/100; transf3=abs(fft(y3))/100; transf4=abs(fft(y4))/100; transf5=abs(fft(y5))/100; transf6=abs(fft(y6))/100; subplot(6,2,1); plot(x,y1); subplot(6,2,2); plot(m(1:100),transf1(1:100)); subplot(6,2,3); plot(x,y2);

抽样定理

实验一抽样定理实验 一、实验目的 1、了解抽样定理在通信系统中的重要性 2、掌握自然抽样及平顶抽样的实现方法 3、理解低通采样定理的原理 4、理解实际的抽样系统 5、理解低通滤波器的幅频特性对抽样信号恢复的影响 6、理解低通滤波器的相频特性对抽样信号恢复的影响 7、理解平顶抽样产生孔径失真的原理 8、理解带通采样定理的原理 二、实验内容 1、验证低通采样定理原理 2、验证低通滤波器幅频特性对抽样信号恢复的影响 3、验证低通滤波器相频特性对抽样信号恢复的影响 4、验证带通抽样定理原理 5、验证孔径失真的原理

三、实验原理 抽样定理原理:一个频带限制在(0,H f)内的时间连续信号() m t,如 果以T≤H f21 秒的间隔对它进行等间隔抽样,则() m t将被所得到的抽样值完 全确定。(具体可参考《信号与系统》) 我们这样开展抽样定理实验:信号源产生的被抽样信号和抽样脉冲经抽样/保持电路输出抽样信号,抽样信号经过滤波器之后恢复出被抽样信号。抽样定理实验的原理框图如下: 被抽样信号 抽样脉冲 抽样恢复信号 图1抽样定理实验原理框图 被抽样信号抽样恢复信号 图2实际抽样系统 为了让学生能全面观察并理解抽样定理的实质,我们应该对被抽样信号进行精心的安排和考虑。在传统的抽样定理的实验中,我们用正弦波来作为被抽样信号是有局限性的,特别是相频特性对抽样信号恢复的影响的实验现象不能很好的展现出来,因此,这种方案放弃了。 另一种方案是采用较复杂的信号,但这种信号不便于观察,如错误!未找到引用源。所示:

被抽样信号抽样恢复后的信号 图3复杂信号抽样恢复前后对比 你能分辨错误!未找到引用源。中抽样恢复后信号的失真吗因此,我们选择了一种不是很复杂,但又包含多种频谱分量的信号:“3KHz正弦波”+“1KHz正弦波”,波形及频谱如所示: 图1被抽样信号波形及频谱示意图 对抽样脉冲信号的考虑 大家都知道,理想的抽样脉冲是一个无线窄的冲激信号,这样的信号在现实系统中是不存在的,实际的抽样脉冲信号总是有一定宽度的,很显

《移动通信技术》实验教学大纲(18.6)教学文案

《移动通信技术》实验教学大纲(18.6)

《移动通信技术》实验教学大纲 1.实验课程号: B453L07500 2.课程属性:(限选) 3.实验属性:非独立设课 4.学时学分:总学时36,实验学时10 5.实验应开学期:秋季 6.先修课程:数据通信与计算机网络,信号与系统,通信原理等。 一、课程的性质与任务 本实课程是移动通信技术的配套实验课,要求通过实验课的练习与实践使 学生加深对现代移动通信技术的基本概念和基本原理的理解,并掌握典型通信 系统的基本组成和基本技术,以适应信息社会对移动通信高级工程技术人才的 需求。 二、实验的目的与基本要求 通过实验使学生对比较抽象的移动通信理论内容产生一个具体的感性认 识,通过具体的实验操作使学生达到“知其然,且知其所以然”,从而提高分析 问题、解决问题的能力。 三、实验考核方式及办法 实验成绩评分办法:实验成绩占课程成绩的15%。 四、实验项目一览表 移动通信技术实验项目一览表 序实验项目实验实验适用学 号名称类型要求专业时 1 数字调制与解调技术验证性必做信息工程/电子信息工程 2 2 扩频技术验证性必做信息工程/电子信息工程 2 3 抗衰落技术验证性必做信息工程/电子信息工程 2 4 GSM通信系统实验综合性必做信息工程/电子信息工程 2 5 CDMA通信系统实验综合性必做信息工程/电子信息工程 2

五、实验项目的具体内容:

实验一数字调制与解调技术 1.本次实验的目的和要求 通过本实验了解QPSK, OQPSK,MSK,GMSK调制原理及特性、解调原理及载波在相干及非相干时的解调特性。将它们的原理及特性进行对比,掌握它们的差别。掌握星座图的概念、星座图的产生原理及方法。 2.实验内容 1)观察I、Q两路基带信号的特征及与输入NRZ码的关系。 2)观察IQ调制解调过程中各信号变化。 3)观察解调载波相干时和非相干时各信号的区别。 4)观察各调制信号的区别。 5)观察QPSK、OQPSK、MSK、GMSK基带信号的星座图,并比较各星 座图的不同及他们的意义。 3.需用的仪器 移动通信原理实验箱(主控&信号源模块、软件无线电调制模块10号模块、软件无线电解调模块11号模块),示波器。 4.实验步骤 1)准备:阅读实验教程,了解QPSK, OQPSK,MSK,GMSK的调制解调原 理; 2)QPSK调制及解调实验 (1)按实验要求完成所有连线,形成调制解调电路。 (2)QPSK调制。设置主控菜单,选择QPSK调制及解调;用示波器观测10号模块的TP8(NRZ-I)和TP9(NRZ-Q)测试点,观测基带信号经过串并变换后输出的两路波形,与输入信号对比;示波器探头接10号模块TH7(I-Out)和 TH9(Q-Out),调节示波器为XY模式,观察QPSK星座图;示波器探头接10号模块TH7(I-Out)和TP3(I),对比观测I路成形波形的载波调制前后的波形;示波器探头接10号模块TH9(Q-Out)和TP4(Q),对比观测Q路成形波形的载波调制前后的波形;示波器探头接10模块的TP1,观测I路和Q路加载频后的叠加信号,即QPSK调制信号。

信号与系统 抽样定理实验

信号与系统 实验报告 实验六抽样定理 实验六抽样定理 一、实验内容:(60分) 1、阅读并输入实验原理中介绍的例题程序,观察输出的数据和图形,结合基本原理理解每一条语句的含义。 2、已知一个连续时间信号f(t)=sinc(t),取最高有限带宽频率f m=1Hz。 (1)分别显示原连续信号波形和F s=f m、F s=2f m、F s=3f m三种情况下抽样信号的波形;

程序如下: dt=0.1; f0=0.2; T0=1/f0; fm=5*f0; Tm=1/fm; t=-10:dt:10; f=sinc(t); subplot(4,1,1); plot(t,f); axis([min(t),max(t),1.1*min(f),1.1*max(f)]); title('?-á?D?D?o?oí3é?ùD?o?'); for i=1:3; fs=i*fm;Ts=1/fs; n=-10:Ts:10; f=sinc(n); subplot(4,1,i+1);stem(n,f,'filled'); axis([min(n),max(n),1.1*min(f),1.1*max(f)]); end 运行结果如下:

(2)求解原连续信号和抽样信号的幅度谱; 程序: dt=0.1;fm=1; t=-8:dt:8;N=length(t); f=sinc(t); wm=2*pi*fm;k=0:N-1;w1=k*wm/N; F1=f*exp(-j*t'*w1)*dt;subplot(4,1,1);plot(w1/(2*pi),abs(F1)); axis([0,max(4*fm),1.1*min(abs(F1)),1.1*max(abs(F1))]); for i=1:3; if i<=2 c=0;else c=1;end fs=(i+c)*fm;Ts=1/fs; n=-6:Ts:6; N=length(n); f=sinc(n); wm=2*pi*fs; k=0:N-1;

《移动通信原理与应用》仿真实验报告格式 (2)

重庆交通大学信息科学与工程学院综合性设计性实验报告 专业:通信工程专业10级 学号: 姓名: 实验所属课程:移动通信原理与应用 实验室(中心):软件与通信实验中心 指导教师:李益才 2013年3月

一、题目 扩频通信系统仿真实验 二、仿真要求(以下两种要求满足其中一种即可) 要求一:扩频通信系统的多用户数据传输 ①传输的数据随机产生,要求采用频带传输(DBPSK调制); ②扩频码要求采用周期为63(或127)的m序列; ③仿真从基站发送数据到三个不同的用户,各不同用户分别进行数据接收; ④设计三种不同的功率延迟分布,从基站到达三个不同的用户分别经过多径衰落(路径数分别为2,3,4); ⑤三个用户接收端分别解出各自的数据并与发送前的数据进行差错比较。 要求二:利用蒙特卡罗仿真方法对扩频增益进行性能仿真 设计仿真方案,得到在数据传输过程中进行扩频(扩频序列用m序列)和不进行扩频的BER性能结论,要求得到的BER曲线较为平滑,并说明这种结论与理论上的结论是否相符,为什么? 三、仿真方案详细设计 扩频通信的信号带宽与信息带宽之比则高达100~1000,属于宽带通信。信号的频带宽度与其脉冲宽度近似成反比;如果很窄的脉冲序列被所传信息调制,则可产生很宽频带的信号,这种很窄的脉冲码序列(其码速率是很高的)可作为扩频码序列。在扩频通信中接收端用与发送端完全相同的扩频码序列与收到的扩

频信号进行相关解扩,恢复所传信息。 DSSS: 直扩系统的特点主要有以下几个方面: (1) 具有较强的抗干扰能力。扩频系统通过相关接收,将干扰功率扩展到很宽的频带上去,使进入信号频带内的干扰功率大大降低,提高了解调器输入端的信干比,从而提高了系统的抗干扰能力,这种能力的大小与处理增益成正比。 (2) 具有很强的隐蔽性和抗侦察、抗窃听、抗测向的能力。扩频信号的谱密度很低,可使信号淹没在噪声之中,不易被敌方截获、侦察、测向和窃听。直扩系统可在-15~-10dB乃至更低的信噪比条件下工作。 (3)具有选址能力,可实现码分多址。扩频系统本来就是一种码分多址通信系统。用不同的码可以组成不同的网,组网能力强,其频谱利用率并不因占用的频带扩展而降低。采用多址通信后,频带利用率反而比单频单波系统的频带利用率高。 (4) 抗衰落,特别是抗频率选择性能好。直扩信号的频谱很宽,一小部分衰落对整个信号的影响不大。 5.抗多径干扰。直扩系统有较强的抗多径干扰的能力,多径信号到达接收端,由于利用了伪随机码的相关特性,只要多径时延超过伪随机码的一个切普(chip),则通过相关处理后,可消除这种多径干扰的影响,甚至可以利用这些多径干扰

通信原理课设-基于Systemview的通信系统的仿真

目录 第1章绪论 (1) 第2章 SystemView的基本介绍 (2) 第3章二进制振幅键控 2ASK (4) 3.1 2ASK调制系统 (4) 3.2 2ASK调制解调系统 (6) 3.3 2ASK系统仿真结果分析 (9) 第四章二进制频移键控 2FSK (10) 4.1 2FSK调制系统 (10) 4.2 2FSK调制解调系统 (12) 4.3 2FSK仿真结果分析 (17) 第5章二进制移相键控 2PSK (18) 5.1 2PSK调制系统 (18) 5.2 2PSK调制解调系统 (19) 5.3 2PSK仿真结果分析 (23) 第6章二进制差分移相键控 2DPSK (24) 6.1 2DPSK实验原理 (24) 6.2 2DPSK仿真结果分析 (29) 第7章实验总结 (30) 第8章参考文献 (30) 第9章谢辞 (32)

第1章绪论 通信按照传统的理解就是信息的传输,信息的传输离不开它的传输工具,通信系统应运而生,我们此次课题的目的就是要对调制解调的通信系统进行仿真研究。 数字信号的传输方式可以分为基带传输和带通传输。为了使信号在带通信道中传输,必须用数字基带信号对载波进行调制,以使信号与信道特性相匹配。在这个过程中就要用到数字调制。 在通信系统中,利用数字信号的离散取值特点通过开关键控载波,来实现数字调制,这种方法通常称为键控法,主要对载波的振幅,频率,和相位进行键控。键控主要分为:振幅键控,频移键控,相移键控三种基本的数字调制方式。 本次课程设计的目的是在学习以上三种调制的基础上,通过Systemview仿真软件,实现对2ASK,2FSK,2PSK,2DPSK等数字调制系统的仿真,同时对以上系统有深入的了解。 Systemview是美国ELANIX公司于1995年开始推出的软件工具,它为用户提供了一个完整的动态系统设计、仿真与分析的可视化软件环境,能进行模拟、数字、数模混合系统、线性和非线性系统的分析设计,可对线性系统进行拉氏变换和Z变换分析。 SystemView基本属于一个系统级工具平台,可进行包括数字信号处理(DSP)系统、模拟与数字通信系统、信号处理系统和控制系统的仿真分析,并配置了大量图符块(Token)库,用户很容易构造出所需要的仿真系统,只要调出有关图符块并设置好参数,完成图符块间的连线后运行仿真操作,最终以时域波形、眼图、功率谱、星座图和各类曲线形式给出系统的仿真分析结果。 在此次课程设计之前,先学会熟练掌握Systemview的用法,在该软件的配合下完成各个系统的结构图,还有调试结果图。 Systemview对系统的分析主要分为两大块,调制系统的分析和解调系统的分析。由于调制是解调的基础,没有调制就不可能有解调,为了表现解调系统往往需要很高的采样频率来减少滤波带来的解调失真,所以调制的已调信号通过波形模块观察起来不是很清楚,为了更好的弄清楚调制是怎么样的一个过程,在这里,我们把调制单独列出来,用较低的频率实现它,就能从单个周期上观察调制系统的运作模式,更深刻地表现调制系统的调制过程。

移动通信原理实验 移动台开机、关机实验

课程名称移动通信原理 实验序号实验七 实验项目移动台开机、关机实验实验地点 实验学时实验类型验证性指导教师实验员 专业班级 学号姓名 年月日

图2-5-1 MS 进行IMSI附着的信令过程 (3)收到IMMEDIATE ASSIGNMENT信息,MS的调整到分配的专用信道上,发送SABM帧,其中包含的层3消息为LOCATION UPDATING REQUEST,这个消息中包含的参数有:位置更新的类型(可以是正常位置更新、IMSI附着或者周期性位置更新,则这里位置更新类型就是IMSI附着);MS所在位置域的LAI;MS的IMSI。 (4)BS收到包含有LOCATION UPDATING REQUEST内容的SABM帧后,所做的操作:①向MS回发SABM 的响应UA帧,UA帧的内容同SABM中的内容完成相同,MS收到内容与SABM完全相同的UA帧后,则MS的数据链路层进入证实传递模式。②BS将LOCATION UPDATING REQUEST消息转发给MSC/VLR。因为MM层的程序执行是由MSC/VLR完成的。 (5)MSC/VLR收到LOCATION UPDATING REQUEST消息,则要进行位置更新程序。则位置更新程序之前,要进行MM层的一个公共程序,也就是鉴权程序,鉴权程序的目的是确认移动台通过空中接口传送的IMSI是否为合法的签约IMSI,即鉴别用户SIM卡的真实性,防止无权用户接入网络。在每次位置登记,呼叫(主呼与被呼)建立,或执行某些补充业务的登记、删除前均需要鉴权。鉴权的执行过程如下:MSC/VLR向MS发送鉴权请求消息AUTHENTICATION REQUEST。在MSC/VLR中存储了来自AUC

移动通信原理的实验报告范文

移动通信原理的实验报告范文 一、实验目的 1、掌握用数字环提取位同步信号的原理及对信息代码的要求。 2、掌握位同步器的同步建立时间、同步保持时间、位同步信号同步抖动等概念。 二、实验内容 1、观察数字环的失锁状态和锁定状态。 2、观察数字环锁定状态下位同步信号的相位抖动现象及相位抖动大小与固有频差的关系。 3、观察数字环位同步器的同步保持时间与固有频差之间的关系。 三、实验器材 1、移动通信原理实验箱 2、20M双踪示波器 一台一台 四、实验步骤 1、安装好发射天线和接收天线。 2、插上电源线,打开主机箱右侧的交流开关,再按下开关POWER301、POWER302、POWER401和POWER402,对应的发光二极管LED301、LED302、LED401和LED402发光,CDMA系统的发射机和接收机均开始工作。

3、发射机拨位开关“信码速率”、“扩频码速率”、“扩频”均拨下,“编码”拨上,接收机拨位开关“信码速率”、“扩频码速率”、“跟踪”均拨下,“调制信号输入”和“解码”拨上。此时系统的信码速率为1Kbit/s,扩频码速率为 100Kbit/s。将“第一路”连接,“第二路”断开,这时发射机发射的是第一路信号。将拨码开关“GOLD3置位”拨为与“GOLD1置位”一致。 4、根据实验四中步骤8~11的方法,调节“捕获”和“跟踪”旋钮,使接收机与发送机GOLD码完全一致。 5、根据实验五中步骤6~7的方法,调节“频率调节”旋钮,恢复出相干载波。 6、用示波器双踪同时观察“整形前”和“整形电平”,并将双通道置于直流耦合,零电平、电压设为一致。调节“整形”旋钮,使整形电平置于“整形前”波形上部凸出部分。用示波器观察“整形后”的波形,并与“整形前”比较,如完全相同,则整形电平调节正确。 7、用示波器观察接收机“BS”信号,该点即为接收机恢复出的位同步信号,将其与发射机的“S1-BS”进行比较。 8、改变系统的信码速率,按“发射机复位”和“接收机复位”键,通过与发射机的“S1-BS”对比观察“BS”信号的变化。 9、将“第一路”断开,再连接,通过与发射机的“S1-BS”对比观察接收机“BS”信号的变化。

通信原理大作业

通信原理大作业 1、说明 在通信原理课程中,介绍了通信系统的基本理论,主要包括信道、基带传输、调制 / 解调方法等。为了进一步提高和改善学生对课程基本内容的掌握,进行课程作业方法的改革的试点,设立计算机仿真大作业。成绩将计入平时成绩。 2、要求 参加的同学3~5人一组,选择1?2个题目,协作和共同完成计算机编程和仿真,写出计算机仿真报告。推荐的计算机仿真环境为MATLAB也可以 选择其它环境。 3、大作业选题 (1) 信道噪声特性仿真产生信道高斯白噪声,设计信道带通滤波器对高斯白噪 声进行滤波, 得到窄带高斯噪声。对信道带通滤波器的输入输出的噪声的时域、频域特性进行统计和分析,画出其时域和频域的图形。 (2) 基带传输特性仿真利用理想低通滤波器作为信道,产生基带信号,仿真验证奈氏第一准则的给出的关系。改变低通滤波器的特性,再次进行仿真,验证存在码间干扰时的基带系统输出,画出眼图进行观察。加入信道噪声后再观 察眼图。 (3) 2ASK言号传输仿真 按照2ASK产生模型和解调模型分别产生2ASK言号和高斯白噪声,经过信道传

输后进行解调。对调制解调过程中的波形进行时域和频域观察,并且对解调结果进行误码率测量。2ASK信号的解调可以选用包络解调或者相干解调法。(4) 2FSK信号传输仿真 按照2FSK产生模型和解调模型分别产生2FSK信号和高斯白噪声,经过信道传输后进行解调。对调制解调过程中的波形进行时域和频域观察,并且对解调结果进行误码率测量。2FSK信号的解调可以选用包络解调或者相干解调法。(5) 2PSK信号传输仿真 按照2PSK产生模型和解调模型分别产生2PSK言号和高斯白噪声,经过信道传输后进行解调。对调制解调过程中的波形进行时域和频域观察,并且对解调结果进行误码率测量。2PSK信号的解调选用相干解调法。 ⑹2DPSK言号传输仿真 按照2DPSK产生模型和解调模型分别产生2DPSK言号和高斯白噪声,经过信道传输后进行解调。对调制解调过程中的波形进行时域和频域观察,并且对解调结果进行误码率测量。2DPSK信号的解调可以选用非相干解调或者相干解调法。 (7) 模拟信号的数字传输 产生模拟语音信号,进行PCM编码过程的计算机仿真。仿真发送端采样、 量化编码的过程、仿真接收端恢复语音信号的过程。按照有或者无信道噪 声两种情况分别进行仿真。

《移动通信技术》实验教学大纲(18.6)

《移动通信技术》实验教学大纲 1.实验课程号:B453L07500 2.课程属性:(限选) 3.实验属性:非独立设课 4.学时学分:总学时36,实验学时10 5.实验应开学期:秋李 6.先修课程:数据通信与计算机网络,信号与系统,通信原理等。 一、课程的性质与任务 本实课程是移动通信技术的配套实验课,要求通过实验课的练习与实践使学生加深对现代移动通信技术的基本概念和基本原理的理解,并掌握典型通信系统的基本组成和基本技术,以适应信息社会对移动通信高级工程技术人才的需求。 二、实验的目的与基本要求 通过实验使学生对比较抽象的移动通信理论容产生一个具体的感性认识,通过具体的实验操作使学生达到“知其然,且知英所以然”,从而提髙分析问题、解决问题的能力。 三、实验考核方式及办法 实验成绩评分办法:实验成绩占课程成绩的15%。 四、实验项目一览表 移动通信技术实验项目一览表 序实验项目实验实验适用学 号名称类型要求专业时 1数字调制与解调技术验证性必做信息工程/电子信息工程 2 2扩頻技术验证性必做信息工程/电子信息工程 2 3抗衰落技术脸证性必做信息工程/电子信息工程2 4GSM通信系统实验综合性必做信息工程/电子信息工程2 5CDMA通信系统实验综合性必做信息工程/电子信息工程2 五、实验项目的具体容:

实验一数字调制与解调技术 1.本次实验的目的和要求 通过本实验了解QPSK. OQPSK.MSK.GMSK调制原理及特性、解调原理及载波在相干及非相干时的解调特性。将它们的原理及特性进行对比,掌握它们的差别。掌握星座图的槪念、星座图的产生原理及方法。 2.实验容 1)观察I、Q两路基带信号的特征及与输入NRZ码的关系。 2)观察IQ调制解调过程中各信号变化。 3)观察解调载波相干时和非相干时各信号的区别。 4)观察各调制信号的区别。 5)观察QPSK、OQPSK、MSK、GMSK基带信号的星座图,并比较各星座图的不同及他 们的意义。 3.需用的仪器 移动通信原理实验箱(主控&信号源模块、软件无线电调制模块10号模块、软件无线电解调模块11号模块),示波器。 4.实验步骤 1)准备:阅读实验教程,了解QPSK. OQPSK.MSK.GMSK的调制解调原理: 2)QPSK调制及解调实验 (1)按实验要求完成所有连线,形成调制解调电路。 (2)QPSK调制。设置主控菜单,选择QPSK调制及解调:用示波器观测10号模块的TP8(NRZ-I)和TP9(NRZ-Q)测试点,观测基带信号经过串并变换后输出的两路波形,与输入信号对比:示波器探头接10号模块TH7(I-Out)和TH9(Q-Out),调廿示波器为XY模式,观察QPSK星座图;示波器探头接10号模块TH7(I-Out)和TP3(I),对比观测I路成形波形的载波调制前后的波形:示波器探头接10号模块TH9(Q-Out)和TP4(Q),对比观测Q路成形波形的载波调制前后的波形;示波器探头接10模块的TP1,观测I路和Q路加载频后的叠加信号,即QPSK调制信号。 (3)QPSK相干解调实验。用示波器观测10号模块的TH3(DIN1), 11号模块的TH4(Dout),适当调右11号模块压控偏宜电位器W1来改变载波相位,对比观测原始基带信号和解调输出信号的波形;用示波器观测10号模块的TH1(BSIN),11号模块的TH5(BS-out), 对比观测原始时钟信号和解调恢复时钟信号的波形:用示波器对比观测原始I路信号与解调后I路信号的波形,以及原始Q路信号与解调后Q路信号的波形。 3)OQPSK调制及解调实验。选择OQPSK调制模式,实验步骤同2) 4)MSK调制及相干解调实验。

实验六抽样定理的MATLAB仿真

综合性、设计性实验报告 姓名贺鹤学号2 专业通信工程班级2013级1班 实验课程名称抽样定理的MATLAB仿真 指导教师及职称李玲香讲师 开课学期2014 至2015 学年第二学期 上课时间2015年6 月17、27日 湖南科技学院教务处编印

(2) 编程步骤(仿真实验) ①确定f(t)的最高频率fm。对于无限带宽信号,确定最高频率fm的方法:设其频谱的模降到10-5左右时的频率为fm。 ②确定Nyquist抽样间隔T N。选定两个抽样时间:T ST N。 ③滤波器的截止频率确定:ωm <ωC <ωS -ωm 。 ④采样信号f(nTs )根据MATLAB计算表达式的向量表示。 ⑤重建信号f(t) 的MATLAB中的计算机公式向量表示。 根据原理和公式,MATLAB计算为: ft=fs*Ts*wc/pi*sinc((wc/pi)*(ones(length(nTs),1)*t-nTs'*ones(1,length(t)))); (3)电路连接原理(硬件实验) 5.实验数据处理方法 ①自定义输入信号:f1=cos(2*pi*80*t)+2*sin(2*pi*30*t)+cos(2*pi*40*t-pi/3) ②改变抽样频率,实现欠抽样、临界抽样和过抽样,调试结果分析: (1)频率sf

通信原理仿真作业

实验一 双极性矩形随机信号的归一化功率谱密度 1.1实验要求 1.了解平稳随机信号功率谱的概念及计算方法 2.仿真不同占空比,等概、非等概双极性矩形随机信号的归一化功率谱密度 3.分析不同信号所包含的频谱分量,有无直流分量和定时分量信息 1.2 基本原理 平稳过程的任何一个非零样本函数的持续时间为无限长,显然都不满足绝对可积和总能量有限的条件。因此,它的傅里叶变换不存在即没有频谱函数。所以我们用功率谱密度来表述其频谱特性。 随机过程的任一实现是一个确定的功率型信号。而对于任意的确定功率信号f(t),它的功率谱密度为: 2 () ()lim T f T F P T ωω→∞ = 式中,()T F ω是f(t)的截短函数()T f t 对应的频谱函数。f(t)是平稳随机过程()t ξ的一个实现。而随机过程某一个实现的功率谱密度不能作为过程的功率谱密度。过程的功率谱密度应该看作是任一实现的功率谱密度的统计平均,即 2 () ()[()]lim T f T E F P E P T ξωωω→∞== 虽然该式给出了平稳随机过程的功率谱密度,但我们通常都不利用这个式子来计算功率谱。 我们知道,确知的非周期功率信号的自相关函数与功率谱密度是一对傅里叶变换。对于平稳随机过程,也有类似的关系,即 ()()j P R e d ωτ ξωττ∞ --∞ =?和1 ()()2j R P e d ωτ ξτωωπ ∞ -∞ = ? 对于平稳随机过程我们通常先求出其自相关函数再利用上式求出其功率谱密度。 1.3仿真结果与分析 仿真信号的频率为1Hz ,采样频率为10Hz ,采样点数为10000. 1、占空比30%,码元1概率0.3功率谱密度

通信原理MATLAB验证低通抽样定理实验报告

通信原理实验报告 一、实验名称 MATLAB验证低通抽样定理 二、实验目的 1、掌握抽样定理的工作原理。 2、通过MATLAB编程实现对抽样定理的验证,加深抽样定理的理解。同时训练应用计算机分析问题的能力。 3、了解MATLAB软件,学习应用MATLAB软件的仿真技术。它主要侧重于某些理论知识的灵活运用,以及一些关键命令的掌握,理解,分析等。 4、计算在临界采样、过采样、欠采样三种不同条件下恢复信号的误差,并由此总结采样频率对信号恢复产生误差的影响,从而验证时域采样定理。 三、实验步骤及原理 1、对连续信号进行等间隔采样形成采样信号,采样信号的频谱是原连续信号的频谱以采样频率为周期进行周期性的延拓形成的。 2、设连续信号的的最高频率为Fmax,如果采样频率Fs>2Fmax,那么采样信号可以唯一的恢复出原连续信号,否则Fs<=2Fmax会造成采样信号中的频谱混叠现象,不可能无失真地恢复原连续信号。 四、实验内容 1、画出连续时间信号的时域波形及其幅频特性曲线,信号为 x=cos(4*pi*t)+1.5*sin(6*pi*t)+0.5*cos(20*pi*t)

2、对信号进行采样,得到采样序列,画出采样频率分别为10Hz,20 Hz,50 Hz时的采样序列波形; 3、对不同采样频率下的采样序列进行频谱分析,绘制其幅频曲线,对比各频率下采样序列和的幅频曲线有无差别。 4、对信号进行谱分析,观察与3中结果有无差别。 5、由采样序列恢复出连续时间信号,画出其时域波形,对比与原连续时间信号的时域波形。 五、实验仿真图 (1) x=cos(4*pi*t)+1.5*sin(6*pi*t)+0.5*cos(20*pi*t)的时域波 形及幅频特性曲线。 clear; close all; dt=0.05; t=-2:dt:2 x=cos(4*pi*t)+1.5*sin(6*pi*t)+0.5*cos(20*pi*t); N=length(t); Y=fft(x)/N*2; fs=1/dt; df=fs/(N-1); f=(0:N-1)*df; subplot(2,1,1) plot(t,x)

通信原理抽样定理及其应用实验报告

实验1 抽样定理及其应用实验 一、实验目的 1.通过对模拟信号抽样的实验,加深对抽样定理的理解; 2.通过PAM 调制实验,使学生能加深理解脉冲幅度调制的特点; 3.学习PAM 调制硬件实现电路,掌握调整测试方法。 二、实验仪器 1.PAM 脉冲调幅模块,位号:H (实物图片如下) 2.时钟与基带数据发生模块,位号:G (实物图片见第3页) 3.20M 双踪示波器1台 4.频率计1台 5.小平口螺丝刀1只 6.信号连接线3根 三、实验原理 抽样定理告诉我们:如果对某一带宽有限的时间连续信号(模拟信号)进行抽样,且抽 样速率达到一定数值时,那么根据这些抽样值就能准确地还原原信号。这就是说,若要传输模拟信号,不一定要传输模拟信号本身,可以只传输按抽样定理得到的抽样值。 PAM 实验原理:它采用模拟开关CD4066实现脉冲幅度调制。抽样脉冲序列为高电平时, 模拟开关导通,有调制信号输出;抽样脉冲序列为低电平,模拟开关断开, 无信号输出 图1-2 PAM 信道仿真电路示意图 32W01 C1 C2 32P03 R2 32TP0

四、可调元件及测量点的作用 32P01:模拟信号输入连接铆孔。 32P02:抽样脉冲信号输入连接铆孔。 32TP01:输出的抽样后信号测试点。 32P03:经仿真信道传输后信号的输出连接铆孔。 32W01:仿真信道的特性调节电位器。 五、实验内容及步骤 1.插入有关实验模块: 在关闭系统电源的条件下,将“时钟与基带数据发生模块”、“PAM脉冲幅度调制模块”,插到底板“G、H”号的位置插座上(具体位置可见底板右下角的“实验模块位置分布表”)。注意模块插头与底板插座的防呆口一致,模块位号与底板位号的一致。 2.信号线连接: 用专用铆孔导线将P03、32P01;P09、32P02;32P03、P14连接(注意连接铆孔的箭头指向,将输出铆孔连接输入铆孔)。 3.加电: 打开系统电源开关,底板的电源指示灯正常显示。若电源指示灯显示不正常,请立即关闭电源,查找异常原因。

实验一:低通采样定理和内插与抽取实现a

实验一:低通采样定理和内插与抽取实现 一.实验目的 1. 连续信号和系统的表示方法,以及坊真方法。 2.用MATLAB实现连续信号采用与重构的方法, 3. 采样信号的插值和抽取等重采样实现方法。 4. 用时域采样信号重构连续时域信号的原理和方法。 5. 用MATLAB绘图函数表示信号的基本方法,实验数据的可视化表示。二.原理 1 、时域抽样定理 令连续信号xa(t)的傅里叶变换为Xa(jΩ),抽样脉冲序列p(t)傅里叶变换为P(jΩ),抽样后的信号x^(t)的傅里叶变换为X^(jΩ)若采用均匀抽样,抽样周期Ts,抽样频率为Ωs=2πfs,由前面分析可知:抽样的过程可以通过抽样脉冲序列p(t)与连续信号xa(t)相乘来完成,即满足:x^(t)=xa(t) p(t),又周期信号f(t)傅里叶变换为: 故可以推得p(t)的傅里叶变换为: 其中: 根据卷积定理可知: 得到抽样信号x(t)的傅里叶变换为: 其表明:信号在时域被抽样后,他的频谱X(jΩ)是连续信号频谱X(jΩ)的形状以抽样频率Ω为间隔周期重复而得到,在重复过程中幅度被p(t)的傅里叶级数Pn 加权。因为Pn只是n的函数,所以X(jΩ)在重复的过程中不会使其形状发生变化。

假定信号x(t)的频谱限制在-Ωm~+Ωm的范围内, 若以间隔Ts对xa(t)进行抽样,可知抽样信号X^(t)的频谱X^(jΩ)是以Ωs为周期重复。显然,若在抽样的过程中Ωs<2Ωm,则X^(jΩ)将发生频谱混叠现象,只有在抽样的过程中满足Ωs>=2Ωm条件,X^(jΩ)才不会产生频谱的混叠,接收端完全可以由x^(t)恢复原连续信号xa(t),这就是低通信号抽样定理的核心内容。 2、信号的重建 从频域看,设信号最高频率不超过折叠频率: Xa(jΩ)=Xa(jΩ) |Ω|<Ωs/2 Xa(jΩ)=0 |Ω|>Ωs/2 则理想取样后的频谱就不会产生混叠,故有: 让取样信号x^(t)通过一带宽等于折叠频率的理想低通滤波器: H(jΩ)=T |Ω|<Ωs/2 H(jΩ)=0 |Ω|>Ωs/2 滤波器只允许通过基带频谱,即原信号频谱,故: Y(jΩ)=X^(jΩ)H(jΩ)=Xa(jΩ) 因此在滤波器的输出得到了恢复的原模拟信号: y(t)=xa(t) 从时域上看,上述理想的低通滤波器的脉冲响应为: 根据卷积公式可求得理想低通滤波器的输出为: 由上式显然可得:

实验六maab采样定理的建模和验证

实验六 题目:采样定理的建模和验证 实验目的:通过建模与仿真验证采样定理,理解采样定理的物理实质实验要求:学习和回顾采样定理内容,对采样定理作建模和仿真实验内容: 1、采样定理原理的回顾 Fh 卷 乘 Ts fs= 1/Ts fs=1/Ts

2、建模参数要求: 设计模型,验证采样定理. 设基带波形频谱在 0Hz~200Hz 内. Fh=200Hz(信号最高频率),采样率就应该大于 400Hz 。用窄脉冲采样,要求窄脉冲宽度是采样周期的 1/10。从而得到系统仿真步长: 小于等于 1/4000,仿真系统的仿真步长取 1/4000。 采样器用乘法器实现. 而恢复时用低通滤波器实现. 低通滤波器的带宽等于信号最高频率 Fh,即等于 200Hz. 3、仿真模型和结果 信号最高频率为100Hz,采样率为 400 次/秒情况下的波形结果:采样之前,采样后以及恢复的波形(scope 中)

4、修改基带信号最高频率,如最高频率为200Hz、250Hz 等等,观察采样前后 以及恢复的波形和频谱。请用实验方法得到频谱混叠后的频谱图和相应的波形。 5. 将被采样信号修改为正弦波、三角波和方波,观察采样前后和恢复非波形和频谱。 实验报告内容和要求:(!!注意每部分得分情况!!) 1.建立采样和恢复模型,说明关键模块的参数设置(30 分) 仿真模型建立: 参数设置: 信源与滤波器参数:

2.修改采样率,如采样率为 150Hz,200Hz、300Hz 等等,观察采样前后以及恢复的波形和频谱。请用实验方法得到频谱混叠后的频谱图和相应的波形。(40 分) 150Hz: 200Hz: 300Hz: 3.将被采样信号修改为正弦波、三角波和方波,观察采样前后和恢复非波形和频谱。(30分) 三角波: 方波: 正弦波:

(三)采样定理实验

实验三采样定理实验 一、实验目的 (4) 通过数据采集加深对采样定理的理解; (5) 熟悉DSP 对AD 采样频率的控制方法; (6) 熟悉数字信号到模拟信号的转换方法; 二、实验内容 本试验要求使用AD 将模拟信号变换成数字信号,使用DSP 对转换后的数字信号读取保存,并利用CCS 对这些采集到的数据进行分析,然后从DA 将采集到的数据送出。根据分析的结果确定适合信号频率的AD 的采样频率,对同一信号设置不同的采样频率来验证香农采样定理。 三、实验原理 香农采样定理指出:如果AD 转换器的输入信号具有有限带宽,并且有直到ωk 的频率分量,则只需要AD 转换器的采样周期T 满足如下条件:T ≤π/ωK,信号就可以完全从采样信号中恢复出来。反之,如果采样频率低于信号频率的 2 倍,基本上不能恢复原始信号。根据采样定理,对于一个单正弦的模拟信号,假设其频率为f0 ,当采样率fs≥2 f0 时就可保证采样后的信号无失真地保持原模拟信号的信息,即可重现原模拟信号;如果采样率低于2 f0 就会发生频域的混叠失真。在实际的情况中,一般的情况下首先要使模拟信号通过一个截止频率不高于0.5 f0 的低通滤波器,使其成为一个限带信号。然后,对其采样就可以保证信号无混叠失真。该低通滤波器又叫抗混叠滤波器。 实验中,我们选择对一个确定的信号进行采样,然后将采样后的数据从DA 输出,从DA 的输出使用示波器查看输出后的波形。如果满足采样定理,可以从示波器看到和原始信号一样的波形;反之,如果不满足采样定理,就不能从示波器看到和原始信号一样的波形。实验中,我们调整AD 转换器的采样频率,将以上两种情况分别进行,以验证采样定理。 四、实验方法 本实验的主要内容是设置AD 的采样频率,对于不同的AD 有不同的设置方法。DSP 提供一个采样时钟发生电路,通过设置DSP 内部的寄存器来设置不同的时钟信号以供AD 选择。图3.1 是DSP 时钟发生器,对于使用DSP 的缓冲串口的AD 都可以使用该时钟发生电路设置AD 的采样频率。 图3.1 DSP 时钟发生器 从图3.1 可以看出,基本的时钟信号可以来自CPU 时钟,也可以来自晶振的时钟,这是在DSP 寄存器SRGR2 中的第13 位设置。基本时钟输入后,经过CLKGDV(寄存器SRGR1 的第0 位到第7 位)所设置的值进行第一次分频,得到位时钟信号。注意的是,位时钟信

相关主题
文本预览
相关文档 最新文档