当前位置:文档之家› 甲氧基丙烯酸酯类杀菌剂的介绍

甲氧基丙烯酸酯类杀菌剂的介绍

甲氧基丙烯酸酯类杀菌剂的介绍
甲氧基丙烯酸酯类杀菌剂的介绍

甲氧基丙烯酸酯类农药

一、发现过程

甲氧基丙烯酸酯类化合物开始的研究开始于1969年,捷克科学家Musilek等人在一种蘑菇(oudemansiella mucida)中首次发现了strobilurin A ,并将这种物质用于治疗人类的皮肤病。Oudemansin A是继Strobilurin A之后从腐朽的松木长出的蘑菇中分离出来的具有抗菌活性的天然抗生素。

O

O

O strobilurin A

O O oudemansin A

随着越来越多具有杀菌活性的β-甲氧基丙烯酸酯类天然抗生素的相继发现,有关其生物活性、结构确证、作用机理和全合成的研究也越来越多,从而也引起了农药公司和研究人员的极大兴趣。

1982年,英国捷利康公司和德国巴斯夫公司最早展开了该方面的研究工作。捷利康公司人员研究人员在Strobilurin A的结构基础上进行改造,打破其共轭三烯结构,合成了大量的以β-甲氧基丙烯酸酯衍生物为先导的杀菌剂,但仍未达到田间试用的要求。生测表明含(E)-β-甲氧基丙烯酸酯的化合物具有一定的生物活性,而含(Z)-式的则没有活性。1986年获得含天然(E)-β-甲氧基丙烯酸甲酯基团的strobilurins合成物的专利权,1992年成功开发出了嘧菌酯(azoxystrobin),并于1996年成功上市。2000年又公布了啶氧菌酯,并于2002年上市。捷利康公司这类最早专利的发布阻碍了巴斯夫公司对该天然毒性基团的研究工作,但是巴斯夫公司发现了(E)-β-甲氧基丙烯酸甲酯的电子等排体,即(E)-甲氧基亚氨基乙酸甲酯基团。与合适骨架连接后也能提供活性, 并最终实现了醚菌酯

(kresoxim-methyl),在1996年上市。巴斯夫继1996年向市场推出醚菌酯以来,于2002年、2004年和2007年又成功上市了吡唑菌酯、醚菌胺和肟醚菌胺, 其中吡唑菌酯是目前活性最高的丙烯酸酯类杀菌剂。拜耳1998年公布了肟菌酯,1999年该产品推向市场。1994年发现氟嘧菌酯,于2004年投放市场。1998年发现、2001年上市的咪唑菌酮虽然结构上不同于strobilurins类杀菌剂, 但与strobilurins类杀

菌剂具有同样的交互抗性基团, 目前该产品也归于拜耳。日本盐野义是从事该领域研究最早的公司之一,1993年研究发现的苯氧菌胺, 1999年上市, 成为防治水稻稻瘟病的优良杀菌剂。

二、作用机制

甲氧基丙烯酸酯类杀菌剂的活性来源于它们能键合在细胞色素b ( Cytb) 的还原型辅酶Q的氧化位点(Qo位点) , 从而抑制线粒体的呼吸作用, 也因此称为Qo 抑制剂。细胞色素b是细胞色素bc1复合物的一部分, 位于真菌和其他真核体的线粒体内膜, 一旦某个抑制剂与之键合,将阻止细胞色素b和c1之间的电子传递, 通过阻止三磷酸腺苷(ATP) 的产生, 从而干扰真菌体内的能量循环。

三、结构与活性:

3

侧链

strobilurins杀菌剂的活性结构

(以嘧菌酯为例)

活性基团大致可分为:(1)甲氧基丙烯酸酯类,这类品种有嘧菌酯、啶氧菌酯、烯肟菌酯、苯醚菌酯、UBF-307和嘧螨酯(杀螨剂) ;(2)甲氧基氨基甲酸酯类,这类品种有唑菌胺酯;(3)肟基乙酸酯类,这类品种有醚菌酯和肟菌酯;(4)肟基乙酰胺类,这类品种有:苯氧菌胺、醚菌胺、肟醚菌胺和烯肟菌胺;(5)唑烷二酮类,这类品种有恶唑菌酮;(6)咪唑啉酮类,这类品种有咪唑菌酮;(7)肟基二恶嗪类,这类品种有氟嘧菌酯。这些活性基团基本处于同一活性水平,并优于其它活性基,当其几何异构体由反式E变为顺式Z时,活性降低;当羰基C=O 变为硫代羰基C=S时,活性亦骤减。

大多数化合物中的活性基团都是与苯环相连接的。苯环则被视为strobilurins类杀菌剂的桥。变化较多的是侧链,且侧链大多在活性基团的邻位。在侧链结构中,有芳氧基、杂芳氧基、芳氧烷基和杂芳氧烷基等,有的还在侧链中引入氟原子、氯原子和三氟甲基等吸电子基团,以优化strobilurins类杀菌剂的活性。

四.甲氧基丙烯酸酯类杀菌剂的品种

2009年甲氧基丙烯酸酯类杀菌剂总销售额26.28亿美元,占全球市场的5.7%,占杀菌剂市场23.5%。销售额较004年增长14.8%。甲氧基丙烯酸酯类杀菌剂主要品种见下表。

活性成分2009年销售

额/亿美元上市时间/年公司商品名2009/2004年增长

/%

嘧菌酯azoxystrobin 9.10 1997 先正达Amistar 12.5 吡唑醚菌酯pyraclostrobin 7.35 2002 BASF Headline、

Cabrio、Insignia

20.0 肟菌酯trifloxystrobin 4.90 2000 Bayer Flint 14.0 氟嘧菌酯fluoxastrobin 1.50 2004 Bayer Flint 71.9

啶氧菌酯picoxystrobin 1.45 2001 DuPont Flint 23.7

醚菌酯kresoxim-methyl 1.30 1996 BASF,Rallis Stroby -6.6

醚菌胺dimoxystrobin 0.5 2004 BASF Swing Gold 58.5

烯肟菌酯enestroburin <0.1 2006 沈阳化工研究院n.a.

苯氧菌胺metaminostrobin <0.1 2000 Shionogi Oribright

肟醚菌胺orysastrobin <0.1 2007 BASF Arashi n.a.

唑菌酯pyraoxystrobin <0.1 2009 沈阳化工研究院n.a.

烯肟菌胺SYP-1620 <0.1 2008 沈阳化工研究院n.a.

总计26.28 14.8

1、嘧菌酯

嘧菌酯(Azoxystrobin)是世界上第一个商品化的甲氧基丙烯酸酯类杀菌剂。其作用谱广,几乎可以防治所有真菌(子囊菌纲、担子菌纲、卵菌纲和半知菌类)病害。适用于谷物、水稻、葡萄、水果、香蕉、大豆、蔬菜、草坪和观赏植物等。它在对稻瘟病的防治中,既能抑制稻瘟病菌丝生长,又能抑制孢子萌发,对孢子产生、黑色素合成和孢子致病力等都有显著的影响。这表明嘧菌酯在稻瘟病菌整个生活史中都能起作用,不仅抗真菌侵入、抗真菌扩展,而且能明显地降低再侵染和初侵染的孢子基数并达到防治病害的目的。嘧菌酯是目前世界上销量最大的杀菌剂,己在72个国家取得登记,用于防治84种不同作物上的400多种病害。合成方法:

HO

H3CO2C

OMe

N N

Cl Cl

N N

O

H3CO2C

OMe

OH

CN

N N

O O

H3CO2C

OMe

CN 2.醚菌酯

醚菌酯用于谷物,可有效防治谷物白粉病、锈病、斑枯病,通过混剂可扩大杀菌谱、延缓抗性产生,也可防治水稻上的稻瘟病、纹枯病及葡萄和蔬菜上的霜霉病。具有保护、治疗和铲除作用。与其他甲氧基丙烯酸酯类杀菌剂相比,醚菌酯登记的作物较少,主要用于谷物,其次是葡萄、果蔬和水稻。在美国,醚菌酯最初用于花卉、苹果、梨和葡萄,后来适用作物不断增加。白粉病对醚菌酯的抗药性很快就受到关注,但是通过与其他药剂混配使用和合理规范适用频率,在很大程度上延缓了抗性的发生。由于新品种不断推出和仿制品种的竞争,醚菊酯失去了很大的市场份额。

合成方法:

Br 1. Mg

2OMe

O

O

MeONH2·HCl

N O

O

O

NBS Br

N

O

O

OH

O

N

O

O

3. 吡唑醚菌酯(唑菌胺酯)

吡唑醚菌酯是巴斯夫公司2001年末在欧洲市场推出,与氟环唑复配用于防治谷物病害,在50多个国家登记100多种作物,也可用于非农作物,如草坪和观赏植物,也可与啶酰菌胺混配。该药具有广谱的杀菌活性,适用作物广泛,主要作物市场是大豆、谷物、玉米、葡萄和果蔬。Herms等2002年发现吡唑醚菌酯可提高烟草抗花叶病毒和烟草假单胞杆菌的能力。2009年吡唑醚菌酯销售额达7.35亿美元。2009年巴斯夫公司同意孟山都公司使用吡唑醚菌酯用于种子处理剂,2010年在美国登记。在短短几年,该品种的市场迅速飙升,已列为所有杀菌剂品种市场的第2位,仅次于嘧菌酯。

合成方法:

CH 3

NO 2

Zn

CH 3

NH 2OH

ClCOOCH NaHCO 3

CH 3N COOCH 3

OH

(Me)2SO 4

CH 3N COOCH 3

OCH 3

溴化

CH 2Br

N COOCH 3OCH 3

N

N

HO

Cl

N O

O O O N N

Cl

4. 肟菌酯

F 3C

NO

H 3CON COOCH 3

肟菌酯2000年由诺华公司开发,不仅杀菌谱广,而且具有保护、治疗、渗透、铲除和杰出的横向传输特性,无内吸活性。具有耐雨水冲刷和表面蒸发再分配的性能,是广谱的叶面杀菌剂,其高效性及良好的作物选择性使其可有效防治温带、亚热带作物上的病害,不会对非靶标组织造成不良影响,并在土壤和地下水中分解很快。 防治白粉病和叶斑病有特效,也能有效防治锈病、霜霉病、立枯病。适宜作物为葡萄、苹果、小麦、花生、香蕉、蔬菜和水稻等。2001年由拜耳公司销售,随后在80多个国家登记并扩大了杀菌谱,主要用于大豆、谷物、玉米、葡萄和果蔬。 销售额稳定增长,但由于竞争激烈,2005—2006年销售额下降,对斑枯病的抗性问题及欧洲的恶劣天气也导致销售额下降,2007年以后销售额上升,2009年达4.90亿美元。 随后肟菌酯的混剂也不断被开发。

合成方法:

O

KMnO 4COOH

O CH 3OH

COOCH 3

O COOCH 3

NOCH 3Br COOCH 3

NOCH 3F 3C

NOH

NaOCH 3

F 3C

NO

H 3CON COOCH 3

ch 3

CH ONH ·HCl

五、展望

甲氧丙烯酸醋类杀菌剂不但具有新颖的作用机制和广泛的杀菌谱、良好的环境相容性, 而且能够提高作物的产量和品质。在短短10余年时间其已成为农用杀菌剂中的主流产品之一,它的销售市场已超过三唑类,在各类杀菌剂中位列首席。然而,由于它们作用位点单一,因此杀菌剂抗性行动委员会(FRAC)将其抗性发展归类为“高风险”,抗性问题已经成为甲氧基丙烯酸酯类杀菌剂市场的一个重要问题。因此,通过开展抗性治理、研发复配制剂和科学合理使用等措施延长甲氧丙烯酸酯类杀菌剂的使用寿命己刻不容缓。

厌氧胶粘剂是一种以丙烯酸酯为主要成分的胶粘剂

厌氧胶粘剂是一种以丙烯酸酯为主要成分的胶粘剂,它与氧气或空气接触时不会固化,而一旦隔绝空气后,便会很快固化,故称这种胶粘剂为厌氧胶粘剂。厌氧胶粘剂有单组分的,也有双组分的。对于某些活性金属的粘接,因金属表面释放过渡金属离子起催化剂的作用,所以采用单组分厌氧胶即可。用于粘接其他材料时,则需添加少量催化剂,以加速固为了克服厌氧胶的韧性不高、固化时间长等缺点,国外已研制成功新的催化剂体系和添加剂体系,不仅克服了这些缺点,而且在抗冲击强度、耐热性、密封性等方面有了很大的提高。 1.特点与用途 (1)本剂为单液型,粘度小,易浸透;无溶剂,毒性小,公害小。 (2)本剂室温固化快,强度高,密封性好;耐热、耐溶剂、耐碱等性能优异。 (3)使用方便,贮存期长。 本剂用于密封、粘接、紧固防松等。例如管道螺纹、法兰面及机械箱结合面的密封防漏,螺栓的锁固防松;轴承与轴套、齿轮与轴的插件、嵌件等的装配固定;铸件、焊件砂眼气孔的渗入填塞,各种产品零件的结构粘接等。 2.原材料 (1)乙二醇双甲基丙烯酸酯无色液体。凝固点一42℃,沸点92℃,密度L 054g/CiTia,闪点47℃。溶于有机溶剂,微溶于水。在本剂中用作交联剂。选用工业品。 生产厂:苏州人民化工厂、上海珊瑚化工厂。 (2)异丙苯基化过氧氢又名过氧化羟基茴香素、过氧化羟基异丙苯。五色或浅黄色液体。沸点53℃,密度1.0619s/C1T13,闪点79℃。易溶于醇、丙酮、酯类、烃类和氯烃类,微溶于水。本剂中用作催化剂、交联剂。选用工业晶。 生产厂:上海试剂一厂。 (3)糖精见二中(五)消毒含漱剂Ⅱ。本剂中用作调味剂。选用工业品。一般商店有售。 (4)N,N—二甲基对甲苯胺淡黄色油状液体。沸点210—211℃,密度0.9287g /cm2,闪点83℃。溶于普通有机溶剂和稀元机酸。本剂中用作固化剂。选用工业品。 生产厂:哈尔滨齿科器材厂、上海试剂三厂、天津化学试剂二厂。 (5)过氧化二叔丁基又名过氧化二特丁基醚。五色液体。密度0.794g/cm‘,熔点一40℃,沸点11l℃,闪点18℃。能溶于有溶剂,几乎不溶于水。易燃。本剂中用作催化剂。选用工业品。 生产厂:上海试剂一厂。 3.配方(质量份) 乙二醇双甲基丙烯酸酯100 异丙苯基化过氧氢 4 糖精0.4 N,N—二甲基对甲苯胺0.3 过氧化二叔丁基200ppm* 4.制备及使用方法 按配方比例将各物料混合,搅拌混匀即成成品。在隔绝空气条件下,室温固化,时间约为lOmin。在隔绝空卜可贮存1年,其粘接强度不变

甲氧基丙烯酸酯类杀菌剂简介

甲氧基丙烯酸酯类农药 一、发现过程 甲氧基丙烯酸酯类化合物开始的研究开始于1969年,捷克科学家Musilek等人在一种蘑菇(oudemansiella mucida)中首次发现了strobilurin A ,并将这种物质用于治疗人类的皮肤病。Oudemansin A是继Strobilurin A之后从腐朽的松木长出的蘑菇中分离出来的具有抗菌活性的天然抗生素。 O O strobilurin A O O oudemansin A 随着越来越多具有杀菌活性的β-甲氧基丙烯酸酯类天然抗生素的相继发现,有关其生物活性、结构确证、作用机理和全合成的研究也越来越多,从而也引起了农药公司和研究人员的极大兴趣。 1982年,英国捷利康公司和德国巴斯夫公司最早展开了该方面的研究工作。捷利康公司人员研究人员在Strobilurin A的结构基础上进行改造,打破其共轭三烯结构,合成了大量的以β-甲氧基丙烯酸酯衍生物为先导的杀菌剂,但仍未达到田间试用的要求。生测表明含(E)-β-甲氧基丙烯酸酯的化合物具有一定的生物活性,而含(Z)-式的则没有活性。1986年获得含天然(E)-β-甲氧基丙烯酸甲酯基团的strobilurins合成物的专利权,1992年成功开发出了嘧菌酯(azoxystrobin),并于1996年成功上市。2000年又公布了啶氧菌酯,并于2002年上市。捷利康公司这类最早专利的发布阻碍了巴斯夫公司对该天然毒性基团的研究工作,但是巴斯夫公司发现了(E)-β-甲氧基丙烯酸甲酯的电子等排体,即(E)-甲氧基亚氨基乙酸甲酯基团。与合适骨架连接后也能提供活性, 并最终实现了醚菌酯

(kresoxim-methyl),在1996年上市。巴斯夫继1996年向市场推出醚菌酯以来,于2002年、2004年和2007年又成功上市了吡唑菌酯、醚菌胺和肟醚菌胺, 其中吡唑菌酯是目前活性最高的丙烯酸酯类杀菌剂。拜耳1998年公布了肟菌酯,1999年该产品推向市场。1994年发现氟嘧菌酯,于2004年投放市场。1998年发现、2001年上市的咪唑菌酮虽然结构上不同于strobilurins类杀菌剂, 但与strobilurins类杀菌剂具有同样的交互抗性基团, 目前该产品也归于拜耳。日本盐野义是从事该领域研究最早的公司之一,1993年研究发现的苯氧菌胺, 1999年上市, 成为防治水稻稻瘟病的优良杀菌剂。 二、作用机制 甲氧基丙烯酸酯类杀菌剂的活性来源于它们能键合在细胞色素b ( Cytb) 的还原型辅酶Q的氧化位点(Qo位点) , 从而抑制线粒体的呼吸作用, 也因此称为Qo 抑制剂。细胞色素b是细胞色素bc1复合物的一部分, 位于真菌和其他真核体的线粒体内膜, 一旦某个抑制剂与之键合,将阻止细胞色素b和c1之间的电子传递, 通过阻止三磷酸腺苷(ATP) 的产生, 从而干扰真菌体内的能量循环。 三、结构与活性:

N-甲氧基-N-[2-(1,6-2H-1-取代-6-羰基-哒嗪-3-氧甲基)苯基]氨基甲酸甲酯的合成及生物活性研究

2005年第25卷有机化学V ol. 25, 2005第4期, 445~448 Chinese Journal of Organic Chemistry No. 4, 445~448 liuweidonghn@https://www.doczj.com/doc/4c1674666.html, * E-mail: Received July 12, 2004; revised September 20, 2004; accepted October 28, 2004. 国家十五科技攻关(No. 2004BA308A22)、湖南省杰出青年科学基金(No. 04JJ1009)资助项目.

446有机化学V ol. 25, 2005 有生物活性的N-甲氧基氨基甲酸酯衍生物, 更好研究此类化合物的构效关系, 我们利用活性基团拼接原理, 在唑菌胺酯(pyraclostrobin)的化学结构基础上, 引入具有生物活性的哒嗪酮结构, 设计、合成了11个具有新型分子结构的目标化合物3a~3k, 其结构经IR, 1H NMR, LC/MS和元素分析确认. 生物活性测定表明, 部分化合物具有良好的杀菌活性. 目标化合物的合成路线如Scheme 1. R=a, C6H5; b, 4-ClC6H4; c, 4-FC6H4; d, 2-CH3C6H4; e, 4-CF3OC6H4; f, 2-CH3OC6H4; g, 3,5-Cl2C6H3; h, 3,4-Cl2C6H3; i, 2-F-4-BrC6H3; j, 3,4- (CH3)2C6H3; k, C6H5CH2 Scheme 1 1 实验部分 1.1 仪器与试剂 WPS-1型数字熔点仪(未校正); Varian INOVA-300型核磁共振仪, CDCl3为溶剂, TMS为内标; PE System 2000 FTIR型红外光谱仪(溴化钾压片或液膜法); Agilent 1100 Series LC-MSD; Perkin Elmek Series II 2400元素分析仪; 柱层析用200~300目青岛产硅胶, 其他药品均为市售分析纯试剂, 使用前做常规处理.N-甲氧基-N-2-溴甲苯氨基甲酸甲酯(2)参照文献[7]方法制得. 1.2 2-取代-6-羟基-3(2H)-哒嗪酮(1a~1k)的合成 以2-苯基-6-羟基-3(2H)-哒嗪酮(1a)为例, 参照文献[8]的方法, 在配有磁力搅拌器、温度计和冷凝管的100 mL三口瓶中, 加入1.08 g (0.01 mol)苯肼, 滴加2.0 mL 盐酸, 再加入8.0 mL水, 慢慢升温到95 ℃时加入顺丁烯二酸酐1.07 g (0.011 mol), 反应约5 h, 冷却, 过滤. 固体物用10%的Na2CO3溶液溶解, 过滤除去不溶物, 滤液用盐酸酸化至PH=2~3, 析出固体, 过滤得到黄色固体1.68 g. 收率75.8%, m.p. 268~271 ℃(文献值[8]: 270~273 ℃). 同法合成了1b~1k, 收率为50%~80%. 1.3 N-甲氧基-N-[2-(1,6-2H-1-取代-6-羰基-哒嗪-3-氧 甲基)苯基]氨基甲酸甲酯(3a~3k)的合成 以化合物3a为例, 在50 mL反应瓶中加入0.95 g (5.0 mmol)化合物1a, 15 mL DMF, 0.76 g (6.0 mmol) K2CO3和1.50 g (5.5 mmol)化合物2, 在室温下搅拌反应5 h后将体系倒入冰盐水中, 分出有机层, 水层用20 mL×3的乙酸乙酯萃取, 合并有机相, 无水MgSO4干燥, 脱溶得到粗产品. 粗产品经减压柱层析[硅胶200~300目, 石油醚∶乙酸乙酯=5∶1~1∶1 (V∶V)梯度洗脱], 得到目标化合物. 3a: 淡黄色晶体, 收率78.7%. m.p. 151.5~152.3 ℃; 1H NMR (CDCl3, 300 MHz) δ: 3.62 (s, 3H, NOCH3), 3.75 (s, 3H, CO2CH3), 5.27 (s, 2H, CH2O), 7.04 (d, J=9.6 Hz, 1H, PyH), 7.05 (d, J=9.6 Hz, 1H, PyH), 7.26~7.57 (m, 9H, ArH); IR (KBr) ν: 1702, 1676 (C=O), 1289 (ArNR1R2), 1245 (C—O—C), 3043 (ArH). Anal. calcd for C20H19N3O5: C 62.99, H 5.02, N 11.02; found C 63.12, H 5.13, N 11.09. 3b:白色晶体, 收率79.2%. m.p. 95.4~96.3 ℃; 1H NMR (CDCl3, 300 MHz) δ: 3.65 (s, 3H, NOCH3), 3.76 (s, 3H, CO2CH3), 5.27 (s, 2H, CH2O), 7.03 (d, J=9.9 Hz, 1H, PyH), 7.04 (d, J=9.9 Hz, 1H, PyH), 7.26~7.56 (m, 8H ArH); IR (KBr) ν: 1706, 1672 (C=O), 1289 (ArNR1R2), 1244 (C—O—C), 3072 (ArH). Anal. calcd for C20H18Cl- N3O5: C 57.77, H 4.36, N 10.11; found C 57.54, H 4.50, N 10.01. 3c: 白色晶体, 收率78.4%. m.p. 128.6~130.1 ℃; 1H NMR (CDCl 3 300 MHz) δ: 3.64 (s, 3H, NOCH3), 3.76 (s, 3H, CO2CH3), 5.31 (s, 2H, CH2O), 7.08 (d, J=9.6 Hz, 1H, PyH), 7.11 (d, J=9.6 Hz, 1H, PyH), 7.27~7.65 (m, 8H, ArH); IR (KBr) ν: 1706, 1677 (C=O), 1295 (ArNR1R2), 1259 (C—O—C), 3072 (ArH). Anal. calcd for C20H18FN3O5: C 60.15, H 4.54, N 10.52; found C 60.24, H 4.56, N 10.45. 3d:黄色晶体, 收率61.2%. m.p. 117.2~119.0 ℃; 1H NMR (CDCl 3 , 300 MHz) δ: 2.03 (s, 3H, CH3), 3.57 (s, 3H, NOCH3), 3.72 (s, 3H, CO2CH3), 5.19 (s, 2H, CH2O), 7.05 (d, J=9.6 Hz, 1H, PyH), 7.07 (d, J=9.6 Hz, 1H, PyH), 7.20~7.50 (m, 8H, ArH); IR (KBr) ν: 1696, 1674 (C=O), 1286 (ArNR1R2), 1260 (C—O—C), 3033 (ArH). Anal. calcd for C21H21N3O5: C 63.79, H 5.35, N 10.63; found C 63.90, H 5.21, N 10.53. 3e:黄色液体, 收率71.0%. 1H NMR (CDCl3, 300 MHz)δ: 3.73 (s, 3H, NOCH3), 3.79 (s, 3H, CO2CH3), 5.19 (s, 2H, CH2O), 7.04 (d, J=9.9 Hz, 1H, PyH), 7.05 (d, J=

胶粘剂的种类与介绍

胶粘剂的种类与介绍 α-氰基丙烯酸酯胶是单组分、低粘度、透明、常温快速固化胶粘剂。又称为瞬干胶。粘接面广,对绝大多数材料都有良好的粘接能力,是重要的室温固化胶种之一。不足之处是反应速度过快,耐水性较差,脆性大,耐温低(<70℃),保存期短,耐久性不好,故配胶时要加人相应的助剂,多用于临时性粘接。主体材料为特定的氰基丙烯酸酯,再加一些辅助物质如稳定剂、增稠剂、增塑剂、阻聚剂等。配胶时应尽可能隔绝水蒸气,包装容器也应用透气性小或不透气的。国产胶种有501,502,504,661等。 反应型丙烯酸酯(结构)胶粘剂最常用的基料为甲基丙烯酸甲酯。这种胶的特点是固化快、粘接强度大、粘接面广,胶接物表面不需严格处理,双组分胶的各组分用量也勿需严格要求。缺点是气味不好闻。单纯的(甲基)丙烯酸酯单体形成的胶固化后较脆,抗冲击性能差,故常加入其他一些化合物以改善胶层韧性,提高胶层的力学性能和耐环境性能。如果加入的化合物在胶液固化时不参与反应,仅存在于其中起增韧剂作用,这类胶称为第一代丙烯酸酯结构胶(FGA)。若加入的化合物在胶液固化时可与单体进行接枝共聚,从分子内进行增改性,这类胶称为第二代丙烯酸酯胶粘剂(SGA)。还有一类在配胶时以光敏剂、增感剂代替过氧化物引发剂与促进剂,则构成了以紫外光或电子束固化的第三代丙烯酸酯胶粘剂(TGA),其固化更快、贮存更稳定,并且是单组分的。 ===合成胶粘剂介绍==== 1.胶粘特点 用胶粘剂把物品连接在一起的方法叫胶接,也称粘接。具有以下特点: 1)整个胶接面都能承受载荷,强度较高,避免了应力集中,耐疲劳强度好。 2)可连接不同种类的材料。 3)胶接结构质量轻,表面光滑美观。 4)具有密封作用 5)胶接工艺简单,操作方便。 2.胶粘剂的组成 又称粘接剂、胶合剂或胶水。有天然胶粘剂和合成胶粘剂之分,也可分为有机胶粘剂和无机胶粘剂。主要组成基料+固化剂+填料+增塑剂+增韧剂+稀释剂。 3.常用胶粘剂 (1)环氧胶粘剂基料主要使用环氧树脂,我国用于最广的是双酚A型,俗称“万能胶”。 (2)改性酚醛胶粘剂耐热性、耐老化性好,粘接强度也高,但脆性大、固化收缩率大。 (3)聚氨酯胶粘剂柔韧性好,可低温使用,但不耐热、强度低。 (4)α-氰基丙烯酸酯胶常温快速固化胶粘剂,又称“瞬干胶”,但耐热性和耐溶性较差。 (5)厌氧胶这是一种常温下有氧时不能固化,当排掉氧后即能迅速固化的胶。主要成分是甲基丙烯酸的双酯。

几种甲氧基丙烯酸酯类杀菌剂的活性

第五届新农药创制交流会 几种甲氧基丙烯酸酯类杀菌剂的活性 李志念王力钟张弘张宗俭 (沈阳化工研究院沈阳110021) 摘要: 本文综述了已商品化和正在研发中的甲氧基丙烯酸酯类杀菌剂的作用机理、作物的吸收与利用、抑菌作 用、杀蓖谱和应用效果等. 关键词:甲氧基丙烯酸酯活咎 前言 甲氧基丙烯酸酯类是一类重要的农用杀菌剂.源于一组具有天然杀菌活性的.8-甲氧基丙烯酸 的衍生物。最早商品化的甲氧基丙烯酸酯类杀菌剂是嘧菌酯(1996年),到2003年,将有7种甲 氧基丙烯酸酯类杀菌剂(见表1)被商品化。1999年,嘧菌酯销售额为4.15亿美元,成为世界上 最大的杀菌剂品种。该年度甲氧基丙烯酸酯类杀菌剂的销售额总计约为6.2亿美元,占全球杀菌 剂市场的lO %。这是一个了不起的成就,因为只开始销售了4年。甲氧基丙烯酸酯类杀菌剂的主 要适用对象为禾谷类、草坪、葡萄、马铃薯、水果、核果类及蔬菜等。 表1 7种甲氧基甲氧基丙烯酸酝类杀菌荆 I 中文名称 通用名称 开发公司 化学结构 嘧菌酯 Azoxystrobin Syngenta 吼《kp 醚菌酯 Kresoxim-methyl BASF 天似,。 h MtO ,c —k 一“· 苯氧菌酯 M etominostrobin Shionogi ◇。盆一。 肟菌酯 Trifloxystrobin Bayer ”嘲~ 啶氧菌酯 Picoxystrobin Syngenta ”暇。 唑菌胺酯 Pyraclostrobin BASF 。口秒。印。№c —N —o № 烯肟菌酯 Enestroburin SYRlCI a ~ “-婶 ¨、r^_、 作用机理 最简单的B .甲氧基丙烯酸是Strobi|urin A ,Oudemansin A 和Myxothiazol A ,前两者是由担 子菌纲中的朽木腐生菌产生.如Oudemansiellamucida 和Strobilurustenacellus ,后者是由一种细 菌(Myxococcusfulvus)产生。甲氧基丙烯酸酯类的抑菌活性表现在抑制真菌的线粒体呼吸作用。 如在线粒体膜上,Oudemansins 和Myxothiazols 镶入在所谓的细胞色素b(细胞色素b 是细胞色 素占c1复合体的一部分)的Qo 部位,随后抑制因子锁住了细胞色素b 和细胞色素c 。之间电子 传 递,进而细胞的ATP 合成停止,使真菌的能量循环中断而发挥抑菌作用。 .62.

改性丙烯酸酯胶粘剂

机械汽摩维修5分钟修复 改性丙稀酸酯AB胶,具有极优异的粘接性能,它是室温下固化而且定位速度很快,性能优良.本胶粘剂粘接材料广泛,可粘接钢,铁,铝,蟓胶,不锈钢ABS,PVC,玻璃,缺氧木,陶瓷,水泥,电木,木材料等同种或异种材料的粘接和互粘,适用于汽车,拖拉机和各种机器零部件的修复,各种产品的胶接组装,薄形材料的结构和加强,铭牌,招牌,标识,装潢饰物的粘贴各种应急抢修和日常用品的修理. 可对金属,塑料,木材,混疑土等材料迅速粘接.广泛应用于汽车,摩托车,机械,化工管路和贮罐,木工家具,灯具铭牌,玩具,日用杂品等粘接,勿需除油,使用方便. KUNSHENG上海坤盛粘合剂有限公司 环氧树脂AB胶 【产品特点】 1.本品为快速固化系列、透明粘稠状环氧树脂粘接剂; 2. 可低温或常温固化,固化速度快; 3. 固化后粘接强度高、硬度较好,有一定韧性; 4.固化物耐酸碱性能好,防潮防水、防油防尘性能佳,耐湿热和大气老化;5.固化物具有良好的绝缘、抗压、粘接强度高等电气及物理特性。 【适用范围】 1.凡需要快速粘接固定的电子类或其它类产品均可使用; 2. 广泛应用于电子元器件及工艺品、礼品的粘接固定,对于金属、陶瓷、木材、玻璃及硬质塑胶之间的封装粘接,有优异的粘接强度; 3.不适用于有弹性或软质材料类产品的粘接。

1. 要粘接密封的部位需要保持干燥、清洁; 2.按配比取量, A、B剂混合后需充分搅拌均匀,以避免固化不完全; 3.搅拌均匀后请及时进行注胶,并尽量在可使用时间内使用完已混合的胶液; 4.固化过程中,请及时清洁使用的容器及用具,以免胶水凝固在器具物品上。【固化后特性】 硬度Shore D ≥70 吸水率25℃ %24小时 < 抗压强度 kg/mm2 ≥50 剪切强度(钢/钢) kg/mm2 ≥13 拉伸强度(钢/钢) kg/mm2 ≥22 介电常数 1KHZ ~ 体积电阻 25℃ Ohm-cm ≥ ×1015 表面电阻 25℃Ohm ≥×1014 耐电压 25℃Kv/mm ≥16~18 【注意事项】 1.本品在混合后会开始固化,其粘稠度会很快上升,并会放出热量; 2.注意:该产品固化速度很快,请尽可能减少一次配胶的量!混合在一起的胶量越多,其反应就越快,固化速度也会越快,并可能伴随放出大量的热量,请注意控制一次配胶的量,因为由于反应加快,其可使用的时间也会缩短,混合后的胶液尽量在短时间内使用完; 3.有极少数人长时间接触胶液会产生轻度皮肤过敏,有轻度痒痛,建议使用时戴防护手套,粘到皮肤上请用丙酮或酒精擦去,并使用清洁剂清洗干净; 4.在大量使用前,请先小量试用,掌握产品的使用技巧,以免差错。 【储存与包装】 5.本品需在通风、阴凉、干燥处密封保存,保质期十二个月,过期经试验合格,可继续使用; 6.包装规格为每组2、10或40kg,其中包含主剂1、5或20kg/桶、固化剂1、5 或20kg/桶。

甲氧基丙烯酸酯类杀菌剂概述

甲氧基丙烯酸酯类杀菌剂概述 目前引人注目的以天然抗生素 Strobilurin A为先导化合物开发的新型杀菌剂——甲氧基丙烯 酸酯类杀菌剂,使其成为杀菌剂发展史上一块里程碑。是世界农药界继三唑类杀菌剂之后的又一类极具发展潜力和市场活力的新型农用杀菌剂。2008年此类杀菌剂的销售额达15.3亿美元,与位居第1位的三唑类杀菌剂市场持平。具有保护、治疗、铲除、渗透作用,无致癌和致 突变等特点能有效防治子囊菌、担子菌、半知菌和卵菌等真菌引起的病害。由于独特的作用机制、高度的环境安全与超高活性使其开发前景广阔。 一、综述 1.作用机理 甲氧基丙烯酸酯类杀菌剂的作用机制目前比较清楚,这类杀菌剂的活性基团是甲氧基丙烯酸(酯/酰胺)。主要作用于真菌的线粒体呼吸链中的细胞色素 bel复合物,阻止电子传递从而抑制真菌生长。 2、环境作用 甲氧基丙烯酸酯类杀菌剂对作物的选择性是来自作物体内酶的脱酯化作用,由于酶的脱酯化使其毒力丧失。因此,药剂不会到达动、植物的线粒体,不会影响植物、昆虫、哺乳动物的电子 传递,故对动植物安全。另外这类杀菌剂的毒性也很低,没有致癌和致突变作用。甲氧基丙烯酸酯类杀菌剂对环境也有很好的相容性。如嘧菌酯在光照和微生物作用下,于土壤中易降解。 田间条件下,在土壤中的半衰期为 7~2d。光解和微生物降解的产物也易在土壤中降解,在土壤中的流动性很差,且易被快速降解,所以对地下水安全。没有挥发性,不易污染大气。 3、对植物生长的促进作用 甲氧基丙烯酸酯类杀菌剂除了能直接防治病害外,也能诱导许多作物的生理变化,尤其对禾谷类。在农业上,甲氧基丙烯酸酯类杀菌剂能提高产量,延缓植物衰老。这是其它类杀菌剂所不及的。 4.抗药性及治理 与其它杀菌剂一样,甲氧基丙烯酸酯类杀菌剂也难逃抗性的厄运。1998年 5月,在德国北部 首先检测到了小麦白粉病的抗性菌株。治理抗性首先是混用,由于甲氧基丙烯酸酯类杀菌剂的抗药性已开始制约这类杀菌剂的进一步发展,目前国外农药大公司正通过生产与其他杀菌剂的混配制剂来解决抗性问题。如拜耳公司已推出肟菌酯与丙环唑的混配品种。另外还应轮换使用和限制使用。 已商品化和即将商品化的主要甲氧基丙烯酸酯类杀菌剂

丙烯酸类胶粘剂的研制

(2011届) 题目丙烯酸类胶粘剂的研制学生姓名### 学号############ 学院材料与纺织工程学院专业纺织工程 班级########## 导师姓名### 导师学科********** 导师职称********** 嘉兴学院教务处制 2011年5月10日

诚信声明 我声明,所呈交的论文(设计)是本人在老师指导下进行的研究工作及取得的研究成果。据我查证,除了文中特别加以标注和致谢的地方外,论文(设计)中不包含其他人已经发表或撰写过的研究成果,也不包含为获得_嘉兴学院_或其他教育机构的学位或证书而使用过的材料。我承诺,论文(设计)中的所有内容均真实、可信。 论文(设计)作者签名:签名日期:年月日

授权声明 学校有权保留送交论文(设计)的原件,允许论文(设计)被查阅和借阅,学校可以公布论文(设计)的全部或部分内容,可以影印、缩印或其他复制手段保存论文(设计),学校必须严格按照授权对论文(设计)进行处理,不得超越授权对论文(设计)进行任意处置。 论文(设计)作者签名:签名日期:年月日

丙烯酸类胶粘剂的研制 摘要:丙烯酸类胶粘剂用于制备各种粘合剂、增稠剂、纸张补强剂、交联剂等。已广泛应用于涂料、粘合剂、日用化工、环氧树脂固化剂、感光树脂助剂、纺织助剂、医疗卫生等领域中。本论文介绍了丙烯酸类胶粘剂的用途、应用前景、研究现状及合成提取工艺路线,对两种合成路线的优缺点作出了分析,研究确定了以丙烯酸盐和丙烯酰胺为原料合成双丙酮丙烯酰胺的路线和以丙烯酸丁酯和醋酸乙烯酯为原料合成水溶性丙烯酸酯压敏胶的路线。 关键词:双丙酮丙烯酰胺水溶性丙烯酸酯压敏胶粘剂

丙烯酸酯结构胶粘剂改性研究进展

丙烯酸酯结构胶粘剂改性研究进展 摘要:论述了影响第2代丙烯酸酯结构胶粘剂的气味性、耐热性能、耐水性能以及贮存稳定性能的主要因素以及改善胶粘剂性能的研究进展。结合多年工作经验,提出改善丙烯酸酯结构胶性能的有效方法。 关键词:丙烯酸酯结构胶粘剂;气味;耐热;耐水;贮存稳定性 1975年美国杜邦公司率先开发出了第2代丙烯酸酯胶粘剂(SGA)[1],随后ITW、Loctite、lord等公司也陆续开发出拥有自己特色的SGA产品。国内对于SGA开发起步略晚,但经过一段时期的技术积累,产品性能已与国外品牌相当。如北京天山、湖北回天、上海康达、烟台信友等,也都拥有了自主知识产权的SGA产品。由于SGA具有快速固化、粘接强度高、柔韧性好、适应性强等优点,已在电子、航天等工业领域得到了广泛应用[2,3]。 虽然第2代丙烯酸酯胶粘剂(SGA)用途广泛,但它还存在具有刺激性气味、柔韧性不佳、耐湿热老化性能差等问题。许多研究者对于SGA改性作过相关报道[4,5],在此基础上,结合作者研发SGA的经验,本文主要从改善SGA的气味性、耐热性能、耐水性能、贮存性能等方面提出新的有效方法,为研究者提供有益的技术参考。 1 改善气味性 第2代丙烯酸酯结构胶主要由丙烯酸酯单体、增韧树脂、引发剂、促进剂和稳定剂等组成,也会根据不同用途加入增韧剂、增稠剂、触变剂、填料和颜料等其他助剂[6]。在这些组成中,易挥发的丙烯酸酯单体是SGA气味的最主要来源,其他助剂也会含有少量挥发性溶剂,增加SGA的气味性,但由于使用量较少,这里不做详细分析。 对于丙烯酸酯单体的气味性,常规判断方法都是从嗅觉上直接感知气味的大小,但会因人的嗅觉差异而造成判断误差。过去很多研究者大都从单体沸点的角度去区分单体气味的大、中、小[7,8],而本文将从蒸汽压角度来考量单体的气味性。 液相中物质的分子可以从液相进入气相,该种特性称为挥发性。在相同的温度下,不同的纯物质蒸汽压是不同的。蒸汽压大者,为易挥发物质,其挥发性较大;反之蒸汽压小者,为难挥发物质,其挥发性较小。表1为单体蒸汽压与气味的关系。 表1 单体的蒸汽压与气味关系 单体 蒸汽压(25℃)/mmHg 气味性 苯乙烯 6.210 大 甲基丙烯酸甲酯 5.530 大 甲基丙烯酸乙酯 4.840 大 甲基丙烯酸羟乙酯 0.364 中 甲基丙烯酸环己酯

甲氧基丙烯酸酯类杀菌剂简介资料讲解

甲氧基丙烯酸酯类杀 菌剂简介

甲氧基丙烯酸酯类农药 一、发现过程 甲氧基丙烯酸酯类化合物开始的研究开始于1969年,捷克科学家Musilek等人在一种蘑菇(oudemansiella mucida)中首次发现了strobilurin A ,并将这种物质用于治疗人类的皮肤病。Oudemansin A是继Strobilurin A之后从腐朽的松木长出的蘑菇中分离出来的具有抗菌活性的天然抗生素。 O O O strobilurin A O O oudemansin A 随着越来越多具有杀菌活性的β-甲氧基丙烯酸酯类天然抗生素的相继发现,有关其生物活性、结构确证、作用机理和全合成的研究也越来越多,从而也引起了农药公司和研究人员的极大兴趣。 1982年,英国捷利康公司和德国巴斯夫公司最早展开了该方面的研究工作。捷利康公司人员研究人员在Strobilurin A的结构基础上进行改造,打破其共轭三烯结构,合成了大量的以β-甲氧基丙烯酸酯衍生物为先导的杀菌剂,但仍未达到田间试用的要求。生测表明含(E)-β -甲氧基丙烯酸酯的化合物具有一定的生物活性,而含(Z)-式的则没有活性。1986年获得含天然(E)-β-甲氧基丙烯酸甲酯基团的strobilurins合成物的专利权,1992年成功开发出了嘧菌酯(azoxystrobin),并于1996年成功上市。2000年又公布了啶氧菌酯,并于2002年上市。捷利康公司这类最早专利的发布阻碍了巴斯夫公司对该天然毒性基团的研究工作,但是巴斯夫公司发现了(E)-β -甲氧基丙烯酸甲酯的电子等排体,即(E)-甲氧基亚氨基乙酸甲酯基团。与合适骨架连接后也能提供活性, 并最终实现了醚

植物病害归类及配方用药

常用的保护性杀菌剂(接触性杀菌剂):代森锰锌,百菌清,硫和铜制剂(如波尔多液,氢氧化铜,碱式硫酸铜,碱式氯化铜,氧化亚铜等)。 常用的内吸性杀菌剂:多菌灵,甲基硫菌灵,甲霜灵,三唑,丙环唑,苯咪甲环唑,丙环唑,嘧菌酯,醚菌酯,霜霉威,烯酰吗啉,霜脲氰,嘧霉胺等。 广谱性杀菌剂:百菌清,代森锰锌,甲基硫菌灵(在植物体内转变为多菌灵,对斑点,粉锈,毛霉有效,对霜疫类病害无效),丙森锌 1,霜疫类病害(霜霉病,晚疫病,白锈病,疫霉根腐病害等) 生物预防:寡雄腐霉/木霉菌/地衣芽孢杆菌/小檗碱+褐藻酸钠 化学预防:代森锰锌/百菌清+多抗霉素/武夷菌素+腐植酸/红糖 初期配方:甲霜锰锌/双炔酰菌胺/烯酰锰锌/霜脲锰锌/霜霉威盐酸盐/+乙蒜素+多抗霉素/武夷菌素+腐植酸/红糖 中期配方:氟菌霜霉威(银发利)/吡唑嘧菌酯/噁酮霜脲腈(抑快净)/丙酰胺霜霉威(普力克)+氯溴异氰尿酸+多抗霉素/武夷菌素+腐植酸/红糖适合作物:叶菜类、茄果类、瓜类、豆类、葱蒜类 若是疫病发生,等级加一级,防治速度要快。 番茄筋腐病预防:拿敌稳(肟菌戊唑醇)+腐植酸/红糖 番茄筋腐病治疗:银法利(氟菌霜霉威)+抑快净(噁酮霜脲腈)+腐植酸/红糖 2、毛霉类病害(灰霉病、叶霉病、菌核病等) 生物预防:木霉菌/小檗碱/儿茶素+褐藻酸钠 化学预防:代森锰锌/百菌清+多抗霉素/武夷菌素+腐植酸/红糖 初期配方:异菌脲/嘧霉胺/腐霉利+苯咪甲环唑+乙蒜素/氯溴异氰尿酸+多抗霉素/武夷菌素+腐植酸/红糖 中期配方:烟酰胺/嘧菌环胺+苯咪甲环唑+乙蒜素/氯溴异氰尿酸+多抗霉素/武夷菌素+腐植酸/红糖 叶霉病配方:苯咪甲环唑+多抗霉素+乙蒜素+腐植酸/红糖 煤霉病配方:异菌脲+苯咪甲环唑+乙蒜素 适合作物:叶菜类、茄果类、瓜类、豆类、葱蒜类 3、点斑类病害(褐斑病、炭疽病、黑星病、叶斑病、早疫病等) 预防配方:多抗霉素/武夷菌素+褐藻酸钠 治疗配方:唑类药+乙蒜素+多抗霉素/武夷菌素+腐植酸/红糖 疤斑病预防配方:代森锰锌/多菌灵/甲托/百菌清+褐藻酸钠 疤斑病治疗配方:三唑类(苯咪甲环唑、丙环唑、氟硅唑、戊唑醇)/咪唑类(咪鲜胺、氟菌唑)/甲氧基丙烯酸酯类(醚菌酯、吡唑醚菌酯)/二甲酰亚胺类(异菌脲)+春雷霉素+乙蒜素+腐植酸/红糖 适合作物:叶菜类、茄果类、瓜类、豆类、葱蒜类 注:唑类药在瓜类、豆类苗期用量减半,茄果类开花坐果前慎用。 4、粉锈类病害(白粉病、锈病等) 预防配方:多抗霉素/武夷菌素+褐藻酸钠 治疗配方:唑类药/乙嘧酚/烯肟菌酯+乙蒜素+腐植酸/红糖+硅肥 适合作物:叶菜类、茄果类、瓜类、豆类、葱蒜类 注:唑类药在瓜类、豆类苗期用量减半,茄果类开花坐果前慎用。 5、根萎类病害 ①、枯黄萎病

甲氧基丙烯酸酯类杀菌剂

甲氧基丙烯酸酯类杀菌剂(国外称Strobilurin)是一种仿生杀菌剂,是继苯并咪唑和三唑类之后的一个里程碑式的农用杀菌剂,经过近20年的发展,成为一类非常重要的杀菌剂,在上亿美金销售额的杀菌剂中占有多个就是实证。这类杀菌剂的先导化合物:嗜球果伞素A(S trobilurin A)和嗜球果伞素B(Strobilurin B)最早是由德国IBWF的T.Anke和Steglich 教授于1977年首次从嗜球果伞(Strobilurus tenacellus,也有译作附胞球果菌)培养液中分离得到的。这个IBWF(Institute of Biotechnology and Drug Research)就是德国生物技术药物研究所,位于德国凯泽斯劳腾(Kaiserslautern,Germany)大学内。而实际上,这个Strobilurin A与Musikek等人1969年从霉状小奥德蘑(Oudemansiella mucida)中分离得到的Mucidin极其相似,这个Mucidin具有抗真菌活性。strobilurin A与mucidin的红外光谱、紫外光谱以及元素组成一致,而旋光不同。随后Anke等人为了搞清这二者是否为同一物质,进一步研究小奥德蘑(Oudemansiella mucida)并分离到了strobilurin A 外,还得到了结晶状的小奥德蘑素 1981年Sedmera等发表了mucidin的结构,将mucidin的构型定为E, E, E 。而Beck er等人则首次报道了strobilurin A与strobilurin B、oudemansin A结构相似,而且它们的杀菌活性均源于同样的作用机制:通过阻碍细胞色素b和c1这间的电子传递来抑制线粒体呼吸。1984年Anke和Steglich确定了strobilurin A的立体构型为E, Z, E 。直到1986年,将mucidin和strobilurin A直接对比才证实了两者的一致性。而在这个期间发现了一系列同系物,如Strobilurin E 和9-methoxystrobilurin A。当然了,还有另一先导化合物粘噻唑(myxothiazol),对于这个研究比较少,由一种粘细菌黄褐粘球菌(Myxococcus fulvu s)产生的。后来发现此类化合物存在于12属34个蘑菇种中。其中,嗜球果伞素(strobil urines)和小奥德蘑素(Oudemansins)、粘噻唑(myxothiazol)能显著抑制大多数需氧腐生植物病原菌,很弱的杀虫活性,没有抗细菌活性。它们的作用方式是选择性地抑制线粒体的呼吸作用。它作用的分子靶点是结合线粒体bc1复合物的氢醌氧化中心(Qo)。让我们回到1981年,Becker等人的有关此类物质的杀菌活性及机理引起了巴斯夫(BASF,总部在德国的一个化学公司)、ICI(ICI就是著名的帝国化工,总部在英国的一个化学公司,1993年将非核心的医药、农用化学品业务独立出去成立了捷利康(Zeneca)公司,1997年Novartis买下Merck的农业部门. 1999年阿斯特拉公司Actara上市, 1999年阿斯特拉与捷利康合并. 2000年诺华农业部门与捷利康农业部门合并成立Syngenta先正达)这二个化工巨头的高度注意。二家公司均投入了大量的财力、人力及物力。意想不到的是,嗜球果伞素A虽然在实验室中抗植物病原真菌活性非常强,但在田间试验时,效果却并不理想。研究曾经一度陷入绝境,甚至有人提出要中止该项目。考察嗜球果伞素A的化学结构,我们可以看出,该化合物结构中有三个双键共轭,在田间试验时,强烈的阳光其紫外线很容易

改性丙烯酸酯胶粘剂

改性丙烯酸酯胶粘剂(胶粘剂) 机械汽摩维修5分钟修复 改性丙稀酸酯AB胶,具有极优异的粘接性能,它是室温下固化而且定位速度很快,性能优良.本胶粘剂粘接材料广泛,可粘接钢,铁,铝,蟓胶,不锈钢ABS,PVC,玻璃,缺氧木,陶瓷,水泥,电木,木材料等同种或异种材料的粘接和互粘,适用于汽车,拖拉机和各种机器零部件的修复,各种产品的胶接组装,薄形材料的结构和加强,铭牌,招牌,标识,装潢饰物的粘贴各种应急抢修和日常用品的修理. 可对金属,塑料,木材,混疑土等材料迅速粘接.广泛应用于汽车,摩托车,机械,化工管路和贮罐,木工家具,灯具铭牌,玩具,日用杂品等粘接,勿需除油,使用方便. KUNSHENG上海坤盛粘合剂有限公司 环氧树脂AB胶 【产品特点】 1.本品为快速固化系列、透明粘稠状环氧树脂粘接剂; 2. 可低温或常温固化,固化速度快; 3. 固化后粘接强度高、硬度较好,有一定韧性; 4.固化物耐酸碱性能好,防潮防水、防油防尘性能佳,耐湿热和大气老化;5.固化物具有良好的绝缘、抗压、粘接强度高等电气及物理特性。 【适用范围】 1.凡需要快速粘接固定的电子类或其它类产品均可使用;

2. 广泛应用于电子元器件及工艺品、礼品的粘接固定,对于金属、陶瓷、木材、玻璃及硬质塑胶之间的封装粘接,有优异的粘接强度; 3.不适用于有弹性或软质材料类产品的粘接。 1. 要粘接密封的部位需要保持干燥、清洁; 2.按配比取量,A、B剂混合后需充分搅拌均匀,以避免固化不完全; 3.搅拌均匀后请及时进行注胶,并尽量在可使用时间内使用完已混合的胶液; 4.固化过程中,请及时清洁使用的容器及用具,以免胶水凝固在器具物品上。【固化后特性】 硬度Shore D ≥70 吸水率25℃%24小时<0.15 抗压强度kg/mm2 ≥50 剪切强度(钢/钢)kg/mm2 ≥13 拉伸强度(钢/钢)kg/mm2 ≥22 介电常数1KHZ 3.8~4.2 体积电阻25℃Ohm-cm ≥1.35 ×1015 表面电阻25℃Ohm ≥1.2×1014 耐电压25℃Kv/mm ≥16~18 【注意事项】 1.本品在混合后会开始固化,其粘稠度会很快上升,并会放出热量; 2.注意:该产品固化速度很快,请尽可能减少一次配胶的量!混合在一起的胶量越多,其反应就越快,固化速度也会越快,并可能伴随放出大量的热量,请注意控制一次配胶的量,因为由于反应加快,其可使用的时间也会缩短,混合后的胶液尽量在短时间内使用完; 3.有极少数人长时间接触胶液会产生轻度皮肤过敏,有轻度痒痛,建议使用时戴防护手套,粘到皮肤上请用丙酮或酒精擦去,并使用清洁剂清洗干净; 4.在大量使用前,请先小量试用,掌握产品的使用技巧,以免差错。 【储存与包装】 5.本品需在通风、阴凉、干燥处密封保存,保质期十二个月,过期经试验合格,可继续使用;

丙烯酸酯橡胶

丙烯酸酯橡胶应用 一、前言:比重1.~1.1 丙烯酸酯橡胶(英文简称 ACM)是以丙烯酸酯为主单体经共聚而得的弹性体,其主链为饱和碳链,侧基为极性酯基;通常要用硫化点单体参与共聚以使其易于硫化。由于一次结构为饱和碳链和极性侧基,赋予它很好的耐热、耐老化、耐油性能。被广泛地应用于各种高温、耐油环境,如轴封、O型圈、输油管和各种垫片等。特别是汽车的曲轴、汽门阀杆、汽缸垫、排汽管的密封和液压输油管等。有汽车胶的美称。根据机械部汽车司1995年的统计,国产车使用ACM密封件件数及单耗量如下 车型 件 /辆 (ACM胶料) ACM单耗① (kg/辆) CA7220 0.7 上海“桑塔那”0.2 神龙“富康”0.5 TJ7100 0.1 CA21046L 4 0.7 南京“依维柯” 4 1.5 CA1092-Ⅱ 6 0.8 “EQ1092 ” 6 0.1 “EQ1141G ”11 0.3 标致505 0.7 JN “ 1491 ”20 7 ①已采用的部分关键部件的用量 (按国际标准,平均为1.0~1.5kg/辆) 随着我国汽车工业的兴起和高速发展,一方面,引进汽车生产线的元件国产化和进口原装车备件的更换都急需ACM胶作耐油密封件。另一方面,我国原有的载重汽车及乘用汽车等也需要不断提高整车质量,延长大修时间。 加之汽车向高速、节油方向发展,这就要求汽车汽缸的燃烧温度不断提高,近年来随着我国高速公路飞速发展,也要求车速提高,各运转部位密封件的温度也相应提高,许多关键部件均需采用高性能的ACM作高温耐油密封件,以保证整车水平。因此,特种合成橡胶行业和特胶制品行业都急需集中精力研制开发并工业化生产适合汽车工业需要的各类ACM胶种及其制品,否则将难以改变ACM和制品长期依赖进口的局面。 与其它耐油橡胶相比,丙烯酸酯橡胶具有性能/价格比最优的特点。它长期使用温度180℃,短期使用温度可达210℃,在各种润滑油、燃料油中膨胀率较低(<10%),汽车变速箱用ACM制品密封可连续行驶15-20万公里而不漏油;而丁腈橡胶虽能耐油性能很好,但耐老化性能和耐温性能较差,汽车用丁腈橡胶密封制品连续使用温度仅为106℃,变速箱部位密封连续行驶仅8000-10000公里即开始漏油。丙烯酸酯橡胶是性能/价格比最优并被广泛地用于高温耐油环境的特种橡胶。 二、国内外 ACM发展概况及主要品牌: 有关ACM的首篇报道始见于1912年德国的Otto Rohm [1] 的专利,他曾用硫磺使聚丙烯酸酯硫化获得了橡胶状物质,但没获得实用性制品。1944年,美国农业东部地区实验室的Fisher [2、3、4、5] 等人制得了丙烯酸乙酯与2-氯乙基乙烯醚共聚物,可很容易地用硫-硬脂酸皂系硫化。1948年,美国Goodrich公司首先实现了乳聚ACM的工业化,商品名称为Hycar PA-31 [6] ,后经改进更名为Hycar-4021,Hycar-4031。1963年美国American Cyanamid公司也开发生产了ACM,商品名称为Cyanacry1。六十年代中期日本油封公司、东

甲氧基丙烯酸酯类杀菌剂简介

甲氧基丙烯酸酯类杀菌剂简介

甲氧基丙烯酸酯类农药 一、发现过程 甲氧基丙烯酸酯类化合物开始的研究开始于1969年,捷克科学家Musilek等人在一种蘑菇(oudemansiella mucida)中首次发现了strobilurin A ,并将这种物质用于治疗人类的皮肤病。Oudemansin A是继Strobilurin A之后从腐朽的松木长出的蘑菇中分离出来的具有抗菌活性的天然抗生素。 O O O strobilurin A O O oudemansin A 随着越来越多具有杀菌活性的β-甲氧基丙烯酸酯类天然抗生素的相继发现,有关其生物活性、结构确证、作用机理和全合成的研究也越来越多,从而也引起了农药公司和研究人员的极大兴趣。 1982年,英国捷利康公司和德国巴斯夫公司最早展开了该方面的研究工作。捷利康公司人员研究人员在Strobilurin A的结构基础上进行改造,打破其共轭三烯结构,合成了大量的以β-甲氧基丙烯酸酯衍生物为先导的杀菌剂,但仍未达到田间试用的要求。生测表明含(E)-β-甲氧基丙烯酸酯的化合物具有一定的生物活性,而含(Z)-式的则没有活性。1986年获得含天然(E)-β-甲氧基丙烯酸甲酯基团的strobilurins合成物的专利权,1992年成功开发出了嘧菌酯(azoxystrobin),并于1996年成功上市。2000年又公布了啶氧菌酯,并于2002年上市。捷利康公司这类最早专利的发布阻碍了巴斯夫公司对该天然毒性基团的研究工作,但是巴斯夫公司发现了(E)-β-甲氧基丙烯酸甲酯的电子等排体,即(E)-甲氧基亚氨基乙酸甲酯基团。与合适骨架连接后也能提供活性, 并最终实现了醚菌酯(kresoxim-methyl),在1996年上市。巴斯夫继1996年向市场推出醚菌酯以来,于2002年、2004年和2007年又成功上市了吡唑菌酯、醚菌胺和肟醚菌胺, 其中吡唑菌酯是目前活性最高的丙烯酸酯类杀菌剂。拜耳1998年公布了肟菌酯,1999年该产品推向市场。1994年发现氟嘧菌酯,于2004年投放市场。1998年发现、2001年上市的咪唑菌酮虽然结构上不同于strobilurins类杀菌剂, 但与strobilurins类 杀菌剂具有同样的交互抗性基团, 目前该产品也归于拜耳。日本盐野义是从事该领域研究最早的公司之一,1993年研究发现的苯氧菌胺, 1999年上市, 成为防治 水稻稻瘟病的优良杀菌剂。 二、作用机制 甲氧基丙烯酸酯类杀菌剂的活性来源于它们能键合在细胞色素b ( Cytb) 的还原型辅酶Q的氧化位点(Qo位点) , 从而抑制线粒体的呼吸作用, 也因此称为Qo抑制剂。细胞色素b是细胞色素bc1复合物的一部分, 位于真菌和其他真核体的线粒体内膜, 一旦某个抑制剂与之键合,将阻止细胞色素b和c1之间的电子传递, 通过阻止三磷酸腺苷(ATP) 的产生, 从而干扰真菌体内的能量循环。

相关主题
文本预览
相关文档 最新文档