当前位置:文档之家› 一元二次方程的四种解法

一元二次方程的四种解法

一元二次方程的四种解法
一元二次方程的四种解法

龙文教育个性化辅导教案提纲教师:陈燕玲学生:年级九日期: 星期: 时段: 课题一元二次方程的概念及解法

学情分析

教学目标与考点分析1.掌握一元二次方程的概念及其一般形式,能指出一元二次方程的各项及其系数。2 能根据具体一元二次方程的特征,灵活选择方程的解法。体会解决问题方法的多样性。

教学重点难点教学重点: 掌握常用四种一元二次方程的解法。教学难点: 灵活选用适当方法解一元二次方程

教学方法讲解法合作探究法

教学过程

一、一元二次方程的概念:

问题(1)有一面积为54m2的长方形,将它的一边剪短5m,另一边剪短2m,恰好变成一个正方形,那么这个正方形的边长是多少?

如果假设剪后的正方形边长为x,那么原来长方形长是________,宽是_____,根据题意,得:_______.整理,得:________.

归纳:

(1)只含一个未知数x;(2)最高次数是2次的;(3)?整式方程.

因此,像这样的方程两边都是整式,只含有一个未知数(一元),并且未知数的最高次数是2(二次)的方程,叫做一元二次方程.

一般地,任何一个关于x的一元二次方程,?经过整理,?都能化成如下形式ax2+bx+c=0(a≠0).这种形式叫做一元二次方程的一般形式.

一个一元二次方程经过整理化成ax2+bx+c=0(a≠0)后,其中ax2是二次项,a是二次项系数;bx是一次项,b是一次项系数;c是常数项.

例1.将方程3x(x-1)=5(x+2)化成一元二次方程的一般形式,并写出其中的二次项系数、一次项系数及常数项.

注意:二次项、二次项系数、一次项、一次项系数、常数项都包括前面的符号.

例2.将方程(x+1)2+(x-2)(x+2)=?1化成一元二次方程的一般形式,并写出其中的二次项、二次项系数;一次项、一次项系数;常数项.

练习:判断下列方程是否为一元二次方程? (1)3x+2=5y-3 (2) x 2=4 (3) 3x 2-

5x

=0 (4) x 2-4=(x+2) 2 (5) ax 2+bx+c=0 例3.求证:关于x 的方程(m 2-8m+17)x 2+2mx+1=0,不论m 取何值,该方程都是一元二次方程.

练习: 一、选择题

1.在下列方程中,一元二次方程的个数是( ).

①3x 2+7=0 ②ax 2+bx+c=0 ③(x-2)(x+5)=x 2-1 ④3x 2-

5

x

=0 A .1个 B .2个 C .3个 D .4个

2.方程2x 2=3(x-6)化为一般形式后二次项系数、?一次项系数和常数项分别为( ). A .2,3,-6 B .2,-3,18 C .2,-3,6 D .2,3,6 3.px 2-3x+p 2-q=0是关于x 的一元二次方程,则( ).

A .p=1

B .p>0

C .p ≠0

D .p 为任意实数 二、填空题

1.方程3x 2-3=2x+1的二次项系数为________,一次项系数为_________,常数项为_________. 2.一元二次方程的一般形式是__________.

3.关于x 的方程(a-1)x 2+3x=0是一元二次方程,则a 的取值范围是________. 三、综合提高题

1、a 满足什么条件时,关于x 的方程a (x 2+x )=3x-(x+1)是一元二次方程?

2、关于x 的方程(2m 2+m )x m+1+3x=6可能是一元二次方程吗?为什么?

3、方程(2a —4)x 2—2bx+a=0, 在什么条件下此方程为一元二次方程?在什么条件下此方程为一元一次方程?

4、当m 为何值时,方程(m+1)x /4m /-4

+27mx+5=0是关于的一元二次方程

二、一元二次方程的解:

复习:方程的解

一元二次方程的解也叫做一元二次方程的根.(只含有一个未知数的方程的解,又叫方程的根) 例1.下面哪些数是方程2x 2+10x+12=0的根? -4,-3,-2,-1,0,1,2,3,4.

例2.若x=1是关于x 的一元二次方程a x 2+bx+c=0(a ≠0)的一个根,求代数式2007(a+b+c)的值

练习:关于x 的一元二次方程(a-1) x 2+x+a 2-1=0的一个根为0,则求a 的值

例3.你能用以前所学的知识求出下列方程的根吗?

(1)x2-64=0 (2)3x2-6=0 (3)x2-3x=0

三、一元二次方程的解法

(一)、直接开平方法

问题1.填空

(1)x2-8x+______=(x-______)2;(2)9x2+12x+_____=(3x+_____)2;(3)x2+px+_____=(x+______)2.

问题2:目前我们都学过哪些方程?二元怎样转化成一元?一元二次方程与一元一次方程有什么不同?二次如何转化成一次?怎样降次?以前学过哪些降次的方法?

方程x2=9,根据平方根的意义,直接开平方得x=±3,如果x换元为2t+1,即(2t+1)2=9,能否也用直接开平方的方法求解呢?

例1:解方程:(1)(2x-1) 2=5 (2)x 2+6x+9=2 (3)x 2-2x+4=-1

例2.市政府计划2年内将人均住房面积由现在的10m2提高到14.4m,求每年人均住房面积增长率.

解一元二次方程的共同特点:把一个一元二次方程“降次”,转化为两个一元一次方程.?这种思想称为“降

次转化思想”.由应用直接开平方法解形如x2=p(p≥0),那么x=±p转化为应用直接开平方法解形如(mx+n)2=p(p≥0),那么mx+n=±p,达到降次转化之目的.若p<0则方程无解

练习:一、选择题

1.若x2-4x+p=(x+q)2,那么p、q的值分别是().

A.p=4,q=2 B.p=4,q=-2 C.p=-4,q=2 D.p=-4,q=-2

2.方程3x2+9=0的根为().

A.3 B.-3 C.±3 D.无实数根

二、填空题

1.若8x2-16=0,则x的值是_________.

2.如果方程2(x-3)2=72,那么,这个一元二次方程的两根是________.

a +b2-12b+36=0,那么ab的值是_______.

3.如果a、b为实数,满足34

三、综合提高题

1.解关于x的方程(x+m)2=n.

(二)、配方法

1、解下列方程

(1)3x2-1=5 (2)4(x-1)2-9=0 (3)4x2+16x+16=9 (4) 4x2+16x=-7

上面的方程都能化成x2=p或(mx+n)2=p(p≥0)的形式,那么可得

x=±p或mx+n=±p(p≥0).

如:4x2+16x+16=(2x+4)2 ,你能把4x2+16x=-7化成(2x+4)2=9吗?

2、要使一块矩形场地的长比宽多6m,并且面积为16m2,场地的长和宽各是多少?

转化:x2+6x-16=0移项→x2+6x=16

两边加(6/2)2使左边配成x2+2bx+b2的形式→ x2+6x+32=16+9

左边写成平方形式→(x+3)2=?25 ?降次→x+3=±5 即x+3=5或x+3=-5

解一次方程→x1=2,x2= -8

可以验证:x1=2,x2= -8都是方程的根,但场地的宽不能使负值,所以场地的宽为2m,常为8m.

像上面的解题方法,通过配成完全平方形式来解一元二次方程的方法,叫配方法.通过配方使左边不含有x的完全平方形式的一元二次方程化为左边是含有x的完全平方形式,右边是非负数,可以直接降次解方程的方程

配方法解一元二次方程的一般步骤:

(1)将方程化为一般形式;(2)二次项系数化为1;(3)常数项移到右边;

(4)方程两边都加上一次项系数的一半的平方,使左边配成一个完全平方式;

(5)变形为(x+p)2=q的形式,如果q≥0,方程的根是x=-p±√q;如果q<0,方程无实根.

例1.用配方法解下列关于x的方程

(1)x2-8x+1=0 (2)x2-2x-1

2

=0

例2.解下列方程

(1)2x2+1=3x (2)3x2-6x+4=0 (3)(1+x)2+2(1+x)-4=0

例3求证:无论y取何值时,代数式-3 y2+8y-6恒小于0

例4、用配方法解方程:ax2+bx+c=0(a≠0)

练习:一、选择题

1.将二次三项式x2-4x+1配方后得().

A.(x-2)2+3 B.(x-2)2-3 C.(x+2)2+3 D.(x+2)2-3

2.已知x2-8x+15=0,左边化成含有x的完全平方形式,其中正确的是().

3.如果mx2+2(3-2m)x+3m-2=0(m≠0)的左边是一个关于x的完全平方式,则m等于().A.1 B.-1 C.1或9 D.-1或9

4.配方法解方程2x2-4

3

x-2=0应把它先变形为().

A.(x-1

3

)2=

8

9

B.(x-

2

3

)2=0 C.(x-

1

3

)2=

8

9

D.(x-

1

3

)2=

10

9

5.下列方程中,一定有实数解的是().

A.x2+1=0 B.(2x+1)2=0 C.(2x+1)2+3=0 D.(1

2

x-a)2=a

6.已知x2+y2+z2-2x+4y-6z+14=0,则x+y+z的值是().

A .1

B .2

C .-1

D .-2 二、填空题

1.方程x 2+4x-5=0的解是________.

2.代数式22

2

1

x x x ---的值为0,则x 的值为________. 3.如果16(x-y )2+40(x-y )+25=0,那么x 与y 的关系是________. 4.已知(x+y )(x+y+2)-8=0,求x+y 的值,若设x+y=z ,则原方程可变为_______,?所以求出z 的值即为x+y 的值,所以x+y 的值为______. 三、综合提高题

1.用配方法解方程.

(1)9y 2-18y-4=0 (2)x 2+3=23x

2.已知:x 2+4x+y 2-6y+13=0,求

22

2x y

x y -+的值.

3.已知三角形两边长分别为2和4,第三边是方程x 2-4x+3=0的解,求这个三角形的周长.

4.如果x 2-4x+y 2+6y+

2z ++13=0,求(xy )z 的值.

5、求证:无论x 、y 取任何实数,多项式x 2+y 2-2x-4y+16的值总是正数

(三)公式法

由上例4可知,一元二次方程ax 2+bx+c=0(a ≠0)的根由方程的系数a 、b 、c 而定,因此:

(1)解一元二次方程时,可以先将方程化为一般形式ax 2+bx+c=0,当b 2-4ac ≥0时,?将a 、b 、c 代入式

子x=242b b ac a

-±-就得到方程的根.(公式所出现的运算,恰好包括了所学过的六中运算,加、减、乘、除、

乘方、开方,这体现了公式的统一性与和谐性。) (2)这个式子叫做一元二次方程的求根公式.

(3)利用求根公式解一元二次方程的方法叫公式法. 公式的理解

(4)由求根公式可知,一元二次方程最多有两个实数根.

A .x 2-8x+(-4)2=31

B .x 2-8x+(-4)2=1

C .x 2+8x+42=1

D .x 2-4x+4=-11

例1.用公式法解下列方程.

(1)2x 2-x-1=0 (2)x 2+1.5=-3x (3) x 2-2x+ 1

2

=0

例2.某数学兴趣小组对关于x 的方程(m+1)22

m x

++(m-2)x-1=0提出了下列问题.

若使方程为一元二次方程,m 是否存在?若存在,求出m 并解此方程.

应用公式法解一元二次方程的步骤:

1)将所给的方程变成一般形式,注意移项要变号,尽量让a>0. 2)找出系数a,b,c,注意各项的系数包括符号。 3)计算b 2-4ac ,若结果为负数,方程无解,

4)若结果为非负数,代入求根公式,算出结果。 练习: 一、选择题

1.用公式法解方程4x 2-12x=3,得到( ).

A .x=362-±

B .x=362

± C .x=32

32

-± D .x=3232

±

2.方程2x 2+43x+62=0的根是( ).

A .x 1=2,x 2=3

B .x 1=6,x 2=2

C .x 1=22,x 2=2

D .x 1=x 2=-6

3.(m 2-n 2)(m 2-n 2-2)-8=0,则m 2-n 2的值是( ). A .4 B .-2 C .4或-2 D .-4或2 二、填空题

1.一元二次方程ax 2+bx+c=0(a ≠0)的求根公式是________,条件是________. 2.当x=______时,代数式x 2-8x+12的值是-4.

3.若关于x 的一元二次方程(m-1)x 2+x+m 2+2m-3=0有一根为0,则m 的值是_____. 三、综合提高题

1.用公式法解关于x 的方程:x 2-2ax-b 2+a 2=0.

2.设x 1,x 2是一元二次方程ax 2+bx+c=0(a ≠0)的两根,(1)试推导x 1+x 2=-b a ,x 1·x 2=c a

(2)?求代数式a (x 13+x 23)+b (x 12+x 22)+c (x 1+x 2)的值.

四、因式分解法: 例题:

Eg1、3x 2-5x=0 Eg2、 025)2(10)2(2

=++-+x x

Eg3、0)4()52(2

2=+--x x Eg4、0542

=-+x x

Eg5、04)23(5)23(2=+---x x Eg6

Ex1、(1-2)x 2=(1+2)x ex2、22)52()2(+=-x x

ex3、0)1(2)1(2=-+-x x x ex4、2x 2+7x=4

五、选用适当的方法:

2(x -1)2=8 2x 2+4x=0 2

2510x x +-=

0812=-x 4(2x+1)2=3(4x 2-1) 5)3)(1(=-+x x

03722=+-x x (x -5)(x+3)+(x -2)(x+4)=49 (x 2-x+1)(x 2-x+2)=12

0223)12(22=-+-+x x x x 3122=- x 2+12x -15=0

六、综合题:

1、已知|x 2

-3xy -4y 2

|+

144222=-++y xy x =0,求3x+6y 的值。

2、方程 , m 取何值时是一元二次方程,并求出此方程的解。

01)3()1(12

=--+++x m x m m 0

6)32(22

=++-x x

教学反思

三、本次课后作业:

四、学生对于本次课的评价:

○特别满意○满意○一般○差

学生签字:

五、教师评定:

1、学生上次作业评价:○非常好○好○一般○需要优化

2、学生本次上课情况评价:○非常好○好○一般○需要优化

教师签字:

教务主任签字:___________

龙文教育教务处

一元二次方程专题复习讲义(知识点-考点-题型总结)-----hao---use--ok

一元二次方程专题复习 一、知识结构: 一元二次方程?? ???*?韦达定理根的判别解与解法 二、考点精析 考点一、概念 (1)定义:①只含有一个未知数,并且②未知数的最高次数是2,这样的③整式方程就是一元二次方程。 (2)一般表达式:)0(02≠=++a c bx ax ⑶难点:如何理解 “未知数的最高次数是2”: ①该项系数不为“0”; ②未知数指数为“2”; ③若存在某项指数为待定系数,或系数也有待定,则需建立方程或不等式加以讨论。 典型例题: 例1、下列方程中是关于x 的一元二次方程的是( ) A ()()12132+=+x x B 02112=-+x x C 02=++c bx ax D 1222+=+x x x 变式:当k 时,关于x 的方程3222+=+x x kx 是一元二次方程。 例2、方程()0132=+++mx x m m 是关于x 的一元二次方程,则m 的值为 。 针对练习: ★1、方程782=x 的一次项系数是 ,常数项是 。

★2、若方程()021=--m x m 是关于x 的一元一次方程, ⑴求m 的值;⑵写出关于x 的一元一次方程。 ★★3、若方程()112=?+ -x m x m 是关于x 的一元二次方程,则m 的取值范 围是 。 ★★★4、若方程2x2=0是一元二次方程,则下列不可能的是( ) 2 21 C21 1 考点二、方程的解 ⑴概念:使方程两边相等的未知数的值,就是方程的解。 ⑵应用:利用根的概念求代数式的值; 典型例题: 例1、已知322-+y y 的值为2,则1242++y y 的值为 。 例2、关于x 的一元二次方程()04222=-++-a x x a 的一个根为0,则a 的值为 。 例3、已知关于x 的一元二次方程()002≠=++a c bx ax 的系数满足b c a =+,则此方程必有一根为 。 例4、已知b a ,是方程042=+-m x x 的两个根,c b ,是方程0582=+-m y y 的两个根, 则m 的值为 。 针对练习: ★1、已知方程0102=-+kx x 的一根是2,则k 为 ,另一根是 。 ★2、已知关于x 的方程022=-+kx x 的一个解与方程 311=-+x x 的解相同。 ⑴求k 的值; ⑵方程的另一个解。

一元二次方程的基本解法

第一讲:一元二次方程的基本解法 【知识要点】 ① 一元二次方程及其标准形式: 只含有一个未知数,且未知数的最高次数是二次的方程叫一元二次方程。 形如ax 2+bx+c=0(a 、b 、c 为常数,且a≠0)的方程叫一元二次方程的标准形式。 任何一元二次方程都可以通过去分母、去括号、移项、合并同类项等过程,转化为标准形式。 ② 一元二次方程的解法主要有: 直接开方法、配方法、求根公式法、因式分解法。 一元二次方程的求根公式为x 1,2=)04(2422≥--±-ac b a ac b b . ③一元二次方程解(根)的含义:使方程成立的未知数的值 【经典例题】 例1、直接开平方法 (1)x 2-196=0; (2)12y 2-25=0; (3)(x +1)2-4=0; (4)12(2-x )2-9=0. 例2 、配方法: (1)x 2-2x =0; (2)2 12150x x +-= (3)24x 2x 2=+ (4)17x 3x 2+= 例3 、求根公式法: (1) 1522-=x x (2) 052222 =--x x

(3)(x +1)(x -1)=x 22 (4)3x (x -3) =2(x -1) (x +1). 例4 、因式分解法: (1) x (3x +2)-6(3x +2)=0. (2)4x 2 +19x -5=0; (3) ()()2232 -=-x x x (4)x (x +1)-5x =0. 例5、换元法解下列方程: (1)06)12(5)12(2=+---x x (2) 06)1 (5)1(2=+---x x x x 例6、配方法的应用:求证:代数式122+--x x 的值不大于 4 5.

九年级数学专训1一元二次方程的解法归类

2020-2021学年 专训1 一元二次方程的解法归类 名师点金:解一元二次方程时,主要考虑降次,其解法有直接开平方法、配方法、公式法和因式分解法等.在具体的解题过程中,结合方程的特点选择合适的方法,往往会达到事半功倍的效果. 限定方法解一元二次方程 形如(x+m)2=n(n≥0)的一元二次方程用直接开平方法求解 1.方程4x2-25=0的解为( ) A.x=B.x= C.x=±D.x=± 2.用直接开平方法解下列一元二次方程,其中无解的方程为( ) A.x2-5=5 B.-3x2=0 C.x2+4=0 D.(x+1)2=0 当二次项系数为1,且一次项系数为偶数时,用配方法求解 3.用配方法解方程x2+3=4x,配方后的方程变为( ) A.(x-2)2=7 B.(x+2)2=1 C.(x-2)2=1 D.(x+2)2=2 4.解方程:x2+4x-2=0. 5.已知x2-10x+y2-16y+89=0,求的值. 能化成形如(x+a)(x+b)=0的一元二次方程用因式分解法求解

6.(中考·宁夏)一元二次方程x(x-2)=2-x的根是( ) A.-1 B.0 C.1和2 D.-1和2 7.解下列一元二次方程: (1)x2-2x=0; (2)16x2-9=0; (3)4x2=4x-1. 如果一个一元二次方程易于化为它的一般式,则用公式法求解8.用公式法解一元二次方程x2-=2x,方程的解应是( ) A.x=B.x= C.x=D.x= 9.用公式法解下列方程. (1)3(x2+1)-7x=0; (2)4x2-3x-5=x-2. 选择合适的方法解一元二次方程 10.方程4x2-49=0的解为( ) A.x=B.x=

一元二次方程及解法经典习题及解析

一元二次方程及解法经典习题及解析 知识技能: 一、填空题: 1.下列方程中是一元二次方程的序号是 . 42=x ① 522=+y x ② ③01332=-+x x 052=x ④ 5232=+x x ⑤ 412=+x x ⑥ x x x x x x 2)5(0143223-=+=+-。。。。⑧⑦ 2.已知,关于2的方程12)5(2=-+ax x a 是一元二次方程,则a 3.当=k 时,方程05)3()4(22=+-+-x k x k 不是关于X 的一元二次方程. 4.解一元二次方程的一般方法有 , , , · 5.一元二次方程)0(02=/=++a c bx ax 的求根公式为: . 6.(2004·沈阳市)方程0322=--x x 的根是 . 7.不解方程,判断一元二次方程022632 =+--x x x 的根的情况是 . 8.(2004·锦州市)若关于X 的方程052=++k x x 有实数根,则k 的取值范围是 . 9.已知:当m 时,方程0)2()12(22=-+++m x m x 有实数根. 10.关于x 的方程0)4(2)1(222=++-+k kx x k 的根的情况是 . 二、选择题: 11.(2004·北京市海淀区)若a 的值使得1)2(42 2-+=++x a x x 成立,则a 的值为( ) A .5 8.4 C .3 D .2 12.把方程x x 332-=-化为02=++c bx ax 后,a 、b 、c 的值分别为( ) 3.3.0.--A 3.3.1.--B 3.3.1.-C 3.3.1.--D 13.方程02=+x x 的解是( ) x A .=土1 0.=x B 1,0.21-==x x C 1.=x D

一元二次方程的解法(二)配方法(基础)

一元二次方程的解法(二)配方法—知识讲解(基础) 【学习目标】 1.了解配方法的概念,会用配方法解一元二次方程; 2.掌握运用配方法解一元二次方程的基本步骤; 3.通过用配方法将一元二次方程变形的过程,进一步体会转化的思想方法,并增强数学应用意识和能 力. 【要点梳理】 知识点一、一元二次方程的解法---配方法 1.配方法解一元二次方程: (1)配方法解一元二次方程: 将一元二次方程配成 的形式,再利用直接开平方法求解,这种解一元二次方程的方法叫配方法. (2)配方法解一元二次方程的理论依据是公式: . (3)用配方法解一元二次方程的一般步骤: ①把原方程化为的形式; ②将常数项移到方程的右边;方程两边同时除以二次项的系数,将二次项系数化为1; ③方程两边同时加上一次项系数一半的平方; ④再把方程左边配成一个完全平方式,右边化为一个常数; ⑤若方程右边是非负数,则两边直接开平方,求出方程的解;若右边是一个负数,则判定此方程无实数解. 要点诠释: (1)配方法解一元二次方程的口诀:一除二移三配四开方; (2)配方法关键的一步是“配方”,即在方程两边都加上一次项系数一半的平方. (3)配方法的理论依据是完全平方公式2222()a ab b a b ±+=±. 知识点二、配方法的应用 1.用于比较大小: 在比较大小中的应用,通过作差法最后拆项或添项、配成完全平方,使此差大于零(或小于零)而比较出大小. 2.用于求待定字母的值: 配方法在求值中的应用,将原等式右边变为0,左边配成完全平方式后,再运用非负数的性质求出待定字母的取值. 3.用于求最值: “配方法”在求最大(小)值时的应用,将原式化成一个完全平方式后可求出最值. 4.用于证明: “配方法”在代数证明中有着广泛的应用,我们学习二次函数后还会知道“配方法”在二次函数中也有着广泛的应用. 要点诠释: “配方法”在初中数学中占有非常重要的地位,是恒等变形的重要手段,是研究相等关系,讨论不等关系的常用技巧,是挖掘题目当中隐含条件的有力工具,同学们一定要把它学好. 【典型例题】

专题复习:一元二次方程的五种常用解法(后附答案)【精品】

专题:一元二次方程的5种解法 方法1 形如x2=p(p≥0)或(mx+n)2=p(p≥0)的一元二次方程用直接开平方法求解 1.用直接开平方法解下列方程: (1)9x2=25; (2)x2-√=0; (3)(2t-1)2=9; (4)(x-3)2-9=0. (5)2(x-1)2-18=0. 用直接开平方法解一元二次方程的三个步骤: (1)看:看是否符合x2=p或(mx+n)2=p(p≥0)的形式; (2)化:对于不符合x2=p或(mx+n)2=p(p≥0)形式的方程先化为符合的形式; (3)求:应用平方根的意义,将一元二次方程化为两个一元一次方程求解.

方法2 当二次项系数为1,且一次项系数为偶数时,用配方法求解 2.用配方法解下列方程: (1)x 2-10x+9=0; (2)x 2+2x=2; (3)2x 2-4x+1=0. 3. 用配方法解下列方程: (1)3x 2 +6x -5=0; (2)12 x 2 -6x -7=0; (3)2x 2+7x -4=0. 用配方法解一元二次方程的“五步法” (1)移项:使方程的左边为二次项和一次项,右边为常数项. (2)化1:当方程的二次项系数不为1时,在方程的两边同除以二次项系数,把二次项系数化为1. (3)配方:在方程的两边同时加上一次项系数一半的平方,把原方程化成(x +n)2=p 的形式. (4)开方:若p ≥0,则两边直接开平方得到一元一次方程;若p <0,则原方程无解. (5)求解:解所得到的一元一次方程,求出原方程的解.

方法3 易化成一般形式(二次项系数不为1)时,用公式法求解4.用公式法解方程: (1)x2+3x+1=0; (2)2x2-5x-7=0; (3)(x+1)(x-1)+2(x+3)=8; (4)y2-2√2y+2=0; (5)(x+1)(2x-6)=1; (6)x2+5x+18=3(x+4).

2.2《一元二次方程的解法》专题训练题及答案

湘教版九年级数学上册 第2章 反比例函数 一元二次方程 2.2 一元二次方程的解法 根据平方根的意义解一元二次方程 专题训练题 1.已知x =2是一元二次方程x 2-2mx +4=0的一个解,则m 的值为( ) A .2 B .0 C .0或2 D .0或-2 2.若关于x 的一元二次方程ax 2+bx +c =0有一个根为1,则下列结论正确的是( ) A .a +b +c =1 B .a +b +c =0 C .a -b +c =0 D .a -b +c =1 3.已知m 是一元二次方程x 2-x -1=0的一个根,那么代数式m 2-m 的值等于( ) A .1 B .0 C .-1 D .2 4.已知关于x 的一元二次方程x 2+ax +b =0有一个非零根-b ,则a -b 的值为( ) A .1 B .-1 C .0 D .-2 5.已知关于x 的一元二次方程(x +1)2-m =0有实数根,则m 的取值范围是( ) A .m ≥-34 B .m ≥0 C .m ≥1 D .m ≥2 6.方程x 2-3=0的根是( ) A .x =3 B .x 1=3,x 2=-3 C .x = 3 D .x 1=3,x 2=- 3 7.一元二次方程(x +6)2=16可转化为两个一元一次方程,其中一个一元一次方程是x +6=4,则另一个一元一次方程是( ) A .x -6=-4 B .x -6=4 C .x +6=4 D .x +6=-4 8.方程-4x 2+1=0的解是( ) A .x =12 B .x =-12 C .x =±12 D .x =±2 9.方程(x -4)2=11的根为( ) A .x 1=-4+11,x 2=-4-11 B .x 1=4+11,x 2=4-11 C .x 1=11+4,x 2=11-4 D .x 1=4+11,x 2=-4-11 10.对于形如(x +m )2=n 的方程,它的解的正确表述为( ) A .都能用直接开平方法求解得x =-m ±n B .当n ≥0时,x =m ±n C .当n ≥0时,x =-m ±n D .当n ≥0时,x =±n -m 11.下列方程中,适合用直接开平方法求解的是( ) A .x 2+5x +1=0 B .x 2-6x -4=0 C .(x +3)2=16 D .(x +2)(x -2)=4x 12.方程4x 2-81=0的解为________. 13.解下列方程: (1)16x 2=25; (2)(2x +1)2-1=0.

一元二次方程及一元二次方程的解法测试题(绝对经典)

. 第二章一元二次方程单元测验 一、选择题:(每小题3分,共36分) 1. 下列方程中是一元二次方程的是 ( ) (A )22)1(2-=-x x (B )01232=+-x x (C )042=-x x (D )02352 =-x x 2. 方程1)14(2 =-x 的根为( ) (A )4121==x x (B )2121==x x (C ),01=x 212=x (D ),2 1 1-=x 02=x 3. 解方程 7(8x + 3)=6(8x + 3)2 的最佳方法应选择( ) (A )因式分解法 (B )直接开平方法 (C )配方法 (D )公式法 4. 下列方程中, 有两个不相等的实数根的方程是( ) (A )x 2 –3x + 4=0 (B )x 2–x –3=0 (C )x 2–12x + 36=0 (D )x 2–2x + 3=0 5、已知m是方程012 =--x x 的一个根,则代数m2 -m的值等于 ( ) A 、1 B 、-1 C 、0 D 、2 6、若方程0152 =--x x 的两根为的值为则 、212111,x x x x +( ) A 、5 B 、51 C 、5- D 、5 1- 7. 以知三角形的两边长分别是2和9, 第三边的长是一元二次方程x 2 –14x + 48=0的解, 则这个三角形 的周长是( )(A )11 (B )17 (C )17或19 (D )19 8. 下列说法中正确的是 ( )(A )方程2 80x -=有两个相等的实数根; (B )方程252x x =-没有实数根;(C )如果一元二次方程20ax bx c ++=有两个实数根,那么0?=; (D )如果a c 、异号,那么方程2 0ax bx c ++=有两个不相等的实数根. 9. 若一元二次方程(1–2k)x 2 + 12x –10=0有实数根, 则K 的最大整数值为( ) (A )1 (B )2 (C )–1 (D )0 10.把方程2x 2 -3x+1=0化为(x+a)2 =b 的形式,正确的是( ) A. 23162x ??- = ???; B.2312416x ??-= ???; C. 2 31416x ? ?-= ? ?? ; D.以上都不对 11、 若方程02 =++q px x 的两个实根中只有一个根为0,那么 ( ) (A )0==q p ; (B )0,0≠=q p ; (C )0,0=≠q p ; (D )0,0≠≠q p . 12、下面是李刚同学在一次测验中解答的填空题,其中答对的是 ( ) A . 若x 2=4,则x =2 B .方程x (2x -1)=2x -1的解为x =1 C .若x 2 +2x +k =0有一根为2,则8=-k D .若分式1 2 32-+-x x x 值为零,则x =1,2 二、填空题:(每小题3分,共30分) 1、方程()()-267-x 5x =+,化为一般形式为 ,其中二次项系数和一次项系数的和为 。 2. 当x =________时,分式1 4 32+--x x x 的值为零。 3. 若关于x 的方程02)1(2 =+--m mx x m 有实数根,则m 的取值范围是______ 4.若方程042 2 =++m x x ,则m= . 5.已知0822 =--x x , 那么=--7632 x x _______________. 6. 若关于x 的一元二次方程02 =++c bx ax (a ≠0)的两根分别为1,—2,则b a -的值为______. 7. 若2 2 2 (3)25a b +-=,则22 a b +=____ 8.若一元二次方程02 =++c bx ax 中,024=+-c b a ,则此方程必有一根为________. 9、若两个连续整数的积是20,则他们的和是________。 10.某企业前年的销售额为500万元,今年上升到720万元,如果这两年平均每年增长率相同,则去年销售额为 11. 如果x x 12、是方程x x 2 720-+=的两个根,那么x x 12+=____________。 13. 已知一元二次方程x x 2 350--=的两根分别为x x 12、,那么x x 12 22 +的值是____。 14. 若方程x x k 2 20-+=的两根的倒数和是 8 3 ,则k =____________。 15.已知关于x 的方程(2k+1)x 2 -kx+3=0,当k______时,?方程为一元二次方程,? 当k______时,方程为一元一次方程,其根为______.

一元二次方程及解法归类

寒假培训八年级下数学资料 一、一元二次方程及其相关概念 1、只含有一个未知数(一元),并且未知数的最高次数是2(二次)的方程,叫做一元 二次方程。 2、一元二次方程的一般形式是ax 2+bx+c=0(a,b,c 是已知数且0≠a ),其中ax 2叫做 ________, bx 叫做_______, a 叫做___________系数,b 叫做___________系数,c 叫做_________. 典型例题: 1. 下列方程是一元二次方程的有___________ (1) 215)25(3x x x =-.(2) 035)12(22=---x x ; (3) 2 33432-+x x =0; 【变式练习】下列方程不是一元二次方程的是( ) A. x 2+2x+1=0 B. x 2=1-3x C. +1=0 D. x 2+x=(x+1)(x-2) 2. 方程4x 2=13-2x 化为一般形式为_____________,它的二次项系数是______, 一次项系数是 ________,常数项是______. 【变式练习】把一元二次方程(1-3x )(x+3)=2x 2+1化成一般形式是:______________; 它的二次项系 数是_______;一次项系数是_________; 常数项是_________. 3. ; 4. 当m=______时,关于x 的方程(m-2)x 2+mx=5是一元一次方程;当m______时,关于x 的方程 (m-2)x 2+mx=5是一元二次方程。 【变式练习】已知m 是方程012=--x x 的一个根,则m m -2=( ) A. -1 B. 0 C. 1 D. 2 5. 关于x 的方程01)1(1=+++-kx x k k 是一元二次方程,则k 的值为________ 【变式练习】已知关于x 的一元二次方程01)1(22=-++-k x x k 的一个根是0,则k=_______ 二、直接开平方法 若x 2 =25,由平方根定义可以知:5±=x , 即x 1=5, x 2=-5; 若(2x-1)2=5,那么2x-1=±______, 即2x-1=______, 2x-1=_____; 从而可以得到方程两根为:x 1=______, x 2=_______ 、 解下列方程:(1)1) 3(2=+x (2)18)54(22=-x 三、配方法 用配方法解一元二次方程的一般步骤: ① 化二次项系数为1; ② 移项,使方程左边为二次项和一次项,右边为常数项;

小专题(一)-一元二次方程的解法

专题(一)一元二次方程的解法 1.用直接开平方法解下列方程: (1)x2-16=0;(2)3x2-27=0; (3)(x-2)2=9;(4)(2y-3)2=16. 2.用配方法解下列方程: (1)x2-4x-1=0; (2)2x2-4x-8=0; (3)3x2-6x+4=0; (4)2x2+7x+3=0.

3.用公式法解下列方程: (1)x2-23x+3=0; (2)-3x2+5x+2=0; (3)4x2+3x-2=0; (4)3x=2(x+1)(x-1). 4.用因式分解法解下列方程: (1)x2-3x=0; (2)(x-3)2-9=0;

(3)(3x-2)2+(2-3x)=0; (4)2(t-1)2+8t=0; (5)3x+15=-2x2-10x; (6)x2-3x=(2-x)(x-3). 5.用合适的方法解下列方程: (1)4(x-3)2-25(x-2)2=0; (2)5(x-3)2=x2-9;

(3)t 2-22t +18=0. 参考答案 1.(1)移项,得x 2=16,根据平方根的定义,得x =±4,即x 1=4,x 2=-4. (2)移项,得3x 2=27,两边同除以3,得x 2=9,根据平方根的定义,得x =±3,即x 1=3,x 2=-3. (3)根据平方根的定义,得x -2=±3,即x 1=5,x 2=-1. (4)根据平方根的定义,得2y -3=±4,即y 1=72,y 2=-12. 2.(1)移项,得x 2-4x =1.配方,得x 2-4x +22=1+4,即(x -2)2=5.直接开平方,得x -2=±5,∴x 1=2+5,x 2=2- 5. (2)移项,得2x 2-4x =8.两边都除以2,得x 2-2x =4.配方,得x 2-2x +1=4+1.∴(x -1)2=5.∴x -1=± 5.∴x 1=1+5,x 2=1- 5. (3)移项,得3x 2-6x =-4.二次项系数化为1,得x 2-2x =-43.配方,得x 2-2x +12=-43+12,即(x -1)2=-13.∵ 实数的平方不可能是负数,∴原方程无实数根. (4)移项,得2x 2+7x =-3.方程两边同除以2,得x 2+72x =-32.配方,得x 2+72x +(74)2=-32+(74)2,即(x +74)2=2516. 直接开平方,得x +74=±54.∴x 1=-12,x 2=-3. 3.(1)∵a =1,b =-23,c =3,b 2-4ac =(-23)2-4×1×3=0,∴x =-(-23)±02×1 = 3.∴x 1=x 2= 3. (2)方程的两边同乘-1,得3x 2-5x -2=0.∵a =3,b =-5,c =-2,b 2-4ac =(-5)2-4×3×(-2)=49>0,∴x =-(-5)±492×3=5±76,∴x 1=2,x 2=-13. (3)a =4,b =3,c =--4ac =32-4×4×(-2)=41>=-3±412×4=-3±418.∴x 1=-3+418,x 2=-3-418 . (4)将原方程化为一般形式,得2x 2-3x -2=0.∵a =2,b =-3,c =-2,b 2-4ac =(-3)2-4×2×(- 2)=11>0,∴x =3±1122 =6±224.∴x 1=6+224,x 2=6-224.

一元二次方程的解法归纳总结

一元二次方程综合一元二次方程的解法归纳总结 一元二次方程的解法是每一个中学生都必须掌握的,共有5种解法,其中直接开平方法、因式分解法、配方法和公式法是教材上重点讲解的四种方法,并没有提到换元法,我们在这次归纳总结中给于详细的讲解.另外,还将介绍某些特殊的一元二次方程的解法. 在上面提到的四种解一元二次方程的方法中,直接开平方法是最直接的方法,因式分解法是最简单的方法,配方法是最基本的方法,而公式法是最万能的方法. 我们要根据一元二次方程的特点选择合适的解法,如一元二次方程缺少一次项,选择用直接开平方法求解;一元二次方程缺少常数项,选择用因式分解法(缺常选因)求解. 一、直接开平方法 解形如(≥0)和(≥0)的一元二次方程,用直接开平方法. 用直接开平方法解一元二次方程的一般步骤: (1)把一元二次方程化为(≥0)或(≥0)的形式; (2)直接开平方,把方程转化为两个一元一次方程; (3)分别解这两个一元一次方程,得到一元二次方程的两个解. 注意: (1)直接开平方法是最直接的解一元二次方程的方法,并不适合所有的一元二次方程的求解; (2)对于一元二次方程,当时,方程无解; (3)对于一元二次方程: 当时,一元二次方程有两个不相等的实数根; 当时,一元二次方程有两个相等的实数根; 当时,一元二次方程没有实数根. 例1. 解下列方程: (1); (2). 分析:观察到两个方程的特点,都可以化为(≥0)的形式,所有选择用直接开平方法求解.当一元二次方程缺少一次项时,考虑使用直接开平方法求解.

解:(1) ∴; (2) ∴. 例2. 解下列方程: (1); (2). 分析:观察到两个方程的特点,都可以化为(≥0)的形式,所有选择用直接开平方法求解. 解:(1) ∴或 ∴; (2) ∴ ∴或 ∴. 习题1. 下列方程中,不能用直接开平方法求解的是【】(A)(B) (C)(D) 习题2. 若,则_________.

一元二次方程解法讲义

龙文教育学科教师辅导讲义 课 题 一元二次方程的解法 教学目标 1. 理解一元二次方程及其有关概念 2. 会解一元二次方程,并能熟练运用四种方法去解 重点、难点 1. 一元二次方程的判定,求根公式 2. 一元二次方程的解法与应用 考点及考试要求 1. 一元二次方程的定义,一般形式,配方式 2. 熟练一元二次方程的解法能灵活运用:直接开平法,配方法.,因式分解,公式法去 3. 一元二次方程在实际问题中的综合应用 教学内容 考点一、概念 (1)定义:①只含有一个未知数........,并且②未知数的最高次数是.........2.,这样的③ 整式方程.... 就是一元二次方程。 (2)一般表达式:)0(02≠=++a c bx ax 注:当b=0时可化为02=+c ax 这是一元二次方程的配方式 (3)四个特点:(1)只含有一个未知数;(2)且未知数次数最高次数是2;(3)是整式方程.要判断一个方程是否为一元二次方程,先看它是否为整式方程,若是,再对它进行整理.如果能整理为)0(02≠=++a c bx ax 的形式,则这个方程就为一元二次方程. (4)将方程化为一般形式: 2 =++c bx ax 时,应满足(a≠0) (4)难点:如何理解 “未知数的最高次数是2”: ①该项系数不为“0”; ②未知数指数为“2”; ③若存在某项指数为待定系数,或系数也有待定,则需建立方程或不等式加以讨论。 典型例题: 例1、下列方程中是关于x 的一元二次方程的是( ) A ()()12132 +=+x x B 02112 =-+ x x C 0 2 =++c bx ax D 1222+=+x x x 变式:当k 时,关于x 的方程3222+=+x x kx 是一元二次方程。 例2、方程()0132=+++mx x m m 是关于x 的一元二次方程,则m 的值为 。

专题:一元二次方程的八种解法(后附答案)【精品】

专题:一元二次方程的八种解法 方法1 形如x2=p或(mx+n)2=p(p≥0)时,用直接开平方法求解用直接开平方法解一元二次方程的三个步骤: (1)看:看是否符合x2=p或(mx+n)2=p(p≥0)的形式; (2)化:对于不符合x2=p或(mx+n)2=p(p≥0)形式的方程先化为符合的形式; (3)求:应用平方根的意义,将一元二次方程化为两个一元一次方程求解. 1.用直接开平方法解下列方程: (1)x2-25=0; (2)4x2=1; (3)81x2-25=0; (4)(2y-3)2-64=0; (5)3(x+1)2=1 3 ; (6)(3x+2)2=25; (7)(x+1)2-4=0; (8)(2-x)2-9=0.

方法2 当二次项系数为1,且一次项系数为偶数时,用配方法求解用配方法解一元二次方程的“五步法” (1)移项:使方程的左边为二次项和一次项,右边为常数项. (2)化1:当方程的二次项系数不为1时,在方程的两边同除以二次项系数,把二次项系数化为1. (3)配方:在方程的两边同时加上一次项系数一半的平方,把原方程化成(x+n)2=p的形式. (4)开方:若p≥0,则两边直接开平方得到一元一次方程;若p<0,则原方程无解. (5)求解:解所得到的一元一次方程,求出原方程的解. 2.用配方法解下列方程: (1)x2-2x-2=0; (2)x2-10x+29=0; (3)x2+2x=2; (4)x2-6x+1=2x-15;

3.用配方法解下列方程: (1)3x 2 +6x -5=0; (2)12 x 2-6x -7=0. (3)x 2 +16x -13=0; (4)2x 2-3x -6=0; 方法3 能化成形如(x+a )(x+b )=0时,用因式分解法求解 用因式分解法解一元二次方程的“四步法” (“右化零,左分解,两因式,各求解”) 4.用因式分解法解下列方程: (1)x 2-8x =0; (2)5x 2+20x +20=0;

一元二次方程及其解法

第2课时 一元二次方程及其解法 一·基本概念理解 1 一元二次方程的定义: 含有一个未知数,并且未知数的最高次数是2的整式方程叫做一元二次方程。一元二次方程的一般形式:)0(02≠=++a c bx ax ,它的特征是:等式左边加一个关于未知数x 的二次多项式,等式右边是零,其中2 ax 叫做二次项,a 叫做二次项系数;bx 叫做一次项,b 叫做一次项系数;c 叫做常数项。 2、一元二次方程的解法 (1)、直接开平方法: 利用平方根的定义直接开平方求一元二次方程的解的方法叫做直接开平方法。 直接开平方法适用于解形如 b a x =+2 )(的一元二次方程。根据平方根的定义可知,a x +是b 的平方根,当0≥b 时,b a x ±=+,b a x ±-=,当b<0时,方程没有实数根。 (2)、配方法: 配方法的理论根据是完全平方公式2 22)(2b a b ab a +=+±,把公式中的a 看做未知数x ,并用x 代替,则有2 22)(2b x b bx x ±=+±。 配方法的步骤:先把常数项移到方程的右边,再把二次项的系数化为1,再同时加上1次项的系数的一半的平方,最后配成完全平方公式 (3)、公式法 公式法是用求根公式解一元二次方程的解的方法,它是解一元二次方程的一般方法。 一元二次方程 )0(02 ≠=++a c bx ax 的求根公式:

) 04(2422≥--±-=ac b a ac b b x 公式法的步骤:就把一元二次方程的各系数分别代入,这里二次项的系数为a ,一次项的系数为b ,常数项的系数为c (4)、因式分解法 因式分解法就是利用因式分解的手段,求出方程的解的方法,这种方法简单易行,是解一元二次方程最常用的方法。 分解因式法的步骤:把方程右边化为0,然后看看是否能用提取公因式,公式法(这里指的是分解因式中的公式法)或十字相乘,如果可以,就可以化为乘积的形式 (5)、韦达定理 若1x ,2x 是一元二次方程的一般形式:)0(02≠=++a c bx ax 的两个实数根,则 a b x x -=+21,a c x x =21。以上的就称为韦达定理(或称为根与系数的关系)利用 韦达定理去了解,韦达定理就是在一元二次方程中,二根之和=a b -,二根之积 =a c 也可以表示为a b x x -=+21,a c x x =21。利用韦达定理,可以求出一元二次方程中的各系数,在题目中很常用 3、一元二次方程根的判别式 根的判别式 一元二次方程)0(02≠=++a c bx ax 中,ac b 42 -叫做一元二次方程 )0(02≠=++a c bx ax 的根的判别式,通常用“?”来表示,即ac b 42-=?

一元二次方程的解法(消元)

消元一二元一次方程组的解法(四)教案 一、教学目标 1、知识与技能:熟练掌握代入消元法和加减消元法。 2、过程与方法:能根据方程组的特点选择合适的消元方法解方程组。 3、情感态度价值观:通过分析实际问题中的数量关系,建立方程组解决问题,进一步认识方程模型的重要性。 二、教学重难点 重点:能根据方程组的特点选择合适的方法解方程组。 难点:实际问题中的数量关系较复杂是本节课难点。 三、教学过程 (一)复习、引入课题 复习:解二元一次方程有多少种解法?共同点是什么?目的是什么? 引入:接下来继续深入探讨二元一次方程组的解法。 (二)探索新知 (1)解方程组 引导学生通过消y 与消x ,尝试不同的解法,培养学生发散思维,然后让学生归纳这样类型的二元一次方程组的解法。 小结1:当方程中同一个未知数的系数相等或相反时,用加减消元法较简便。 (2)请选择适当的方法解下列方程组: ① ② ③ 2x-2y=60 (2) 2x+2y=100 (1) 3.2x+2.4y=5.2 2x+y=1.5 4x+8y=12 3x-2y=5 5x-4y=2 2x+3y=10

通过这三个方程组的讨论,归纳出方程系数具有什么特征时选择什么消元法。 小结2:当方程组中有一个未知数的系数是1或-1时,用代入消元法较简便。 小结3:当两个方程中同一个未知数的系数成整倍数时,用加减消元法较简便。 小结4:当方程组中任何未知数的系数不是1或-1,是不成整倍数时,一般经过变形后利用加减消元法较简便。 老师小结:解二元一次方程组不管采用哪种方法,都可以获得它的解,但根据题目形式的特点,选择恰当的方法可以减少走弯路,加快解题速度,使解题过程简洁,提高正确率。 (三)实际应用 例(教材104页):2台大收割机和5台小收割机工作2小时收割小麦3.6公顷,3台大收割机和2台小收割机工作5小时收割小麦8公顷,1台大收割机和1台小收割机1小时各收割小麦多少公顷? 通过分步提问,引导学生分析 问题1:列方程组解应用题的关键是什么? 问题2:你能找出本题的等量关系吗? 问题3:怎么表示2台大收割机2小时的工作量呢 设:如果1台大收割机1小时收割小麦X公顷,1台小收割机1小时收割小麦Y公顷。 那么2台大收割机2小时收割小麦()公顷,5台小收割机2小时收割小麦()公顷。 根据“2台大收割机2小时的工作量+5台小收割机2小时的工作量=3.6公顷”可列方程: 4x+10y=3.6

九年级数学上册小专题(一) 一元二次方程的解法

编号:954555300022221782598333158 学校:战神市白虎镇禳灾村小学* 教师:战虎禳* 班级:战神参班* 专题(一)一元二次方程的解法 1.用直接开平方法解下列方程: (1)x2-16=0; (2)3x2-27=0; (3)(x-2)2=9; (4)(2y-3)2=16. 2.用配方法解下列方程: (1)x2-4x-1=0; (2)2x2-4x-8=0;

(3)3x2-6x+4=0; (4)2x2+7x+3=0. 3.用公式法解下列方程: (1)x2-23x+3=0; (2)-3x2+5x+2=0; (3)4x2+3x-2=0; (4)3x=2(x+1)(x-1).

4.用因式分解法解下列方程: (1)x2-3x=0; (2)(x-3)2-9=0; (3)(3x-2)2+(2-3x)=0; (4)2(t-1)2+8t=0; (5)3x+15=-2x2-10x; (6)x2-3x=(2-x)(x-3). 5.用合适的方法解下列方程: (1)4(x-3)2-25(x-2)2=0;

(2)5(x -3)2=x 2-9; (3)t 2- 22t +18 =0. 参考答案 1.(1)移项,得x 2=16,根据平方根的定义,得x =±4,即x 1=4,x 2=-4. (2)移项,得3x 2=27,两边同除以3,得x 2=9,根据平方根的定义,得x =±3,即x 1=3,x 2=-3. (3)根据平方根的定义,得x -2=±3,即x 1=5,x 2=-1. (4)根据平方根的定义,得2y -3=±4,即y 1=72,y 2=-12 . 2.(1)移项,得x 2-4x =1.配方,得x 2-4x +22=1+4,即(x -2)2=5.直接开平方,得x -2=±5,∴x 1=2+5,x 2=2- 5. (2)移项,得2x 2-4x =8.两边都除以2,得x 2-2x =4.配方,得x 2-2x +1=4+1.∴(x -1)2=5.∴x -1=±5.∴x 1=1+5,x 2=1- 5. (3)移项,得3x 2-6x =-4.二次项系数化为1,得x 2-2x =-43.配方,得x 2-2x +12=-43+12,即(x -1)2=-13 .∵实数的平方不可能是负数,∴原方程无实数根. (4)移项,得2x 2+7x =-3.方程两边同除以2,得x 2+72x =-32.配方,得x 2+72x +(74)2=-32+(74)2,即(x +74)2=2516 .直接开平方,得x +74=±54.∴x 1=-12 ,x 2=-3. 3.(1)∵a =1,b =-23,c =3,b 2-4ac =(-23)2-4×1×3=0,∴x =-(-23)±02×1= 3.∴x 1=x 2= 3. (2)方程的两边同乘-1,得3x 2-5x -2=0.∵a =3,b =-5,c =-2,b 2-4ac =(-5)2-4×3×(-2)=49>0,∴x =-(-5)±492×3 =5±76,∴x 1=2,x 2=-13. (3)a =4,b =3,c =-2.b 2-4ac =32-4×4×(-2)=41>0.x =-3±412×4 =-3±418.∴x 1=-3+418,x 2=-3-418. (4)将原方程化为一般形式,得2x 2-3x -2=0.∵a =2,b =-3,c =-2,b 2-4ac =(-3)2-4×2×(- 2)=11>0,∴x =3±1122 =6±224.∴x 1=6+224,x 2=6-224.

23.2.5一元二次方程的解法(五)应用题1 学案

23.2.5《一元二次方程的解法》学案(5) 学习目标: 1、使学生能根据量之间的关系,列出一元二次方程的应用题。 2、提高学生分析问题、解决问题的能力。 3、培养学生数学应用的意识。 学习重难点: 认真审题,分析题中数量关系,适当设未知数,寻找等量关系,列出方程是本节课的重点,也是难点。 学习过程: 一、课前预习: 1、叙述列一元一次方程解应用题的步骤。 2、一元二次方程有哪些解法 3、用多种方法解方程22 -=++ (31)69 x x x 二、课上探究: 自主探究: 绿苑小区规划设计时,准备在每两幢楼房之间,安排面积为900平方米的一块长方形绿地,并且长比宽多10米,那么绿地的长和宽各为多少? 解:设宽为x米,可列出方程 解出方程: 合作交流: 列一元二次方程解应用题的步骤: 。 (鼓励用自己的语言总结出解题步骤。) 自主学习: 例1.如图,一块长和宽分别为60厘米和40厘米的长方形铁皮,要在它的四角截去四个相等的小正方形,折成一个无盖的长方体水槽,使它的底面积为800平方米.求截去正方形的边长。 分析:设截去正方形的边长x厘米,底面(图中虚线线部分)长等于 厘米,宽等于厘米,S底面= 。 请同学们自己列出方程并解这个方程,讨论它的解是否符合题意。

精讲点拨: 注意:检验方程的解是否符合题意。 自主学习: 例2:学校生物小组有一块长32m,宽20m的矩形试验田,为了管理方便,准备沿平行于两边的方向纵、横各开辟一条等宽的小道.要使种植面积为5402 m, 小道的宽应是多少? 解: 精讲点拨: 要注意分析题意,抓住主要的数量关系,列出方程,把实际问题转化为数学问题来解决。求得方程的根之后,要注意检验是否符合题意,然后得到原问题的解答 自主探究: 思考:是否还有其它的办法解决问题? 合作交流: 通过本节课的学习你有什么收获?在二次根式的化简时注意什么问题? 当堂检测: A组 1、用一块长80cm、宽60cm的薄钢片,在四个角上截去四个相同的边长为xcm的小正方形,然后做成底面积为1500cm的无盖长方体盒子。为求出x,根据题意,列方程并整理得() A、x2-70x+825=0 B、x2+70x-825=0 C、x2-70x-825=0 D、x2+70x+825=0 2、要用一条长为24cm的铁丝围成一个斜边长为10cm的直角三角形,则两条直角边的长分别为() A、4cm,8cm B、6cm,8cm C、4cm,10cm D、7cm,7cm

201x版中考数学专题复习 专题二(11-1)一元二次方程的解法学案

2019版中考数学专题复习 专题二(11-1)一元二次方程的解法学 案 【学习目标】 掌握了解一元二次方程的四种方法以及各种解法的特点,会根据不同方程的特点选用恰当的方法,从而准确、快速地解一元二次方程. 【重点难点】 重点:掌握一元二次方程的四种解法及各种解法的特点. 难点:选择适当的方法解一元二次方程. 【知识回顾】 一.回顾练习 1.下列方程中,是一元二次方程的是( ) A.x 2 -1 =(x +2)2 B.(a -1)x 2+bx +c =0 C.3(x +1) 2=2x 2-5 D.2430x x +-= 2.方程2x -9=0的解是( ) A.x =3 B. x = -2 C.x =4.5 D.3x =± 3.用配方法解方程2420x x -+=,下列配方正确的是( ) A.2(2)2x -= B.2(2)2x += C.2(2)2x -=- D .2 (2)6x -= 4.解一元二次方程5x (x -3)=3(x -3),最简单的方法是( ) A.配方法 B.公式法 C .因式分解法 D.都行 5. 方程x 2-4x +4=0根的情况是( ) A.两个不相等的实数根 B.两个相等的实数根 C.只有一个实数根 D.没有实数根 6.若一元二次方程02=++c bx ax 的两实数根为x 1 、x 2,则有x 1 +x 2= ,x 1 ·x 2= 7.解方程. (1) 422=x (2)0542 =--x x 【综合运用】 1.若关于x 的一元二次方程kx 2+4x +4=0有两个实数根,则k 的取值是

2.已知m 是方程x 2-x -2=0的一个根,那么代数式m 2-m = . 3.你认为下列方程选择怎样的方法比较合适. (1) 5x 2-45=0 (2)x 2+2x -1=0 (3)3x 2=2x (4)x 2 -2x +2 1=0 4.当m 时,方程mx 2-3x =2x 2-mx +2 是一元二次方程. 当m___时,方程(m 2- 4)x 2-(m +2)x -3=0是一元一次方程. 5.用配方法证明,不论x 取任何实数时,代数式x 2-5x+7的值总大于0,再求出当x 取何值时,代数式的值最小?最小值是多少? 6.已知关于x 的一元二次方程 01)12()2(22=+++-x m x m 有两个不相等的实数根,则m 的取值范围是( ) A.43> m B .43≥m C .43>m 且2≠m D .4 3≥m 且2≠m | 7.若(x 2+y 2)2-4(x 2+y 2)-5=0, 则x 2+y 2=___ 8.解方程 (1) (x -2)(3x -5)=1 (2)4222 +=+x x )( 【直击中考】 1.方程(m +1)122--m m x +7x -m =0是一元二次方程,则m = . 2.若关于x 的一元二次方程(m-1)x 2+5x +m 2-3m +2=0的常数项为0,则m 等于( ) A.1 B.2 C.1或2 D.0 3.三角形两边长分别是6和8,第三边长是x 2-16x +60=0的一个实数根,求该三角形的第三条边长和周长.

相关主题
文本预览
相关文档 最新文档