当前位置:文档之家› 1_4无穷小无穷大 极限运算法则

1_4无穷小无穷大 极限运算法则

函数极限及运算法则

教学目标:掌握函数极限的运算法则,并会求简单的函数的极限 教学重点:运用函数极限的运算法则求极限 教学难点:函数极限法则的运用 教学过程: 一、引入: 一些简单函数可从变化趋势找出它们的极限,如o x x x x x x o ==→∞→lim ,01 lim .若求极限的函数比较复杂,就要分析已知函数是由哪些简单函数经过怎样的运算结合而成的,已知函数 的极限与这些简单函数的极限有什么关系,这样就能把复杂函数的极限计算转化为简单函数的极限的计算. 二 、新课讲授 对于函数极限有如下的运算法则: 限,分别等于这两个函数的极限的和、差、积、商(作为除数的函数的极限不能为0). 说明:当C 是常数,n 是正整数时,)(lim )]([lim x f C x Cf o o x x x x →→= n x x n x x x f x f o o )](lim [)]([lim →→= 这些法则对于∞→x 的情况仍然适用. 三 典例剖析 例1 求)3(lim 2 2 x x x +→ 例2 求1 1 2lim 231++-→x x x x 例3 求4 16 lim 24--→x x x 分析:当4→x 时,分母的极限是0,不能直接运用上面的极限运用法则.注意函数

4 162--=x x y 在定义域4≠x 内,可以将分子、分母约去公因式4-x 后变成4+x ,由此即 可求出函数的极限. 例4 求1 3 3lim 22++-∞→x x x x 分析:当∞→x 时,分子、分母都没有极限,不能直接运用上面的商的极限运算法则.如果分子、分母都除以2 x ,所得到的分子、分母都有极限,就可以用商的极限运用法则计算。 总结:),(lim ,lim * N k x x C C k o k x x x x o o ∈==→→ )(01lim ,lim * N k x C C k x x ∈==∞→∞ → 例5 求1 34 2lim 232+--+∞→x x x x x 分析:同例4一样,不能直接用法则求极限. 如果分子、分母都除以3 x ,就可以运用法则计算了。 四 课堂练习(利用函数的极限法则求下列函数极限) (1))32(lim 2 1-→ x x ; (2))132(lim 2 2 +-→x x x (3))]3)(12[(lim 4 +-→x x x ; (4)1431 2lim 221-++→x x x x (5)11lim 21+--→x x x (6)9 6 5lim 223-+-→x x x x (7)13322lim 232+--+∞→x x x x x (8)5 2lim 32--∞→y y y y 五 小结

极限四则运算法则

极限四则运算法则 由极限定义来求极限是不可取的,也是不行的,因此需寻求一些方法来求极限。 定理1:若B x g A x f ==)(lim ,)(lim ,则)]()(lim[x g x f ±存在,且 )(lim )(lim )]()(lim[x g x f B A x g x f ±=±=±。 证明: 只证B A x g x f +=+)]()(lim[,过程为0x x →,对0,01>?>?δε,当 100δ<-?δ,当2 00δ<-

极限的四则运算教案(1)

2.4 极限的四则运算(一) 古浪五中---姚祺鹏 【教学目标】 (一)知识与技能 1.掌握函数极限四则运算法则; 2.会用极限四则运算法则求较复杂函数的极限; 3.提高问题的转化能力,体会事物之间的联系与转化的关系; (二)过程与方法 1.掌握极限的四则运算法则,并能使用它求一些复杂数列的极限. 2.从函数极限联想到数列极限,从“一般”到“特殊”. (三)情态与价值观 1.培养学习进行类比的数学思想 2.培养学习总结、归纳的能力,学会从“一般”到“特殊”,从“特殊”到“一般”转化的思想.同时培养学生的创新精神,加强学生的的实践能力。 (四)高考阐释: 高考对极限的考察以选择题和填空题为主,考察基本运算,此类题目的特点在于需要进行巧妙的恒等变形,立足课本基础知识和基本方法 【教学重点与难点】 重点:掌握函数极限的四则运算法则; 难点:难点是运算法则的应用(会分析已知函数由哪些基本函数经过怎样的运算结合而成的). 【教学过程】 1.提问复习,引入新课 对简单函数,我们可以根据它的图象或通过分析函数值的变化趋势直接写出它们的极

限.如 1lim ,2121lim 1 1==→→x x x x . 让学生求下列极限: (1)x x 1lim →; (2)x x 21lim 1→; (3))12(lim 21+→x x ; (4)x x 2lim 1→ 对于复杂一点的函数,如何求极限呢?例如计算??? ? ?+→x x x 21lim 1即x x x 212lim 21+→,显然通过画图或分析函数值的变化趋势找出它的极限值是不方便的.因此、我们有必要探讨有关极限的运算法则,通过法则,把求复杂函数的极限问题转化为求简单函数的极限. 板书课题:极限的四则运算. 2.特殊探路,发现规律 考察x x x 212lim 21+→完成下表: 根据计算(用计算器)和极限概念,得出2 3212lim 21=+→x x x ,与1lim 2121lim 11==→→x x x x 、 对比发现:2321121lim lim 21lim 212lim 11121=+=+=??? ? ?+=+→→→→x x x x x x x x x x . 由此得出一般结论:函数极限的四则运算法则: 如果b x g a x f x x x x ==→→)(lim ,)(lim 0 0,那么 []b a x g x f x x ±=±→)()(lim 0 []b a x g x f x x ?=?→)()(lim 0 )0()()(lim 0≠=??????→b b a x g x f x x 特别地:(1)[])(lim )(lim 0 0x f C x f C x x x x →→?=?(C 为常数) (2)[])N ()(lim )(lim *00∈??????=→→n x f x f n x x n x x

无穷大量与无穷小量极限的运算法则

第五讲 Ⅰ 授课题目: §2.4无穷大量与无穷小量;§2.5极限的运算法则。 Ⅱ 教学目的与要求: 1、理解无穷大与无穷小的概念,弄清无穷大与无穷小的关系; 2、掌握极限的运算法则。 Ⅲ 教学重点与难点: 1、无穷大与无穷小的概念、相互关系; 2、用极限的运算法则求极限。 Ⅳ 讲授内容: §2.4无穷大量与无穷小量 一、无穷大的概念: 引例:讨论函数 1 1 )(-==x x f y ,当 1→x 时的变化趋势。 当 1→x 时, 1 1 -x 越来越大(任意大),即:+∈?R E ,要 E x >-11?E x 1 1<-, 也即:+∈?R E ,01>?E ,当 E x 1 1<-时,有: E x >-11。 定义2.9:+∈?R E ,变量y 在其变化过程中,总有一时刻,在那个时刻以后,E y >成立,则称变量y 是无穷大量,或称变量y 趋于无穷大,记:∞=y lim 。 如:∞=-→11 lim 1 x x ,-∞=+→x x lg lim 0,+∞=-→ tgx x 2 lim π。 注 1. 若:∞=y lim ,则习惯地称此时)(x f y =的极限为无穷(大); 2.无穷大不能与很大的数混淆; 3.无穷大与无界变量的区别; 例如:x x f y sin 1 )(= = 当)2,1,0(,ΛΛ±±==k k x π时,∞→)(x f ,无界,但非无穷大,πk x ≠Θ时,)(x f 为有限数。 例1 函数 ?),(cos 内是否有界在+∞-∞=x x y 又当 +∞→x 时,此函数是否为无穷大?为什么? 解 用反证法

若:当+∞→x 时,x x y cos =非无穷大, )1(,cos ,,0,0M x x X x X M >>>?>?有时当则,取2 2π π+ =n x n ,当n 充分大时 必有X x n >,而 0cos =n n x x 与(1)式矛盾。 ∴ +∞→x 时,x x y cos =,非无穷大。 4.无穷大运算的结论: (1)有界变量与无穷大量之和是无穷大量; (2)两个无穷大量之积是无穷大量; (3)有限个无穷大量之积是无穷大量。 二、无穷小量: 1.概念: 定义2.10 以零为极限的变量称为无穷小量。 例如:021lim =∞→n n ,则称 ∞→n 时,变量 n n y 21 =是无穷小量。 注 无穷小量非很小的数,但零是可作为无穷小量的唯一的数。 2.两个重要结论: 结论1 定理2.9 A y =lim ,?α+=A y ,0lim =α。 例如: ?56lim =+∞→x x x ,Θx x x 5656+=+,而:05lim =∞→x x ,∴65 6lim =+∞→x x x 。 结论2 定理2.10 若:0lim =α,且:0,>≤M M y ,?0lim =y α 推论 若:C 为常数,0lim =α?0lim =αC 。 例如:?1 sin lim 0=→x x x 0lim 0=→x x Θ,11sin ≤x ,∴01 sin lim 0=→x x x 。 三、无穷大量与无穷小量的关系: 定理2.11 若:∞=y lim ,? 01lim =y ;若:)0(,0lim ≠=αα?∞=α 1 lim 。 例如:∞=+∞ →x x e lim ,? 01 lim =+∞→x x e 。 注 无穷大、无穷小与极限过程有关。 四、无穷小的阶(无穷小的比较): 1.概念: 定义2.11 设βα,是关于同一过程的无穷小,α β lim 也是关于同一过程的极限, 若:0lim =α β ,则称β是比α较高阶的无穷小,记:)(αβο=;

数列极限四则运算法则的证明

数列极限四则运算法则的证明 设limAn=A,limBn=B,则有 法则1:lim(A n+B n)=A+B 法则2:lim(An-Bn)=A-B 法则3:lim(An ? Bn)=AB 法则4:lim(An/Bn)=A/B. 法则5:lim(An的k次方)=A的k次方(k是正整数) (n T+R的符号就先省略了,反正都知道怎么回事.) 首先必须知道极限的定义: 如果数列{Xn}和常数A有以下关系:对于?£> 0(不论它多么小),总存在正数N,使得对于满足n > N的一切Xn,不等式|Xn-A| v &都成立, 则称常数A是数列{Xn}的极限,记作limXn=A. 根据这个定义,首先容易证明:引理1: limC=C.(即常数列的极限等于其本身) 法则1的证明: ?/ limAn=A,二对任意正数 &存在正整数N?,使n > N?时恒有|An-A| v&①(极限定义)同理对同一正数&存在正整数N?,使n>N?时恒有|Bn-B| v 设N=max{N ?,N?},由上可知当n > N时①②两式全都成立. 此时|(An+Bn)-(A+B)|=|An-A)+(Bn-B)| < |An-A|+|Bn-B| v & + & =2 &. 由于&是任意正数,所以2&也是任意正数. 即:对任意正数2 &存在正整数N,使n > N时恒有|(An+Bn)-(A+B)| v 2 &. 由极限定义可知,lim(An+Bn)=A+B. 即:对任意正数C&存在正整数N,使n > N时恒有|C ? An-CA|v C&. 由极限定义可知,lim(C ? An)=C?A若C=0的话更好证) 法则2的证明: lim(A n-B n) =limA n+lim(-B n)(法则1) =limAn+(-1)limBn (引理2) =A-B. 为了证明法则3,再证明1个引理. 引理3:若limAn=0,limBn=0,则lim(An ? Bn)=0. 证明:?/ limAn=0,二对任意正数 &存在正整数N?,使n>N?时恒有|An-0| v &③(极限定义)同理对同一

(完整版)极限四则运算法则.doc

极限四则运算法则 由极限定义来求极限是不可取的,也是不行的,因此需寻求一些方法来求极限。 定理 1:若lim f (x) A,lim g (x) B ,则 lim[ f ( x) g (x)] 存在,且 lim[ f ( x) g ( x)] A B lim f (x) lim g( x) 。 证明:只证 lim[ f ( x) g ( x)] A B ,过程为 x x0,对0, 1 0 ,当 0 x x0 1时,有 f (x) A ,对此, 2 0 ,当0 x x0 2 2 时,有 g ( x) B ,取min{ 1 , 2 } ,当0 x x0 时,有 2 ( f ( x) g( x)) ( A B) ( f (x) A) ( g( x) B) f ( x) A g( x) B 2 2 所以 lim ( f ( x) g( x)) A B 。 x x0 其它情况类似可证。 注:本定理可推广到有限个函数的情形。 定理 2:若lim f (x)A,lim g(x) B ,则 lim f ( x) g( x) 存在,且 lim f (x) g( x) AB lim f ( x) lim g( x) 。 证明:因为 lim f ( x) A, lim g( x) B , f ( x) A, g (x) B, (,均为无穷小) f ( x) g(x) ( A)( B) AB ( A B) ,记 A B,为无穷小,lim f ( x) g(x) A B 。 推论 1:lim[ cf ( x)]clim f ( x) ( c 为常数)。 推论 2:lim[ f ( x)]n[lim f ( x)] n( n 为正整数)。 定理 3:设lim f ( x) A, lim g( x) B 0 ,则 lim f ( x) A lim f ( x) 。 g( x) B lim g (x) 证明:设 f ( x) A, g(x) B(,为无穷小),考虑差:

高中数学教案:极限与导数函数极限的运算法则

函数极限的运算法则(4月30日) 教学目标:掌握函数极限的运算法则,并会求简单的函数的极限 教学重点:运用函数极限的运算法则求极限 教学难点:函数极限法则的运用 教学过程: 一、引入: 一些简单函数可从变化趋势找出它们的极限,如o x x x x x x o ==→∞→lim ,01lim .若求极限的函数比较复杂,就要分析已知函数是由哪些简单函数经过怎样的运算结合而成的,已知函数的极限与这些简单函数的极限有什么关系,这样就能把复杂函数的极限计算转化为简单函数的极限的计算. 二 、新课讲授 限,分别等于这两个函数的极限的和、差、积、商(作为除数的函数的极限不能为0). 说明:当C 是常数,n 是正整数时,)(lim )]([lim x f C x Cf o o x x x x →→= n x x n x x x f x f o o )](lim [)]([lim →→= 这些法则对于∞→x 的情况仍然适用. 三 典例剖析 例1 求)3(lim 2 2x x x +→

例2 求1 12lim 231++-→x x x x 例3 求4 16lim 24--→x x x 分析:当4→x 时,分母的极限是0,不能直接运用上面的极限运用法则.注意函数 4 162--=x x y 在定义域4≠x 内,可以将分子、分母约去公因式4-x 后变成4+x ,由此即可求出函数的极限. 例4 求1 33lim 22++-∞→x x x x 分析:当∞→x 时,分子、分母都没有极限,不能直接运用上面的商的极限运算法则.如果分子、分母都除以2 x ,所得到的分子、分母都有极限,就可以用商的极限运用法则计算。 总结:),(lim ,lim *N k x x C C k o k x x x x o o ∈==→→ )(01lim ,lim *N k x C C k x x ∈==∞→∞→

第二章极限习题及答案:极限的四则运算

分类讨论求极限 例 已知数列{}n a 、{}n b 都是由正数组成的等比数列,公比分别为q p ,,其中q p >,且1≠p ,1≠q ,设n n n b a c +=,n S 为数列{}n C 的前n 项和,求1lim -∞→n n n S S . (1997年全国高考试题,理科难度0.33) 解: ()() 1 1 1111--+--=q q b p p a S n n n ()( )()() ()( )()( ) 1 1111 1111111111--+----+--= ---n n n n n n q p b p q a q p b p q a S S . 分两种情况讨论; (1)当1>p 时,∵ 0>>q p ,故10<< p q , ∴1 lim -∞→n n n S S ()()()()????? ? ?????????????????? ??--+???? ??--?????????? ??--+???? ??-------1111111111111111111lim n n n n n n n n n n p p q p b p q a p p p q p b p q a p ()()()()()()010110 10111111?-+--?-+--? =p b q a p b q a p ()() p q a q a p =--? =1111 (2)当1

《函数极限的运算法则》教案(优质课)

《函数极限的运算法则》教案 【教学目标】:掌握函数极限的运算法则,并会求简单的函数的极限 【教学重点】:运用函数极限的运算法则求极限 【教学难点】:函数极限法则的运用 【教学过程】: 一、引入: 一些简单函数可从变化趋势找出它们的极限,如o x x x x x x o ==→∞→lim ,01 lim .若求极限的函数比较复杂,就要分析已知函数是由哪些简单函数经过怎样的运算结合而成的,已知函数的极限与这些简单函数的极限有什么关系,这样就能把复杂函数的极限计算转化为简单函数的极限的计算. 二 、新课讲授 对于函数极限有如下的运算法则: 也就是说,如果两个函数都有极限,那么这两个函数的和、差、积、商组

成的函数极限,分别等于这两个函数的极限的和、差、积、商(作为除数的函数的极限不能为0). 说明:当C 是常数,n 是正整数时,)(lim )]([lim x f C x Cf o o x x x x →→= n x x n x x x f x f o o )](lim [)]([lim →→= 这些法则对于∞→x 的情况仍然适用. 三 典例剖析 例1 求)3(lim 22 x x x +→ 例2 求1 1 2lim 231++-→x x x x 例3 求4 16 lim 24--→x x x 分析:当4→x 时,分母的极限是0,不能直接运用上面的极限运用法则.

注意函数4 16 2--=x x y 在定义域4≠x 内,可以将分子、分母约去公因式4-x 后变 成4+x ,由此即可求出函数的极限. 例4 求1 3 3lim 22++-∞→x x x x 分析:当∞→x 时,分子、分母都没有极限,不能直接运用上面的商的极限运算法则.如果分子、分母都除以2x ,所得到的分子、分母都有极限,就可以用商的极限运用法则计算。 总结:),(lim ,lim *N k x x C C k o k x x x x o o ∈==→→ )(01lim ,lim * N k x C C k x x ∈==∞→∞ →

§1-2 函数极限的运算规则

第1章 函数的极限和连续函数 8 §1-2 函数极限的运算规则·单调有界原理 1.极限的运算规则 记号“(,)x c c c -+→”和“(,)x →∞+∞-∞”都称为极限过程.若把它们统一地表示成“x →?”,则各种形式的函数极限,都具有像数列极限那样的运算 规则.要证明它们,也属于高等微积分(证明在第二篇中). 设在同一个极限过程中,有极限)(lim x f x ? →和)(lim x g x ? →. ⑴ lim[()]lim ()x x c f x c f x →? →? =(c 为常数); (齐次性) ⑵ lim[()()]lim ()lim ()x x x f x g x f x g x →? →? →? ±=±; (可加性) ⑶ lim[()()]lim ()lim ()x x x f x g x f x g x →? →? →? =?; (乘积的极限等于极限的乘积) ⑷ lim ()()lim lim ()0()lim () x x x x f x f x g x g x g x →? →?→?→? ??=≠???? ; (商的极限等于极限的商) ⑸ 若()()f x g x ≤,则lim ()lim ()x x f x g x →? →? ≤; (极限运算的单调性) ⑹ 若()()()f x h x g x ≤≤,且lim ()lim ()x x f x g x C →? →? ==,则也有极限lim ()x h x C →? =. (夹挤规则) 根据夹挤规则,若lim ()0x f x →? =,且)(x g 在极限过程?→x 中是有界变量(())g x B ≤, 则应直接写成 lim[()()]0x f x g x →? = 因为 0()()()0()f x g x B f x x ≤≤→→?且lim ()()0lim[()()]0x x f x g x f x g x →? →? =??= 而不能写成 []lim ()()lim ()lim ()0x x x f x g x f x g x →? →? →? =?=[逻辑错误!] 例如函数1sin y x x =(图1-15),应当直接写成 01 lim sin 0x x x →=(因为1sin 1x ≤) 而不能写成 00011 lim sin lim limsin 0x x x x x x x →→→=?= 因为不存在极限01 limsin x x →(图1-10). 例3 设有多项式 2012()(0)n n n P x a a x a x a x a =+++ +≠ 则 2012lim ()lim lim()lim()lim()n n x c x c x c x c x c P x a a x a x a x →→→→→=+++ + 2012(lim )(lim )(lim )n n x c x c x c a a x a x a x →→→=+++ +

函数极限的十种求法

函数极限的十种求法 信科2班江星雨250 函数极限可以分成而运用ε-δ定义更多的见诸于已知极限值的证明题中。掌握这类证明对初学者深刻理解运用极限定义大有裨益。以的极限为例,f(x) 在点以A为极限的定义是:对于任意给定的正数ε(无论它多么小),总存在正数,使 得当x满足不等式时,对应的f(x)函数值都满足不等式:,那么常数A就叫做函数f(x)当x→x。时的极限。 1.利用极限的四则运算法则: 极限四则运算法则的条件是充分而非必要的,因此,利用极限四则运算法则求函数极限时,必须对所给的函数逐一进行验证它是否满足极限四则运算法则条件,满足条件者。方能利用极限四则运算法则进行求之。不满足条件者,不能直接利用极限四则运算法则求之。但是,井非不满足极限四则运算法则条件的函数就没有极限,而是需将函数进行恒等变形,使其符合条件后,再利用极限四则运算法则求之。而对函数进行恒等变形时,通常运用一些技巧如拆项、分子分母同时约去零因子、分子分母有理化、通分、变量替换等等。例 1 求lim( x 2 ? 3x + 5). x→ 2 解:lim( x 2 ? 3x + 5) = lim x 2 ? lim 3x + lim 5 = (lim x) 2 ? 3 lim x + lim 5 = 2 2 ? 3 ? 2 + 5 = 3. x→2 x →2 x →2 x →2 x →2 x →2 x →2 2.利用洛必达法则 洛必达(L 'Hopital)法则是在一定条件下通过分子分母分别求导再求极限来确定未定式值的方法.简单讲就是,在求一个含分式的函数的极限时,分别对分子和分母求导,在求极限,和原函数的极限是一样的。一般用在求导后为零比零或无穷比无穷的类型。 利用洛必达求极限应注意以下几点: 设函数f(x)和F(x)满足下列条件: (1)x→a时,lim f(x)=0,lim F(x)=0; (2)在点a的某去心邻域内f(x)与F(x)都可导,且F(x)的导数不等于0; (3)x→a时,lim(f'(x)/F'(x))存在或为无穷大 则x→a时,lim(f(x)/F(x))=lim(f'(x)/F'(x)) 例1: 1-cosx = 1-{1-2[sin(x/2)]^2} = 2[sin(x/2)]^2 xsinx = 2xsin(x/2)cos(x/2) 原式= lim 2[sin(x/2)]^2 / [2xsin(x/2)cos(x/2)] = tgx / x 对分子分母同时求导(洛必达法则) (tgx)' = 1 / (cosx)^2 (x)' = 1 原式= lim 1/(cosx)^2 当x --> 0 时,cosx ---> 1 原式= 1 3.利用两个重要极限: 应用第一重要极限时,必须同时满足两个条件: ①分子、分母为无穷小,即极限为0 ; ②分子上取正弦的角必须与分母一样。 应用第二重要极限时,必须同时满足四个条件: ①带有“1”;

高三数学总复习 函数极限的运算法则教案

湖南师范大学附属中学高三数学总复习教案:函数极限的运算 法 教学目标:掌握函数极限的运算法则,并会求简单的函数的极限 教学重点:运用函数极限的运算法则求极限 教学难点:函数极限法则的运用 教学过程: 一、引入: 一些简单函数可从变化趋势找出它们的极限,如o x x x x x x o ==→∞→lim ,01 lim .若求极限的函数比较复杂,就要分析已知函数是由哪些简单函数经过怎样的运算结合而成的,已知函数的极限与这些简单函数的极限有什么关系,这样就能把复杂函数的极限计算转化为简单函数的极限的计算. 二 、新课讲授 对于函数极限有如下的运算法则: 如果B x g A x f o o x x x x ==→→)(lim ,)(lim ,那么 B A x g x f o x x +=+→)]()([lim B A x g x f o x x ?=?→)]()([lim )0()()(lim ≠=→B B A x g x f o x x 也就是说,如果两个函数都有极限,那么这两个函数的和、差、积、商组成的函数极限,分别等于这两个函数的极限的和、差、积、商(作为除数的函数的极限不能为0). 说明:当C 是常数,n 是正整数时,)(lim )]([lim x f C x Cf o o x x x x →→=

n x x n x x x f x f o o )](lim [)]([lim →→= 这些法则对于∞→x 的情况仍然适用. 三 典例剖析 例1 求)3(lim 2 2 x x x +→ 例2 求1 1 2lim 231++-→x x x x 例3 求4 16 lim 24--→x x x 分析:当4→x 时,分母的极限是0,不能直接运用上面的极限运用法则.注意函数 4 162--=x x y 在定义域4≠x 内,可以将分子、分母约去公因式4-x 后变成4+x , 由此即可求出函数的极限. 例4 求1 3 3lim 22++-∞→x x x x

(完整版)极限四则运算

§1.5 极限的运算法则 极限定义为我们提供了一种求极限的方法,但这种方法使用起来很不方便,并且在大多数情形下也是不可行的.这一节我们将给出极限的若干运算法则,应用这些法则将帮助我们比较方便的进行有关极限的证明和计算. 一 无穷小的运算定理 设,,αβγ是0x x →时的无穷小,即0 lim ()0,lim ()0,lim ()0,x x x x x x x x x αβγ→→→===下面 来叙述有关无穷小的运算定理。 定理1 1)有限个无穷小的和也是无穷小; 2)有界函数与无穷小的乘积是无穷小。 推论:1)常数与无穷小的乘积是无穷小; 2) 有限个无穷小的乘积也是无穷小。 二 极限的四则运算法则 利用极限与无穷小的关系及无穷小的运算性质,下面叙述极限的极限的四则运算法则。 定理2 如果()0 lim x x f x A →=, ()0 lim x x g x B →= 则()() ()(),()(), 0() f x f x g x f x g x B g x ±≠,的极限都存在,且 (1) ()()()()0 lim lim lim ;x x x x x x f x g x f x g x A B →→→±=±=±???? (2) ()()()()0 lim lim lim ;x x x x x x f x g x f x g x AB →→→==???? (3) ()()()()000 lim lim (0).lim x x x x x x f x f x A B g x g x B →→→==≠ 证 1因为()0 lim x x f x A →=, ()0 lim x x g x B →=,所以,当0x x →时,0,01>?>?δε, 当100δ<-?δ,当200δ<-

无穷大量与无穷小量&极限的运算法则

第五讲 Ⅰ 授课题目: §2.4无穷大量与无穷小量;§2.5极限的运算法则。 Ⅱ 教学目的与要求: 1、理解无穷大与无穷小的概念,弄清无穷大与无穷小的关系; 2、掌握极限的运算法则。 Ⅲ 教学重点与难点: 1、无穷大与无穷小的概念、相互关系; 2、用极限的运算法则求极限。 Ⅳ 讲授内容: §2.4无穷大量与无穷小量 一、无穷大的概念: 引例:讨论函数 1 1 )(-==x x f y ,当 1→x 时的变化趋势。 当 1→x 时, 1 1 -x 越来越大(任意大),即:+∈?R E ,要 E x >-11?E x 11<-, 也即:+∈?R E ,01>?E ,当 E x 11<-时,有:E x >-1 1 。 定义2.9:+∈?R E ,变量y 在其变化过程中,总有一时刻,在那个时刻以后,E y >成立,则称变量y 是无穷大量,或称变量y 趋于无穷大,记:∞=y lim 。 如:∞=-→11 lim 1 x x ,-∞=+ →x x lg lim 0,+∞=-→ tgx x 2 lim π。 注 1. 若:∞=y lim ,则习惯地称此时)(x f y =的极限为无穷(大); 2.无穷大不能与很大的数混淆; 3.无穷大与无界变量的区别; 例如:x x f y sin 1 )(= = 当)2,1,0(, ±±==k k x π时,∞→)(x f ,无界,但非无穷大,πk x ≠ 时,)(x f 为有限数。 例1 函数 ?),(cos 内是否有界在+∞-∞=x x y 又当 +∞→x 时,此函数是否为无穷大?为什么? 解 用反证法 若:当+∞→x 时,x x y cos =非无穷大, )1(,cos ,,0,0M x x X x X M >>>?>?有时当则,取2 2π π+ =n x n ,当n 充分大时

求函数极限的方法

求函数极限的方法 1. 预备知识 1.1 函数极限的定义 定义 1 设f 为定义在[],a +∞上的函数,A 为定数.若对任给的0ε>,存在正整数()M a ≥,使得当x M >时有()f x A ε-<,则称函数f 当x 趋于+∞时以A 为极限.记作:()lim x f x A →+∞ =或()()f x A x →→+∞. 定义2 设函数f 在点0x 的某个空心邻域()00;'U x δ内有定义,A 为定数,若对任给的0ε>,存在正数()'δδ<,使得当00x x δ<-<时有()f x A ε-<,则称函数f 当x 趋于0x 时以A 为极限.记作:()0 lim x x f x A →=或()()0f x A x x →→. 定义 3 设函数f 在()0 0;'U x δ+(或()00;'U x δ-)内有定义,A 为定数.若对任 给0ε>的,存在正数()'δδ<,使得当时00x x x δ<<+(或00x x x δ-<<)有 ()f x A ε-<,则称数A 为函数f 当x 趋于0 x +(或0x - )时的右(左)极限.记作: ()()00lim lim x x x x f x A f x A + -→→??== ??? 或()()()()() 00f x A x x f x A x x +-→→→→. 1.2 函数极限的性质 性质1(唯一性) 若极限()0 lim x x f x →存在,则此极限是唯一的. 性质2(局部有界性) 若()0 lim x x f x →存在,则f 在0x 的某空心邻域()00U x 内有界. 性质3(局部保号性) 若()0 lim 0x x f x A →=>(或0<),则对任何正数r A <(或 r A <-) ,存在()00U x ,使得对一切()o o x U x ∈有()0f x r >>(或()0f x r <-<). 性质4(保不等式性) 设()0 lim x x f x →与()0 lim x x g x →都存在,且在某邻域()00;'U x δ内 有()()f x g x <,则()()0 lim lim x x x x f x g x →→≤. 性质5(迫敛性)设()()0 lim lim x x x x f x g x A →→==,且在某邻域()00;'U x δ内有

相关主题
文本预览
相关文档 最新文档