当前位置:文档之家› 风力发电原理

风力发电原理

风力发电原理
风力发电原理

力发电的原理:是利用风力带动风车叶片旋转,再透过增速机将旋转的速度提升,来促使发电机发电。

现状:风力发电正在世界上形成一股热潮,风力发电在芬兰、丹麦等国家很流行;我国风能资源十分丰富,我国也在西部地区大力提倡,管理滞后影响风电“进步”

首先,我国对风能资源的普查、评价、规划管理严重滞后,资源分散,缺少整合,没有形成全国统一的国家级风电产业研机机构,缺少对产业资源的集中和整合。

其次,单位kW造价高,火电平均4500元/kW,风电平均每8000~9000元/kW,平均造价高于火电。火电平均电价0.36元/千瓦时,风电平均电价为0.56元/千瓦时,在我国南方地区电价,还要略高于北方地区。影响电网并网发电的积极性。

第三,目前市场和产业化基本上没有形成,风电机组和系统设计技术、设备性能、效率以及技术工艺水平与欧洲相比存在很大差距。国产风电关键部件,如液压系统、联合器、电控等可靠性差,技术不够成熟。

改善“环境”加快风电步伐

前景:它的优势不需要燃料、不占耕地、没有污染,运行成本低。;风力发电产业发展前景非常广阔,

为风力发电没有燃料问题,也不会产生辐射或空气污染。

我国风能资源十分丰富,它是一种干净的可再生能源;风力发电产业发展前景非常广阔,

优缺点:它的优势不需要燃料、不占耕地、没有污染,运行成本低,我国风力资源丰富,缺点,效率低,造价昂贵,技术有待改进,管理不够完善

回答者:31373674 - 见习魔法师二级 7-18 11:08

提问者对于答案的评价:很好,谢谢评价已经被关闭目前有 1 个人评价

100% (1)不好

0% (0)

其他回答共 1 条

风力发电是继IT等产业后的又一个朝阳产业,发展和利用风能等可再生资源已经成为国际电力发展的大趋势。据报道,到2020年,风力发电可提供世界电力需求的12%,可创造180万个就业机会,可在全球范围内减少二氧化硫等废气的排放100多亿吨。

根据世界风能委员会(GWEC)的报道,2004年世界风能工业增长20%,新装机的风电能力为7976MW,风力发电总能力已经达到47407MW。2004年,欧洲新装机的风力发电能力约占全球新增风力发电装机容量的71.46%。其次是亚洲、北美和太平洋地区,分别为15.9%、6.4%、4.1%。德国、西班牙、美国、丹麦和印度是风力发电装机能力最大的国家。

据统计,2004年欧洲继续统治着全球风力发电市场,新建风力发电装备价值57亿欧元,新增风力发电能力5744MW,大约有5700MW的新增风电并入欧洲电网,使得欧洲风力发电的装机容量达到34205MW。在欧洲,利用风能最成功的国家是德国、西班牙和丹麦。在这些国家,风力发电能力占本国总发电量分别为7%、6.5%、20%。欧洲的电力供应一直在增长,1997年增长率为14%,估计2010年将达到21%,在新增的装机容量中,大约有二分之一的电力将由风能提供。

美国和加拿大是北美利用风能最好的国家。在美国的50个州中,大约有30个州已经开始利用风能资源,Texas、California、Minnesota等州位居美国风力发电的主导地位。在1998-2004年期间,美国风力发电的总装机容量已经超过6740MW,可以满足160万个美国中等家庭的日常用电需求。

据介绍,制约美国风力发电产业发展的主要约束是缺乏稳定的国家政策。为了鼓励利用风能,美国1992年就制定了相关的法规,风力发电产品可享受减免联邦产品税1.5美分/千瓦时的优惠。但是,该法规曾先后3次被终止实施,最终导致计划取消。美国风能委员会(AWEA)希望能够有一个长期持续的产品税减免的优惠政策。当电力公司在购买电力时,必须匹配一定数量的可再生能源的电力产品。美国风能委员会(AWEA)期望2005年美国的风力发电产业能够繁荣发展,安装能力能够超过2000MW。该委员会认为,如果美国风力发电能够保持稳定增长,到2020年,美国风力发电的装机能力将达到100000MW,占全美国供电总量的6%以上。

加拿大的风力发电产业发展迅速,风力发电的增长率已经达到27%,其增长速度超过前5年。2004年,加拿大风力发电的装机容量为122MW,风力发电的总装机能力已达到444MW。最近,各省政府正在考虑或者制定相关政策,增加风力发电的装机容量。预计在今后7年中,加拿大的风力发电能力将比现在提高15倍。

2001年,随着联邦生产奖励基金的实施,加拿大开始利用风能资源发电。随后,加拿大的一些省份开始通过采取实施风力发电额度或者修改最初的标准等措施来扶持风电的发展。目前,加拿大已有6个省开始利用风能发电。2005年,已经有3个省开始启动风力发电项目。加拿大风能委员会认为,加拿大具有丰富的风能和水电资源,利用风能资源发电至少可以满足国家电力需求的20%,风力发电的装机能力可达50000MW。他们预计,到2010年,加拿大风力发电能力将达到10000MW,可以满足全国电力需求量的4%。

在亚洲,利用风能资源最好的国家是印度。2004年,印度新装机的风力发电容量为875MW,风力发电能力达到3000MW,风力发电能力位居世界第五位,是世界最大的风力发电国家之一。

据估计,在印度风能资源大约为45000MW,可利用的风能大约为13595MW。印度政府的有关部门正通过一定范围的财政支持鼓励多种经营方式进行可再生能源的生产。这包括鼓励大型私营企业与上市企业共同在印度本土投资风力发电工业,鼓励以本土为基础开发制造风力发电设备。目前,印度企业在本土生产的风力发电机部件已达80%,这不仅使风力发电装备生产厂家获得了丰厚的利益回报,也为本国的就业提供了很大的机会,据印度政府有关部门预测,到2012年印度经济增长将需要新增电力240000MW,其中10%将来自于可再生能源,新增可再生能源的50%将由风力发电提供。

日本有两个区域适合风能开发。一个是具有适合风力发电的地貌、且人口稠密的乡村;一个是发展沿海地区的离岸风力发电。近几年,由于日本政府通过要求电力公司增加可再生能源的供电比例,对可再生能源电力在价格和资金补助上予以一定的优惠等一系列措施,日本的风力发电产业发展良好。为了有助于实施清洁能源计划,要求日本电力公司购买可再生能源电力的预期使用期限长达17年,这样就增强了清洁能源投资者的信心。这一措施的结果使得日本的风力发电能力从2002年的486MW增加到2004年的700MW。为了促进日本可再生能源的发展,2003年日本政府还提出了相关的可再生能源标准法规,争取到2010年日本可再生

能源的发电量达到总电力供应的1.35%。日本的风力发电目标是,到2010年风力发电装机容量达到3000MW。要实现这个目标,日本还必须面对现有法规软弱、再生能源电力并入电网缺少电力公司合作等一系列困难。但是,日本风能和风力发电协会仍向日本政府提出,到2030年日本风力发电能力应达到11800MW的新目标。

目前,澳大利亚所需电力的84%来自于煤炭的火力发电。一项由清洁能源未来组织、工业协会联盟和世界自然基金会等组织联合的研究结果发现,如果使用天然气、太阳能、风力发电和生物发电,2040年澳大利亚的二氧化碳气体污染将减少一半。澳大利亚具有良好的风能资源和工业基地,风能的开发利用前途广阔,一些市场评论员认为在今后的几年中,澳大利亚将大力发展风力发电产业。

迄今为止,澳大利亚风力发电的装机容量为380MW,其中,2004年新装机的风力发电能力为182MW。澳大利亚风力发电的一个目标是1350MW,届时风力发电提供的电力将满足75000个家庭的电力需求。最近,丹麦风力发电机制造商Vestas在澳大利亚建立了装配厂,这也是一个澳大利亚发展风力发电产业的信号。澳大利亚风能协会建议在现任政府,将2010年澳大利亚风力发电目标由现在的940MW增加到5000MW,并建议到2020年的风力发电能力应超过13000MW。

南美和中美洲具有卓越的风能资源,但是风力发电发展缓慢,装机容量不足150MW。哥斯达黎加已经建立了第一个大型风力发电厂,装机容量为71MW。巴西具有巨大的风能资源,开发前景良好。到2004年年末,巴西风力发电的装机容量仅为29MW,预计到2006年年末,巴西风力发电的装机能力将达到1350MW。阿根廷风能资源丰富,具有风能开发市场。墨西哥的部分地区也适合风力发电,许多欧洲公司正在开发巴西和墨西哥的风能市场。

非洲和中东地区已经建成了具有数百兆瓦的发电能力的风力发电厂,发展较快的是北非。非洲风能资源大部分集中在大陆的南部和北部,风力发电主要集中在摩洛哥、埃及、突尼斯和伊朗等国家。

迄今为止,摩洛哥风力发电能力超过50MW,并确定修建200MW的大型风力发电厂。埃及的风力资源沿尼罗河和苏伊士海湾向着红海方向分布,在海外援助机构和银行援助下,将建成具有140MW发电能力的风力发电厂。埃及政府已经提出一项计划,到2020年,电力需求的14%将来自于可再生能源,其中风力发电的装机容量将达到2750MW,到2006年风力发电能力将达到100MW,2011年风力发电能力将达到300MW。南非的风力发电主要取决于政府的关于大规模发展可再生能源的决定。

随着风力发电技术的提高和发电成本的降低,离岸发电工程将对风力发电产业作出巨大贡献。一些国家,尤其是北欧,离岸风力发电的份额逐渐增加。目前,在欧洲的不同海域和不同海上环境已经建立了5个大型海上风力发电厂,总发电能力达到480MW。其中,3个风场建于丹麦沿海,Middelgeruden风场的装机容量为160MW,Horns Rev风场的装机容量为160MW,Nysted 风场的装机容量为40MW;2个风场建于英国沿海,North Hoyle风场的装机容量为60MW,Scroby Sand风场的装机容量为60MW。据预测,2010年,欧洲的风力发电能力将由2004年的34GW 提高到75GW,其中,10GW来自于海上的离岸发电。

中国幅员辽阔,陆疆总厂2万多公里,海岸线1.8万多公里,风能资源丰富。根据气象部门

的资料,可开发的陆地风能资源大约为253GW,可利用的海洋风能资源大约为750GW。沿着东南沿海和附近的岛屿,以及内蒙古、新疆、甘肃、青藏高原等地区都蕴藏着丰富的风能资源。年平均风速6m/s以上的内陆地区约占全国总面积的1%,仅次于美国和俄罗斯,居世界第三位。

2004年,我国新装机的风力发电容量为197MW,风力发电总能力超过760MW。我国利用风能较好的省份是辽宁、新疆和内蒙古。由于辽宁省地方政府支持,而且当地风力资源较好,该省共建设11个风电场,装机容量位居全国第一位。其次是新疆、内蒙古

风力发电原理

▲1-3 风能具有哪些特点? (1)风能蕴藏量大、分布广。(2)风能是可再生能源。(3)风能利用基本没有对环境的直接污染和影响。(4)风能的能量密度低。(5)不同地区风能差异大。(6)风能具有不稳定性。 ▲1- 风力发电技术的发展状况 当前风电技术和设备的发展主要呈现大型化、变速运行、变桨距、无齿轮箱等特点。 (1)水平轴风电机组技术成为主流。(2)风电机组单机容量持续增大。(3)变桨距技术得到普遍应用。(4)变速恒频技术得到快速推广。(5)直驱式、全功率变流技术得到迅速发展。(6)大型风电机组关键部件的性能日益提高。(7)智能化控制技术广泛应用。(8)叶片技术不断进步。(9)适应恶劣气候环境的风电机组得到重视。(10)低电压穿越技术得到应用。 (11)海上风电技术成为重要发展方向。(12)标准与规范逐步完善。 ▲2-8 为什么国际上通行的计算平均的时间间隔都取在10min至2h范围? 由范德豪芬的平均风速功率谱曲线可知,在10min至2h范围的平均风速功率谱低而平坦,平均风速基本上是稳定值,可以忽略湍流的影响。 ▲2-9 什么是风速廓线? 在大气边界层中,由于空气运动受地面植被、建筑物等得影响,风速随距地面的高度增加而发生明显的变化,这种变化规律成为风剪切或风速廓线。▲2-11 什么是风向玫瑰图? 风向玫瑰图常用来表示某一风向一年或一个月出现的频率。 ▲2-15 风在静止叶片上的空气动力是如何形成的? 由于叶片上方和下方的气流速度不同(上方速度大于下方速度),因此叶片上、下方所受的压力也不同(下方压力大于上方压力),总得合力F即为叶片在流动空气所受到的空气动力。 ▲2- 风的测量设备? 风向:风向标、光电管、码盘。风速:皮托管、热线风速仪、风杯、螺旋叶片。 ▲2- 风能资源评估及风电场选址 评估参数:平均风速、主要风向分布、风功率密度、年风能可利用小时。宏观选址:(1)风能质量好(2)风向基本稳定(3)风速变化小(4)尽量避开灾难性天气频发地区(5)发电机组高度范围内风速的垂直变化小。(6)地形条件好。(7)地址情况能满足塔架基础、房屋建筑施工的要求,远离强地震带等。(8)对环境的不利影响小。(9)尽可能接近电网并考虑并网可能产生的影响。(10)交通方便。微观选址:(1)考虑地形的影响(2)考虑机组的排列方式。 ▲4-7 什么是并网风力发电机变速恒频运行方式?哪些类型的发电机? 在不同风速下,为了实现最大风能捕获,提高风电机组的效率,发电机的转速必须随着风速的变化不断进行调整,处于变速欲行状态,其发出的频率需通过一定的恒频控制技术来满足电网要求。双馈异步交流发电机,永磁低速交流发电机 ▲4-8 双馈异步发电机的基本工作原理。 (公式)n2为转自中通入频率为f2的三项对称交流励磁电流后所产生的旋转磁场相对于转自本身的旋转速度(r\min),改变f2,即可改变n2。设n1为对应于电网频率50Hz时发电机的同步转速,而n为发电机转自本身的旋转速度,只要n+n2=n1,则定子绕组感应出的电动势的频率将始终维持为电网频率f1不变。由转差率公式s=。。。可得f2=sf1。所以只要在转子的三相对称绕组中通入转差频率的电流,双馈异步发电机可实现变速恒频运行的目的。 双馈型异步发电机实行交流励磁,励磁电流的可调量为其幅值、频率和相位。调节频率,可保证发电机转速变化时发出电能频率的稳定;调节幅值,可调节发出的无功功率;改变转子励磁电流的相位,调节了发电机的功率角。在一定工况下,转子也向电网馈送能量。 ▲4-9 叙述双馈异步发电机的功率流向。 (1)亚同步状态当n

风力发电机原理

《可再生能源与可持续发展》作业题目:风力发电机原理 班级:08机制4班 姓名:毛羽西 学号:0822405 教师:李永国 2011年11 月

目录 1 风力发电机概述 (2) 2 水平轴涡轮发电机 (2) 2.1 水平轴涡轮机结构 (3) 2.2 水平轴涡轮机叶片 (4) 2.3 发电机 (5) 2.4 制动系统 (6) 3 风力发电前景展望 (7) 结论 (7) 参考文献: (7)

风力发电机原理 1 风力发电机概述 风力发电的原理,是利用风力带动风车叶片旋转,再透过增速机将旋转的速度提升,来促使发电机发电。依据目前的风车技术,大约是每秒三公尺的微风速度(微风的程度),便可以开始发电。风力发电正在世界上形成一股热潮,为风力发电没有燃料问题,也不会产生辐射或空气污染。 风力发电在芬兰、丹麦等国家很流行;我国也在西部地区大力提倡。小型风力发电系统效率很高,但它不是只由一个发电机头组成的,而是一个有一定科技含量的小系统:风力发电机+充电器+数字逆变器。风力发电机由机头、转体、尾翼、叶片组成。每一部分都很重要,各部分功能为:叶片用来接受风力并通过机头转为电能;尾翼使叶片始终对着来风的方向从而获得最大的风能;转体能使机头灵活地转动以实现尾翼调整方向的功能;机头的转子是永磁体,定子绕组切割磁力线产生电能。 风力发电机因风量不稳定,故其输出的是13~25V变化的交流电,须经充电器整流,再对蓄电瓶充电,使风力发电机产生的电能变成化学能。然后用有保护电路的逆变电源,把电瓶里的化学能转变成交流220V市电,才能保证稳定使用。 风力发电机的基本工作原理比较简单,风轮在风力的作用下旋转,将风的动能转变为风轮轴的机械能,风轮轴带动发电机旋转发电。其中风能转化装置称为风力机。风力机的核心部分为叶轮的设计,随着空气动力学的飞速发展,叶轮设计已经取得了巨大的进步。[1] 2 水平轴涡轮发电机 正如其名字的含义,水平轴风力涡轮机的转轴是水平安装的,与地面平行。水平轴风力涡轮机需要使用偏航调整装置时刻根据风向进行调整。偏航系统通常包括电机和变速箱,用于缓慢左右移动整个转子。涡轮机的电子控制器读取风向标设备(机械或电子风向标)的位置,并调整转子位置以尽量捕获最大的风能。水平轴风力涡轮机使用塔架将涡轮机组件上升到最适合风速的高度(这样叶片便不会碰到地面),并且占用非常少的地面空间,因为几乎所有组件都在高达80米的空中。

风力发电机的工作原理

风力发电机的工作原理 风力发电机原理 是将风能转换为机械功的动力机械,又称风车。广义地说,它是一种以太阳为热源,以大气为工作介质的热能利用发动机。风力发电利用的是自然能源。相对柴油发电要好的多。但是若应急来用的话,还是不如柴油发电机。风力发电不可视为备用电源,但是却可以长期利用。 风力发电的原理,是利用风力带动风车叶片旋转,再透过增速机将旋转的速度提升,来促使发电机发电。依据目前的风车技术,大约是每秒三公尺的微风速度(微风的程度),便可以开始发电。 风力发电正在世界上形成一股热潮,为风力发电没有燃料问题,也不会产生辐射或空气污染。 风力发电在芬兰、丹麦等国家很流行;我国也在西部地区大力提倡。小型风力发电系统效率很高,但它不是只由一个发电机头组成的,而是一个有一定科技含量的小系统:风力发电机+充电器+数字逆变器。风力发电机由机头、转体、尾翼、叶片组成。每一部分都很重要,各部分功能为:叶片用来接受风力并通过机头转为电能;尾翼使叶片始终对着来风的方向从而获得最大的风能;转体能使机头灵活地转动以实现尾翼调整方向的功能;机头的转子是永磁体,定子绕组切割磁力线产生电能。 风力发电机因风量不稳定,故其输出的是13~25V变化的交流电,须经充电器整流,再对蓄电瓶充电,使风力发电机产生的电能变成化学能。然后用有保护电路的逆变电源,把电瓶里的化学能转变成交流220V市电,才能保证稳定使用。 通常人们认为,风力发电的功率完全由风力发电机的功率决定,总想选购大一点的风力发电机,而这是不正确的。目前的风力发电机只是给电瓶充电,而由电瓶把电能贮存起来,人们最终使用电功率的大小与电瓶大小有更密切的关系。功率的大小更主要取决于风量的大小,而不仅是机头功率的大小。在内地,小的风力发电机会比大的更合适。因为它更容易被小风量带动而发电,持续不断的小风,会比一时狂风更能供给较大的能量。当无风时人们还可以正常使用风力带来的电能,也就是说一台200W风力发电机也可以通过大电瓶与逆变器的配合使用,获得500W甚至1000W乃至更大的功率出。 使用风力发电机,就是源源不断地把风能变成我们家庭使用的标准市电,其节约的程度是明显的,一个家庭一年的用电只需20元电瓶液的代价。而现在的风力发电机比几年前的性能有很大改进,以前只是在少数边远地区使用,风力发电机接一个15W的灯泡直接用电,一明一暗并会经常损坏灯泡。而现在由于技术进步,采用先进的充电器、逆变器,风力发电成为有一定科技含量的小系统,并能在一定条件下代替正常的市电。山区可以借此系统做一个常年不花钱的路灯;高速公路可用它做夜晚的路标灯;山区的孩子可以在日光灯下晚自习;城市小高层楼顶也可用风力电机,这不但节约而且是真正绿色电源。家庭用风力发电机,不但可以防止停电,而且还能增加生活情趣。在旅游景区、边防、学校、部队乃至落后的山区,风力发电机正在成为人们的采购热点。无线电爱好者可用自己的技术在风力发电方面为山区人民服务,使人们看电视及照明用电与城市同步,也能使自己劳动致富。

风力发电机控制原理

风力发电机控制原理 本文综述了风力发电机组的电气控制。在介绍风力涡轮机特性的基础上介绍了双馈异步发电系统和永磁同步全馈发电系统,具体介绍了双馈异步发电系统的运行过程,最后简单介绍了风力发电系统的一些辅助控制系统。 关键词:风力涡轮机;双馈异步;永磁同步发电系统 概述: 经过20年的发展风力发电系统已经从基本单一的定桨距失速控制发展到全桨叶变距和变速恒频控制,目前主要的两种控制方式是:双馈异步变桨变速恒频控制方式和低速永磁同步变桨变速恒频控制方式。 在讲述风力发电控制系统之前,我们需要了解风力涡轮机输出功率与风速和转速的关系。 风力涡轮机特性: 1,风能利用系数Cp 风力涡轮从自然风能中吸取能量的大小程度用风能利用系数Cp表示: P---风力涡轮实际获得的轴功率 r---空气密度 S---风轮的扫风面积 V---上游风速 根据贝兹(Betz)理论可以推得风力涡轮机的理论最大效率为:Cpmax=0.593。 2,叶尖速比l 为了表示风轮在不同风速中的状态,用叶片的叶尖圆周速度与风速之比来衡量,称为叶尖速比l。 n---风轮的转速 w---风轮叫角频率 R---风轮半径 V---上游风速 在桨叶倾角b固定为最小值条件下,输出功率P/Pn与涡轮机转速N/Nn的关系如图1所示。从图1中看,对应于每个风速的曲线,都有一个最大输出功率点,风速越高,最大值点对应得转速越高。如故能随风速变化改变转速,使得在所有风速下都工作于最大工作点,则发出电能最多,否则发电效能将降低。

涡轮机转速、输出功率还与桨叶倾角b有关,关系曲线见图2 。图中横坐标为桨叶尖速度比,纵坐标为输出功率系统Cp。在图2 中,每个倾角对应于一条Cp=f(l)曲线,倾角越大,曲线越靠左下方。每条曲线都有一个上升段和下降段,其中下降段是稳定工作段(若风速和倾角不变,受扰动后转速增加,l加大,Cp减小,涡轮机输出机械功率和转矩减小,转子减速,返回稳定点。)它是工作区段。在工作区段中,倾角越大,l和Cp越小。 3,变速发电的控制 变速发电不是根据风速信号控制功率和转速,而是根据转速信号控制,因为风速信号扰动大,而转速信号较平稳和准确(机组惯量大)。 三段控制要求: 低风速段N<Nn,按输出功率最大功率要求进行变速控制。联接不同风速下涡轮机功率-转速曲线的最大值点,得到PTARGET=f(n)关系,把PTARGET作为变频器的给定量,通过控制电机的输出力矩,使风力发电实际输出功率P=PTARGET。图3是风速变化时的调速过程示意图。设开始工作与A2点,风速增大至V2后,由于惯性影响,转速还没来得及变化,工作点从A2移至A1,这时涡轮机产生的机械功率大于电机发出的电功率,机组加速,沿对应于V2的曲线向A3移动,最后稳定于A3点,风速减小至V3时的转速下降过程也类似,将沿B2-B1-B3轨迹运动。 中风速段为过渡区段,电机转速已达额定值N=Nn,而功率尚未达到额定值P<Pn。倾角控制器投入工作,风速增加时,控制器限制转速升,而功率则随着风速增加上升,直至P=Pn。 高风速段为功率和转速均被限制区段N=Nn/P=Pn,风速增加时,转速靠倾角控制器限制,功率靠变频器限制(限制PTARGET值)。 4,双馈异步风力发电控制系统 双馈异步风力发电系统的示意见图4,绕线异步电动机的定子直接连接电网,转子经四象限IGBT电压型交-直-交变频器接电网。 转子电压和频率比例于电机转差率,随着转速变化而变化,变频器把转差频率的转差功率变为恒压、恒频(50HZ)的转差功率,送至电网。由图4可知: P=PS-PR;PR=SPS;P=(1-S)PS P是送至电网总功率;PS和PR分别是定子和转子功率 转速高于同步速时,转差率S<0,转差功率流出转子,经变频器送至电网,电网收到的功率为定、转子功率之和,大于定子功率;转速低于同步转速食,S>0,转差功率从电网,

(完整版)【速度收藏】风力发电机工作原理

风力发电机工作原理__图文 前言:由于环境污染,人类对大自然的过度开采,我们对无污染、可再生的能源越来越重视。风能就是这样一种无须燃料、无污染、可再生的能源。风力发电机作为把风能运用率较高的产品,受到世界各国的重视。为了让风力发电机更好的为人们服务,今天我们来研究一下风力发电机工作原理。 关键词:风力发电机,风力发电机工作原理,风力发电机结构 一、风力发电机结构 高 由电子控制器操作,电子控制器可以通过风向标来感觉风向。图中显示了风力发电机偏航。通常,在风改变其方向时,风力发电机一次只会偏转几度。 7、电子控制器:包含一台不断监控风力发电机状态的计算机,并控制偏航装置。为防止任何故障(即齿轮箱或发电机的过热),该控制器可以自动停止风力发电机的转动,并通过电话调制解调器来呼叫风力发电机操作员。 8、液压系统:用于重置风力发电机的空气动力闸。 9、冷却元件:包含一个风扇,用于冷却发电机。此外,它包含一个油冷却元件,用于冷却齿轮箱内的油。一些风力发电机具有水冷发电机。

10、塔:风力发电机塔载有机舱及转子。通常高的塔具有优势,因为离地面越高,风速越大。现代600千瓦风汽轮机的塔高为40至60米。它可以为管状的塔,也可以是格子状的塔。管状的塔对于维修人员更为安全,因为他们可以通过内部的梯子到达塔顶。格状的塔的优点在于它比较便宜。 11、风速计及风向标:用于测量风速及风向。 二、风力发电机原理 现代风力发电机采用空气学原理,就像飞机的机翼一样。风并非“推动”风轮叶片,而是吹过叶片正反面的压差,这种压差会产生升力,令风轮旋转并不断横切风流。 面向来风,从而令风轮刹车。 在风速很低的时候,风力发电机风轮会保持不动。当到达切入风速时(通常每秒3到4米),风轮开始旋转并牵引发电机开始发电。随著风力越来越强,输出功率会增加。当风速达到额定风速时,风电机会输出其额定功率。之后输出功率会保留大致不变。当风速进一步增加,达到切出风速的时候,风电机会刹车,不再输出功率,为免受损。 青岛恒风风力发电机有限公司是一家专注研发、制造、销售为一体的科技型企业,公司始建于2004年,厂房占地面积5000 余平。公司主要生产150瓦至500千瓦的水平和垂直轴的中小型风力发电机组,风光互补供电系统,广泛应用于离网和并网型发电系统。生产中我们严格按照ISO9001国际标准生产管理体系,并拥有标准的生产线,自动包装流水线,严

风力发电原理及应用探讨 马雪峰

风力发电原理及应用探讨马雪峰 发表时间:2019-11-20T15:17:34.283Z 来源:《基层建设》2019年第24期作者:马雪峰[导读] 摘要:近年来,我国的风力发电越来越多。 三峡新能源大柴旦风电有限公司青海省海西州大柴旦行委锡铁山镇 816203 摘要:近年来,我国的风力发电越来越多。风能作为一种清洁能源,日益受到各国的重视,发展风力发电技术成为当前迫切需要解决的问题。本文就风力发电技术的原理和当前我国在风电技术方面的发展状况进行探讨。 关键词:环境污染;新能源;风力发电引言 19世纪70年代以后,人类开始进入二次工业革命,人类社会也开始进入电气时代,电力得到了广泛应用,并取代了蒸汽成为工业生产和社会生活的主要能源,给人类社会的生产结构和生活方式带来了巨大的改变。随着发电技术的发展,风力发电技术在我国得到了普遍应用,而风力发电过程中风力发电系统控制技术是促进风力发电技术进一步发展的重要基础和影响因素,但是,随着我国社会经济发展和人类生活对电力需求的增大,我国原有的风力发电系统控制技术已无法满足现代风力发电技术的高要求,阻碍了风力发电技术的进一步发展。 1风力发展的现状中国拥有丰富的风能资源,全年风能资源总量32.26亿kW(地面以上10m风速大于5m/s),实际可开采量为10.4亿kW。根据我国的实际情况,新能源战略已经开始着重发展风电。因此我国风电发展前景相当可观,从现在到未来将保持高速发展的趋势,同时,随着风力发电技术的逐步成熟,风电行业的盈利能力也将稳步提高。根据中国工商业研究院发布的数据,截至2017年底,全球风电市场主要集中在5个国家:中国、美国、德国、印度和西班牙。其中,中国累计装机容量188392兆瓦,居世界第一,美国累计装机容量89077MW,居世界第二。与2007年前我国风电装机容量相比,近年来我国风电装机容量实现了质的飞跃。因为不断增加的装机容量,中国已成为了世界上最重要的风力发电国之一。 2我国风力发电的现状及存在的问题我国幅员辽阔,风力资源极为丰富,十分有利于风电行业的发展。近年来,国家对风电产业的发展十分重视,投入了大量的研发人员和资金,累计和新增风电装机容量世界排名第一。我国风力资源主要分布在地广人稀的西部地区、华北丘陵地区以及东南沿海地区,累计建设了180多家风力发电厂,很好的缓解了当地的用电荒问题。目前我国风力发电系统中的大部分部件和技术都是自主研发,但是核心部件还是依靠国外进口,缺乏自主技术。由于风电技术在我国发展的时间较短,同时我国风力资源分布不均匀,风电技术存在市场化水平低、技术欠成熟、安全保障不足等问题。风力资源分布不均匀导致风电场发的电需要通过远距离输送到需要电的地区,同时风力资源较匮乏的地区无法建设风力发电站,造成风电技术发展不平衡。风能的间歇性和不稳定性也会导致电能质量较低。此外,部分地区对清洁能源的认识不够深刻,忽视了风电技术对环境带来的红利,导致没有对风电资源进行充分开发。由于我国风力发电技术发展时间较短,缺乏自主化技术,很多核心技术和部件还需要依赖西方发达国家,这样就造成被动的技术依赖和过高的资金技术消耗。同时风电传输技术和设备的不完善,风电机组运行存在安全隐患,电力运营管理人才缺乏,都是制约风电技术的瓶颈。当前风力发电行业的商品化程度依旧较低,缺乏一套完善的市场体制来保证行业的稳定发展,国家尚需投入大量人力物力财力来发展配套设施和人员。 3解决我国风力发电面临问题的举措 3.1做好谐波抑制措施 第一种是做好谐波抑制工作,影响风力发电并网技术质量的因素有很多,其中,电能的质量情况在其中占有非常重要的地位。为了最大程度的提高电能的利用效率,相关的技术人员主要采取的方式是通过对结合组静止无功补偿器进行使用,来对影响谐波的因素进行抑制。由于我国电力行业的发展在最近几年来受到了人们的广泛关注,电能设备的发展方向朝向多元化、丰富化的方向发展,现阶段,市场上抑制器的种类也越来越丰富。谐波抑制工作使用的抑制器是组合型的,由可投切电容器、电抗器以及谐波滤波装置构成,这种抑制器与其中类型的抑制器相比,功率的转化速度加快,可以对风力情况进行追踪检查,可以在短时间发现不稳定的情况,并且对这种情况进行及时的解决,提高抑制谐波的效率以及风力发电的质量情况。 3.2加大研发和管理力度,促进风电产业结构调整 不能过分依赖产品和技术进口,要建立完善的人才培养机制,积极创新,研发出具有自主知识产权的风电技术。 3.3完善风电信息分析工作,强化并网管理 第二项工作是加强信息的管理以及提高并网技术体系。为了提高风力并网工作的完成效率,相关的技术人员应该在风力发电的过程中,建立信息完善平台,对风力发电的数据以及信息进行收集、整理。信息的收集以及整理是一项十分漫长的过程,包括多个行业、多个领域,其中风电规划前期、后期以及运行中期的数据都应该进行记录,数据的完整性对并网的后期管理具有十分重要的作用。并网管理是多方面的,为了提高并网管理的质量,相关的单位应该建立专门的管理队伍,对并网进行大规模的监管、检测,进一步完善风力发电的管理体系,除此之外,对于大型的风力发电项目,要做好年度的规划,对风力发电的情况进行严格的记录,根据有关的资料显示,风力发电管理体系的制定以及完善可以从根本上提高用电的质量情况,提高相关产业的工作效率。 3.4我国部分区域的风能资源开发 根据中国中东部和南方地区陆上风能资源分布广泛、用电地区近的特点,按照“就近接入、本地消纳”的原则,中东部和南方地区成为国家发展风电的选择区域,这些地方的风能资源将得到规模化开发,具体表现为3个方面:①中东部和南部地区成为项目核准地区。②调整这些地区的上网电价,以吸引当地的风电投资。③国家在《风电发展“十三五”规划》提出,中东部和南方地区陆上风电在2020年新增并网装机容量将达到4200万kW以上,累计并网装机容量达到7200万kW以上。 3.5强化故障诊断,提升电能质量 对风力发电机组的故障进行分析,进而对故障进行诊断。风力发电机组的相关技术人员要对风力发电行业中存在的问题进行分析,分析之后提出相应的解决措施,只有提高设备的质量,才能进一步提升风力发电机组的发电质量。 3.6杜绝安全隐患

风力发电系统的控制原理

风力发电系统的控制原理 风力涡轮机特性: 1,风能利用系数Cp 风力涡轮从自然风能中吸取能量的大小程度用风能利用系数Cp表示: P---风力涡轮实际获得的轴功率 r---空气密度 S---风轮的扫风面积 V---上游风速 根据贝兹(Betz)理论可以推得风力涡轮机的理论最大效率为:Cpmax=0.593。 2,叶尖速比l 为了表示风轮在不同风速中的状态,用叶片的叶尖圆周速度与风速之比来衡量,称为叶尖速比l。 n---风轮的转速 w---风轮叫角频率 R---风轮半径 V---上游风速 在桨叶倾角b固定为最小值条件下,输出功率P/Pn与涡轮机转速N/Nn的关系如图1所示。从图1中看,对应于每个风速的曲线,都有一个最大输出功率点,风速越高,最大值点对应得转速越高。如故能随风速变化改变转速,使得在所有风速下都工作于最大工作点,则发出电能最多,否则发电效能将降低。 涡轮机转速、输出功率还与桨叶倾角b有关,关系曲线见图2 。图中横坐标为桨叶尖速度比,纵坐标为输出功率系统Cp。在图2 中,每个倾角对应于一条Cp=f(l)曲线,倾角越大,曲线越靠左下方。每条曲线都有一个上升段和下降段,其中下降段是稳定工作段(若风速和倾角不变,受扰动后转速增加,l加大,Cp减小,涡轮机输出机械功率和转矩减小,转子减速,返回稳定点。)它是工作区段。在工作区段中,倾角越大,l和Cp越小。 3,变速发电的控制 变速发电不是根据风速信号控制功率和转速,而是根据转速信号控制,因为风速信号扰动大,而转速信号较平稳和准确(机组惯量大)。 三段控制要求: 低风速段N<Nn,按输出功率最大功率要求进行变速控制。联接不同风速下涡轮机功率-转速曲线的最大值点,得到PTARGET=f(n)关系,把PTARGET作为变频器的给定量,通过控制电机的输出力矩,使风力发电实际输出功率P=PTARGET。图3是风速变化时的调速过程示意图。设开始工作与A2点,风速增大至V2后,由于惯性影响,转速还没来得及变化,工作点从A2移至A1,这时涡轮机产生的机械功率大于电机发出的电功率,机组加速,沿对应于V2的曲线向A3移动,最后稳定于A3点,风速减小至V3时的转速下降过程也类似,将沿B2-B1-B3轨迹运动。 中风速段为过渡区段,电机转速已达额定值N=Nn,而功率尚未达到额定值P<Pn。倾角控制器投入工作,风速增加时,控制器限制转速升,而功率则随着风速增加上升,直至P=Pn。 高风速段为功率和转速均被限制区段N=Nn/P=Pn,风速增加时,转速靠倾角控制器限制,功率靠变频器限制(限制PTARGET值)。 4,双馈异步风力发电控制系统

风力发电原理

风能发电的主要形式有三种:一是独立运行;二是风力发电与其他发电方式(如柴油机发电)相结合;三是风力并网发电。由于并网发电的单机容量大、发展潜力大,故本文所指的风电, 未经特别说明,均指并网发电。 1、小型独立风力发电系统 小型独立风力发电系统一般不并网发电,只能独立使用,单台装机容量约为100瓦-5千瓦,通常不超过10千瓦。它的构成为:风力发电机+充电器+数字逆变器。风力发电机由机头、转体、尾翼、叶片组成。叶片用来接受风力并通过机头转为电能;尾翼使叶片始终对着来风的方向从而获得最大的风能;转体能使机头灵活地转动以实现尾翼调整方向的功能;机头的转子是永磁体,定子绕组切割磁力线产生电能。因风量不稳定,故小型风力发电机输出的是13~25V变化的交流电,须经充电器整流,再对蓄电瓶充电,使风力发电机产生的电能变成化学能。然后用有保护电路的逆变电源,把电瓶里的化学能转变成交流220V市 电,才能保证稳定使用。 2、并网风力发电系统 德国、丹麦、西班牙等国家的企业开发建立了评估风力资源的测量及计算机模拟系统,发展变桨距控制及失速控制的风力机设计理论,采用新型风力机叶片材料及叶片翼型,研制出变极、变滑差、变速恒频及低速永磁等新型发电机,开发了由微机控制的单台及多台风力发电机组成的机群的自动控制技术,从而大大提高了风力发电的效率及可靠性。在此基础上,风力发电机单机装机容量可以达到600千瓦以上。不少国家建立了众多的中型及大型风力发 电场,并实现了与大电网的对接。 现代风力发电机多为水平轴式。一部典型的现代水平轴式风力发电机包括叶片、轮毂(与叶片合称叶轮)、机舱罩、齿轮箱、发电机、塔架、基座、控制系统、制动系统、偏航系统、液压装置等。其工作原理是:当风流过叶片时,由于空气动力的效应带动叶轮转动,叶轮透过主轴连结齿轮箱,经过齿轮箱(或增速机)加速后带动发电机发电。目前也有厂商推出无齿轮箱式机组,可降低震动、噪音,提高发电效率,但成本相对较高。 风力发电机并不能将所有流经的风力能源转换成电力,理论上最高转换效率约为59%,实际上大多数的叶片转换风能效率约介于30-50%之间,经过机电设备转换成电能后的总输出效率约为20-45%。一般市场上风力发电机的启动风速约为2.5-4米/秒,于风速12-15米/秒时达到额定的输出容量。当风速更高时,风力发电机的控制机构将电力输出稳定在额定容量左右,为避免过高的风速损坏发电机,大多于风速达20-25米/秒范围内停机。一般采用旋角节制或失速节制方式来调节叶片之气动性能及叶轮的输出。依据目前的技术,3米/秒左右的风速(微风的程度)便可以进行发电。但在进行风场评估时,通常要求离地10米高 的年平均风速达到5-5.5米/秒以上。

风力发电机的原理及应用前景

风力发电机的原理及应用前景 摘要:许多世纪以来,风力发电机同水力机械一样,作为动力源替代人力、畜力,对生产力的发展发挥过重要作用。70年代初期,由于“石油危机”,出现了能源紧张的问题,人们认识到常规矿物能源供应的不稳定性和有限性,于是寻求清洁的可再生能源遂成为现代世界的一个重要课题。风能作为可再生的、无污染的自然能源又重新引起了人们重视。 关键词:风力发电,原理,应用前景,自然能源 随着科技的不断进步,社会的不断发展,能源问题将会成为未来人类必须解决的问题之一,同时可再生能源结构会成为未来能源的倾向之一。现如今风能作为一种无污染的可再生能源备受人们的关注,风力发电正在世界上形成一股热潮,因为风力发电没有燃料问题,也不会产生辐射或空气污染。在一定程度上,风力发电将会成为未来最具潜力的新能源之一。 一、风力发电机原理 风力发电机是将风能转换为机械功的动力机械,又称风车。广义地说,它是一种以太阳为热源,以大气为工作介质的热能利用发动机。风力发电利用的是自然能源。相对柴油发电要好的多。但是若应急来用的话,还是不如柴油发电机。风力发电不可视为备用电源,但是却可以长期利用。 风力发电是利用风力带动风车叶片旋转,再透过增速机将旋转的速度提升,来促使发电机发电。依据目前的风车技术,大约

是每秒三公尺的微风速度(微风的程度),便可以开始发电。 小型风力发电系统效率很高,但它不是只由一个发电机头组成的,而是一个有一定科技含量的小系统:风力发电机+充电器+数字逆变器。风力发电机由机头、转体、尾翼、叶片组成。每一部分都很重要,各部分功能为:叶片用来接受风力并通过机头转为电能;尾翼使叶片始终对着来风的方向从而获得最大的风能;转体能使机头灵活地转动以实现尾翼调整方向的功能;机头的转子是永磁体,定子绕组切割磁力线产生电能。 风力发电机因风量不稳定,故其输出的是13~25V变化的交流电,须经充电器整流,再对蓄电瓶充电,使风力发电机产生的电能变成化学能。然后用有保护电路的逆变电源,把电瓶里的化学能转变成交流220V市电,才能保证稳定使用。 机械连接与功率传递水平轴风机桨叶通过齿轮箱及其高速轴与万能弹性联轴节相连,将转矩传递到发电机的传动轴,此联轴节应按具有很好的吸收阻尼和震动的特性,表现为吸收适量的径向、轴向和一定角度的偏移,并且联轴器可阻止机械装置的过载。另一种为直驱型风机桨叶不通过齿轮箱直接与电机相连风机电机类型 二、风力发电机结构 机舱,转子叶片,轴心,低速轴,齿轮箱,发电机,电子控制器,液压系统,冷却元件,塔,风速计及风向标,尾舵 三、风力发电机类型

风力发电机组工作原理

风力发电的原理,是利用风力带动风车叶片旋转,再透过增速机(齿轮箱)将旋转的速度提升,来促使发电机发电 Use wind force to drive windmill’s blade rotating. Through speed adder (GEAR CASE) to improve the rotating speed 组成部分:风力发电机+充电器+数字逆变器(偏航系统) Compose of: wind force engine, battery charger, number inverter (drift/yawing system) 风力发电机由机头、转体、尾翼、叶片组成。每一部分都很重要,各部分功能为:叶片用来接受风力并通过机头转为电能;尾翼使叶片始终对着来风的方向从而获得最大的风能;转体能使机头灵活地转动以实现尾翼调整方向的功能;机头的转子是永磁体,定子绕组切割磁力线产生电能 风力发电机因风量不稳定,故其输出的是13~25V变化的交流电,须经充电器整流,再对蓄电瓶充电,使风力发电机产生的电能变成化学能。然后用有保护电路的逆变电源,把电瓶里的化学能转变成交流220V市电,才能保证稳定使用 风力发电机只是给电瓶充电,而由电瓶把电能贮存起来,人们最终使用电功率的大小与电瓶大小有更密切的关系 现代变速双馈风力发电机的工作原理就是通过叶轮将风能转变为机械转距(风轮转动惯量),通过主轴传动链,经过齿轮箱增速到异步发电机的转速后,通过励磁变流器励磁而将发电机的定子电能并入电网。如果超过发电机同步转速,转子也处于 发电状态,通过变流器向电网馈电。 最简单的风力发电机可由叶轮和发电机两部分构成,立在一定高度的塔干上,这是小型离网风机。最初的风力发电机发出的电能随风变化时有时无,电压和频率不稳定,没有实际应用价值。为了解决这些问题,现代风机增加了齿轮箱、偏航系 统、液压系统、刹车系统和控制系统等。 齿轮箱可以将很低的风轮转速(1500千瓦的风机通常为12-22转/分)变为很高的发电机转速(发电机同步转速通常为1500转/分)。同时也使得发电机易于控制,实现稳定的频率和电压输出。偏航系统可以使风轮扫掠面积总是垂直于主风向。要知道,1500千瓦的风机机舱总重50多吨,叶轮30吨,使这样一个系统随时对准 主风向也有相当的技术难度。 风机是有许多转动部件的,机舱在水平面旋转,随时偏航对准风向;风轮沿水平轴旋转,以便产生动力扭距。对变桨矩风机,组成风轮的叶片要围绕根部的中心轴旋转,以便适应不同的风况而变桨距。在停机时,叶片要顺桨,以便形成阻尼刹车。早期采用液压系统用于调节叶片桨矩(同时作为阻尼、停机、刹车等状态下使 用),现在电变距系统逐步取代液压变距。

永磁同步风力发电机的原理和应用

永磁同步风力发电机的原理和应用 我国风能资源丰富,可开发的风能潜力巨大。根据有关资料,我国陆地风能资源可开发量23.8亿千瓦,海上风能资源可开发量约2亿千瓦。我国风能资源比较集中,“三北”地区(华北、东北和西北)以及东南沿海地区、沿海岛屿潜在风能资源开发量约占全国的80%。风能资源与煤炭资源的地理分布具有较高的重合度,与电力负荷则呈逆向分布。 近日,一款拥有自主知识产权,最大功率为2.5MW的高速永磁同步风力发电机在南车株洲电机有限公司成功下线。该发电机具有效率高、体积小、结构紧凑、成本低、可靠性高、维护量小等诸多优点,采用全功率变流控制,使机组具有良好的低电压穿越性能;该发电机与直驱型永磁同步风力发电机相比,体积大大减小、重量大大减轻,特别是磁钢用量大大减少,在稀土价格居高不下的今天,该产品的高性价比优势更加突出,具有很好的市场前景。该发电机的成功研制标志着我国企业已具备自主研发具有国际先进水平高速永磁同步风力发电机的能力。 “十二五”时期,我国风电装机容量占发电总容量比例将进一步加大,出于电网安全考虑,风电机组必须在“低电压穿越”保障下“御风而行”。据中国国家发改委能源研究所有关人士透露,2020年陆地风电的成本将与煤电持平,之后风电将逐步脱离国家补贴,“降低成本”也成为风电行业未来发展面临的新的“瓶颈”。南车株洲电机有限公司成功推出2.5MW高速永磁同步风力发电机,实现了发电机低成本制造,使机组极易实现低电压穿越,在国内处于技术领先水平。 永磁同步风力发电机由于机械损耗小、运行效率高、维护成本低等优点成为继双馈感应风电机组之后的又一重要风力发电机型受到广泛关注,并逐渐

风力发电系统的基本原理(DOC)

风力发电系统的基本原理 一、风力发电的基本原理 风能具有一定的动能,通过风轮机将风能转化为机械能,拖动发电机发电。风力发电的原理是利用风带动风车叶片旋转,再通过增速器将旋转的速度提高来促使发电机发电的。依据目前的风车技术,大约3m/s的微风速度便可以开始 发电。风力发电的原理说起来非 常简单,最简单的风力发电机可 由叶片和发电机两部分构成如 图1-1所示。空气流动的动能作 用在叶轮上,将动能转换成机械 能,从而推动片叶旋转,如果将 叶轮的转轴与发电机的转轴相 连就会带动发电机发出电来。 二、风力发电的特点 (1)可再生的洁净能源 风力发电是一种可再生的洁净能源,不消耗化石资源也不污染环境,这是火力发电所无法比拟的优点。 (2)建设周期短 一个十兆瓦级的风电场建设期不到一年。 (3)装机规模灵活

可根据资金情况决定一次装机规模,有一台资金就可以安装一台投产一台。 (4)可靠性高 把现代高科技应用于风力发电机组使其发电可靠性大大提高,中、大型风力发电机组可靠性从80年代的50%提高到了98%,高于火力发电且机组寿命可达20年。 (5)造价低 从国外建成的风电场看,单位千瓦造价和单位千瓦时电价都低于火力发电,和常规能源发电相比具有竞争力。我国由于中大型风力发电机组全部从国外引进,造价和电价相对比火力发电高,但随着大中型风力发电机组实现国产化、产业化,在不久的将来风力发电的造价和电价都将低于火力发电。 (6)运行维护简单 现代中大型风力发电机的自动化水平很高,完全可以在无人职守的情况下正常工作,只需定期进行必要的维护,不存在火力发电的大修问题。 (7)实际占地面积小 发电机组与监控、变电等建筑仅占火电厂1%的土地,其余场地仍可供农、牧、渔使用。 (8)发电方式多样化 风力发电既可并网运行,也可以和其他能源如柴油发电、太阳能发电、水利发电机组形成互补系统,还可以独立运行,因此对于解决

学习《风力发电原理与应用》后的心得体会

学习《风力发电原理与应用》后的心得体会 在湛蓝天空下,四周安静的时候,给人印象深刻的就是风,它从你的耳畔掠过,从你的指尖流过,胸中浊气涤荡一空,在一呼一吸之间,身心也轻盈起来。在这个空气清新、负氧离子浓密的地方,你可以自由自在地、毫无负担地呼吸。这与清洁能源的大力发展,减少大气污染有很大的关系,这也使得以风能为代表的清洁能源在近年来快速的发展。 现今调整能源结构、减少温室气体排放、缓解环境污染、加强能源安全已成为国内外关注的热点,我国也对可再生能源的利用,特别是风能开发利用也给予了高度重视。我国风能资源总量约42亿千瓦,技术可开发量约3亿千瓦。目前东南沿海是最大风能资源区,风能密度为200W/M2~300W/M2,大于6m/s的风速时间全年3000h以上就可取得较大经济效益。风能与其他能源相比,有其明显的优点:蕴量巨大、可以再生、分布广泛、没有污染。风能和阳光一样,是取之不尽、用之不竭的再生能源。风力发电没有燃料问题,不会产生辐射或二氧化碳公害,也不会产生辐射或空气污染。而且从经济的角度讲,风力仪器比太阳能仪器要便宜九成多。中国风能储量很大、分布面广,甚至比水能还要丰富。合理利用风能,既可减少环境污染,又可减轻越来越大的能源短缺的压力。 近年来,工程师们尝试发展其他更好的方法利用风力。风力虽不很稳定,但是比其他动力资源要来得便利,因为,风向自由、清洁、不会产生不良的副作用。而且风可以推陈出新、供应不断。利用风力发电已越来越成为风能利用的主要形式,受到世界各国的高度重视,而且发展速度最快。风力发电通常有三种运行方式。一是独立运行方式,通常是一台小型风力发电机向一户或几户提供电力,它用蓄电池蓄能,以保证无风时的用电。二是风力发电与其他发电方式(如柴油机发电)相结合,向一个单位或一个村庄或一个海岛供电。三是风力发电并入常规电网运行,向大电网提供电力;而且,通过一个学期对《风力发电原理与应用》的学习,使得我对风力发电机组有了一定的了解,按照风轮形式分类:可分为垂直轴风力发电机组和水平轴风力发电机组。按照有无齿轮分类:可分为直驱式风力发电机和双馈式风力发电机。直驱式风力发电机是一种由风力直接驱动发电机,亦称无齿轮风力发动机,这种发电机采用多极电机与叶轮直接连接进行驱动的方式,免去齿轮箱这一传统部件。由于齿轮箱是目前在兆瓦级风力发电机中属易过载和过早损坏率较高的部件,因此,没有齿轮箱的直驱式风力发动机,具备低风速时高效率、低噪音、高寿命、减小机组体积、降低运行维护成本等诸多优点。双馈风电机组中,为了让风轮的转速和发电机的转速相匹配,必须在风轮和发电机之间用齿轮箱来联接,这就增加了机组的总成本;而齿轮箱噪音大、故障率高、需要定期维护,并且增加了机械损耗;机组中采用的双向变频器结构和控制复杂;电刷和滑环间也存在机械磨损。双馈式风力发电机组的特点是采用了多级齿轮箱驱动有刷双馈式异步发电机。它的发电机的转速高,转矩小,重量轻,体积小,变流器容量小,但齿轮箱的运行维护成本高且存在机械运行损耗。 通过一个学期对《风力发电原理与应用》的学习,也是得我对风力发电的优越性有了更加深刻的理解,其优越性可归归结为三点:第一,建造风力发电场的费用低廉,比水力发电厂、火力发电厂或核电站的建造费用低得多;第二,不需火力发电所需的煤、油等燃料或核电站所需的核材料即可产生电力,除常规保养外,没有其他任何消耗;第三,风力是一种洁净的自然能源,没有煤电、油电与核电所伴生的环境污染问题。 更为重要的是风电资源的开发对环境来讲,利远大于弊。虽然大量的风能资源处于戈壁滩、大草原和沿海滩涂地区,给开发带来不便,但依靠后方力量的支援一定能够克服。此外,虽然风电建设要占用大面积的土地,旋转的风机叶片可能产生噪音污染等,但在荒凉地区开发风电,对社会和环境影响非常少,不占用基本农田,不存在与民争地的矛盾。因此,在这些地区的大风口建设风电,不仅可以利用荒地清洁生产电力,还可以削弱风速,减少冬春季节的扬沙浮尘天气。

相关主题
文本预览
相关文档 最新文档