当前位置:文档之家› 采矿工程专业文献翻译-长壁采煤法三向巷道交叉点的有限元分析

采矿工程专业文献翻译-长壁采煤法三向巷道交叉点的有限元分析

采矿工程专业文献翻译-长壁采煤法三向巷道交叉点的有限元分析
采矿工程专业文献翻译-长壁采煤法三向巷道交叉点的有限元分析

翻译部分

英文原文

Finite element analysis of three-way roadway junctions in

longwall mining

R.N. Singh, I. Porter, J. Hematian

Faculty of Engineering, Uniíersity of Wollongong, Northfields Avenue,

Wollongong, NSW 2522, Australia

Abstract:

This paper presents a three-dimensional finite element analysis of three-way roadway intersections in longwall mining, and assesses the stable/unstable behaviour of three-way intersections under a range of loading conditions. Loads were applied to the model by means of uniform stresses on the internal free faces. This method of loading the model from the inside helped to reduce its size and to eliminate the boundary effects. Stress concentrations and displacement results on the mid-height of the pillars, roof and floor strata adjacent to the three-way intersections and cut-throughs were calculated.Based on this study, guidelines for designing the support system for three-way intersections are suggested. The results were validated by a case study of a three-way intersection in an underground coal mine in the southern coal fields of the Sydney Basin.

Keywords:underground coal mining; gate roadway; intersections; stability; finite element method

1. Introduction

A trend exists in Australia for installing high productivity longwall faces producing 3.0~4.0 milliontonne raw coal per annum per face. The mainconcern for the success of the high-production longwallfaces is to achieve high rates of developmentand to maintain stability of access roadways andtheir intersections during the life span of the face.Intersections are formed when the pillars betweenthe two roadways are intersected by driving a crosscut. Roadway intersections in underground mines areparticularly susceptible to ground control problemsdue to inherently wide roof spans used and the difficulty in installing roof supports promptly inhighly mechanised headings. Stresses induced duringintersection formation may result in

high incidenceof roof and rib failures. Despite many investigationsinto the stability of gate roadways intersectionsadverse conditionssuch as high horizontal stress and unsteady state ofabutment pressure from moving longwall faces maycause instability of gate roadway intersections.For example in 1985; major strata control problems inthe main gate of no. 6 longwall panel at WestcliffColliery resulted in roof fall, which stopped coalproduction for a period of 6 weeks. Similarly, a rooffailure incident at Pacific Colliery caused the longwallequipment to be buried resulting in stoppage ofthe longwall operations for a period of 3 months.Thus, unprecedented stratacontrol problems may have significant effects onoverall production from high-productivity longwallsystems even over a short duration.This paper containsan investigation of the application of a three-dimensionalfinite element method to calculate stressesand displacement around three-way roadway intersections.The effects of individual parameters such as depth of cover, the ratio of horizontal to verticalstress (K) and the width of opening on the stability of the three-way intersections are examined. Theresults are compared with the field observations at anunderground coal mine in the southern coal field ofthe Sydney Basin.

2. Stability analysis of three-way intersections using three-dimensional finite element models

The procedure used in the stability analysis of thethree-way intersections comprised of defining themechanical properties of the rocks surrounding theintersection, the geometry of the intersection and thevirgin state of stress. The stresses and displacements induced around the intersections were computed usinga three-dimensional finite element method. Ifunstable conditions existed, either the design of supportsystem was changed or the geometry of thestructure was modified.Important input data forthese models were vertical stress and the ratio ofhorizontal to vertical stress K for a given lithologyand dimensions of the roadway intersection .

Assuming symmetrical conditions around a threewayintersection, only half of the structure wasmodelled using eight-node solid elements comprisinga total of 7190 elements and the 11 597 grid points.The computer running time was 17 h using around 1Gb of memory. The rock mass properties assigned tothe intersection model are presented in Table 1.The loads were applied to the model by means ofuniform pressures on the internal free faces. Thistechnique of applying load from the inside helped to reduce the size of the model and to eliminate boundaryeffects. For all the loading configurations depictedin Table 2, a linear solution method was used.

Preliminary computer analysis was carried out tocompute the induced vertical stress distributionthroughout the three-dimensional model for a litho-staticcondition. In order to gain better understandingon the behaviour of the structure, the vertical stressconcentration on various horizontal and verticalplanes was shown for different loading conditions byplotting stress concentration contour lines for variousratios of induced virgin stresses. These results are discussed in the subsequent sections.

3. Pillar behaviour at three-way intersection

Fig. 2 indicates vertical stress concentration at themid-height of the pillar for various loading configurations.For the litho-static stress condition at K=K x=K y=1, the stress concentration at the midheight of the pillar has a symmetrical pattern (see Fig. 2a). The stress concentration zone on the ribside of the intersection has a width of 2.5 m, equal tohalf the roadway span. The maximum stress concentrationis about 1.4 times the virgin stress for theloading configuration K y>1 for a limited zone at the corner of the pillar.

When K y >1, the vertical stress pattern at the mid-height of the pillar is no longer symmetrical;thestress is more pronounced along the roadway perpendicularto the direction of maximum horizontal stress(see Fig. 2b).No tensile zone along the rib side wasdetected. The maximum stress concentration zone islocated close to the edge of the pillar and extends along the roadway perpendicular to the major horizontal stress.

4. Roof behaviour at three-way intersection

The vertical stress distribution on a plane 1.5-mabove the roof line is shown in Fig. 3, which indicatesthat the stress is 0.8z σ over the edge of pillar increasing to 1.0z σ at a distance of 6 m within the edge of the pillar. The stress distribution lines abovethe individual roadways show the contour lines atintervals of 0.2z σ.This stress distribution pattern indicates a semi-dome shaped destressed zone overthe three-way intersection. When the ratio of horizontalto vertical stress, K x or K y increases, the stress contour line 0.2 z σ moves towards the centre of the roadway while 1.0z σ line moves further into the pillar indicating that the height of the semi-domeshaped destressed zone becomes shallower in thefield of high horizontal stress.

When K x ≠K y , as shown in Fig. 3b, the stresspattern varies over the individual roadways and 0.2z σpartly disappears in the roadway perpendicular to themajor horizontal stress. In this case, the boundary ofthe roof fall in this roadway will be controlled by thestress contour lines of 0.4z σ .However, the rate of changes in stress distribution across the roof line ofthe roadway parallel to high horizontal stress is moresignificant. The height of the roof fall in the roadwayintersection might be evaluated by using appropriatedestressed contour lines on the vertical plane at themid-span of the main roadways and the cut-throughs,respectively, as presented in Figs. 4 and 5. Thejustification of using 0.4z σ contour line to delineate the boundary of roof fall is presented in a subsequentsection.

Fig. 5 Vertical stress concentration on the vertical plane at the mid-span of the

cut-through.

Fig. 5 also indicates that the radius of influence ofthe intersection over the individual roadways with respect to the stress distribution in the roof is estimatedto be one span from the centre of the intersection.

Fig. 6 shows the vertical displacement on the roofline under various loading configurations at the roadwayintersection. The maximum sag occurs at the centre of the intersection and its maximum value is12 mm. It can also be seen that the roadway parallelto the major horizontal stress will show more roofsag than the roadway

perpendicular to the horizontalstress.

Behaviour of the floor at the T-junction of athree-way intersection is given in Fig.

7 on the floorline for loading configuration K x=1 and K y=2. The floor lift patterns are similar to that of the roofsag except that the amount of the maximum floorheave is much less than the corresponding value forsag.

5. Case history of three-way intersections

An investigation into the mechanism of instabilityat roadway intersections was carried out at tail gatesof a longwall panel in an underground coal mine inthe southern coal fields of the Sydney Basin. Thefield measurements included roof sag, floor heaveand rib deformation monitoring ahead and behind thelongwall face. The overall objective of this studywas to validate the results of three-dimensional finiteelement modelling of the three-way junction by comparingthe results with the field measurements.

5.1. Site location and the description of the site-specific Model

Fig. 8 presents the details of the longwall panel, gate roadways and intersections at the site beinginvestigated. The panels were 200-m wide and 2000-m long with a double entry gate roadway system.Each roadway was 5 m wide, 3 m high, with 55×

40 m pillars centre-to-centre. The height of extractionvaried between 2.4 and 2.6 m.The actual sites ofmonitoring were 35, 36 and 9 intersections of 24longwall’s tail gate and 35 and 36 cut-throughs. Thevertical stress at the site was 10 MPa at the depth of420 m, the major horizontal stress 25 MPa orientedparallel to the gate roadways and

the minor horizontalstress

The mechanicalproperties of the strata units are shown in Table3. Based on the above information, a number ofthree-dimensional finite element models were constructedand analysed to simulate the existing conditionsaround the sites of investigation. Both inducedstresses and displacements around the roadways andintersections were computed for each site of investigation. The results of the finite element analyses arepresented together with the values obtained from thefield displacement measurements.

A series of roof, rib and floor extensometers were installed at and in between 35,

36 and 9 cut-throughsahead of 23 longwall panel. The objective of thisstudy was to determine the pattern of deformationaround the area of investigation and provide a measureof ground control. The extensometers site andlocation for principle modes of failure are also presentedin Fig. 8.

The roof sag measurements have been carried outat different locations and compared with values predicted by the finite element model.In all cases,

Table 3 Mechanical properties of rock at the site of investigation

土木工程外文文献及翻译

本科毕业设计 外文文献及译文 文献、资料题目:Designing Against Fire Of Building 文献、资料来源:国道数据库 文献、资料发表(出版)日期:2008.3.25 院(部):土木工程学院 专业:土木工程 班级:土木辅修091 姓名:武建伟 学号:2008121008 指导教师:周学军、李相云 翻译日期: 20012.6.1

外文文献: Designing Against Fire Of Buliding John Lynch ABSTRACT: This paper considers the design of buildings for fire safety. It is found that fire and the associ- ated effects on buildings is significantly different to other forms of loading such as gravity live loads, wind and earthquakes and their respective effects on the building structure. Fire events are derived from the human activities within buildings or from the malfunction of mechanical and electrical equipment provided within buildings to achieve a serviceable environment. It is therefore possible to directly influence the rate of fire starts within buildings by changing human behaviour, improved maintenance and improved design of mechanical and electrical systems. Furthermore, should a fire develops, it is possible to directly influence the resulting fire severity by the incorporation of fire safety systems such as sprinklers and to provide measures within the building to enable safer egress from the building. The ability to influence the rate of fire starts and the resulting fire severity is unique to the consideration of fire within buildings since other loads such as wind and earthquakes are directly a function of nature. The possible approaches for designing a building for fire safety are presented using an example of a multi-storey building constructed over a railway line. The design of both the transfer structure supporting the building over the railway and the levels above the transfer structure are considered in the context of current regulatory requirements. The principles and assumptions associ- ated with various approaches are discussed. 1 INTRODUCTION Other papers presented in this series consider the design of buildings for gravity loads, wind and earthquakes.The design of buildings against such load effects is to a large extent covered by engineering based standards referenced by the building regulations. This is not the case, to nearly the same extent, in the

交通运输安全中英文对照外文翻译文献

交通运输安全中英文对照外文翻译文献 (文档含英文原文和中文翻译) 翻译: 提高车辆的安全以及技术是怎么样让我们更有可能的活下来 摘要:成功部署新技术在公路车辆取决于驾驶员的能力,安全地使用系统。本章呼吁社会工程,充分考虑可用性问题与车载系统设计进行交流与司机。这种相互作用可能包含的信息的车辆,其他车辆,道路,路线,或天气,也可能是个人的娱乐兴趣。有相当多的证据表明,司机在视觉超载,并提供额外的信息通过听觉显示是必要的,但有认知工作量与驾驶活动无论知觉的参与渠道。分心的成本自然语音交互可能少于为视觉仪表显示的信息,但也有许多人的因素问题的解决,确保改善驾驶性能和安全性。

关键词:公路安全车载信息系统驱动程序的行为 人类因素知觉分心注意避免事故 技术手持无线装置听觉显示美国 1.1简介 美国国家运输安全委员会(美国)公路事故调查,提出建议,改善公路安全。它是从这个角度来看,本章认为,数字信号处理(数字信号处理器)为手机和车载系统。公路安全计划寻求改善安全通过防止崩溃或增加坠毁生存。美国公共政策已经达到了一些实际的限制在乘员保护和缓解;因此,新的程序,如智能交通系统(其),重点放在避免碰撞来提高安全性。 例外,如稳定控制系统,技术避免事故涉及的驱动程序作为一个关键的控制因素,在系统的性能。 本章文着眼于人的因素影响车载系统设计 1.2公路安全 美国国家运输安全委员会调查交通事故在所有形式的旅游高速公路,航空,船舶,铁路,和管道。重要的是要认识到,安全委员会是独立的监管机构在美国交通部(usdot)。这样的安排是精心构造确保美国调查和安全通告是公正的。许多政府在世界各地都有类似的组织。 虽然有许多方式来衡量安全,但没有人可以说,底线是死亡。在美国除了旅游公路,大部分交通事故中每年有700至800人死亡。 死亡的人数在海洋模式每年大约有800人,绝大多数的那些隐没在描述休闲划船事故。 有相同数目的死亡发生在铁路事故,每年大多数是违反规则的人和铁路工人,而不是乘客。在航空,平均每年大约有750人死亡,几乎所有有关帮助导航私人的在小一般航空飞行员的飞机,每年我们也有一打管道从气体爆炸事故。 相比之下,美国有大约43300国道及250万人受伤死亡事故从去年的近600万[1]。每一天,超过16000的事故发生在美国的高速公路。一个拥有约3亿人口的,我们已有超过2.5亿名注册的车辆。汽车工业是一个主要的经济力量在美国,但公路伤害和死亡是对经济拖引擎。机动车事故在美国估计花费每年超过2300亿美元[2]。 1.3驱动

土木工程外文文献翻译

专业资料 学院: 专业:土木工程 姓名: 学号: 外文出处:Structural Systems to resist (用外文写) Lateral loads 附件:1.外文资料翻译译文;2.外文原文。

附件1:外文资料翻译译文 抗侧向荷载的结构体系 常用的结构体系 若已测出荷载量达数千万磅重,那么在高层建筑设计中就没有多少可以进行极其复杂的构思余地了。确实,较好的高层建筑普遍具有构思简单、表现明晰的特点。 这并不是说没有进行宏观构思的余地。实际上,正是因为有了这种宏观的构思,新奇的高层建筑体系才得以发展,可能更重要的是:几年以前才出现的一些新概念在今天的技术中已经变得平常了。 如果忽略一些与建筑材料密切相关的概念不谈,高层建筑里最为常用的结构体系便可分为如下几类: 1.抗弯矩框架。 2.支撑框架,包括偏心支撑框架。 3.剪力墙,包括钢板剪力墙。 4.筒中框架。 5.筒中筒结构。 6.核心交互结构。 7. 框格体系或束筒体系。 特别是由于最近趋向于更复杂的建筑形式,同时也需要增加刚度以抵抗几力和地震力,大多数高层建筑都具有由框架、支撑构架、剪力墙和相关体系相结合而构成的体系。而且,就较高的建筑物而言,大多数都是由交互式构件组成三维陈列。 将这些构件结合起来的方法正是高层建筑设计方法的本质。其结合方式需要在考虑环境、功能和费用后再发展,以便提供促使建筑发展达到新高度的有效结构。这并

不是说富于想象力的结构设计就能够创造出伟大建筑。正相反,有许多例优美的建筑仅得到结构工程师适当的支持就被创造出来了,然而,如果没有天赋甚厚的建筑师的创造力的指导,那么,得以发展的就只能是好的结构,并非是伟大的建筑。无论如何,要想创造出高层建筑真正非凡的设计,两者都需要最好的。 虽然在文献中通常可以见到有关这七种体系的全面性讨论,但是在这里还值得进一步讨论。设计方法的本质贯穿于整个讨论。设计方法的本质贯穿于整个讨论中。 抗弯矩框架 抗弯矩框架也许是低,中高度的建筑中常用的体系,它具有线性水平构件和垂直构件在接头处基本刚接之特点。这种框架用作独立的体系,或者和其他体系结合起来使用,以便提供所需要水平荷载抵抗力。对于较高的高层建筑,可能会发现该本系不宜作为独立体系,这是因为在侧向力的作用下难以调动足够的刚度。 我们可以利用STRESS,STRUDL 或者其他大量合适的计算机程序进行结构分析。所谓的门架法分析或悬臂法分析在当今的技术中无一席之地,由于柱梁节点固有柔性,并且由于初步设计应该力求突出体系的弱点,所以在初析中使用框架的中心距尺寸设计是司空惯的。当然,在设计的后期阶段,实际地评价结点的变形很有必要。 支撑框架 支撑框架实际上刚度比抗弯矩框架强,在高层建筑中也得到更广泛的应用。这种体系以其结点处铰接或则接的线性水平构件、垂直构件和斜撑构件而具特色,它通常与其他体系共同用于较高的建筑,并且作为一种独立的体系用在低、中高度的建筑中。

质量控制和安全施工外文翻译讲课讲稿

质量控制和安全施工 外文翻译

本文献来源于: [1] 董祥. 土木工程英语. 2010(9):145-151 质量控制和安全施工 1在施工中存在的质量和安全问题 质量控制和安全问题对项目经理来说变得越来越重要。施工过程中的设备缺陷或故障可能会导致非常大的成本。即使有轻微缺陷, 也可能需要重新建设使设施运营受损。导致成本的增加和延误结果。在最坏的情况下,故障可能导致人身伤害甚至死亡。在施工过程中的事故可能导致人身伤害和巨大的花费。保险,检验和监管的间接成本迅速增加,会导致直接成本的增加。好的项目经理应尽量确保在第一时间完成任务,并且在工程中没有重大事故发生。 随着成本的控制,关于已完成设施的质量的最重要的决策是在设计和规划阶段,而不是在施工阶段。正是在该组件的配置,材料规格和功能性能这些初步阶段而决定的。施工过程中的质量控制主要是确保其是否符合原先的设计和规划决策。 虽然符合现有的设计决策是质量控制的首要重点,但也有例外的情况。第一,不可预见的情况下,错误的设计决策或希望通过在设备功能的所有者权益变动,可能在施工过程中要求对设计决策进行重新评估。虽然这些变化可能是出于关心质量,但他们意味着随之而来的所有目标和限制因素都要进行重新设计。至于第二种情况,一些明智且适当的设计决策就是取决于施工过程本身,例如,一些隧道要求在不同的位置作出一定数量支护的方法,就是根据土壤条件,观察在隧道里面的过程而做出的决策。由于这样的决定是基于有关工地的实际情况,因此该设施的设计可能会更符合成本效益的结果。任何特殊的情况下,重新设计的施工过程中都需要考虑各种因素。 在施工过程中以讲究一致性作为质量的衡量标准,质量要求的设计和合同文件中的说明将变得极为重要。质量要求应该是明确的、可验证的,能使项目中的各方都能够理解的一致性要求。本章的大部分讨论均涉及到发展和建设的不同质量要求,以及确保符合性的相关问题。 建设项目中的安全性也在很大程度上影响到规划设计过程中的决策。一些设计或施工计划本身就是又危险又很难实现的,而其他类似的计划,则可以大大降低事故发生的可能性。例如,从施工区域内修复巷道使得交通分道行驶可以大大降低意

土木工程专业外文文献及翻译

( 二 〇 一 二 年 六 月 外文文献及翻译 题 目: About Buiding on the Structure Design 学生姓名: 学 院:土木工程学院 系 别:建筑工程系 专 业:土木工程(建筑工程方向) 班 级:土木08-4班 指导教师:

英文原文: Building construction concrete crack of prevention and processing Abstract The crack problem of concrete is a widespread existence but again difficult in solve of engineering actual problem, this text carried on a study analysis to a little bit familiar crack problem in the concrete engineering, and aim at concrete the circumstance put forward some prevention, processing measure. Keyword:Concrete crack prevention processing Foreword Concrete's ising 1 kind is anticipate by the freestone bone, cement, water and other mixture but formation of the in addition material of quality brittleness not and all material.Because the concrete construction transform with oneself, control etc. a series problem, harden model of in the concrete existence numerous tiny hole, spirit cave and tiny crack, is exactly because these beginning start blemish of existence just make the concrete present one some not and all the characteristic of quality.The tiny crack is a kind of harmless crack and accept concrete heavy, defend Shen and a little bit other use function not a creation to endanger.But after the concrete be subjected to lotus carry, difference in temperature etc. function, tiny crack would continuously of expand with connect, end formation we can see without the

土木工程类专业英文文献及翻译

PA VEMENT PROBLEMS CAUSED BY COLLAPSIBLE SUBGRADES By Sandra L. Houston,1 Associate Member, ASCE (Reviewed by the Highway Division) ABSTRACT: Problem subgrade materials consisting of collapsible soils are com- mon in arid environments, which have climatic conditions and depositional and weathering processes favorable to their formation. Included herein is a discussion of predictive techniques that use commonly available laboratory equipment and testing methods for obtaining reliable estimates of the volume change for these problem soils. A method for predicting relevant stresses and corresponding collapse strains for typical pavement subgrades is presented. Relatively simple methods of evaluating potential volume change, based on results of familiar laboratory tests, are used. INTRODUCTION When a soil is given free access to water, it may decrease in volume, increase in volume, or do nothing. A soil that increases in volume is called a swelling or expansive soil, and a soil that decreases in volume is called a collapsible soil. The amount of volume change that occurs depends on the soil type and structure, the initial soil density, the imposed stress state, and the degree and extent of wetting. Subgrade materials comprised of soils that change volume upon wetting have caused distress to highways since the be- ginning of the professional practice and have cost many millions of dollars in roadway repairs. The prediction of the volume changes that may occur in the field is the first step in making an economic decision for dealing with these problem subgrade materials. Each project will have different design considerations, economic con- straints, and risk factors that will have to be taken into account. However, with a reliable method for making volume change predictions, the best design relative to the subgrade soils becomes a matter of economic comparison, and a much more rational design approach may be made. For example, typical techniques for dealing with expansive clays include: (1) In situ treatments with substances such as lime, cement, or fly-ash; (2) seepage barriers and/ or drainage systems; or (3) a computing of the serviceability loss and a mod- ification of the design to "accept" the anticipated expansion. In order to make the most economical decision, the amount of volume change (especially non- uniform volume change) must be accurately estimated, and the degree of road roughness evaluated from these data. Similarly, alternative design techniques are available for any roadway problem. The emphasis here will be placed on presenting economical and simple methods for: (1) Determining whether the subgrade materials are collapsible; and (2) estimating the amount of volume change that is likely to occur in the 'Asst. Prof., Ctr. for Advanced Res. in Transp., Arizona State Univ., Tempe, AZ 85287. Note. Discussion open until April 1, 1989. To extend the closing date one month,

建筑施工安全管理外文翻译齐全

建筑施工安全管理外文翻译齐全

附件1:外文资料翻译译文(后附原文信息及下载链接)(资料齐全)影响建筑工地安全管理制度实施的因素 摘要:这项研究的目的是确定对建筑工地安全管理制度的成功具有影响力的安全因素,以及建筑工人的发病率和安全意识的高低。这项研究对工人,参与砌砖、混凝土浇筑以及相关配套行业的业内专家进行了访问,对她们的自我管理的三个部分进行了问卷调查。调查问卷A部分是关于个人资料的,B部分涉及培训和个人经验的内容,C部分是基于28个业界公认的安全因子提出的问题。所调查的建筑工地样本丰富,从高层建筑,到低层住宅,再到基础设施装修改造都有涉及,样本数量多达275。从调查发现,最有影响力的安全因素是个人的安全意识,上下层级间的沟通紧随其后。本文对如何进行设备的设计以及改进工人工作方法和程序以求提高工作效率的问题提出了建议,并提出管理层应敦促工人更好的了解安全注意事。 关键词:工地;影响安全的因素;安全意识;安全管理系统;自我管理调查 1 简介和研究范围 建设是一项复杂的活动,其中的各种利益相关者都存在由于工作要求而不断受到挑战的工作。每个职业都会有一些它的安全和风险因素,要求的质量和安全管理体系由梅塔和阿格纽()指示建立。有几个风险因素包括组织结构,沟通,明确的指示,安全文化,规范和标准,培

训,领导,落实责任制已确定对工作场所的一般安全状况具有影响。本研究的目的是确定促成安全管理系统成功的最有影响力的因素,这可能会帮助管理层优化可用资源的利用率。 一个设计良好的安全管理体系(SMS)有助于在建筑工地成功实施安全管理体系。一些国家已经设计了建筑工地安全管理系统并实现了基于国家标准的实践。不同国家之间用于发展安全管理系统的因素的不同取决于各国内建筑行业的特殊要求。下面给出了基于不同分类标准的各个层次的因素分析,表1列出了世界各地不同国家所采用的第一级层次上的安全管理要素。在要素的第一级,大多数国家选择八个因素,而新加坡使用四个,马来西亚使用12个。第二层级的因素或子因素是在第一级因素的基础上再次分类,她们的细致程度也不尽相同。或多或少的特别是在第二层次公共区域的安全问题,可能会进一步被细分成子子因素,以求覆盖建筑行业所有的安全因素。当前的研究采用了简化版的马来西亚标准方法作为开发调查问卷的基础,其中第一层包括资源因素,管理因素,个人因素,人力资源管理/激励因素和关系因素,而在她们之下共有28个子因素。研究的最终形式是由职业安全与健康研究所(NIOSH)和建筑工业发展局(CIDB)的专家所指导的。 1.1 资源因素 资源因子包括硬件和软件。包括安全设备,个人防护装备(PPE)和行业必须得到充分开发和提供的任何特殊要求,另外,急救设备和培训也是必要的,危险工艺和设备必须提供必要的紧急停机(ESD)和故

建筑外文文献及翻译

外文原文 Study on Human Resource Allocation in Multi-Project Based on the Priority and the Cost of Projects Lin Jingjing , Zhou Guohua SchoolofEconomics and management, Southwest Jiao tong University ,610031 ,China Abstract----This paper put forward the a ffecting factors of project’s priority. which is introduced into a multi-objective optimization model for human resource allocation in multi-project environment . The objectives of the model were the minimum cost loss due to the delay of the time limit of the projects and the minimum delay of the project with the highest priority .Then a Genetic Algorithm to solve the model was introduced. Finally, a numerical example was used to testify the feasibility of the model and the algorithm. Index Terms—Genetic Algorithm, Human Resource Allocation, Multi-project’s project’s priority . 1.INTRODUCTION More and more enterprises are facing the challenge of multi-project management, which has been the focus among researches on project management. In multi-project environment ,the share are competition of resources such as capital , time and human resources often occur .Therefore , it’s critical to schedule projects in order to satisfy the different resource demands and to shorten the projects’ duration time with resources constrained ,as in [1].For many enterprises ,the human resources are the most precious asset .So enterprises should reasonably and effectively allocate each resource , especially the human resource ,in order to shorten the time and cost of projects and to increase the benefits .Some literatures have

质量控制和安全施工外文翻译

本文献来源于: [1] 董祥. 土木工程英语. 2010(9):145-151 质量控制和安全施工 1在施工中存在的质量和安全问题 质量控制和安全问题对项目经理来说变得越来越重要。施工过程中的设备缺陷或故障可能会导致非常大的成本。即使有轻微缺陷, 也可能需要重新建设使设施运营受损。导致成本的增加和延误结果。在最坏的情况下,故障可能导致人身伤害甚至死亡。在施工过程中的事故可能导致人身伤害和巨大的花费。保险,检验和监管的间接成本迅速增加,会导致直接成本的增加。好的项目经理应尽量确保在第一时间完成任务,并且在工程中没有重大事故发生。 随着成本的控制,关于已完成设施的质量的最重要的决策是在设计和规划阶段,而不是在施工阶段。正是在该组件的配置,材料规格和功能性能这些初步阶段而决定的。施工过程中的质量控制主要是确保其是否符合原先的设计和规划决策。 虽然符合现有的设计决策是质量控制的首要重点,但也有例外的情况。第一,不可预见的情况下,错误的设计决策或希望通过在设备功能的所有者权益变动,可能在施工过程中要求对设计决策进行重新评估。虽然这些变化可能是出于关心质量,但他们意味着随之而来的所有目标和限制因素都要进行重新设计。至于第二种情况,一些明智且适当的设计决策就是取决于施工过程本身,例如,一些隧道要求在不同的位置作出一定数量支护的方法,就是根据土壤条件,观察在隧道里面的过程而做出的决策。由于这样的决定是基于有关工地的实际情况,因此该设施的设计可能会更符合成本效益的结果。任何特殊的情况下,重新设计的施工过程中都需要考虑各种因素。 在施工过程中以讲究一致性作为质量的衡量标准,质量要求的设计和合同文件中的说明将变得极为重要。质量要求应该是明确的、可验证的,能使项目中的各方都能够理解的一致性要求。本章的大部分讨论均涉及到发展和建设的不同质量要求,以及确保符合性的相关问题。 建设项目中的安全性也在很大程度上影响到规划设计过程中的决策。一些设计或施工计划本身就是又危险又很难实现的,而其他类似的计划,则可以大大降低事故发生的可能性。例如,从施工区域内修复巷道使得交通分道行驶可以大大降低意外碰撞

土木工程类外文文献翻译

外文文献翻译 1 中文翻译 1.1钢筋混凝土 素混凝土是由水泥、水、细骨料、粗骨料(碎石或;卵石)、空气,通常还有其他外加剂等经过凝固硬化而成。将可塑的混凝土拌合物注入到模板内,并将其捣实,然后进行养护,以加速水泥与水的水化反应,最后获得硬化的混凝土。其最终制成品具有较高的抗压强度和较低的抗拉强度。其抗拉强度约为抗压强度的十分之一。因此,截面的受拉区必须配置抗拉钢筋和抗剪钢筋以增加钢筋混凝土构件中较弱的受拉区的强度。 由于钢筋混凝土截面在均质性上与标准的木材或钢的截面存在着差异,因此,需要对结构设计的基本原理进行修改。将钢筋混凝土这种非均质截面的两种组成部分按一定比例适当布置,可以最好的利用这两种材料。这一要求是可以达到的。因混凝土由配料搅拌成湿拌合物,经过振捣并凝固硬化,可以做成任何一种需要的形状。如果拌制混凝土的各种材料配合比恰当,则混凝土制成品的强度较高,经久耐用,配置钢筋后,可以作为任何结构体系的主要构件。 浇筑混凝土所需要的技术取决于即将浇筑的构件类型,诸如:柱、梁、墙、板、基础,大体积混凝土水坝或者继续延长已浇筑完毕并且已经凝固的混凝土等。对于梁、柱、墙等构件,当模板清理干净后应该在其上涂油,钢筋表面的锈及其他有害物质也应该被清除干净。浇筑基础前,应将坑底土夯实并用水浸湿6英寸,以免土壤从新浇的混凝土中吸收水分。一般情况下,除使用混凝土泵浇筑外,混凝土都应在水平方向分层浇筑,并使用插入式或表面式高频电动振捣器捣实。必须记住,过分的振捣将导致骨料离析和混凝土泌浆等现象,因而是有害的。 水泥的水化作用发生在有水分存在,而且气温在50°F以上的条件下。为了保证水泥的水化作用得以进行,必须具备上述条件。如果干燥过快则会出现表面裂缝,这将有损与混凝土的强度,同时也会影响到水泥水化作用的充分进行。 设计钢筋混凝土构件时显然需要处理大量的参数,诸如宽度、高度等几何尺寸,配筋的面积,钢筋的应变和混凝土的应变,钢筋的应力等等。因此,在选择混凝土截面时需要进行试算并作调整,根据施工现场条件、混凝土原材料的供应情况、业主提出的特殊要求、对建筑和净空高度的要求、所用的设计规范以及建筑物周围环

安全工程专业英文文献翻译一篇

RIVER WATER QUALITY MODEL NO. 1: III. BIOCHEMICAL SUBMODEL SELECTION P. Vanrolleghem (University of Kassel, Kurt-Wolters-Str. 3, D-34125 Kassel, Germany)ABSTRACT The new River Water Quality Model no.1 introduced in the two accompanying papers by Shanahan et al. (2000) and Reichert et al. (2000) is comprehensive. Shanahan et al. (2000) introduced a six-step decision procedure to select the necessary model features for a certain application. This paper specifically addresses one of these steps, i.e. the selection of submodels of the comprehensive biochemical conversion model introduced in Reichert et al. (2000). Specific conditions for inclusion of one or the other conversion process or model component are introduced, as are some general rules that can support the selection. Examples of simplified models are presented. KEYWORDS denitrification, dissolved oxygen, model selection, water quality models 1.INTRODUCTION The IWA (formerly IAWQ) Task Group on River Water Quality Modelling was formed to create a scientific and technical base from which to formulate standardised, consistent river water quality models and guidelines for their use. This effort is intended to lead to the development of (a set of) river water quality models that are compatible with the existing IWA Activated Sludge Models (ASM1, ASM2 and ASM3; Henze et al. 1987, Henze et al. 1995, Gujer et al. 1999) and can be straightforwardly linked to them. Specifically, water quality constituents and model state variables characterising C, O, N and P cycling are to be selected for the basic model. In a first effort, the task group analysed the state of the art of river water quality modelling, its problems, and possible future directions (Rauch et al., 1998; Shanahan et al., 1998; Somlyódy et al., 1998). This paper is the third of a three-part series series on the development of a model. In the first paper, Shanahan et al.(2000) present the

土木工程英文文献及翻译

Civil engineering Civil engineering is a professional engineering discipline that deals with the design, construction, and maintenance of the physical and naturally built environment, including works like bridges, roads, canals, dams, and buildings.[1][2][3] Civil engineering is the oldest engineering discipline after military engineering,[4] and it was defined to distinguish non-military engineering from military engineering.[5] It is traditionally broken into several sub-disciplines including environmental engineering, geotechnical engineering, structural engineering, transportation engineering, municipal or urban engineering, water resources engineering, materials engineering, coastal engineering,[4] surveying, and construction engineering.[6] Civil engineering takes place on all levels: in the public sector from municipal through to national governments, and in the private sector from individual homeowners through to international companies. History of the civil engineering profession See also: History of structural engineering Engineering has been an aspect of life since the beginnings of human existence. The earliest practices of Civil engineering may have commenced between 4000 and 2000 BC in Ancient Egypt and Mesopotamia (Ancient Iraq) when humans started to abandon a nomadic existence, thus causing a need for the construction of shelter. During this time, transportation became increasingly important leading to the development of the wheel and sailing. Until modern times there was no clear distinction between civil engineering and architecture, and the term engineer and architect were mainly geographical variations referring to the same person, often used interchangeably.[7]The construction of Pyramids in Egypt (circa 2700-2500 BC) might be considered the first instances of large structure constructions. Other ancient historic civil engineering constructions include the Parthenon by Iktinos in Ancient Greece (447-438 BC), the

相关主题
文本预览
相关文档 最新文档