当前位置:文档之家› 蛋白质的改性论文

蛋白质的改性论文

蛋白质的改性论文
蛋白质的改性论文

蛋白质的改性

摘要:介绍蛋白质的功能特性,以及物理、化学、摘要介绍蛋白质的功能特性,以及物理、化学、酶法等各种改性方法及其对蛋白质功能特性和营养安全性的影响,展望蛋白质改性的应用前景。

0 前言

蛋白质具有营养功能,添加到食品中可以有效地提高产品的营养价值,更重要的是蛋白质在食品中可以体现出不同的功能特性,影响食品的感官特性,而且对食品在制造、加工或保藏中的物理化学性质起着重要的作用。因此蛋白质广泛用于食品加工的各个领域。但是,不少天然蛋白质的这些特性尚不突出,不能满足现代食品开发与加工的需要,往往通过特定的方法来提高其功能特性,使其应用领域更广阔。

1 蛋白质的功能特性

蛋白质的功能性质主要分三类:

(l)水化性质,包括水吸收及保留、湿润性、溶胀、粘着性、分散性、溶解度和粘度。由蛋白质肤链骨架上的极性基团与水分子发生水化作用。

(2)与蛋白质一蛋白质相互作用有关的性质,包括产生沉淀作用、凝胶作用和形成各种其它结构(如蛋白质面团和纤维)。蛋白质分子受热舒展,内部的疏水基团暴露出来,通过疏水作用(高温能提高此类作用)、静电作用(通过ca和其它二价离子桥接的)、氢键(冷却能提高此类作用)或二硫交联形成空间网状结构。

(3)表面活性,包括表面张力、乳化作用和泡沫特征。蛋白质结构中既有亲水基又有亲油基,能够吸附在油一水或空气一水界面上,一旦被界面吸附,蛋白质形成一层膜,可阻止小液滴或气泡聚集,有助于稳定乳化液和气泡。这些功能特性在食品中常被应用。

(4)蛋白质的功能特性与其结构有关,即氨基酸组成、排列顺序、构象、分子的形状和大小、电荷分布以及分子内和分子间键的作用。高比例的极性残基影响肤链间相互作用、水化作用、溶解性和表面活性,疏水性相互作用在蛋白质三级折叠中相当重要,它影响乳化作用、起泡性和风味结合能力。带电氨基酸能增强静力相互作用,起到稳定球蛋白,结合水分的作用,以及水化作用、溶解度、凝胶作用和表面活性。琉基(SH)能被氧化形成二硫键,硫醇和二硫化物的相互转化会影响流变性。共价键和非共价键的性质和数量决定了蛋白质的大小、形状、表面电荷。所有这些性质又受PH、温度等环境因素及加工处理的影响。

2蛋白质改性

2.1物理改性

所谓蛋白质物理改性是指利用热、机械振荡、电磁场、射线等物理作用形式改变蛋白质的高级结构和分子间的聚集方式, 一般不涉及蛋白质的一级结构。如蒸煮、搅打等均属于物理改性技术。

质构化(texturization)也是一种物理改性,即是将蛋白质经水等溶剂溶胀、膨化后在一定温度下进行强剪切挤压或经螺杆机挤出或造粒的过程,通常用于食品加工,使蛋白质的密度降低,吸水率和保水性提高。物理改性主要用于蛋白的增溶和凝胶。据报道,小麦质构化蛋白产品,被切成薄片时,可吸收3倍于自重的水分,它们已成功地配用于汉堡包、咖喱调味食品、炖制辣味肉制品、油炸鸡胸脯和鸡块等制品的加工。[1]

2.2化学改性

蛋白质化学改性[2]是通过改变蛋白质的结构、静电荷、疏水基团,从而改变其功能性质,将化学试剂作用于蛋白质, 使部分肽键断裂或者引入各种功能基团如亲水亲油基团、二硫基团、带负电荷基团等, 利用蛋白质侧链基团的化学活性, 选择地将某些基团转化为衍生物。通过酰化、脱酰胺、磷酸化、糖基化(即美拉德反应)、共价交联、水解及氧化等方法,改变蛋白质的溶解性、表面性质、吸水性、凝胶性及热稳定性等。

2.2.1酸、碱、盐作用下的改性

蛋白质经酸、碱部分水解可改进其功能特性,如溶解性、乳化能力、起泡性等,并能钝化酶活力,破坏毒素、酶抑制剂和过敏原,但往往会造成营养价值下降。P-乳球蛋白和乳清蛋白在酸性或微碱性中热展开,提高了它的增稠、凝胶、起泡和乳化性质。在适当pH下,多价离子或一些聚电解质能促进蛋白质分子间离子交联的形成:在中性或碱性条件下,钙离子通过蛋白质电离的梭基形成交联蛋白质,加热会形成凝胶[3]。

2.2.2酰基化改性

酰基化一般有乙酰化和琥珀酰化。Barman等[4]将大豆分离蛋白乙酰化,游离氨基与中性乙酰基作用使正电荷减少,导致在PH4.7-7中溶解度提高,也使蛋白质结合水分子的数量减少,降低了持水性。同时,电荷总数的减少也减弱了相邻分子间离子作用,使乙酰化蛋白质具有较高的粘度但不能形成凝胶。等将鱼肌纤维蛋白琥珀酰化提高了它的稳定性,避免凝结或沉淀,也有人用其它酰基化试剂来改性蛋白质,如柠康醉。

2.2.3去酰胺改性

油料蛋白富含天冬酰胺和谷氨酰胺残基,可以用磷酸盐进行去酰胺改性。一般认为蛋白质中的去酰胺应通过中和H直接发生质子化作用。吴向明等[5]用改性大豆蛋白,改性后在整个PH范围内溶解度均有提高,一方面由于蛋白质去酰胺引起弱极性的天冬酰胺和谷氨酰胺转化为极性的天冬氨酸和谷氨酸,另一方面,由于肽键的部分水解导致了小分子肤的形成。随着去酰胺程度的增加,蛋白质的等电点向低PH值移动。同时,改性蛋白质的持水性、乳化性、乳化稳定性、起泡性、泡沫稳定性得到了提高。

2.2.4糖基化改性

蛋白质一般对热、水解作用很不稳定, 但与碳水化合物或生物多聚物的交联能变得稳定, 也能被赋予一些新的特性。蛋白质的非酶糖基化正是通过糖与蛋白质的a-或£-氨基共价连接而形成糖基化的过程。Naotoshi等[6]在60 ℃干热,

相对湿度79% 得到鱼精蛋白-半乳甘露糖结合体,其乳化活性和稳定性分别是鱼精蛋白的6倍和10 倍, 而且在酸性及高盐溶液中仍比商业乳化剂高, 即使到90 ℃仍保持良好的乳化性, 同时还没有失去本身的杀菌性。这可能是由于糖类( 特别是多糖的添加) 可增加油/ 水乳化系统中水相的粘度, 同时也会稍微降低油/ 水界面张力, 从而增加了乳化液的乳化稳定性。糖基化改性也提高了蛋白质的热稳定性及溶解性.

2.2.5磷酸化改性

蛋白质的磷酸化作用是无机磷酸与蛋白质上特定的氧原子( Ser、Thr、Tyr 的-OH) 或氮原子( Lys 的氨基、Arg 的胍基末端N) 作用形成C-O- Pi 或C-N- Pi 的酯化反应。蛋白质的磷酸化改性可通过化学方法或酶法予以实现。常用的磷酸化试剂有化学磷酸化试剂和蛋白激酶。化学磷酸化试剂如磷酰氯(POCl3)、磷酸、三聚磷酸钠(STP)等, 其中大规模应用于工业生产的为POCl3、STP。蛋白激酶如依赖于CAMP 激活的蛋白激酶(CAMPdPK)、酪蛋白激酶(CK- )。据报道, 用STP 改性的小麦面筋蛋白的溶解度、乳化性及乳化稳定性、起泡性等都较未改性的面筋蛋白有显著提高[7]。

2.2.6烷基化改性

蛋白质中的氨基酸可以在温和的碱性环境下与醛、酮发生烷基化反应,得到稳定的非交联的赖氨酸衍生物。研究了酪蛋白的烷基,使各种疏水基团共价联接到蛋白质上而改变了蛋白质的构象,蛋白质上大量正电荷被保留,氨基的pKa 值略有降低,甲基酪蛋白和异丙基酪蛋白的溶解性比原酪蛋白略有提高,而丁基、环己基和苯甲基酪蛋白由于存在过大的疏水基溶解性下降。吸附大量疏水性残基(约16残基/mo1)会引起链折叠而发生疏水作用。由于带正电荷的氮之间静电排斥作用,疏水基间不会有最大程度的重叠,所以形成较弱的疏水键结构。烷基化蛋白质的功能特性如粘度、吸水性和乳化性都有所改进。

2.3酶法改性

酶改性的方式有很多种,酶法改性通常是蛋白酶的有限水解,改性的程度与酶量、底物浓度、水解时间等因素密切相关。通过蛋白酶催化的蛋白质水解作用能提高蛋白质的溶解度, 这主要是由于形成了较少的, 弱亲水的和较易溶剂化的多肽单位[8]。一般说来, 蛋白酶的限制性水解可提高蛋白质的溶解性、乳化性和发泡性。合理地控制蛋白水解反应, 生产生物活性肽, 尤其是磷酰肽, 具有促进钙、铁及其他微量元素吸收, 防止骨中钙流失的作用。并且酶解过程十分温和,不会破坏蛋白质原有的功能性质,蛋白水解物易被人体消化吸收且具有特殊的生理功能[9]。

3改性蛋白质的安全性

对现有的蛋白进行改性其主要目的是:

3.1防止有害化学反应(美拉德反应)由胺和羰基化合物的反应引发,在升高的温度下,分解和最终缩合成不溶解的褐色产物类黑素,对相应的氨基酸进行适当的修饰便可以避免这类反应。

3.2改善功能性质(溶解度、起泡、乳化)。拓宽蛋白质的应用领域,例如利用热能,机械能,或者压力对蛋白质进行改性利用热能,机械能,或者压力对

蛋白质进行改性热处理:蛋白质凝胶或凝聚,增加溶解度超声波:提高热变性或醇变性大豆蛋白的提取率,盐溶/疏水析出:形成蛋白胶状物蛋白纺丝/挤压膨化;化学法糖基化可通过改变蛋白质表面电荷和形成双亲结构来改善乳化性;在温和的酸性条件下面筋蛋白去酰胺作用导致蛋白质电荷密度增大,使改性蛋白质具有两亲性;

3.3改善营养(去毒、去除抗营养因子、改善风味,结合氨基酸)例如,利用基因工程对大豆蛋白进行改性处理可以改变大豆球蛋白的组成,补充提高其营养价值,改变脂肪氧化酶同功酶组成,减少大豆产品的异味,改变脂肪合成酶系,使其脂类组成发生变化;在高蛋白质浓度下,酶催化交联反应能在室温下形成蛋白质凝胶和蛋白质膜,将赖氨酸或苯丙氨酸交联至谷氨酰胺残基,提高蛋白质营养;化学法和酶法将分子间或分子内共价交联引入蛋白质,能改进产品的质构性质如香肠、鱼糊、豆腐;嗜热菌蛋白酶产生的水解蛋白比胰蛋白酶、胃蛋白酶和胰凝乳蛋白酶具有较少的苦味;这些都对人类的生产生活带来类很大的益处。

4应用前景

蛋白质经改性后,其功能特性得到了显著地提高,一方面拓宽了蛋白质的应用领域,另一方面可以作为一些昂贵原材料的替代品,因此在食品工业中具有广阔的应用前景. 改性大豆蛋白分子在分散液中表现较强的界面活性,具有一定程度降低界面张力的作用,有人研究用改性大豆蛋白作为橙汁混浊剂,发现其和水溶性胶、卵磷脂一起具有良好的混浊效果。改性蛋白质的溶解度在整个PH范围内有不同程度的提高,而且具有良好的起泡性和乳化性,可代替鸡蛋白用于低脂肪搅打产品,如杏仁糖、冷冻甜品等,也可替代酪蛋白钠用于生产高脂肪粉和咖啡伴侣[10]。酶法结合L-亮氨酸n-烷基醋的明胶代替传统的表面活性剂用于食品。结合亮氨酸烷基醋的明胶可用于生产果胶,结合亮氨酸的产品用于生产冰淇淋,在开始搅打的几分钟就具有高度的膨胀量,此表面活性剂用于生产蛋黄酱能形成良好硬度和胶粘性,用于面包生产它优于单甘酷,可得到优质面包,而且长时间贮存也不会硬化。然而,关于改性所产生的营养和毒理学上的问题研究得还比较少,这可能会阻碍蛋白质改性的迅速发展。

参考文献

[1] 顾华孝.小麦质构化蛋白的性质和应用[J].粮食与饲料工业,2001(1):4-44.

[2] Matheis G.,Whitaker J.R二Che}ical Phosphorylation of Food Proteins:An Overiew and a Prospectus. J.Agric.Food Chem,1984

[3] Gr uener L, Ismo nd M A H. Foo d Chem. ,1997, 60: 357~363

[4] Barman.B.G.,HansenJ.R;Mossey A.R二Modification of the Physical Properties of Soy Protein Isolate by Acetylation.J.Agric.Food Chem.1997

[5]吴向明. 改性大豆蛋白质应用开发. 食品研究与开发, 19 97 ,1 : 3 2 ~ 3

[6] Naoto shimato et. al Emulsifying and bactericidal properties of a protamine galactomannan conjugate prepared by dry heating J. Food science,1998,59(2):428-431.

[7] 王兰.磷酸化试剂在食品蛋白质改性中的应用.郑州工程学院学报, 2003( 1) : 51- 54. Naoto shimato et. al Emulsifying and bactericidal properties of a

protamine galactomannan conjugate prepared by dry heating J. Food science,1998,59(2):428-431.

[8] 莫文敏,曾庆孝.蛋白质改性研究进展[J].食品科学,2000,21 (6):6—

[9] 刘欣,徐红华.微生物蛋白酶改性大豆分离蛋白的研究进展[J].大豆通报,2005,(4):27—28.

[10] 孔祥珍,周惠明.食品蛋白质改性研究[J].糠食与油脂,2004,(2):22-24.

综述改性蛋白质的安全性

综述改性蛋白质的安全性 改性方法主要有物理法、化学法、酶法、生物基因工程法等。 1 化学改性 化学改性实质是通过改变蛋白质的结构、静电荷和疏水基团分布,去除抗营养因子,从而改善大豆蛋白的性质。蛋白质的化学改性可分为两大类,一类是蛋白质分子的特定基团与改性试剂以共价键相连接,即化学衍生化反应,另一类则不存在蛋白质与改性试剂之间的共价键,主要包括亲油化、酸、碱处理等。 最常用的食品蛋白质化学改性方法:乙酸酐和琥珀酸酐作为酰化试剂的酰化作用。它们的作用机理是酰化试剂一般与赖氨酸ε-氨基作用,带正电的氨基被一个中性的酰基残基取代。酰化作用的功能:提高蛋白质的溶解度和水合作用和改进蛋白质的乳化性质。酰化蛋白质的特点:较低的等电点、较高的正极电迁移率、较好的起泡能力、较差的泡沫稳定性、结构较无序、电荷推斥、热稳定性高(主要由前两个决定)。决定酰化蛋白质营养质量的因素:蛋白质的种类、改性的程度、所采用的酰化剂。其他改性方法,如化学磷酸化—利用并入的高亲水性的磷酸基,提高蛋白质在水中的溶解度;温和酸处理—增加蛋白质表面的负电荷、导致蛋白质结构的展开、疏水性残基的暴露—具有较好的溶解度、乳化性质、起泡性质。 化学变化的危害方面需要考虑因素有两个①改性蛋白质和它的消化产物的毒性;②使用的化学试剂以及在蛋白质中任何残留物的毒性。 蛋白质的磷酸化作用是无机磷酸(Pi) 与蛋白质上特定的氧原子(Ser 、Thr 、Tyr 的-OH) 或氮原子(Lys 的ε-氨基、His 咪唑环1 ,3 位N、Arg 的胍基末端N) 形成-C-O-Pi 或-C -N -Pi 的酯化反应。 蛋白质的磷酸化改性可通过化学方法或酶法予以实现。化学磷酸化试剂:磷酰氯(POCl3)、磷酸(H3PO4)、P2O5/ H3PO4、三聚磷酸钠(STP)。 用于蛋白质磷酸化的酶称为蛋白激酶. 蛋白激酶家族包括有约1001 种酶. 蛋白激酶能对蛋白质进行磷酸化修饰,是很有潜力和前途的食品蛋白质改性的工具。常用到的蛋白激酶有依赖于CAMP 激活的蛋白激酶(CAMPdPK),酪蛋白激酶Ⅱ(CK- Ⅱ)。 磷酸化改性后的蛋白中,由于引进了大量的磷酸根基团,从而增加了蛋白质体系的电负性,提高了蛋白质分子之间的静电斥力,使之在食品体系中更易分散,相互排斥,因而提高了溶解度,聚结稳定性,降低了等电点,而且其净负电荷只有在相当低的pH 环境中才会被中和,故其可有效地拓宽在食品中的应用范围。用三聚磷酸钠改性大豆蛋白的实验结果充分验证了这一结论。但用磷酰氯改性蛋白时其蛋白溶解度反而下降,这是因为用磷酰氯作磷酸化试剂会导致蛋白质分子之间发生交联,这些交联键的存在是导致蛋白水溶解性降低的原因。但用磷酰氯改性蛋白可显著提高蛋白的粘度及胶凝性。磷酸化改性蛋白中由于负电荷的引入大大降低了乳化液的表面张力,使之更易形成乳状液滴,同时也增加了液滴之间的斥力,从而更易分散,因此改性蛋白的乳化能力及乳化稳定性都有较大改善。 从毒理学的观点看,因为没有一种生物可以合成磷酸根离子,而磷酸根离子为所有生物代谢所必需,必须由膳食中取得,所以蛋白质的磷酸化改性是一种较实用、有效的方法。 化学改性也存在很多的限制因素:(1)产品安全性,化学衍生化可定向地改变蛋白质的功能特性,然而这一技术在食品方面的应用却很少,毒性(或安全性)

高分子表面材料改性论文

(2014-2015学年第一学期) 《高分子材料改性》 课程论文 题目:纳米粒子增韧聚氯乙烯研究新进展 姓名:周凯 学院:材料与纺织工程学院 专业:高分子材料与工程 班级:高材121 班 学号: 201254575128 任课教师:兰平 教务处制 2014年12月30日

纳米粒子增韧聚氯乙烯研究新进展 摘要 通用塑料的高性能化和多功能化是开发新型材料的一个重要趋势, 而将纳米粒子作为填料来填充改性聚合物, 是获得高强高韧复合材料有效方法之一。本文对近年来纳米增韧PVC 的制备方法, 增韧机理和发展趋势进行了说明。 关键词: 聚氯乙烯纳米材料增韧 一.研究背景 随着科学技术的发展, 人们对材料性能的要求越来越高。聚氯乙烯作为第二大通用塑料, 具有阻燃、耐腐蚀、绝缘、耐磨损等优良的综合性能和价格低廉、原材料来源广泛的优点, 已被广泛应用于化学建材和其他部门。但是, 聚氯乙烯在加工应用中, 尤其在用作结构材料时也暴露出了抗冲击强度低、热稳定性差等缺点。纳米技术的发展及纳米材料所表现出的优异性能, 给人们以重大的启示。人们开始探索将纳米材料引入PVC 增韧改性研究中, 并发现增韧改性后的PVC 树脂具有优异的韧性, 刚度及强度得到显著改善, 而且热稳定性、尺寸稳定性、耐老化性等也有较大提高, 纳米复合材料已经成为PVC增韧改性的一个重要途径。本文主要介绍了近几年来纳米复合材料在PVC 增韧改性方面的研究现状 和发展趋势[1]。 二.纳米CaCO3 增韧PVC 碳酸钙是高分子复合材料中广泛使用的无机填料。在橡胶、塑料制品中添加碳酸钙等无机填料, 可提高制品的耐热性、耐磨性、尺寸稳定性及刚度等,并降低制品成本, 成为一种功能性补强增韧填充材料, 受到了人们的广泛关注。 2.1 纳米CaCO3 增韧对PVC 力学性能的影响 魏刚等[ 2]研究指出, 用CPE 包覆后纳米CaCO3填充PVC 的冲击强度均要比未包覆处理填充体系的略低, 而拉伸强度则相反。特别是在包覆小份量CaCO3( 2 份) 时, 所得复合材料的冲击强度甚至比PVC/ CPE( 8 份) 基体的低12%, 而拉伸强度则出现最大值, 比基体的高8. 9% 左右, 如图2-1 所示。 熊传溪、王涛等[3]研究发现两种粒径的纳米晶PVC 均能起到显著的增韧和增强作用, 且粒径小的纳米晶PVC 作用更明显, 而且偶联剂用量对试样的拉伸强度和冲击强度也有很大的影响。 对CPE/ACR共混增韧PVC力学性能的影响 2.2 纳米CaCO 3 如图2-2所示,为CPE/ACR共混物对PVC冲击强度的影响。从图2-2中可以看出当CPE/ACR/PVC为10/2/100时,共混体系的冲击强度达到最大,明显优于单一CPE或单一ACR对PVC的增韧效果。这是由于10mpr的CPE在PBC基体相中可能已经形成了完整的网络结构,这种网络结构可以吸收部分冲击能量而赋予共混体系一定的冲击强度,而在此基础上再添加2phr ACR后,由于核壳ACR在PVC

水性聚氨酯

水性聚氨酯 引言 为了减少涂料对环境的污染和对消费者健康的损害, 许多国家对溶剂型涂料的限制越来越严格, 从而使涂料由溶剂型向水基型的转变成为必然。早在2005 年我国就已开始控制新的溶剂型涂料生产企业的审批, 到2008 年将对溶剂型涂料的生产和销售实行控制。低污染涂料的发展方向有水性化、高固体分化和粉末化三种。与其他两种涂料相比, 水性涂料因为具有来源方便、易于净化、成本低、黏度低、良好的涂布适应性、无毒性、无刺激及不燃性等特点, 已成为环境友好型涂料的主要发展方向。 一、水性聚氨酯涂料的性能 聚氨酯( PU) 涂料是涂料业中增长速度最快的品种之一。水性聚氨酯( WPU) 涂料是以水性聚氨酯树脂为基础, 以水为分散介质配制的涂料, 除具有水性涂料的特点以外, 它还有以下突出的优点: 1)涂膜对塑料、木材、金属及混凝土等表面的附着力好, 抗磨性、耐冲击性好。脂肪族聚氨酯水性涂料的户外耐久性好, 综合性能接近溶剂型聚氨酯涂料 2) 和其他乳胶涂料相比, 其低温成膜性好, 不需要成膜助剂, 也不需要外加增塑剂、乳化剂或分散剂。 3) 容易通过交联反应进行改性, 可提高耐溶剂性和抗化学性, 改进耐水性, 对颜料( 包括金属颜料) 有良好的适应性, 也可提供高光泽

涂膜。所含羟基可以适用一些交联剂和固化剂, 可进一步改进涂膜性能。 4) PU 分子具有可裁剪性, 结合新的合成和交联技术可有效控制涂料的组成和结构, 为改进其性能提供了更多的途径。WPU 诸多的优点, 使其成为目前发展最快的涂料品种之一。 2 水性聚氨酯涂料的研究进展WPU 分为单组分和双组分。单组分WPU 涂料聚合物的对分子质量较大, 成膜过程中一般不发生交联反应, 具有施工方便的优点; 双组分WPU涂料由含羟基的水性树脂和含异氰酸酯基的固化剂组成, 施工前将两者混合, 成膜过程中发生交联反应, 涂膜性能好。由于在水性聚氨酯分子中引入了亲水基团, 所以耐水性、耐溶剂性和耐候性等较差是WPU 涂料存在的主要问题, 为此, 近几年来国内外学者对WPU 的改性进行了大量研究, 并取得了很大进展。 2. 1. 1 制备方法 单组分聚氨酯水分散体涂料的制备方法通常有强制乳化法和自乳化法。强制乳化法是将PU 预聚物缓慢加入到含乳化剂的水中, 形成粗粒乳液, 再送入均化器形成粒径适当的乳液。该法制备的PU 乳液胶体稳定性较差, 一般适用于材料的表面处理。PU 乳液涂料的制备多采用聚合物自乳化法, 即在聚合物链上引入适量的亲水基团, 在一定条件下自发分散形成乳液[11]的方法。 2. 1. 2 交联改性

水性聚氨酯涂料doc

水性聚氨酯涂料的特点及改性应用综述 学院:材料与化工学院 专业:高分子材料与工程 班级:110311班 姓名:李辽辽 学号:110311122 水性聚氨酯涂料的特点及改性应用综述 李辽辽 (班级:11班学号:110311122) 摘要:介绍水性聚氨酯涂料的分类、特点及其改性应用 关键字:水性聚氨酯涂料;改性;应用 0引言 聚氨酯(又称聚氨基甲酸酯)是指分子主链结构中含有氨基甲酸酯(-NH0COO-)重复单元的高分子聚合物,通常由多异氰酸酯与含活泼氢的聚多元醇反应生成。水性聚氨酯(WPU)是以水代替其他有机溶剂作为分散介质的聚氨酯体系,形成的WPU 乳液及其胶膜具有优异的机械性能、耐磨性、耐化学品性和耐老化性等特点,可广泛用于轻化纺织、皮革加工、涂料、建筑和造纸等行业。随着世界各国对环境保护的日益重视,越来越多的学者致力于水性聚氨酯涂料的开发,有效限制挥发性有机溶剂的毒害性。虽然水性聚氨酯具有一些优良的性能,但仍有许多不足之处。如硬度低、耐溶剂性差、表面光泽差、涂膜手感不佳等缺点。由于水性聚氨酯在实际应用中存在诸多问题,因此需要对其进行改性。其改性方法主要包括环氧树脂改性、丙烯酸酯改性、有机硅改性、多元改性等。 2水性聚氨酯涂料的特点与分类 2.1水性聚氨酯涂料的特点[1] 水性聚氨酯涂料是以水为介质的二元胶态体系。它不含或含很少量的有机溶剂,粒径小于0.1nm,具有较好的分散稳定性,不仅保留了传统的溶剂型聚氨酯涂料的一些优良性能,而且还具有生产成本低、安全不燃烧、不污染环境、不易损伤被涂饰表面、易操作和改性等优点,对纸张、木材、纤维板、塑料薄膜、金属、玻璃和皮革等均有良好的粘附性。 2.2水性聚氨酯涂料的分类 目前的水性聚氨酯主要包括单组分水性聚氨酯涂料、双组分水性聚氨酯涂料和特种涂料三大类。 2.2.1单组分水性聚氨酯涂料 单组分水性聚氨酯涂料是以水性聚氨酯树脂为基料并以水为分散介质的一类涂料。通过交联改性的水性聚氨酯涂料具有良好的贮存稳定性、涂膜机械性能、耐水性、耐溶剂性及耐老化性能,而且与传统的溶剂型聚氨酯涂料的性能相近,是水性聚氨酯涂料的一个重要发展方向。目前的品种主要包括热固型聚氨酯涂料和含封闭异氰酸酯的水性聚氨酯涂料等几个品种:a.热固型聚氨酯涂料。交联的聚氨酯能增加其耐溶剂性及水解稳定性。聚氨酯水分散体在应用时与少量外加交联剂混合组成的体系叫热固型水性聚氨酯涂料,也叫做外交联水性聚氨酯涂料。b.含封闭异氨酸酯的水性聚氨酯涂料。该涂料的成膜原料由多异氰酸酯组分和含羟基组分两部分组成。多异氰酸酯被苯酚或其它含单官能团的活泼氢原子的化合物所封闭,因此两部分可以合装而不反应,成为单组分涂料,并具有良好的贮藏稳定性。c.室温固化水性聚氨酯涂料。对于某些热敏基材和大型制件,不能采用加热的方式交联,必须采用室温交联的水性聚氨酯涂料。通过与水分散性多异氰酸酯结合,可以改进水性端羟基聚氨酯预聚物/丙烯

蛋白质的生物和化学改性

文章编号:1003 7969(2000)06 0181 05 蛋白质的生物和化学改性 周瑞宝1,周 兵2 (1 郑州工程学院食品科学与工程系,450052郑州市嵩山南路140号; 2 郑州油脂化学集团公司,450053郑州市黄河路;第一作者:男,59岁,教授) 摘要:生物酶或化学法改性食品蛋白质,是提高食品功能特性的重要途径。生物酶有酶源易于得到,应用更安全,并且可将蛋白质改性到所期望的功能值;化学法的乙酰化、磷酸化、糖基化、交联反应,在改变结构和功能性方面,对提高蛋白质功能特性比酶法更有效。 关键词:蛋白质;生物酶;化学法;改性 中图分类号:TQ645 9+9 文献标识码:A 1 蛋白质的酶法改性 蛋白质的改性就是用化学因素(如化学试剂、酶制剂等)或物理因素(如热、高频电场、射线、机械振荡等),使氨基酸残基和多钛链发生某种变化,引起蛋白大分子空间结构和理化性质改变,从而获得较好的功能性和营养特性。 用于水解大豆蛋白的酶,包括植物来源的木瓜酶(Papain)、微生物蛋白酶(Alcalase、Neutrase、Ther mitase)和动物蛋白酶(Pepsin、Chymotrypsin)等,都可以用于蛋白质的改性。 1 1 大豆蛋白的部分水解及其功能特性 大量文献列举了蛋白质水解对功能特性的影响,其中包括:植物蛋白的大豆蛋白[1]、蚕豆蛋白、小麦谷朊粉、玉米蛋白、燕麦粉(蛋白)、棉籽蛋白、葵花籽和菜籽蛋白;以及动物蛋白的酪蛋白,都可以进行蛋白酶水解,又称蛋白生物酶改性。 大豆蛋白酶改性[2],对于提高蛋白质的溶解性具有特殊重要性,甚至对于在水中难于分散的谷类蛋白,也是如此。只有使蛋白水解之后,才能显示它的改性意义。玉米蛋白是一种玉米储存蛋白,在pH2~5,具有很高的不溶性,当用胰蛋白酶处理水解使1 9%的肽键断裂时,在同样的pH范围内,溶解度可达30%~50%。而小麦谷朊粉用此法处理,在pH7时,达到9 8%水解度(D H)时,溶解度从7%增加到50%。燕麦粉经Alcalase 或Neutrase酶处理,在等电点(pH5.0)条件下溶解度提高3~4倍[3]。在一定的酶与底物比例条件下,增加水解度(3 8%~ 10 4%),溶解度也同时增加。用Alcalase在pH8,或Neutrase在pH7条件下,使大豆分离蛋白进行有限的蛋白酶水解,会改变它的pH值与溶解曲线图。用Thermitase酶处理蚕豆分离蛋白,使水解度达到8 3%时,在等电的pH值下,溶解度增加高达40%。用Ttaphyloc occus aureus V8蛋白酶水解酪蛋白,水解度达到2%和6 7%时,溶解度增加25%和50%。 大豆蛋白生物改性,可以提高水解蛋白的吸水和结合水的能力。这是由于蛋白水解过程中释放出氨基和羧基,离子基团数量增加。甚至大豆分离蛋白在84%的相对湿度的室温下,其吸水性随酶处理程度成比例增加。酸 沉大豆蛋白和11S大豆球蛋白,用菠萝蛋白酶进行有限蛋白水解后,吸水能力增加2~2 5倍。运用Alcalase或Teutrase处理燕麦粉,随水解度(DH)的升高,吸水能力增加。大豆蛋白质酶改性对蛋白质的乳化能力很敏感。使用木瓜蛋白酶对大豆蛋白进行短时水解,会增加乳化能力,然而,当继续水解时,乳化能力减少。有人发现大豆分离蛋白在水解度(DH)为5%时,乳化特性最佳。蛋白酶改性,也能改善花生蛋白的乳化特性。 用胰蛋白酶部分水解由大豆和蚕豆得到的11S 球蛋白,其中高分子量的水解产物大豆球蛋白 T 和豆球蛋白 T,分别对乳化能力和乳化稳定性,起着关键作用。随着豆蛋白 T的生成,其乳化能力和乳化稳定性增加,当豆蛋白 T被胰酶进一步水解时,乳化能力和乳化稳定性降低。 蛋白酶部分水解时,乳化能力和乳化稳定性的有益作用可能是由于暴露了分子内部掩蔽的疏水基团,改善亲水 疏水平衡,从而提高乳化能力。蛋白质表面失去亲水肽,导致表面疏水作用增加,而有利于表面吸附。过度消化的不利影响,使其失去球状 收稿日期:2000 09 15

有机硅改性水性聚氨酯

有机硅改性水性聚氨酯-聚丙烯酸酯乳液的研究 李伟,胡剑青,涂伟萍 (华南理工大学化工与能源学院,广州510640) 摘要:以聚酯多元醇、异佛尔酮二异氰酸酯、甲基丙烯酸甲酯等为原料,合成了水性聚氨酯丙烯酸乳液,加入含侧氨基和不饱和双键的有机硅氧烷进行扩链改性,得到了一系列有机硅改性的聚氨酯丙烯酸乳液。对得到的产物进行了表征,对改性前后的体系涂膜的性能进行了比较,结果表明,用有机硅改性的聚氨酯丙烯酸乳液形成的涂膜接触角更大、附着力更强、具有更好的耐水性,但硬度稍有下降。 关键词:水性聚氨酯;有机硅;接触角;耐水性;柔韧性 0引言 水性聚氨酯(WPU)涂料有良好的物理机械性能和优良的耐寒性。但是单一的PU乳液存在自增稠差、固含量低、耐水性差、机械强度不如丙烯酸树脂等缺点,且成本较高。而聚丙烯酸酯(PA)乳液在性能上能与聚氨酯乳液形成互补,所以将聚氨酯乳液和聚丙烯酸乳液复合制备水 性聚氨酯-丙烯酸酯(PUA)乳液,兼有聚氨酯和聚丙烯酸酯乳液的优点,有很好的应用前景。有机硅树脂表面能低,耐水性、耐候性以及透气性优良,已经广泛用于聚氨酯改性,采用合适化学方法用有机硅对水性聚氨酯-聚丙烯酸酯进行改性,可以得到有良好耐水性以及力学性能的涂膜。本文在聚氨酯链段上引入了几种有机硅氧烷,对得到的产物进行了表征及性能对比,制得了具有优良耐水性及力学性能的聚氨酯-聚丙烯酸酯乳液[1-2]。 1实验 1.1原料 异佛尔酮二异氰酸酯(IPDI)、己内酯二元醇(PCL)(M n=2000):工业品,拜耳公司;1,4-丁二醇(BDO):化学纯,上海凌峰化学试剂公司;二羟甲基丙酸(DMPA):工业品,进口;三羟甲基丙烷(TMP):试剂级,上海试剂一厂;N-甲基吡咯烷酮(NMP)、三乙胺(TEA)、乙二胺(EDA)、丙酮:分析纯,湖北大学化工厂;有机硅Z-6011、有机硅Z-6020、有机硅Z-6032:道康宁公司。 1.2合成工艺 1.2.1PU乳液的合成 将聚酯多元醇进行脱水处理后加入到装有搅拌器、冷凝管、温度计的四口烧瓶中,水浴升温到75~80℃后,加入IPDI,开动搅拌反应1.5~2h,后加入1,4-丁二醇,80℃反应1~1.5h,然后降温到70℃加入二羟甲基丙酸(溶于NMP中)和三羟甲基丙烷,反应2~3h,期间注意用丙酮调节黏度,后降温至50℃以下,加入有机硅后再加三乙胺中和15~20min,出料,在高速剪切下于去离子水中乳化分散,加入乙二胺扩链。减压脱去溶剂,最后得到半透明的带蓝光的PU乳液。 1.2.2PUA乳液的合成 将PU乳液、乳化剂、水混合后置于四口烧瓶中,搅拌加入含有引发剂AIBN的BA溶液,预乳化一段时间于80℃聚合3h,再升温至90℃反应1h,降至室温,出料,得到PUA乳液。 1.3乳液的成膜性能测试 (1)耐水性测试[3]:取适量的乳液涂在聚四氟乙烯板上,室温干燥7d成膜,将膜剪成 2cm×2cm的小块,称质量(m0),然后在水中浸泡一定时间,取出后吸干表面上的液体,称质量(m1)。计算膜的吸水率: 吸水率=(m1-m0)/m0×100% 用上海中晨数字技术设备有限公司JC2000C1型静滴接触角测量仪测量接触角; (2)硬度测试:根据GB/T1730—1993,使用QYB型漆膜摆杆硬度计测量; (3)附着力测试:根据GB1720—1979(1989)测量;

蛋白质改性研究与应用进度

蛋白质改性研究与应用进度 宋英皓江南大学食品与科学学院 摘要:介绍蛋白质的功能特性,以及物理、化学、摘要介绍蛋白质的功能特性, 以及物理、化学、酶法等各种改性方法及其对蛋白质功能特性和营养安全性的影响,展望蛋白质改性的应用前景. Abstract Various protein modification methods including physical chemical,enzymatic methods and the effect of modification to its functional properties Nutritional value and safety were studied. The prospect application was also predicted. Keyword Functional properties Modification Nutritional value Safety Application 蛋白质具有营养功能,添加到食品中可以有效地提高产品的营养价值,更重要的是蛋白质在食品中可以体现出不同的功能特性,影响食品的感官特性,而且对食品在制造、加工或保藏中的物理化学性质起着重要的作用。因此蛋白质广泛用于食品加工的各个领域。但是,不少天然蛋白质的这些特性尚不突出,不能满足现代食品开发与加工的需要,往往通过特定的方法来提高其功能特性,使其应用领域更广阔。 1蛋白质的功能特性 蛋白质的功能性质主要分三类:(l)水化性质,包括水吸收及保留、湿润性、溶胀、粘着性、分散性、溶解度和粘度。由蛋白质肤链骨架上的极性基团与水分子发生水化作用。(2)与蛋白质一蛋白质相互作用有关的性质,包括产生沉淀作用、凝胶作用和形成各种其它结构(如蛋白质面团和纤维)。蛋白质分子受热舒展,内部的疏水基团暴露出来,通过疏水作用(高温能提高此类作用)、静电作用(通过ca,·和其它二价离子桥接的)、氢键(冷却能提高此类作用)或二硫交联形 成空间网状结构。(3)表面活性,包括表面张力、乳化作用和泡沫特征。蛋白质结构中既有亲水基又有亲油基,能够吸附在油一水或空气一水界面上,一旦被界面吸附,蛋白质 形成一层膜,可阻止小液滴或气泡聚集,有 助于稳定乳化液和气泡。这些功能特性 在食品中常被应用。蛋白质的功能特性与其结构有关,即氨基酸组成、排列顺序、构象、分子的形状和大小、电荷分布以及分子内和分子间键的作用。高比例的极性残基影响肤链间相互作用、水化作用、溶解性和表面活性,疏水性相互作用在蛋白质三级折叠中相当重要,它影响乳化作用、起泡性和风味结合能力。带电氨基酸能增强静力相互作用,起到稳定球蛋白,结合水分的作用,以及水 化作用、溶解度、凝胶作用和表面活性。琉基(SH)能被氧化形成二硫键,硫醇和二硫化物的相互转化会影响流变性。共价键和非共价键的性质和数量决定了蛋白质的大小、形状、表面电荷“,。所有这些性质又受PH、温度等环境因素及加工处理的影响。 2蛋白质改性 2.1物理改性 改变蛋白质功能特性的物理方法有机械处理、挤压、冷冻等。蛋白质粉末或浓缩物彻底干磨后会产生小粒子和大表面的粉末,与未研磨的试样相比,水吸收、蛋白质的溶解度、脂肪吸收和起泡性质都得到了改进;在乳的均质过程中,蛋白质悬浊液受到强烈剪切力使蛋白质聚集体(胶束)碎裂成亚基, 从而提高蛋白质的乳化能力川。挤压处理时蛋白质在高温高压下受定向力的作用而定 向排烈压力的释放,水分的瞬时蒸发,形成 具有耐嚼性和良好口感的纤维状蛋白质。将蛋白质溶液以一定速率冷却,会产生垂直于冷却表面的冰晶,使蛋白质定向排列并在冰晶空隙中被浓缩,移去水分可得到结构完整的蛋白质。 2.2化学改性 2.2.1酸、碱、盐作用下的改性 蛋白质经酸、碱部分水解可改进其功能特性,如溶解性、乳化能力、起泡性等,并能钝化酶活力,破坏毒素、酶抑制剂和过敏原,但往往会造成营养价值下降。P-乳球蛋白和乳清蛋白在酸性或微碱性中热展开,提高了它的增稠、凝胶、起泡和乳化性质。在适当pH

聚合物的合成与改性技术论文

苏州大学本科生考试答卷封面 考试科目:聚合物的合成与改性技术____授课教师: 院别:材料与化学化工学院专业: 学生姓名:学号: 考试日期:2012 年6 月15日

聚合物改性的主要方法 内容摘要:鉴于本学期也同时在学习精细化工产品的合成与应用,而且我发现精细化工产品的合成大多是在聚合物合成与改性技术的指导下完成的,聚合物的改性方法是在精细化工产品合成中被运用得最为广泛的理论基础。因此,我要结合精细化工产品中的船舶涂料来简单地阐述我对聚合物改性的主要方法在实际生活中具体应用的看法,着重揭示聚合物改性方法对人类生活、社会发展的巨大意义。 关键词:聚合物改性的主要方法船舶涂料应用 一、聚合物改性的方法分类及其概念 (1)共混改性 1、聚合物共混的本意是指两种或者两种以上聚合物经混合,制成宏观均匀的 材料的过程。 2、从广义上分类,共混包括:物理共混,也就是通常意义上的混合;化学共 混,如聚合物互穿网络;物理化学共混,在物理共混过程中发生一些化学反应。 3、共混的操作仪器:捏合机、静态混合器、滚筒磨、密炼机、挤出机。 4、共混的应用领域:聚合物的增韧改性、增强耐高温聚合物的流动性、将特 性聚合物和廉价聚合物混合降低成本。 (2)填充改性 1、定义:这个方法一般是塑料成型加工过程中加入无机或者有机填料的过 程。 2、填充改性的应用:质量、机械性能、热变形温度、成型加工性能等的改 性。 (3)化学改性 1、化学改性包括:嵌段共聚、接枝共聚、交联、互穿聚合物网络等。 2、应用:交联橡胶、热塑性弹性体(嵌段共聚)等。 (4)表面改性 1、包括:化学、电学、光学、热学和力学等性能的改善。 2、应用:印刷、粘合、涂装、染色、电镀、防雾。 二、聚合物改性在精细化工产品合成过程中的实际应用(以船舶涂料为例) 主要合成树脂涂料有:醇酸树脂涂料、氨基树脂涂料、环氧树脂涂料、酚醛树脂涂料、聚氨酯涂料、丙烯酸树脂涂料、聚氨树脂涂料、乙烯树脂涂料、橡胶涂料等等。以上所举出的树脂分别都有属于自己的优良特性。比如聚氯乙烯就是通过聚乙烯氯化得到的,聚氯乙烯与聚乙烯相比,它具有很好的防紫外线的功能,可以用作船舶的防腐漆。再如醇酸树脂,它作为涂料时的涂层具有良好的柔韧性,附着力和机械强度好;耐有机溶剂;耐热,耐久性好,不易老化;价格便宜。但是也存在着一些缺陷使得合成产品并非完美,其由于带有极性基团酯基,所以耐水性、防潮性、耐碱性欠差。所以我们必须利用一些聚合物改性方法,在醇酸树脂中加入脂肪酸、多元醇、酚醛树脂、多异氰酸酯等改性剂使其发生化学反应来制成新型醇酸树脂,改善原来的醇酸树脂性能,使得醇酸树脂涂料能够在更多的领域得到更好地运用。在实际应用中,与建筑材料不同的船舶需要长期处于海洋环境中,海水对金属的腐蚀比在大陆环境中大气、水分对物质的腐蚀更加严重,因此要船舶能够在海洋这样苛刻的高强度的电化学腐蚀环境中保持正常的工作

蛋白质介绍

[本次授课内容] 第6章蛋白质 6.4食品加工贮藏中蛋白质的变化与蛋白质的改性 # 6.5食品蛋白质含量的测定 重点:加工对营养及功能特性的影响、改善营养及功能特性的方法 6.4 食品加工贮藏中蛋白质的变化 6.4.1 食品加工贮藏中蛋白质的变化 6.4.1.1 热处理中的变化 热处理是许多食品,尤其是蛋白食品的加工常用的杀菌方法,也是一些食品加工中所必须的工艺步骤。多数食品蛋白质只能在窄狭的温度范围内(60-90℃,1h或更短时间)才具有生物活性或功能性。 ○加热对蛋白质理化性质的直接影响:蛋白质结构变得松散、某些次级键的断裂、变性失活等。而加热的程度(温度、时间)及其它因素的协同作用、蛋白质的种类等又是蛋白质变性程度的决定因素,其中有些变化有利于营养、功能特性的提高,另一些变化则属于劣变。 (1)有利变化始终保持适度热处理,既不会破坏共价键也不至于形成新的共价键,不影响蛋白质的一级结构。从营养学的观点讲,蛋白质对温和热处理所产生的变化一般是有利的。 ①大多数蛋白质在加热后营养价值得到提高。因为适宜的加热使蛋白质变性后,原有的紧密结构变得松散、伸展,进入人体易为消化酶所水解,从而提高消化率,营养价值也相应提高。 ②某些植物蛋白所含的抗营养因子-蛋白酶抑制剂(胰蛋白酶、胰凝乳蛋白酶)、凝集素(致血红细胞凝集)等在加热中被钝化失活。从而提高蛋白质食品的安全性和营养价值,如豆科植物蛋白的热加工处理。 ③热处理是常用的杀菌方法。微生物的机体蛋白因热处理变性失活,达到杀菌目的,可防止微生物引起的食品腐败变质。 33

34 ④ 热处理还可钝化食品中存在的某些可能引起食品的色泽、质地、风味等发生非需宜改变的酶。如,酶促褐变、引起豆腥味的LOX ),从而保持良好的风味及外观品质。 (2)不利变化 A 、过度加热会导致氨基酸特别是必需氨基酸(蛋与胱、赖AA )的损失。因蛋白质因热分解或聚合致使营养价值下降。 ① 脱硫:T-115℃~27h ,某些AA 残基(胱氨酸与蛋氨酸——含硫EAA ),会有一半以上的 胱氨酸发生脱硫化氢反应。既损害营养,也引起功能性质的改变; ② 脱酰胺:T>100℃,蛋白质中Gln ,Asn 残基脱除酰胺基-NH 2。尽管不损害营养,但环境 中-NH 2会导致蛋白质电荷和功能性质的改变; ③ 异构化:T>200℃,色氨酸发生异构化,生成环状衍生物。其中包括致突变物质,某些氨 基酸由L-型转变为D-型而失去营养价值,甚至具有毒性; ④ 交联反应:T>150℃,蛋白质中赖氨酸的ε-NH 2参与形成新的肽键-交联肽键。如Lys 与 Asp 、Glu 反应,失去赖氨酸的营养价值,新生成的肽链可能对人体有毒; NH CH CO (CH 2)4NH CO (CH )22CH CO ε-N (γ-谷氨酰基)-L-赖氨酰基 ⑤ 羰氨反应:当还原糖存在时,在普通条件下即可发生的羰氨反应,因加热可加速进行。色、 精、苏、组等均易发生,Lys 中ε-NH 2更易发生该反应,形成不易为酶消化水解的希夫碱,失去EAA 的营养价值并同时导致外观褐变,遇有蔗糖水解、脂肪氧化产物均可提供羰基发生该反应;当然,同时可对面粉焙烤食品起到需宜性的呈色效果。 ⑥ 热分解:T>200℃以上时(如烧烤食品表面温度),蛋白质发生热分解。可能产生诱变化合CH 3 2NH N N N N CH 3N N CH 3NH 23CH CH 32NH N N N

水性聚氨酯的合成与改性_闫福安

CHINA COATINGS 2008年第23卷第7期 15 0 引 言 聚氨酯是综合性能优秀的合成树脂之一。由于其合成单体品种多、反应条件温和、专一、可控,配方调整余地大及其高分子材料的微观结构特点,可广泛用于涂料、黏合剂、泡沫塑料、合成纤维以及弹性体,已成为人们衣、食、住、行必不可少的材料之一,其本身就已经形成了一个多品种、多系列的材料家族,形成了完整的聚氨酯工业体系,这是其它树脂所不具备的。 据有关报道,在全球聚氨酯产品的消耗总量中,北美洲和欧洲占到70%左右。美国人均年消耗聚氨酯材料约5.5 kg,西欧约4.5 kg,而我国的消费水平 还很低,年人均不足0.5 kg。 溶剂型的聚氨酯涂料品种众多、用途广泛,在涂料产品中占有非常重要的地位。水性聚氨酯的研究始自20世纪50年代,60、70年代,对水性聚氨酯的研究、开发迅速发展,70年代开始工业化生产用作皮革涂饰剂的水性聚氨酯。进入90年代,随着人们环保意识以及环保法规的加强,环境友好的水性聚氨酯的研究、开发日益受到重视,其应用已由皮革涂饰剂不断扩展到涂料、黏合剂等领域,正在逐步占领溶剂型聚氨酯的市场。在水性树脂中,水性聚氨酯仍然是优秀树脂的代表,是现代水性树脂研究的热点之一。 水性聚氨酯的合成与改性 □ 闫福安,陈 俊 (武汉工程大学化工与制药学院,武汉 430073) 摘要:对水性聚氨酯的合成单体、合成原理、合成工艺及改性方法作了介绍。水性聚氨酯合成技术不断完善,市场正在推进,国内相关企业和研究机构应加强合作,从分子设计出发,不断推进水性聚氨酯产业的技术进步和市场推广。 关键词:水性聚氨酯;合成;改性 中图分类号:TQ630 文献标识码:A 文章编号:1006-2556(2008)07-0015-08 Synthesis and modifi cation of water-borne PU Yan fuan, Chen jun (School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan 430073, Hubei Province) Abstract: This paper introduces water-borne PU about its monomers, synthesis mechanism, and synthesis technology and modifi cation methods. Relevant enterprises and research institutes China should strengthen the work cooperatively on molecule design, to promote the continuously progressing synthesis technology and the growing market of water-borne PU. Keywords: water-borne PU, synthesis, modifi cation 编者按:本文搜集了相关的情报资料,比较全面地阐述水性聚氨酯的合成技术。相应地,嘉宝莉朱延安、中国科技大章鹏进行了这方面的研发和实验实践。相比之下,为改善PUD分散体涂膜力学性能,选用聚碳酸酯型方向是可行的,但在水性木器涂料中的应用,应综合考虑制造成本、涂料使用范围、对涂膜光泽大小不同要求等方面因素;软段多元醇的选用不可能单一型,可以选用混合型,如PCD与PCL混合,或PCD与聚醚型混合,否则单用PCD,因价格太贵或存在功能过剩,影响水性聚氨酯涂料的推广应用与市场定位。 TECHNICAL PROGRESS DOI:10.13531/https://www.doczj.com/doc/4d7241644.html,ki.china.coatings.2008.07.007

聚醋酸乙烯酯乳液改性进展论文

聚醋酸乙烯酯乳液的改性研究进展 摘要:简述了聚醋酸乙烯酯乳液的作用和合成原理,介绍目前聚醋酸乙烯酯乳液的主要改性方法:共聚改性、保护胶体的改性、共混改性、复合乳液改性、乳化体系改性,分析不同改性方法,指出了聚醋酸乙烯酯乳液今后的发展趋势。 abstract: the paper briefly presents polyvinyl acetate emulsion role and synthetic principle, introduces main modified methods of the polyvinyl acetate emulsion:copolymerization modification, modification of protective colloid, blending modification, composite emulsion modification, emulsion system modification, analyzes different modification methods, and points out the developing trend in the future of the polyvinyl acetate emulsion. 关键词:聚醋酸乙烯酯乳液;改性;耐水性 key words: polyvinyl acetate emulsion;modified;water resistance 中图分类号:g63 文献标识码:a 文章编号: 1006-4311(2012)34-0281-02 0 引言 聚醋酸乙烯乳液(简称pvac乳液)在1929年问世,1937年在

蛋白质的改性论文

蛋白质的改性 摘要:介绍蛋白质的功能特性,以及物理、化学、摘要介绍蛋白质的功能特性,以及物理、化学、酶法等各种改性方法及其对蛋白质功能特性和营养安全性的影响,展望蛋白质改性的应用前景。 0 前言 蛋白质具有营养功能,添加到食品中可以有效地提高产品的营养价值,更重要的是蛋白质在食品中可以体现出不同的功能特性,影响食品的感官特性,而且对食品在制造、加工或保藏中的物理化学性质起着重要的作用。因此蛋白质广泛用于食品加工的各个领域。但是,不少天然蛋白质的这些特性尚不突出,不能满足现代食品开发与加工的需要,往往通过特定的方法来提高其功能特性,使其应用领域更广阔。 1 蛋白质的功能特性 蛋白质的功能性质主要分三类: (l)水化性质,包括水吸收及保留、湿润性、溶胀、粘着性、分散性、溶解度和粘度。由蛋白质肤链骨架上的极性基团与水分子发生水化作用。 (2)与蛋白质一蛋白质相互作用有关的性质,包括产生沉淀作用、凝胶作用和形成各种其它结构(如蛋白质面团和纤维)。蛋白质分子受热舒展,内部的疏水基团暴露出来,通过疏水作用(高温能提高此类作用)、静电作用(通过ca和其它二价离子桥接的)、氢键(冷却能提高此类作用)或二硫交联形成空间网状结构。 (3)表面活性,包括表面张力、乳化作用和泡沫特征。蛋白质结构中既有亲水基又有亲油基,能够吸附在油一水或空气一水界面上,一旦被界面吸附,蛋白质形成一层膜,可阻止小液滴或气泡聚集,有助于稳定乳化液和气泡。这些功能特性在食品中常被应用。 (4)蛋白质的功能特性与其结构有关,即氨基酸组成、排列顺序、构象、分子的形状和大小、电荷分布以及分子内和分子间键的作用。高比例的极性残基影响肤链间相互作用、水化作用、溶解性和表面活性,疏水性相互作用在蛋白质三级折叠中相当重要,它影响乳化作用、起泡性和风味结合能力。带电氨基酸能增强静力相互作用,起到稳定球蛋白,结合水分的作用,以及水化作用、溶解度、凝胶作用和表面活性。琉基(SH)能被氧化形成二硫键,硫醇和二硫化物的相互转化会影响流变性。共价键和非共价键的性质和数量决定了蛋白质的大小、形状、表面电荷。所有这些性质又受PH、温度等环境因素及加工处理的影响。 2蛋白质改性 2.1物理改性 所谓蛋白质物理改性是指利用热、机械振荡、电磁场、射线等物理作用形式改变蛋白质的高级结构和分子间的聚集方式, 一般不涉及蛋白质的一级结构。如蒸煮、搅打等均属于物理改性技术。

水性聚氨酯的合成

闫福安,陈俊 (武汉工程大学化工与制药学院,武汉430073) 摘要:对水性聚氨酯的合成单体、合成原理、合成工艺及改性方法作了介绍。水性聚氨酯合成技术不断完善,市场正在推进,国内相关企业和研究机构应加强合作,从分子设计出发,不断推进水性聚氨酯产业的技术进步和市场推广。 关键词:水性聚氨酯;合成;改性 0引言 聚氨酯是综合性能优秀的合成树脂之一。由于其合成单体品种多、反应条件温和、专一、可控,配方调整余地大及其高分子材料的微观结构特点,可广泛用于涂料、黏合剂、泡沫塑料、合成纤维以及弹性体,已成为人们衣、食、住、行必不可少的材料之一,其本身就已经形成了一个多品种、多系列的材料家族,形成了完整的聚氨酯工业体系,这是其它树脂所不具备的。据有关报道,在全球聚氨酯产品的消耗总量中,北美洲和欧洲占到70%左右。美国人均年消耗聚氨酯材料约5.5kg,西欧约4.5kg,而我国的消费水平还很低,年人均不足0.5kg。溶剂型的聚氨酯涂料品种众多、用途广泛,在涂料产品中占有非常重要的地位。水性聚氨酯的研究始自20世纪50年代,60、70年代,对水性聚氨酯的研究、开发迅速发展,70年代开始工业化生产用作皮革涂饰剂的水性聚氨酯。进入90年代,随着人们环保意识以及环保法规的加强,环境友好的水性聚氨酯的研究、开发日益受到重视,其应用已由皮革涂饰剂不断扩展到涂料、黏合剂等领域,正在逐步占领溶剂型聚氨酯的市场。在水性树脂中,水性聚氨酯仍然是优秀树脂的代表,是现代水性树脂研究的热点之一。 1水性聚氨酯的合成单体 1.1多异氰酸酯(polyisocynate) 多异氰酸酯可以根据异氰酸酯基与碳原子连接的部位特点,可分为四大类:芳香族多异氰酸酯(如甲苯二异氰酸酯,TDI)、脂肪族多异氰酸酯(六亚甲基二异氰酸酯,HDI)、芳脂族多异氰酸酯(即在芳基和多个异氰酸酯基之间嵌有脂肪烃基-常为多亚甲基,如苯二亚甲基二异氰酸酯,XDI)和脂环族多异氰酸酯(即在环烷烃上带有多个异氰酸酯基,如异佛尔酮二异氰酸酯,IPDI。芳香族多异氰酸酯合成的聚氨酯树脂户外耐候性差,易黄变和粉化,属于“黄变性多异氰酸酯”,但价格低,来源方便,在我国应用广泛,如TDI常用于室内涂层用树脂;脂肪族多异氰酸酯耐候性好,不黄变,其应用不断扩大,欧美发达国家已经成为主流的多异氰酸酯单体;芳脂族和脂环族多异氰酸酯接近脂肪族多异氰酸酯,也属于“不黄变性多异氰酸酯”。水性聚氨酯合成用的多异氰酸酯主要有TDI、IPDI、HDI、TMXDI(四甲基苯二亚甲基二异氰酸酯)。TMXDI可直接用于水性体系,或用于零VOC水性聚氨酯的合成。

纳米SiO2与硅灰复掺对水泥净浆改性论文

纳米SiO2与硅灰复掺对水泥净浆的改性研究摘要:本文通过水泥净浆实验,研究并找出了不同掺量的纳米sio2与硅灰复掺对水泥净浆凝结时间和硬化浆体抗压强度的影响 规律,有一定的理论及应用价值。 关键词:纳米sio2;硅灰;水泥净浆;改性 abstract: this paper through the cement slurry net experiment, study and find out the different proportion of nano sio2 and silicon ash after mixing cement slurry to net the setting time and paste the influence law of the compressive strength, have certain theory and application value. keywords: nano sio2; silicon ash; cement slurry net; modification 1.引言 纳米技术是对未来经济和社会发展产生重大影响的一种关键性前沿技术,利用微纳米粉体技术改性水泥浆体,可产生很好的效果。因此,必须加强纳米粉体对水泥水化产物之间的相互作用机理的研究,为水泥基材料的高性能、多功能、智能化及超耐久性打下扎实的基础。经过翻阅国内外相关资料[1],发现不具有火山灰活性的纳米粉体对水泥浆体性能的影响非常显著,纳米级sio2对水泥基材料的作用尤其明显,本文对纳米级sio2对水泥净浆的改性机理进行研究。期望能通过添加纳米级微粉进一步改善水泥浆体的性

食品蛋白质功能研究进展

食品蛋白质功能研究进展 摘要:食品蛋白质功能是指在食品加工,保藏,制备和消费期间影响蛋白质在食品体系中的性能的那些蛋白质的物理和化学性质。对国内外关于食品蛋白质功能研究进行了综述,为未来研究食品蛋白质功能性质的应用提供参考。 关键词:食品蛋白质功能,物理性质,化学性质,研究进展 前言: 食品的感官品质是由各种食品原料复杂的相互作用产生的。例如蛋糕的风味、质地、颜色和形态等性质,是由原料的热胶凝性,起泡、吸水作用、乳化作用、粘弹性和褐变等多种功能性组合的结果。因此,一种蛋白质作为蛋糕或其他类似产品的配料使用时,必须具有多种功能特性。动物蛋白,例如乳(酪蛋白)、蛋和肉蛋白等,是几种蛋白质的混合物,它们有着较宽范围的物理和化学性质,及多种功能特性,例如蛋清具有持水性、胶凝性、粘合性、乳化性、起泡性和热凝结等作用,现已广泛地用作许多食品的配料,蛋清的这些功能来自复杂的蛋白质组成及它们之间的相互作用,这些蛋白质成分包括卵清蛋白、伴清蛋白、卵粘蛋白、溶菌酶和其他清蛋白。然而植物蛋白(例如大豆和其他豆类及油料种子蛋白等);和乳清蛋白等其他蛋白质,虽然它们也是由多种类型的蛋白质组成,但是它们的功能特性不如动物蛋白,目前只是在有限量的普通食品中使用,因为并没有完全了解,哪些蛋白质的分子决定了蛋白质在食品中所具有的各种期望的功能性质,往往通过特定的方法来提高其功能特性,使其应用领域更广阔。 1、蛋白质的功能性质 蛋白质的功能性质,通常是指蛋白质的水化性、戳着性、胶凝作用、乳化性、发性等。 (1)蛋白质的水化性蛋白质的水化取决子蛋白质与水的相互作用,包括水的吸收 与保留、湿润性、溶胀、戳着性、分散性、溶解度和强度等。 蛋白质的水化是通过蛋白质的败键和氨基酸侧链与水分子间的相互作用而实现的,见 图(1) 大多数的食品是蛋白质水化的固态体系,蛋白质中水的存在及存在方式直接影响着食骏的质构和口感。干燥的蛋白质原料并不能直接加工,须先将其水化。干燥蛋白质遇

相关主题
文本预览
相关文档 最新文档