当前位置:文档之家› ★★氧化镁湿法烟气脱硫废水处理技术

★★氧化镁湿法烟气脱硫废水处理技术

★★氧化镁湿法烟气脱硫废水处理技术
★★氧化镁湿法烟气脱硫废水处理技术

氧化镁湿法烟气脱硫废水处理技术

发布者: azurelau | 发布时间: 2012-12-20 17:10| 查看数: 465| 评论数: 3|帖子模式

1 镁法脱硫技术的发展

氧化镁法在湿法烟气脱硫技术中是仅次于钙法的又一主要脱硫技术。据介绍,氧化镁再生法的脱硫工艺最早由美国开米科公司(Chemico—Basic)在20世纪60年代开发成功,70年代后费城电力公司(PECO)与United&Constructor合作研究氧化镁再生法脱硫工艺,经过几千小时的试运行之后,在三台机组(其中两台分别为150MW和320MW)进行了全规模的FGD系统和两个氧化镁再生系统建设,上述系统于1982年建成并投入运行,1992年以后停运硫酸制造厂,直接将反应产物硫酸镁销售。1980年美国DUCON公司在PHILADELPHA ELECTRIC EDDYSTONE STATION成功建成实施氧化镁湿法脱硫系统,运行至今,效果良好。随后韩国和台湾地区也发展了自己的湿式镁法脱硫技术,目前在台湾95%的电站采用氧化镁法脱硫。

近几年国内的氧化镁湿法脱硫发展较快,2001年,清华大学环境系承担了国家“863”计划中《大中型锅炉镁法脱硫工艺工业化》的课题,对镁法脱硫的工艺参数、吸收塔优化设计和副产品回收利用等进行了深入的研究,并在4t/h、12t/h锅炉上进行了中试,在35t/h锅炉上进行了工程应用。目前,大机组镁法烟气脱硫已经有滨州化工集团发电厂、太钢发电厂、华能辛店电厂、中石化仪征化纤热电厂、魏桥铝电发电厂、鞍山北美热电厂、鲁北化工发电厂、台塑关系企业(宁波、昆山、南通)热电厂、五矿营口中板烧结机厂等电厂和烧结机厂在建或投入运行。

湿式镁法脱硫工艺又可分为氧化镁/亚硫酸镁法、氧化镁/硫酸镁抛弃法、氧化镁/硫酸镁回收法等。本文主要介绍应用规模较大、前景广阔的氧化镁/亚硫酸镁工艺中的废水处理工艺。

2 脱硫废水处理技术概况

湿法烟气脱硫工艺中存在废水处理问题,虽然有很多电厂的脱硫系统都配有废水处理系统,但国内目前对脱硫废水的处理工艺研究较少,其中关注最多的是石灰石/石膏法产生的脱硫废水,对于镁法脱硫产生的废水的研究就更少了。镁法脱硫废水处理现在多是引用和借鉴石灰石/石膏法脱硫废水处理经验。为了维持脱硫装置浆液循环系统物质的平衡,防止烟气中可溶物质超过规定值和保证副产物品质,必须从循环系统中排放一定量的废水。因此,没有预处理塔的镁法脱硫和石灰石/石膏法脱硫过程产生的废水均来源于吸收塔的排放水。

3 镁法脱硫废水水量和水质

3.1 脱硫废水水量

脱硫废水的水量与烟气中的HCl和HF、吸收塔内浆液中的Cl-和SO4 2-浓度、脱硫用水的水质等有关。当进入吸收塔内的烟气量一定时,废水排放量由以下条件确定:

(1)脱硫废水的水量取决于烟气中的HCl(H F)浓度,而烟气中的HCl(HF)主要来自于机组燃烧的煤。煤中Cl(F)的含量越高,烟气中的HCl(HF)浓度就越高,废水排放量也就越大。

(2)脱硫废水的水量关键取决于吸收塔内Cl-的控制浓度。浆液中的Cl-浓度太高,亚硫酸镁品质下降且脱硫效率降低,对设备的抗腐蚀要求提高;对浆液中的Cl-浓度要求过低,脱硫废水的水量增大,废水处理的成本提高。根据经验,脱硫废水中的Cl-浓度控制在10~20g/L为宜。

(3)脱硫废水的水量还取决于吸收塔内SO4 2-的控制浓度。浆液中SO4 2-浓度太高,会造成浆液粘性增加,影响亚硫酸镁的结晶,脱硫效率降低;浆液中SO4 2-的控制浓度过低,SO3 2-氧化成SO4 2-的正反应加速,亚硫酸镁的产量降低。

(4)脱硫废水的水量还与脱硫工艺用水的Cl-浓度有关。脱硫工艺用水的Cl-浓度越高,脱硫废水量越大。但由于常规脱硫工艺用水Cl-浓度一般不超过0.1g/L,远远小于脱硫废水中的Cl-浓度,故脱硫工艺用水的Cl-浓度对脱硫废水量的影响较小。

3.2 脱硫废水水质

脱硫废水的特点如下:

(1)镁法脱硫系统废水pH值较钙法(钙法一般为4~6)高,一般在6~7;

(2)悬浮物(亚硫酸镁颗粒、SiO2、Al和Fe的氢氧化物)含量很高,浓度可达几万mg/L;(3)氟化物、COD和重金属超标,其中包括我国严格限制排放的第Ⅰ类污染物,如Hg、As、

Pb等;(4)盐分极高,含有大量的SO4 2-、Cl-和SO3 2-等离子,其中SO4 2-质量分数可达12%,Cl-的质量分数在1%~2%。脱硫废水的具体水质与燃煤的种类、电除尘器的极数、脱硫氧化风量、吸收塔内Cl-的控制浓度、脱硫工艺用水的水质情况等因素有关。

4 镁法脱硫废水处理系统

脱硫废水处理典型工艺见下图。

从脱硫塔排出的浆液含固量约15%,主要的固体成分是亚硫酸镁,经过旋流器后,其顶流或真空皮带脱水机的滤液水成为废水,进入废水处理系统,其含固量约3%。脱硫废水处理系统包括:中和、反应、絮凝、澄清。

(1)中和

烟气脱硫产生的酸性废水首先进入中和箱,通过控制石灰乳的投加量,维持废水在中和箱中的pH值,一般为8.5~9.0,由于在不同的pH值下,金属氢氧化物的溶度积相差较大,故反应时应严格控制其pH值。在这一范围内可使一些重金属,如铁、铜、铅、镍和铬生成氢氧化物沉淀。同时废水中大量的SO4 2-与Ca2+结合产生石膏沉淀。

(2)反应

中和箱中的废水自流进入反应箱,废水中大量Mg等金属离子以非常细小的氢氧化物和络合物形式从废水中析出。对于汞、铜等重金属,一般采用加入有机硫如TMT15,以产生HgS、CuS等沉淀,这两种沉淀物质溶解度都很小,溶度积数量级在10-50~10-40之间。(3)絮凝

由于形成的氢氧化物及金属硫化物颗粒细小,在废水中不易沉降下来,因此通过投加复合

铁使废水中细小颗粒在缓慢搅拌的条件下形成絮凝体。在进入澄清器前向废水中投加助凝剂(PAM)来降低颗粒的表面张力,强化颗粒的长大过程,进一步促进氢氧化物和硫化物的沉淀,使细小的絮凝物慢慢变成更大、更容易沉积的絮状物,确保在澄清器中能完成固液分离。

(4)澄清

由絮凝箱来的废水在澄清器中进行固液分离,澄清器常采用易安装维护的竖流式澄清器,运行稳定可靠。澄清器在重力作用下形成浓缩污泥,浓缩污泥通过污泥螺杆泵将污泥排出,大部分污泥经污泥泵排到板框压滤机进行脱水,小部分污泥作为接触污泥返回废水反应池,提供沉淀所需的晶核。清水由周边出水三角堰流入出水箱。

由于废水中pH较高(8.5~9.0),配备pH调节系统,当pH值高于9时,pH调节系统控制HC1计量泵投加,以确保出水箱中水质达标排放(pH为6~9)。

关于电厂脱硫废水的处理

关于电厂脱硫废水的处理 二氧化硫是大气的重要污染物之一,已对农作物、森林、建筑物和人体健康等方面造成了巨大的经济损失,SO2排放的控制十分重要。湿法烟气脱硫(FGD)是目前唯一大规模商业运行的脱硫方式,利用价廉易得的石灰或石灰石作吸收剂。吸收烟气中的SO2生成CaSO3,该工艺脱硫效率高,适应煤种广泛,适合大中小各类机组,负荷变化范围广,运行稳定可靠;技术成熟,运行经验丰富,因此得到广泛应用。湿法烟气脱硫工艺中产生脱硫废水,其pH 值为4~6 ,同时含有大量的悬浮物(石膏颗粒、SiO2、Al 和Fe 的氢氧化物)、氟化物和微量的重金属,如As、Cd、Cr 、Cu、Hg、Ni 、Pb、Sb、Se 、Sn 和Zn 等。直接排放对环境造成严重危害,必须进行处理。 通常脱硫废水处理采用石灰中和法。石灰中和法pH值一般控制在9.5± 0.3,此pH值范围适用于沉淀大多数的重金属(去除率可达99%)。为了沉降石灰中和法难于去除的镉和汞,还需要加入一定量硫化物(有机硫),形成硫化物的沉淀,pH=8~10为佳。同时,为了消除可能生成的胶体,改善生成物的沉降性能,还需要加入混凝剂和助凝剂。 脱硫废水处理主要反应步骤 我国脱硫废水的处理技术是基于国内的废水的排放性质,采用物化法针对不同种类的污染物,分别创造合宜的理化反应条件,使之予以彻底去除,基本分为如下几个主要反应步骤: 1)先行加入碱液,调整废水pH值,在调整酸碱度的同时,为后续处理工艺环节创造适宜的反应条件; 2)加入有机硫化物、絮凝剂和适量的助凝剂,通过机械搅拌创造合适的反应梯度使废水中的大部分重金属形成沉淀物并沉降下来; 3)通过投加的絮凝剂和适宜的反应条件,使得废水中的大部分悬浮物沉淀下来,通过澄清池(斜板沉淀池)予以去除; 4)加入絮凝剂使沉淀浓缩成为污泥,污泥被送至灰场堆放。废水的pH值和悬浮物达标后直接外排。关于电厂脱硫废水处理的控制系统

脱硫废水处理t设计方案

脱硫废水处理 设 计 方 案 责任公司 2010年12月

目录前言2 1 总论3 2 工程设计依据、原则和范围3 2.1 设计依据3 2.2 设计原则3 2.3 设计范围4 3 工程设计参数4 3.1 设计处理规模4 3.2 进水水质4 3.3 出水水质4 4 工艺流程选择与确定5 4.1工艺分析与确定5 4.2工艺特点5 4.3工艺流程5 4.4工艺流程说明6 4.5沿程水质变化分析表7 5 各处理工艺设计及计算8 5.1各处理单元参数选择及设计计算8 5.2各单元构/建筑物/设备配置15 6 工程投资估算16 6.1工程投资估算16 6.2土建部分投资估算18 6.3设备投资估算20 7运行费用分析21 7.1主要用电设备21 7.2 运行费用分析21 8 人员培训及售后服务20 8.1人员培训20 8.2售后服务21

前言 。 在污水处理站的建设中,我公司愿意真诚参与,贡献我们的技术和力量。

1 总论 脱硫废水的水质特点如下:a脱硫废水呈弱酸性,pH值一般为4~7。b悬浮物含量高,实验证明脱硫废水中的悬浮物主要是石膏颗粒、二氧化硅、以及铁、铝的氢氧化物。c 脱硫废水中的阳离子为钙、镁、铁、铝、重金属离子。d脱硫废水中的阴离子主要有C1-、SO42-、SO32-、等。e化学耗氧量与通常的废水不同。 2 工程设计依据、原则和范围 2.1 设计依据 《室外排水设计规范》GBJ50014-2006 ; 《建筑给水排水设计规范》GBJ50015-2003; 《国家污水综合排放标准》GB8978-1996; 《辽宁省污水综合排放标准》DB21/1627-2008 《地表水环境质量标准》GB3838-2002; 《废水出水水质的监测与控制符合火力发电厂废水治理设计技术规程》 DL/T5046-2006 《钢制平台扶梯设计规范》DLGJ158-2001 《钢制压力容器》GB150-1998 国内外关于此类废水处理技术资料; 污水处理有关设计和验收规范规程; 国家相关环保政策法规 2.2 设计原则 (1)严格遵守国家有关环保法律法规和技术政策,确保各项出水指标均达到排放水质要求; (2)水处理设备力求简便高效、操作管理方便、占地面积小、造价低廉、运行安全及避免对周围的环境造成污染;

湿法烟气脱硫技术的研究现状与进展

1.研究背景 众所周知,二氧化硫是当今人类面临的主要大气污染物之一,根据15年来60多个国家监测获得的统计资料显示,由人类制造的二氧化硫每年达1.8亿吨,比烟尘等悬浮粒子1.0亿吨还多,己成为大气环境的第一大污染物。 在我国的能源结构中,能源结构中煤炭所占比例高达73%,石油为21%,天然气和水能仅占2%和4%。这个比例在一个相当长的时期内不会有根本性的改变。而据对主要大气污染物的分类统计分析,在直接燃烧的燃料中,燃煤排放的大气 污染物数量约占燃烧排放总量的96%,大气中90%S0 2,71%CO,85%的CO 2 ,70%的 NO以及70%的粉尘来自煤炭的直接燃烧。因此,我国的大气环境污染仍然以煤烟 型为主,主要污染物是二氧化硫和烟尘。目前我国S0 2 年排放量连续超过2000 万吨,超过欧洲和美国,使我国成为世界S0 2 排放第一大国。 二氧化硫污染对人类造成的危害己被世人所知,二氧化硫的污染属于低浓度、长期的污染,它的存在对自然生态环境、人类健康、工农业生产、建筑物及 材料等方面都造成了一定程度的危害。S0 2 污染排放问题已成为制约我国国民经 济发展的一个重要因素,对S0 2 排放的控制与治理己刻不容缓。其中,火力发电机组二氧化硫排放量的削减更成为了重中之重。 与此同时,气候变暖也已经成为一项全球性的环境问题,受到了许多国家的关注。人类活动所释放的二氧化碳是导致全球变暖的最重要的温室气体。其中火 电厂燃用矿物燃料所释放的CO 2 ,是全球二氧化碳浓度增加的主要原因之一。 随着我国经济的快速发展,控制能源消耗造成的环境污染,特别是控制燃煤造成的二氧化硫污染和二氧化碳的排放成为保证社会和经济可持续发展的迫切要求。 烟气脱硫是目前世界上唯一大规模商业化应用的脱硫方式,是控制酸雨和二氧化硫污染的主要技术手段。湿法石灰石一石膏烟气脱硫作为一种相对较成熟、脱硫效率较高的脱硫技术,得到了广泛的应用。石灰石- 石膏湿法烟气脱硫因其脱硫效率高、工艺成熟、安全性可靠性高、系统运行稳定、维护简单、投资成本与运行成本较低、脱硫副产物可综合利用等优势而成为目前火电厂烟气脱硫最常采用的工艺。世界各国的湿法烟气脱硫工艺流程、形式和机理大同小异,主要是使用石灰石(CaCO3)、石灰(CaO)等浆液作洗涤剂,在反应塔中对烟气进行洗涤,从而除去烟气中的SO2。 2.湿法石灰石/ 石膏脱硫工艺原理 当采用石灰为吸收剂时,石灰粉经经破碎磨细成粉状后加水搅拌制成吸收浆。在吸收塔内,吸收浆液与烟气接触混合,烟气中的So2与浆液中的碳酸钙进行化学反应、再通过鼓入空气氧化,最终产物为石膏。脱硫后的烟气经除雾器除去带出的细小液滴,经换热器加热升温后排人烟囱。脱硫石膏浆经脱水装置脱水后回收。 石灰或石灰石法主要的化学反应机理为:

镁法脱硫废水处理技术初探

氧化镁湿法烟气脱硫废水处理技术探讨 1镁法脱硫技术的发展 氧化镁法在湿法烟气脱硫技术中是仅次于钙法的又一主要脱硫技术。据介绍,氧化镁再生法的脱硫工艺最早由美国开米科公司(Chemico—Basic)在20世纪60年代开发成功,70年代后费城电力公司(PECO)与United&Constructor合作研究氧化镁再生法脱硫工艺,经过几千小时的试运行之后,在三台机组(其中两台分别为150MW和320MW)进行了全规模的FGD系统和两个氧化镁再生系统建设,上述系统于1982年建成并投入运行,1992年以后停运硫酸制造厂,直接将反应产物硫酸镁销售。1980年美国DUCON公司在PHILADELPHAELECTRICEDDYSTONESTATION成功建成实施氧化镁湿法脱硫系统,运行至今,效果良好。随后韩国和台湾地区也发展了自己的湿式镁法脱硫技术,目前在台湾95%的电站采用氧化镁法脱硫。 近几年国内的氧化镁湿法脱硫发展较快,2001年,清华大学环境系承担了国家“863”计划中《大中型锅炉镁法脱硫工艺工业化》的课题,对镁法脱硫的工艺参数、吸收塔优化设计和副产品回收利用等进行了深入的研究,并在4t/h、12t/h锅炉上进行了中试,在35t/h锅炉上进行了工程应用。 湿式镁法脱硫工艺又可分为氧化镁/亚硫酸镁法、氧化镁/硫酸镁抛弃法、氧化镁/硫酸镁回收法等。本文主要介绍应用规模较大、前景广阔的氧化镁/亚硫酸镁工艺中的废水处理工艺。 2脱硫废水处理技术概况 湿法烟气脱硫工艺中存在废水处理问题,虽然有很多电厂的脱硫系统

都配有废水处理系统,但国内目前对脱硫废水的处理工艺研究较少,其中关注最多的是石灰石/石膏法产生的脱硫废水,对于镁法脱硫产生的废水的研究就更少了。镁法脱硫废水处理现在多是引用和借鉴石灰石/石膏法脱硫废水处理经验。为了维持脱硫装置浆液循环系统物质的平衡,防止烟气中可溶物质超过规定值和保证副产物品质,必须从循环系统中排放一定量的废水。因此,没有预处理塔的镁法脱硫和石灰石/石膏法脱硫过程产生的废水均来源于吸收塔的排放水。 3镁法脱硫废水水量和水质 3.1脱硫废水水量 脱硫废水的水量与烟气中的HCl和HF、吸收塔内浆液中的Cl-和SO42-浓度、脱硫用水的水质等有关。当进入吸收塔内的烟气量一定时,废水排放量由以下条件确定: (1)脱硫废水的水量取决于烟气中的HCl(HF)浓度,而烟气中的HCl(HF)主要来自于机组燃烧的煤。煤中Cl(F)的含量越高,烟气中的HCl(HF)浓度就越高,废水排放量也就越大。 (2)脱硫废水的水量关键取决于吸收塔内Cl-的控制浓度。浆液中的Cl-浓度太高,亚硫酸镁品质下降且脱硫效率降低,对设备的抗腐蚀要求提高;对浆液中的Cl-浓度要求过低,脱硫废水的水量增大,废水处理的成本提高。根据经验,脱硫废水中的Cl-浓度控制在10~20g/L为宜。 (3)脱硫废水的水量还取决于吸收塔内SO42-的控制浓度。浆液中SO42-浓度太高,会造成浆液粘性增加,影响亚硫酸镁的结晶,脱硫效率降低;浆液中SO42-的控制浓度过低,SO32-氧化成SO42-的正反应加速,

燃煤电厂脱硫废水处理技术方案设计

脱硫废水处理工艺设计初步构思 1脱硫废水的主要来源 煤粉在锅炉燃烧后会产生烟气,烟气经电除尘器设备除尘后进入引风机再引出到脱硫系统,经增压风机、吸收塔、除雾器后,洁净的烟气通过烟囱排入大气。 在吸收塔中,随着吸收剂吸收二氧化硫过程的不断进行,吸收剂有效成分不断被消耗从而生成的亚硫酸钙经强制氧化生成石膏,在吸收剂洗涤烟气时,烟气中的氯化物也会逐渐溶解到吸收液中从而产生氯离子的富集。氯离子浓度的增高会带来两个不利的影响:一是降低了吸收液的pH值,以致引起脱硫率的下降和CaSO4结垢倾向的增大;此外,氯离子浓度过高会降低副产品(石膏)的品质,从而降低产出石膏的价值。当吸收塔浆液质量浓度达到700g/L,吸收剂基本完全反应,脱硫能力相当弱,吸收塔浆液中氯离子的质量浓度达到最大允许质量浓度(20mg/L)左右,这就要将吸收塔浆液抽出送至石膏脱水车间使用真空皮带脱水机脱水。脱硫系统排放的废水,处理的清洗系统排出的废水、水力旋流器的溢流水和皮带过滤机的滤液都是废水产生的来源。 2 脱硫废水水质的基本特点 脱硫废水的成分及浓度对处理系统的运行管理有很大影响,是影响处理设备的选择、腐蚀等的关键性因素。脱硫废水一般具有以下几个特点。 (1)水质呈弱酸性:国外 pH 值变化围为 5.0~6.5,国一般为 4.0~6.0。酸性的脱硫废水对系统管道、构筑物及相关动力设备有很强的腐蚀性。 (2)悬浮物含量高,其质量浓度可达数万mg/L,而且大部分的颗粒物黏性低。(3)COD、氟化物、重金属超标,其中包括第 1 类污染物,如 As、 Hg、Pb 等。(4)脱硫废水的一般温度在45度左右。 (5)脱硫废水生化需氧量(BOD5)低。

火力发电厂脱硫废水“零排放”处理技术

火力发电厂脱硫废水“零排放”处理技术 随着中国水环保政策趋于严控,火力发电厂脱硫废水“零排放”理念不断升温。脱硫废水是火电厂最难处理的末端废水,单一技术路线的废水处理方案往往难以兼顾目标与成本。本文分析了各种深度处理方法以及具体的应用环境,提出针对不同成分的废水需要有不同的应对处理措施,对于推动脱硫废水处理工作,实现脱硫废水零排放具有重要意义。 一、脱硫废水来源采用湿法脱硫工艺的燃煤电厂在运行中,需要维持脱硫装置(FGD)当中浆液循环系统的平衡度,避免离子等可能对脱硫系统和设备带来的不利影响,同时排放系统中的废水,保持脱硫系统水平衡。从来源上看,脱硫废水主要从石膏旋流器或废水旋流器的溢流处产生。经研究发现,在脱硫废水中,有相当比例的重金属以及各种无机盐等,如果这些含有高浓度盐分的废水不经过有效处理就直接排放到大自然环境中,会严重影响生态健康,也不利于地下水资源的保护。二、脱硫废水进行零排放处理的必要性目前,燃煤电厂烟气脱硫装置应用最广泛的是石灰石-石膏湿法脱硫工艺。为保证脱硫系统的安全运行和保证石膏品质而排放的脱硫废水,其中含有大量的杂质,如悬浮物、无机盐离子、重金属离子等,很多物质为国家环保标准中要求严格控制的第一类污染物,需要进行净化处理才能排放水体。国内多数燃煤电厂净化脱硫废水采用的常规处理工艺即“三联箱”技术,采用物理化学方法,通过中和、沉降、絮凝和澄清等过程对脱硫废水进行处理,通常使用的药剂包括氢氧化钙/氢氧化钠、有机硫、铁盐、助凝剂、盐酸等。该工艺能够去除脱硫废水中对环境危害较大的重金属等有害物质和悬浮物,但不能去除氯离子,处理出水为高含盐废水,具有强腐蚀性,无法回收利用。排入自然水系后还会影响环境,潜在环境风险高。随着国家对环境污染的治理日益提速,对废水的排放要求也越来越严格。燃煤电厂在资源约束与排放限制方面的压力陡然上升,脱硫废水排放已经是燃煤电厂面临的严重的环保问题。传统的脱硫废水处理工艺达到的水质排放标准越来越不符合当下国家越来越严格的环保发展形势,电力企业实现脱硫废水零排放的需求越来越迫切,减排和近零排放成为必然趋势。三、脱硫废水的产生及其水质特点脱硫废水主要来自石膏旋流器或废水旋流器的溢流,是维持脱硫装置浆液循环系统物质平衡,控制石灰石浆液中可溶部分(即Cl-)含量、保证石膏质量的必要工艺环节。废水中所含物质繁杂,大体分为氯化物、氟化物、亚硫酸盐、硫酸盐、硫化物、悬浮物以及重金属离子(如Hg2+,Pb2+、Cr2+等)、氨氮等。脱硫废水具有污染物成份复杂、波动范围大等特点。pH值较低,呈酸性,水中悬浮物含量高、盐含量高、存在重金属超标的可能,氯根含量很高,腐蚀性很强,是电厂中最难处置的废水。四、脱硫废水深度处理方法1.废水浓缩处理技术目前,国内的脱硫废水浓缩处理主要采用膜浓缩、热法浓缩和烟气浓缩技术路线。(1)膜浓缩技术目前,膜浓缩技术广泛应用于脱硫废水的深度处理和浓缩研究,以减少废水处理系统中蒸发结晶的污水处理量,使得电厂零排放技术更经济可行。(1.1)反渗透(RO)技术。在外界高压力作用下,利用反渗透膜的选择透过性,水溶液中水由高浓度一侧向低浓度一侧移动,使得溶液中的溶质与水得到分离。(1.2)电渗析技术。利用离子交换膜的选择透过性,溶液中的带电阴、阳离子在直流电场作用下定向迁移,实现对废水的浓缩和分离。Cui等利用电渗析法去除脱硫废水中的氯离子,结果表明,在最佳条件下,当氯离子质量浓度为19.2g/L时,氯离子的去除率为83.3%,得到副产品Cl2、H2和Ca(OH)2,处理成本0.15$/kg。(2)热法浓缩技术热法浓缩技术包括多效蒸发(MED)和机械蒸汽再压缩(MVR)等。(2.1)多效蒸发(MED)技术。将蒸汽的热能进行循环并多次重复利用,以减少热能消耗,降低成本。加热后的盐水在多个串联的蒸发器中蒸发,利用前效蒸发产生的二次蒸汽,作为后效蒸发器的热源,后效中水的沸点温度和压力比前效低,效与效之间的热能再生利用可以重复多次。(2.2)机械蒸汽再压缩(MVR)技术。将蒸发器蒸发产生的原本需要冷却水冷凝的二次蒸汽,经压缩机压缩后,提高压力和饱和温度,增加热焓,再送入蒸发器作为热源,替代新鲜蒸汽循环利用,二次蒸汽的潜热得以充分利用,同时还省去了二次蒸汽冷却水

湿法烟气脱硫的原理(内容清晰)

湿法烟气脱硫的原理 湿法烟气脱硫的原理 1 湿法烟气脱硫的基本原理 (1)物理吸收的基本原理 气体吸收可分为物理吸收和化学吸收两种。如果吸收过程不发生显著的化学反应,单纯是被吸收气体溶解于液体的过程,称为物理吸收,如用水吸收SO2。物理吸收的特点是,随着温度的升高,被吸气体的吸收量减少。 物理吸收的程度,取决于气--液平衡,只要气相中被吸收的分压大于液相呈平衡时该气体分压时,吸收过程就会进行。由于物理吸收过程的推动力很小,吸收速率较低,因而在工程设计上要求被净化气体的气相分压大于气液平衡时该气体的分压。物理吸收速率较低,在现代烟气中很少单独采用物理吸收法。 (2)化学吸收法的基本原理 若被吸收的气体组分与吸收液的组分发生化学反应,则称为化学吸收,例如应用碱液吸收SO2。应用固体吸收剂与被吸收组分发生化学反应,而将其从烟气中分离出来的过程,也属于化学吸收,例如炉内喷钙(CaO)烟气脱硫也是化学吸收。 在化学吸收过程中,被吸收气体与液体相组分发生化学反应,有效的降低了溶液表面上被吸收气体的分压。增加了吸收过程的推动力,即提高了吸收效率又降低了被吸收气体的气相分压。因此,化学吸收速率比物理吸收速率大得多。 物理吸收和化学吸收,都受气相扩散速度(或气膜阻力)和液相扩散速度(或液膜阻力)的影响,工程上常用加强气液两相的扰动来消除气膜与液膜的阻力。在烟气脱硫中,瞬间内要连续不断地净化大量含低浓度SO2的烟气,如单独应用物理吸收,因其净化效率很低,难以达到SO2的排放标准。因此,烟气脱硫技术中大量采用化学吸收法。用化学吸收法进行烟气脱硫,技术上比较成熟,操作经验比较丰富,实用性强,已成为应用最多、最普遍的烟气脱硫技术。 (3)化学吸收的过程 化学吸收是由物理吸收过程和化学反应两个过程组成的。在物理吸收过程中,被吸收的气体在液相中进行溶解,当气液达到相平衡时,被吸收气体的平衡浓度,是物理吸收过程的极限。被吸收气体中的活性组分进行化学反应,当化学反应达到平衡时,被吸收气体的消耗量,是化学吸收过程的极限。这里用Ca(OH)2溶液吸收SO2加以说明。 SO2(气体)

烟气脱硫净化废水处理

烟气脱硫净化废水处理 摘要 在制定湿式石灰石烟气脱硫(FGD)改造项目时,公共工程还必须为相关的污水处理系统(WWTS)处理洗涤绿化气流制定一项计划。这种净化气流需要在洗涤中控制氯化物浓度和集聚的固体粉末。 在这篇文章中,烟气脱硫净化气流的特点将被确定,而且影响那些特点的项目也会被讨论,这些项目有煤炭来源,石灰石质量,洗涤器的设计和水质的组成。影响烟气脱硫废水处理系统的设计和大小的主要因素也将进行讨论。若干个案将被提出以说明由于烟气脱硫净化特点和最终处理的污水的要求相结合的不同的废水处理系统。在将来的变化中操作程序和系统的灵活性也会说明。一些经验也会被提交到当前正在运行的,建设中的或设计中的系统。 说明 烟气脱硫仍然是当前的热点话题,因为许多公共事业正在从事或已经完成了改造项目以满足第二阶段的清洁空气法案的排放标准。在2006到2011年之间,一大批项目正在和将要完成,但是改造会继续道2015年—2020年。大量的烟气脱硫项目湿式石灰石氧化(LSFO)洗涤器。 在洗涤器中为了支持所需的运行环境,净化气流从主要用于氯化控制的洗涤系统内排放(对符合洗涤塔的建造材料并实现脱硫效率),有时在吸收器中净化气流对于粉尘控制时必要的。烟气脱硫净化气流包含从煤炭,石灰和补充水中的污染物。它是酸性的,过饱和石膏除了石膏,重金属,氯化物,镁及溶解性有机化合物还包含大量溶解性的固体和悬浮固体。重金属是一个有广泛定义内容的术语,它包括显现出来的金属特性,还包括过度金属,金属,镧系元素和锕。重金属的一部分子集通常重点是全国污染排放清除系统(NPDES)许可和脱硫净化废水处理系统的性能要求。 对于一些坐落在大河或水体边上的工厂,是允许烟气脱硫净化排入可以沉淀悬浮固体,调节pH,,稀释重金属浓度的灰沉淀池,这些仅仅需要混合少量的烟气脱硫净化产物和灰池塘水。对于这些工厂,灰池排放流满足NPDES允许排放许可。 通常情况下,排放到受纳水体之前要先对净化后的废水进行处理。这些通常也适用于一些有直接冷却水系统可以排放到大河中共混合的工厂。一些备选办法可以考虑: 1.物理/化学处理方法可以减少总悬浮固体,调节pH值,使气流不饱和,减少重金属。在 美国,这种在烟气脱硫改造项目中最常用的系统自从2004年以来已经有15个安装和运行,超过25个正在建设。 2.生物处理减少选定的重金属,COD/BOD5,总氮。用于选定的工厂时,可以用来降低硒 的水平,减少由有机酸引起的COD/BOD5.或者减少总氮(通常是由于从SCR单元溢出的氨气)。生物系统通常是先于物理化学系统。2004年以来,大约有8个生物系统安装和计划安装了。 3.零液体排放的热量单位(蒸发器,结晶器,喷雾干燥器)。1990,只有一个在美国短暂 经营,且面临结构,腐蚀和高成本的挑战。最近几年有两个工厂已经开始建设,一个正在建设,另一个在施工中已经取消了。 4.一些海外的设施要开始建设和正在建设中—尚未有业绩报告。

(完整word版)脱硫废水处理方法

脱硫废水处理方法 湿式烟气脱硫装置可净化含有众多杂质的烟气,各种金属及非金属污染物在脱硫吸收塔 中发生反应被去除,生成可溶性物质和固体物质,而未充分处理的烟气脱硫废水直接排放会 对环境造成极大威胁。石灰石-石膏湿法烟气脱硫工艺主要处理热力发电厂化石燃料燃烧产生的SO2,由于湿法烟气脱硫工艺优越的性能,其在烟气处理领域得到广泛应用,成为当今世 界燃煤发电厂烟气脱硫的主导工艺。据美国环境署报道,美国已有108座燃煤电厂安装了湿 式烟气脱硫装置,预测到2025年安装湿式烟气脱硫装置的燃煤电厂将占燃煤电厂总数的69%。石灰石-石膏湿法烟气脱硫废水成分极其复杂,主要为重金属、酸根离子、悬浮物等。目前,各燃煤电厂的脱硫废水成分存在差异,出现这一现象主要是煤源、烟气脱硫吸收塔塔形、锅 炉补给水水质、添加剂类型、操作条件不同导致的。传统的脱硫废水处理工艺采用中和、反应、絮凝及沉淀的处理方式,但对脱硫废水中高浓度的硫酸根及氯离子等未达到良好的去除 效果。 近年来脱硫废水排放问题受到全世界的广泛关注,我国2006年颁布的《火电厂石灰石- 石膏湿法脱硫废水水质控制指标》(DL/T 997—2006)中虽未对硫酸根和氯离子等排放标准做 出要求,但采用传统工艺处理的脱硫废水已不允许直接排放,所以亟待研究烟气脱硫废水的 处理新工艺。目前我国脱硫废水的处理工艺主要有常规物理化学沉淀法、化学沉淀-微滤膜法、多级过滤+反渗透法。由于脱硫废水水质较差,反渗透及预处理工艺费用高,尚未得到推广。杨培秀等采用零溢流水湿排渣系统处理脱硫废水,但是受到排渣方式的限制。此外,脱硫废 水的各种零排放技术作为有潜力的解决方案被提出,但鉴于零排放技术的高能源消耗强度和 许多尚未解决的技术问题,不能保证其成功地长期使用。对于其他技术如离子交换和人工湿 地也进行了大量探讨,但成功的前景似乎不大。综上所述,该行业仍然在寻找一个可靠的、 低成本和高性能的烟气脱硫废水处理技术。 2 脱硫废水的危害 脱硫废水成分复杂,对设备管道和水体结构都有一定的影响,其危害主要体现在以下方面: (1)脱硫废水中的高浓度悬浮物严重影响水的浊度,并且在设备及管道中易产生结垢现象,影响脱硫装置的运行。

(完整版)氨法脱硫废水处理工艺流程.(详细方案)

目录 氨法脱硫废水处理工艺流程 (2) 1、废水处理系统 (2) 1.1脱硫废水处理过程 (2) 1.2脱硫废水处理步骤 (2) 2、化学加药及压滤系统 (4) 2.1助凝剂加药系统 (4) 2.2污泥压缩系统 (7) 3、脱硫废水处理系统概述 (8) 3.1脱硫废水处理工艺 (8) 3.2化学加药系统工艺 (11) 4、污泥流程 (14) 5、运行操作及监控 (14) 5.1.1供料准备 (14) 5.1.2仪表及控制器件准备 (15) 5.1.3污泥料位测量 (15) 5.1.4浊度测量 (16) 5.2.运行及监控 (16) 6、维护及保养 (17) 6.1.运行故障及排除 (17) 6.2.机械故障处理 (17)

6.3.设备维护 (20) 6.4.设备停用 (21) 氨法脱硫废水处理工艺流程 脱硫废水处理包括以下三个分系统:废水处理系统,化学加药系统,污泥处理系统及排污系统。 1、废水处理系统 1.1脱硫废水处理过程 脱硫装置产生的废水经由废水输送泵送至废水处理系统,采用化学加药和接触泥浆连续处理废水,沉淀出来的固形物在澄清浓缩器中分离浓缩,清水排入厂区指定排放点,经澄清/浓缩器浓缩排出的泥浆送至板框压滤机脱水后外运。 1.2脱硫废水处理步骤 1)用氢氧化钙/石灰浆[Ca(OH)2]进行碱化处理,通过设定最优的PH值范围,部分重金属以氢氧化物的形式沉淀出来,并中和废水中的酸性物质。

2)通过加入有机硫,使某些重金属,如镉和汞沉淀出来。 3)通过添加絮凝剂及助凝剂,使固体沉淀物以更易沉降的大粒子絮凝物形式絮凝出来。4)在澄清浓缩器中将固形物从废水中分离。 5)将氢氧化物泥浆输送至压滤机进行脱水。 在沉淀系统中,加入絮凝剂以便使沉淀颗粒长大更易沉降,悬浮物从澄清浓缩器中分离出来后,一部分泥浆通过污泥循环泵返回到中和箱,以利于更好地沉降,另一部分则通过污泥输送泵输送至压滤机进行脱水。处理后的清水送至厂区指定的排放点。 1.3脱硫废水处理流程 处理不合格水质回流至中和箱

湿法烟气脱硫除尘一体化技术

湿法烟气脱硫除尘一体化技术 根据世界卫生组织对60个国家10~15年的监测发现,全球污染最严重的 10个城市中我国就占了8个,我国城市大气中二氧化硫和总悬浮微粒的浓度 是世界上最高的。大气环境符合国家一级标准的不到1%,62%的城市大气中 二氧化硫年日平均浓度超过了3级标准(100mg/m3)。全国酸雨面积已占国土资源的30%,每年因酸雨和二氧化硫污染造成的损失高达1100亿元。1997 年下半年,世界银行环境经济专家的一份报告指出:中国环境污染的规模居世 界首位,大城市的环境污染状况在目前是世界上最严重的,全球大气污染最严 重的20个城市中有10个在中国。大气中的二氧化硫和氮氧化物与降水溶合成酸雨,现在中国是仅次于欧洲和北美的第三大酸雨区。大气污染严重破坏生态 环境和严重危害人体呼吸系统,危害心血管健康,加大癌症发病率,甚至影响 人类基因造成遗传疾病。 我国政府对二氧化硫和酸雨污染十分重视。1990年12月,国务院环委会 第19次会议通过了《关于控制酸雨发展的意见》;1992年国务院批准在贵州、长沙等九大城市开展征收工业烧煤二氧化硫排污费和酸雨结合防治试点工 作。1995年8月,全国人大常委会通过了新修订的《中华人民共和国大气污 染防治法》,规定在全国划定酸雨控制区和二氧化硫控制区,并在“两控区 ”内强化对二氧化硫和酸雨的污染控制。1998年1月,国务院正式批准《酸 雨控制区和二氧化硫控制区划分方案》。为了实现两控区的控制目标,国务 院文件还具体规定:新建、改造烧煤含硫量大于1%的电厂,必须建设脱硫的 设施。现有烧煤含硫量大于1%的电厂,要在2010年前分期分批建成脱硫设 施或采取其他相应结果的减排SO2的措施。 削减二氧化硫的排放量,控制大气二氧化硫污染、保护大气环境质量, 是目前及未来相当长时间内我国环境保护的重要课题之一。 二氧化硫污染控制技术颇多,诸如改善能源结构、采用清洁燃料等,但 是,烟气脱硫也是有效削减SO2排放量不可替代的技术。烟气脱硫的方法甚 多,但根据物理及化学的基本原理,大体上可分为吸收法、吸附法、催化法 三种。吸收法是净化烟气中SO2的最重要的应用最广泛的方法。吸收法通常 是指应用液体吸收净化烟气中的SO2,因此吸收法烟气脱硫也称为湿法或湿 式烟气脱硫。 湿法烟气脱硫的优点是脱硫效率高,设备小,投资省,易操作,易控制, 操作稳定,以及占地面积小。目前常见的湿法烟气脱硫有:石灰石/石灰— —石膏法抛弃法、钠洗法、双碱法、威尔曼——洛德法及氧化镁法等。 1 湿法烟气脱硫的基本原理 (1)物理吸收的基本原理

关于电厂脱硫废水的处理

关于电厂脱硫废水的处理 二氧化硫是大气的严重污染物之一,已对农作物、森林、建筑物和人体康健等方面造成了强大的经济损失,SO2排放的控制十分严重。湿法烟气脱硫(FGD)是目前唯一大规模商业运行的脱硫方式,利用价廉易得的石灰或石灰石作吸收剂。吸收烟气中的SO2生成CaSO3,该工艺脱硫效率高,适应煤种广博,适合大中小各类机组,负荷变化范围广,运行安定可靠;技术成熟,运行经验丰富,因此得到广博应用。湿法烟气脱硫工艺中产生脱硫废水,其pH 值为4~6 ,同时含有大量的悬浮物(石膏颗粒、SiO2、Al 和Fe 的氢氧化物)、氟化物和微量的重金属,如As、Cd、Cr 、Cu、Hg、Ni 、Pb、Sb、Se 、Sn 和Zn 等。直接排放对环境造成严重危害,必须进行处理。 通常脱硫废水处理采用石灰中和法。石灰中和法pH值大凡控制在9.5± 0.3,此pH值范围适用于沉淀大多数的重金属(去除率可达99%)。为了沉降石灰中和法难于去除的镉和汞,还需要加入一定量硫化物(有机硫),形成硫化物的沉淀,pH=8~10为佳。同时,为了消除可能生成的胶体,改善生成物的沉降性能,还需要加入混凝剂和助凝剂。 脱硫废水处理主要反应步骤 我国脱硫废水的处理技术是基于国内的废水的排放性质,采用物化法针对例外种类的污染物,分别创造适合的理化反应条件,使之予以彻底去除,基本分为如下几个主要反应步骤: 1)先行加入碱液,调整废水pH值,在调整酸碱度的同时,为后续处理工艺环节创造适合的反应条件; 2)加入有机硫化物、絮凝剂和适量的助凝剂,通过机械搅拌创造适合的反应梯度使废水中的大部分重金属形成沉淀物并沉降下来; 3)通过投加的絮凝剂和适合的反应条件,使得废水中的大部分悬浮物沉淀下来,通过澄清池(斜板沉淀池)予以去除; 4)加入絮凝剂使沉淀浓缩成为污泥,污泥被送至灰场堆放。废水的pH值和悬浮物达标后直接外排。关于电厂脱硫废水处理的控制系统

脱硫废水常用处理方法

脱硫废水常用处理方法 1.脱硫废水的常用处理方法 脱硫废水是火电厂最难处理的废水。目前常见的脱硫废水处理方法是基于脱硫废水的水质特征,专门针对不同类型的污染物设计,确定了脱硫废水处理的原则。。今天,我国大部分脱硫废水处理采用物理化学处理直接排放水。以下是对目前使用的脱硫处理方法的描述。 1.1排至水力除灰系统 该方法是将脱硫废水不经处理直接排入水力除灰系统。脱硫废水中的酸性物质和重金属与灰渣中的氧化钙反应,形成固体物质并将其去除,从而达到废物处理的目的。脱硫废水的水流量一般很小,因此当脱硫废水混入水力除灰系统时,对除灰系统的影响很小。因此,该方法不需要对水力除灰系统进行任何改造,也不需要额外的水处理设施。因此,该方案的优点是投资少,运行管理少。该方法操作方便,可作为脱硫废水的事故排放。本方案的缺点是脱硫废水的排放会导致除灰系统中氯离子的积累增多,加剧除灰系统设备的腐蚀,影响系统的正常运行。不综合利用副产物(石膏等)的湿法脱硫技术是合适的。对于这个方法。 1.2 化学沉淀法

化学沉淀处理过程主要由中和、沉淀、混凝和澄清四个步骤组成。中和沉淀是调节废水的酸碱度,一般使用的碱性中和剂是NaOH、CaCO3、石灰,碱反应后再向废水中添加有机硫或S2-,使铅离子、汞离子等离子体形成重金属硫化物沉淀,常用的固化剂是Na2S、H2S、FeS、有机固化剂,TMT 15是我国许多火电厂常用的有机固化剂。混凝沉淀主要是用铁盐絮凝剂和高分子絮凝剂去除废水中的SS。澄清是混凝废水进入澄清池,根据自身的重力沉淀,沉淀浓缩,达到标准后排出上层液体。 (FGD)废水化学处理可有效降低脱硫废水中的SS,F-,重金属离子等,从而达到脱硫废水的排放,但处理后的盐含量仍然很高,尤其是氯离子含量最高可达5%。如果它继续排放很长时间,它将影响周围的生态环境。该方法在中国具有最广泛的应用,用于废水处理,这是出水水质标准所不需要的。 1.3脱硫废水的蒸发和浓缩 通过蒸发干燥设备,可以将脱硫废水分离为优质的水或水蒸气和固体废物,实现水的循环利用,完成火力发电厂零排放。这种方法的缺点是需要很高的投资。目前,我国还没有实际案例。脱硫废水蒸发系统由输入热、回收热、排放热和辅助系统四个部分组成;每个阶段得到的蒸汽凝结水由热交换管下端的蒸馏水盘收集,达到固体液体分离。该工艺工艺操作简单,蒸发回收水质良好。该工艺的高投资成本限制了其在实际脱硫废水工程中的应用。

石灰石湿法烟气脱硫技术

石灰石湿法烟气脱硫技术 一.工艺流程 1脱硫系统由下列子系统组成: 1.1石灰石制粉系统 1.2吸收剂制备与供应系统 1.3烟气系统 吸收系统 1.4 SO 2 1.5石膏处理系统 1.6废水处理系统 1.7公用系统 1.8电气系统 2 .烟气脱硫工艺流程简介 (石灰石——石膏湿法脱硫工艺流程图) 作为脱硫吸收剂的石灰石选用石灰石矿生产的3-10mm、水份<1%的石灰石颗粒,运输至石灰石料仓。石灰石经磨粉机磨制成325目90%通过、颗粒度≤43μm的石灰石粉。合格的石灰石粉经制浆系统与水配置成30%浓度的悬浮浆液,根据烟气脱硫的需要,在自动控制系统的操纵下通过石灰石浆液泵和管道送入吸收塔系统。石灰石由于其良好的活性和低廉的价格因素是目前世界上广泛采用的脱硫剂制备原料。 烟气脱硫系统采用将升压风机布置在吸收塔上游烟气侧运行的设计方案,以保证整个FGD 系统均为正压运行操作,同时还可以避免升压风机可能受到的低温烟气腐蚀。升压风机为烟气提供压头,使烟气能克服整个FGD系统从进口分界到烟囱之间的烟气阻力。 为了将FGD系统与锅炉分离开来在整个脱硫烟气系统中设置有带气动执行机构保证零泄漏的烟气档板门.在要求紧急关闭FGD系统的状态下,旁路档板门在5s自动快速开启,原烟气档板门在55s、净烟气档板门50s内自动关闭。为防止烟气在档板门中泄漏,原烟气和旁路档板门设有密封空气系统。 脱硫系统运行时,锅炉至烟囱的旁路档板门关闭,锅炉引风机来的全部烟气经过各自的原烟气档板门汇合后进入升压风机.升压后的烟气至气气热交换器(GGH)原烟气侧,GGH 选用回

转再生式烟气换热器,涂搪瓷换热元件选用先进波形和高传热系数产品, 以减小GGH总重和节约业主方未来更换换热元件的费用。GGH利用锅炉出来的原烟气来加热经脱硫之后的净烟气,使净烟气在烟囱进口的最低温度达到80℃以上, 大于酸露点温度后排放至烟囱。GGH转子采用中心驱动方式。每台GGH设两台电动驱动装置,一台主驱动,一台备用, 电机均采用空气冷却形式。如果主驱动退出工作,辅助驱动自动切换,防止转子停转。GGH的设计能适应在厂用电失电的情况下,转子停转而不发生损坏、变形。GGH采取主轴垂直布置, 即气流方向为原烟气向上(去吸收塔),净烟气向下(去烟囱排放)。因为原烟气中含有一定浓度的飞灰,飞灰可能会沉积在装置的内侧,随着时间的推移,热传递的效率可能会降低。为防止GGH传热面间的沉积结垢而影响传热效率, 增大阻力和漏风率, 减小寿命,需要通过吹灰器使用压缩空气清洗或用高压水进行定时清洗,吹灰器配有一根可伸缩的喷枪。视烟气中飞灰含量情况, 决定每班或每隔数小时冲洗一次GGH,或当压降超过给定最大值时,说明有一定程度的石膏颗粒沉积, 需启动高压水泵冲洗。但用高压水泵冲洗只能在运行时进行在线冲洗。当FGD装置停运时,可用低压水冲洗换热器(离线冲洗)。 GGH的防腐主要有以下措施: 对接触烟气的静态部件采取玻璃鳞片树脂涂层保护, 保护寿命约为1个大修周期; 对转子格仓, 箱条等回转部件采用厚板考登钢15-20mm厚板, 寿命为30年; 密封片采用高级不锈钢AVESTA 254SMO/904L; 换热元件采用脱碳钢镀搪瓷, 寿命约为2个大修周期。 在热量交换后烟气温度降温冷却至 101℃和89.3℃后进入逆流喷淋吸收塔,冷却后的原烟气进入吸收塔与同时通过吸收塔上部的喷嘴进入吸收塔,并与向下喷出的雾状石灰石浆液接 触进行脱硫反应,烟气中的SO 2、SO 3 等被吸收塔内循环喷淋的石灰石浆液洗涤,并与浆液中 的CaCO 3 发生反应生成的亚硫酸钙悬浮颗粒在吸收塔底部的循环浆池内,再次被氧化风机鼓 入的空气强制氧化而继续发生化学反应,最终生成石膏颗粒。与此同时,部分其他有害物质如飞灰、SO3、HCI、HF等也得到清除,这时的原烟气温度已被降低至饱和温度47.22℃和4 5.53℃。在吸收塔的出口设有除雾器,脱除SO 2 后的烟气经除雾器除去烟气中携带的细小的液滴,进入气气热交换器净烟气侧加热,此时的烟气温度进入GGH升温到80℃以上,经脱硫系统净烟气档板门最后送入烟囱,排向大气。 在整个脱硫系统中多处烟气温度已降至100℃以下,接近酸露点,为烟道和支架防腐,在设计中采用了玻璃鳞片树脂涂层。考虑到低温烟气对烟囱内壁产生的影响,烟囱内壁均采用刷

尾部烟气脱硫方案比选

尾部烟气脱硫方案比选 目前尾部烟气脱硫主要方式有干法和湿法,湿式烟气脱硫在工业上应用较早,具有技术成熟、运行可靠,脱硫效率高,适用煤种广等优点,特别适用于大型机组的脱硫,是我国目前应用最多的脱硫技术,但该法多为重复引用国外的技术,生成的副产物石膏硝路不畅,其他副产物是液体淤渣,较难处理,设备腐蚀严重、能耗高、占地面积大、投资和运行费用高,系统复杂、设备庞大、耗水量大、一次性投资高等问题日益显现。 干法烟气脱硫具有工艺流程简单、占地面积小、投资运行费用较低吸收剂和副产物均为干态,设备和烟囱不需做任何防腐处理,无任何废水排放等优点。2009 年国家环保部将烟气循环流化床干法脱硫工艺列入《2009 年国家鼓励发展的环境保护目录》、《燃煤电厂污染防治最佳技术指南(2010 年2 月)》推荐我国目前600MW 等级机组上实用干法脱硫技术。 湿法脱硫与干法脱硫技术比较

经过太原、榆次、东营、临沂、临邑、徐州多地湿法脱硫、干法脱硫考察,湿法脱硫实际运行中主要存在以下几个问题: 1、脱硫废水,脱硫废水的水质很差,既含有一类污染物,镉、汞、铬、铅、镍等重金属离子,对环境有很强的污染性。又含有二类污染物铜、锌、氟化物、硫化物,另外废水的COD 悬浮物都比较高,许多水质指标都超过了排放标准,不能直排,很多地方目前要求脱硫废水深度处理,成本高,处理困难。 2、脱硫的副产物石膏,本意可用作水泥的缓凝剂,建材、化学工业等工业用途,实际由于脱硫石膏的品质、石膏销路不畅甚至没有,绝大多数供热企业目前为热源厂露天堆放,供暖结束后,随着灰渣外运填埋,造成二次污染。 3、湿法脱硫后从烟囱排出的烟气处于饱和状态,在采暖季温度较低的时候,凝结水气形成白色烟羽(见图6-22),并且这些烟气水分子排出烟囱后与烟囱周围的二氧化碳、氮气、粉尘吸附在一起,形成团状颗粒物,形成区域雾霾,很多专家认为湿法脱硫尾气带水是携带可溶物进入大气形成颗粒物是造成雾霾的主要原因 4、目前很多地方出台了地方标准消除石膏雨、有色烟羽等条文,例2018 年8 月28 日,浙江省环保厅发布强制性地方环境标准《燃煤电厂大气污染物排放标准》标准要求燃煤发电机组应采取烟温控制及其他有效措消除石膏雨、有色烟羽。上海市环保局2018 年7 月发布《上海市燃煤发电机组环保排序办法》要求在传统的二氧化硫、氮氧化物、烟尘的指标上,

脱硫废水处理方案

废水处理系统方案

1.3装置组成及工艺描述 1.3.1 概述 脱硫装置浆液内的水在不断循环的过程中,会富集重金属元素和Cl-等,一方面加速脱硫设备的腐蚀,另一方面影响石膏的品质,因此,脱硫装置要排放一定量的废水,进入废水处理系统,废水偏弱酸性,含有大量的盐类和重金属离子等。本处理工艺主要针对的物质是重金属离子、酸根、卤族离子和SS。采用中和、络合和絮凝沉淀的化学工艺流程,处理后的水排放至电厂的冲灰水池。污泥脱水系统的污泥运至干灰场贮存。 脱硫废水处理主要由以下子系统组成: 1)4套加药系统 2)1套废水系统 3)1套污泥处理系统 1.3.2加药系统 加药系统主要设备由氢氧化钠、有机硫、混凝剂、助凝剂4套计量箱及其后分设的4组计量泵。 NaOH为30%溶液,不再稀释;由槽车加入到NaOH储罐中。碱计量泵加药流量由设在三联箱内的PH测试仪信号经变频柜柜内逻辑控制,通过变频在线调整NaOH 计量泵的加药流量,稳定废水的中和处理于设定的PH值。 有机硫为商品级15%溶液由人工直接计量加入计量箱,每一立方溶液加药40公斤;它的计量泵加药量由进水管路上的流量计的测试信号经变频柜柜内逻辑控制,通过变频在线调整加药流量,维持优化的络合工艺参数。 混凝剂液体聚合铁为按液水比1:1~2由人工直接计量加入计量箱,并兑水稀释;(若为固体原料,根据30%配药比例直接在计量箱内进行配制,若为聚合铝替代,配制成10%溶液)。 助凝剂-阴离子型聚丙烯酰胺(PAM)则由人工加入其计量箱配制成0.3%溶液,然后由助凝剂计量泵泵入三联箱。助凝剂计量泵的加药量由进水管路上的流量计的测试信号经变频柜柜内逻辑控制,通过变频在线调整加药流量,维持优化的混凝工艺参数。

湿法脱硫用水水质要求

回用水用于湿法脱硫系统工艺水的水质要求 0、引言 石灰石-石膏法烟气脱硫技术以石灰石浆液作脱硫剂,在吸收塔内对烟气进行喷淋洗涤,使烟气中的SO2反应生成亚硫酸钙,同时向吸收塔内的浆液中鼓入空气,将亚硫酸钙强制氧化为石膏,然后再对石膏作脱水处理。该法具有脱硫效率高、系统可靠性好、运行费用较低等优点。但湿法脱硫系统同时存在着用水量较大的问题,例如2台600MW的机组用水量可达150m3/h以上,如果FGD系统未设置GGH的话,则工艺水的耗量更大。 目前电厂的水务管理已纳入统一的调度之中,在保证系统安全、经济运行的前提下,尽量合理地利用水资源。由于脱硫系统工艺用水占全厂用水量的比例较大,部分电厂已有将工业废水或其他排水回用于脱硫系统的考虑并进行了试验。 1、脱硫系统的用水情况 脱硫系统的主要用水一般分为两路,即为工艺水及冷却水。工艺水主要用于吸收塔补水、除雾器冲洗、石灰石制浆、转动机械的冷却及密封冲洗、浆液输送设备及管道的冲洗等。冷却水主要用于增压风机油站、氧化风机及磨机油站等设备的冷却,由于用水点相对较少,因而冷却水的耗水量并不大。 脱硫系统的工艺水一般来自于电厂循环水(或循环水补充水)、中水或其他工业水系统;冷却水则来自于电厂闭式循环水或其他除盐水系统。冷却水使用后一般要求回收,有的回收至电厂的闭式循环水系统中,有的则回收到脱硫工艺水箱中作脱硫系统的工艺水用。 2、工艺水及冷却水的水质要求 电厂闭式循环水一般采用除盐水或凝结水作补充水源,其水质较好,可以满足氧化风机、增压风机油站及磨机油站等设备的冷却要求。由于脱硫系统的工艺水对水质的要求不高,因而工业废水或其他排水的回用主要集中在工艺系统上。以下根据工艺水各用水点对水质的要求分别进行讨论。 2.1 除雾器冲洗水的水质要求 在湿法脱硫系统中对于除雾器冲洗水的水质要求,一方面既要防止除雾器冲洗水喷嘴因工艺水中的悬浮物杂质含量过高而引起堵塞,一方面也要防止因硬度离子含量过高而引起喷嘴结垢现象。表 1 分别是国外两家除雾器生产商及《湿法烟气脱硫装置专用设备除雾器》(JB/T10989-2010)中建议的冲洗水水质要求。 表1 除雾器冲洗水的水质要求 ---------------------------------------------- 项目RPT推荐值MTS要求值JB/T10989-2010 ---------------------------------------------- Ca.L <200 <200 <200 so4.L <400 <400 <400 SO3.L <10 <13 <10 pH值<7 <7 7-8 悬浮物.L <900 <1000 <1000 ---------------------------------------------- 综合来说,除雾器对冲洗水水质的要求不高,一般的工业水水质均能满足其要求。 2.2 转动机械轴承冷却及冲洗水的水质要求 由于转动机械的冷却及密封冲洗水对水质的要求稍高,应该采用较为洁净的工业用水。根据《火力发电厂设计技术规程》(DL5000-2000 )规定,转动机械轴承冷却水的控制标

相关主题
文本预览
相关文档 最新文档