当前位置:文档之家› 浅谈风荷载对桥梁结构的影响

浅谈风荷载对桥梁结构的影响

浅谈风荷载对桥梁结构的影响
浅谈风荷载对桥梁结构的影响

浅谈风荷载对桥梁结构的影响

121210104 罗余双

摘要:风荷载是桥梁结构设计需要考虑的重要内容之一。本文先分析了风荷载的静力作用和动力作用对桥梁结构的影响,然后考虑桥梁结构进行抗风设计的主要影响因素,并给出了桥梁结构抗风设计的主要流程。

关键词:桥梁、风荷载、抗风设计

The Impact of Wind Load on the Bridge Structure

121210104 Luo Yushuang

Abstract:Wind load is one of the important contents of the bridge structure design

needs to consider.At first,this paper analyzes the static effect and dynamic wind load effect on the influence of the bridge structure, and then it considers main influencing factors of wind resistance design of bridge structure, giving the bridge structure wind resistance design of the main process.

Key words:Bridge、Wind load、Wind-resistance design

一、风荷载对桥梁结构影响研究的必要性

桥梁的风毁事故最早可以追溯到1818年,苏格兰的Dryburgh Abbey桥首先因风的作用而遭到毁坏。之后,英国的Tay桥因未考虑风的静力作用垮掉,造成75人死亡的惨剧。但直到1940年,美国华盛顿新建成的Tacoma Narrows悬索桥,在不到20 m/s 的风速作用下发生了强烈的振动并导致破坏(见图1),才使工程界注意到桥梁风致振动的重要性。现代桥梁抗风研究自此开始。

众所周知,桥梁是一种在风荷载作用下容易产生变形和振动的柔性结构,而且桥梁一般修建在江河、海峡等风速较大的区域。故此,抗风设计是桥梁结构设计的重要内容之一。

为避免此类惨剧就必须要把风荷载对桥梁结构的影响降到最低,而有效抵抗和预防风荷载对桥梁结构的影响的一大前提,就是清楚的把握风荷载对桥梁结构的影响。

图1 被风摧毁的Tacoma Narrows悬索桥

二、风荷载在桥梁上的作用效应

1.风对桥梁作用的现象及作用机制:

风对桥梁的作用是一个十分复杂的现象,它受到风的自然特性、结构动力性能以及风与结构的相互作用三方面的制约。由于地表的起伏和各种建筑物的影响,使得近地风的风速和风向及其空间分布都是非定常的(即随时间变化的)和随机的。当这种带有脉动成份的风绕过非流线形截面的桥梁结构时,就会产生旋涡和流动分离,形成复杂的空气作用力。这种作用力可能引起桥梁的振动,而桥梁结构的振动又将引起流场的改变,这种相互作用的机制使得问题更加复杂。

从工程抗风设计角度,可以把自然风分解成不随时间变化的平均风和随时间变化的脉动风两部分的叠加,分别考虑它们对桥梁的作用,即静力作用和动力作用两种作用的现象和机制见表1。

表1

假定在平均风速的作用下,结构保持静止不动或者其振动不影响空气力,此时的定常(不随时间变化)反应称为风的静力作用。

2.1 桥梁结构对风的静力作用的响应

当气流以恒定不变的流速和方向绕过假定为固定不动的桥梁时,就形成了一个定常的流场。这样,空气对桥梁表面的动压力的合力——空气的作用力也是定常的。由于桥梁结构是一个水平方向的线状结构,流场可近似地看做是二维的。此时,空气作用力可分解成阻力、升力和升力矩3个分量,如图2所示。

图2 风的静力分解图

从图2可以看出,桥梁结构在风的静力作用下有可能发生主要由阻力引起的侧向风压荷载,有时也要考虑升力影响的强度问题,或产生可能由升力矩作用下引起的扭转发散,或出现在阻力作用下侧倾失稳(水平面内的弯曲导致水平面的弯扭失稳)的稳定问题。因此,在桥梁的抗风设计中,需验算结构(特别是施工阶段的不利状态)在静风力作用下的安全性。

2.2 风的静力作用分析

阻力、升力和升力矩的计算式分别为:

阻力:

升力:

升力矩:

式中:为气流的动压;A 为桥梁的迎风投影面积;B 为桥宽(桥梁顺风向的水平投影长度);、、分别是各空气力分量的静力系数。

空气静力系数与结构的风致振动也有密切关系,其斜率将决定与速度成正比的空气阻尼力的正负,由此即可判断截面的气动稳定性。桥梁断面的静力系数与截面形状、来流方向以及雷诺数有关。在桥梁结构中,除了圆形截面外,大部分非流线形截面都带有明显的棱角,气流的分离点基本上是固定的,即可以认为不会随风速而变化。

因此,雷诺数的影响可以忽略不计。通常,阻力、升力和升力矩3 个分力的静力系数应通过风洞实验测得。

3. 风对桥梁结构的动力作用

为充分验证风荷载的静力作用及脉动风对桥梁的动力作用,对某大跨度桥梁分别施加平均风速为20 m/s 的静风及脉动风,将所得到的桥梁跨中节点位移时程曲线对比情况列于图3。由图4中的曲线可以看出,桥梁的竖向位移主要由施加的竖向车辆荷载引起,风荷载对其影响很小; 桥梁受到静风荷载作用后横向位移急剧增加,而且偏向风荷载的方向; 再施加

脉动风荷载后,横向位移再次加剧,且呈现波动趋势,说明相对于竖向位移,桥梁的横向位移更容易受到风荷载的影响。

图3 风荷载对桥梁结构的荷载效应

三、桥梁的抗风设计

1.桥梁抗风设计的目的

首先在于保证结构在施工阶段和建成后的营运阶段能够安全承受可能发生的最大风荷载的静力作用和由于风致振动引起的动力作用。因此,首先应掌握架桥地点的风特性,决定桥梁的设计风速,并据此推算风对桥梁的作用,校核抗风安全性,如果有可能出现有害的振动或变形,就应考虑适当的防止对策或进行设计变更。

2.抗风设计中的重要因素有:

(1)风特性参数应通过调查和收集气象资料掌握桥址处的风特性,并采用正确的方法确定合理的参数供抗风设计使用。特别要注意桥址处特殊的地形、地貌和风向条件,以便对常规的取值进行必要的修正。

(2)桥梁的动力特性需采用合理的力学模型,并注意边界支承条件的正确处理。对计算结果要通过与相似桥梁的比较检验其合理性和可靠性,其中特别是对于主梁前二阶对称和反对称的竖向弯曲、侧向弯曲和扭转振型要作出正确的判断。

(3)桥梁风荷载、颤振临界风速、抖振响应抖振响应的正确预测主要取决于桥梁的动力特性、主梁断面的气动特性和紊流风特性。

3.桥梁抗风设计的基本过程

对于一般的大桥,初步设计阶段的抗风分析可采用近似的公式对各方案的静风载内力和气动稳定性进行估算,待方案确定后再通过节段模型的风洞试验测定各种参数,进行抗风验算和风振分析。对于重要桥梁,宜在初步设计阶段通过风洞试验进行气动选型,为确定主梁断面提供依据。在技术设计阶段再对选定的断面方案进行详细的抗风验算和风振分析,还应通过全桥模型的风洞试验对分析结果予以确认。

桥梁结构抗风设计过程流程图

四、有待进一步研究的问题

通过已有研究成果的分析发现以下两个方面有待进一步深入研究。

1、桥梁断面的气动参数

桥梁断面的气动力(力矩)系数,气动导数和气动导纳是桥梁抗风设计中的重要气动参数。气动力(力矩)主要用于桥梁的稳定性分析,通过节段模型可以准确进行测量。

目前,对流线性的桥梁断面可采用平板或翼型气动导纳的 Sears函数来考虑抖振力的非定常效应,但是,对于复杂的桥梁断面形状,这种方法会产生误差。因此,对气动导纳的研究亦应十分关注。气动导纳的研究工作还有待进一步深入,特别是在湍流场中如何准确建立钝体的非线性、非定常气动力学模型。

2、桥梁的拉索振动

桥梁的拉索振动的形式有涡激振动、尾流振动、参数共振和斜索雨振等,其中研究的重点应该是斜索雨振。

国内为对斜索雨振的机理进行了很多研究,除了用驰振理论解释外,还有用二次流理论和能量输入理论来解释雨振现象。中国空气动力研究与发展中心对斜索雨振现象进行了风洞试验,通过测量雨振斜索上的脉动压力分布来研究影响雨振的因素,并将雨振脉动压力积分得到的非定常气动力模型引入斜索雨振时的振幅计算。有关斜索雨振的机理还有待进一步研究。

风对结构的作用不仅是静力问题,对于大跨度柔度桥梁,各类风致振动更是抗风设计时的主要内容。在大跨度桥梁的抗风设计时,除理论分析之外,更主要是通过模型风洞试验予以确定和评价。最后指出了有关风对桥梁作用的研究中,需要进一步研究桥梁断面的气动参数和桥梁拉索振动这两个问题。

参考文献:

[1]李曙光、芦杰浅,谈结构风工程与大跨度桥梁抗风设计[A]﹒山西建筑, 2007,33( 13) : 72- 73.

[2]项海帆进入21 世纪的桥梁风工程研究[A] ﹒第十届全国结构风工程学术会议论文集[C] ﹒2001.

[3]程兆君,浅谈桥梁抗风设计[B],天津城市建设学院, ( 2008) 04- 0096- 02.

[4]谭建领、田万涛、李颖,风荷载对桥梁结构影响分析黄河水利职业技术学院,2007)03- 0040- 03.

[5][2] JTG/ TD60- 01- 2004,公路工程抗风计算规范[S].北京:人民交通出版社,2004.

[6]马骎、唐洪亮、王少钦,风荷载对桥梁结构的作用效应研究[A]( 1.中交公路规划设计院有限公司,北京100088; 2.北京建筑工程学院理学院,北京100044)(2013) 04-0173-03 [7]CAO Yinghong,XIANG Haifan,ZHOU Ying. Simulation of Stochanic Wind Velocity Field on Long-span Bridges[J]. Journal of Engineering Mechanics. ASCE,2000,126( 1) : 1-6.

[8]项海帆.现代桥梁抗风理论与实践[M].北京: 人民交通出版社,2005.

桥梁计算荷载(精编文档).doc

【最新整理,下载后即可编辑】 桥梁计算荷载 一、桥梁设计作用的分类: 1.概念: 作用——公路桥涵设计术语 ●直接作用(荷载):施加在结构上的一组集中力或分布 力 ●间接作用:引起结构外加变形或约束变形的原因 2.分类:

二、桥梁工程作用取值方法 (一)设计时,对不同的作用采用不同的代表值 1.永久作用:采用标准值作为代表值

2.可变作用:根据不同的极限状态分别采用标准值、频 遇值、准永久值作为代表值 ●标准值:承载能力极限状态设计、按弹性阶段计算 结构强度 ●频遇值:正常使用极限状态按短期效应组合设计 ●准永久值:按长期效应组合设计 3.偶然作用:采用标准值作为代表值 (二)代表值的取用规定 1.永久作用的标准值: ●结构自重(包括结构附加重力):按结构构件的设计 尺寸与材料的重力密度计算确定 2.可变作用的标准值: (1)汽车荷载: ●汽车荷载分为公路—I级和公路—II级 ●车道荷载:桥梁结构整体计算 ●车辆荷载:桥梁结构的局部加载、涵洞、桥台、 挡土墙土压力等的计算 ●车辆荷载和车道荷载的作用不重叠 (2)车道荷载的计算图式:

(3)公路—I级车道荷载: ●均布荷载标准值:q k=10.5kN/m ●集中荷载标准值: 桥梁计算跨径≤5m,P =180 kN k 5m<桥梁计算跨径<50m,采用直线内插求 得 =360 kN 桥梁计算跨径≥50m,P k ●计算剪力效应,上述集中荷载标准值P k×1.2 (4)公路—II级车道荷载: ●均布荷载标准值q k和集中荷载标准值P k按公路 —I级车道荷载的0.75倍采用 (5)车道荷载的分布: ●均布荷载标准值应满布于使结构产生最不利效 应的同好影响线上 ●集中荷载标准值只作用于相应影响中一个最大 影响线峰值处 (6)人群荷载标准值的采用规定: ●桥梁计算跨径≤50m,人群荷载标准值3kN/㎡ ●50m<桥梁计算跨径<150m,由线性内插得人群 荷载标准值 ●桥梁计算跨径≥150m,人群荷载标准值2.5kN/ ㎡ ●对跨径不等的连续结构,以最大计算跨径为准 ●城郊行人密集区的公路桥梁:人群荷载标准值取 上述规定值的1.15倍 ●专用人行桥梁:人群荷载标准值为3.5 kN/㎡

桥梁计算荷载

桥梁计算荷载 一、桥梁设计作用的分类: 1.概念: 作用——公路桥涵设计术语 ●直接作用(荷载):施加在结构上的一组集中力或分布力 ●间接作用:引起结构外加变形或约束变形的原因 2.分类:

二、桥梁工程作用取值方法 (一)设计时,对不同的作用采用不同的代表值

1.永久作用:采用标准值作为代表值 2.可变作用:根据不同的极限状态分别采用标准值、频遇值、 准永久值作为代表值 ●标准值:承载能力极限状态设计、按弹性阶段计算结构 强度 ●频遇值:正常使用极限状态按短期效应组合设计 ●准永久值:按长期效应组合设计 3.偶然作用:采用标准值作为代表值 (二)代表值的取用规定 1.永久作用的标准值: ●结构自重(包括结构附加重力):按结构构件的设计尺 寸与材料的重力密度计算确定 2.可变作用的标准值: (1)汽车荷载: ●汽车荷载分为公路—I级和公路—II级 ●车道荷载:桥梁结构整体计算

●车辆荷载:桥梁结构的局部加载、涵洞、桥台、挡 土墙土压力等的计算 ●车辆荷载和车道荷载的作用不重叠 (2)车道荷载的计算图式: (3)公路—I级车道荷载: ●均布荷载标准值:q k=10.5kN/m ●集中荷载标准值: 桥梁计算跨径≤5m,P k=180 kN 5m<桥梁计算跨径<50m,采用直线内插求得 桥梁计算跨径≥50m,P k=360 kN ●计算剪力效应,上述集中荷载标准值P k×1.2 (4)公路—II级车道荷载: ●均布荷载标准值q k和集中荷载标准值P k按公路— I级车道荷载的0.75倍采用 (5)车道荷载的分布: ●均布荷载标准值应满布于使结构产生最不利效应的 同好影响线上 ●集中荷载标准值只作用于相应影响中一个最大影响

2019年公路桥梁荷载试验.doc

公路桥梁检验highway bridge rating gonglu qiaoliang jianyan 公路桥梁检验(卷名:交通) highway bridge rating 对桥梁的运营状况、承载能力和耐久性能进行的技术评定。 公路桥梁检验包括桥梁结构的检查和验算,以及桥梁荷载试验和量测等。结构检查的设备在19世纪以前是相当简陋的,还没有直接量测结构应变的仪器。直至20世纪20~40年代才出现各种类型的应变计。桥梁荷载试验已有100多年历史,例如1850年英国建造的最大跨径为140米的箱形连续梁铁路桥(不列颠桥),原设计是一座有加劲梁的吊桥,在建造过程中,曾进 行荷载试验,并改变了原设计方案。 检验程序首先检查桥梁各部构造的技术状况,然后根据桥梁的现状进行结构检算。初建的新型桥梁和缺乏技术资料的旧桥,必要时需进行荷载试验。通过桥梁结构的变位(线位移和角位移)、应变(或转换为应力)、动力特性参量(频率、振幅、阻尼比和动力系数等)、裂缝和损害等项目的检测,来证实桥梁在强度、刚度、稳定性、耐久性和动力性能等方面能否满足安全运营 的要求。 检验内容包括桥梁结构检查和荷载试验。 结构检查主要内容有:①桥梁上部结构和下部结构总体尺寸和变位的状况的检查;②桥梁承重构件截面尺寸及其细部组合的偏差检查;③桥面的平整度检查;④材料的物理力学性能和可能存在的裂缝、缺陷、渗漏、锈蚀和侵蚀等损害的检查;⑤必要时还进行地基和河床冲刷等状 况的复查。 结构检查的技术和设备大致可分为无破损检查和局部破损检查。无破损检查主要用于结构材料强度、质量和缺陷等检查。无破损检查应用的技术有:回弹仪检查的技术;超声波探测技术(脉冲传递、脉冲衰减和全息摄影等方法);射线照相或衰减测定技术(电磁放射线有Χ射线、γ射线、红外线和紫外线;核子放射线有中子、质子和正电子束等);磁力或磁通量探测技术;染色渗入法;探测锈蚀状况的半电池电位测量;激光全息摄影技术;光学孔径仪与光纤维和小型闭路电视录象机组合的观测技术;振动法检验技术等。无破损检查技术往往需要几种方法综合运用才能得到可靠的结果,并且需要有经验的检验人员。因此,用一般的量具和放大镜等辅助工具进行外观的检查诊断仍是最广泛的检查手段,必要时才应用无破损检查技术,辅助判断。为了检查与试验作业的方便,尚有专用的桥梁检查车和轻型拼装式悬吊检查架。 局部破损检查是在构件上采取试样进行物理化学分析和力学性能试验的检查方法。如测定材料的强度、弹性模量、混凝土的水泥含量、氯化物含量、炭化深度和渗水等测定,都需在构件上取样。又如混凝土或防水层电阻率的测量等,往往需要在构件上钻孔插入探测仪器进行测量。 荷载实验桥梁静力荷载试验的加载设备常用大型货车、拖挂车、翻斗车、水车和施工机械等各种普通装载车;也有专用的单轴或多轴加载挂车和测定结构影响线的自行式单点荷载设备;有的场合也用压重物等。桥梁自振特性的试验测定方法大致有三类:第一类是常用的突然加载或卸载的方法激振桥梁,如跳车、释放、撞击和小火箭等冲击荷载;第二类用运转频率可调的起振机或专用的单轴电-液惯性加振挂车进行谐振试验;第三类用脉动信号测试与分析的方法,用磁带机记录桥梁无载时的脉动随机信息,并用信号处理机进行谱分析,可取得多阶振型的特征值。 桥梁受迫振动响应的试验测定常用接近运营条件的车辆,以不同车速通过桥梁进行行车试验,测定桥梁的动力系数与车速的关系;或在桥梁动力响应最大的部位进行起动或刹车试验;也可利用平时交通荷载或风荷载等随机荷载,测定桥梁随机振动的响应。 检测桥梁受载及响应的仪器大体可分为静态测量仪器和动态测量仪器两种,也有相互组合和

25m预应力混凝土小箱梁荷载试验报告

××大桥荷载试验报告二○○四年十二月二日

项目委托单位: 试验测试研究单位: 项目负责人: 项目参加人员:

目录 一、前言 (2) 二、测试内容及测点布置 (2) 三、测试方法 (3) 四、试验荷载 (4) 五、静载试验结果 (6) 六、动载测试结果 (9) 七、结论与建议 (12)

一、前言 ××大桥位于××高速公路,结构形式为部分预应力混凝土简支变连续箱梁桥。该桥位于R=7600m,T=140.75,E=1.30m的竖曲线及直线内,桥跨布置为7×25m+8×25m。桥梁设计荷载为汽-超20,挂-120,设计地震烈度为Ⅵ度。该桥总体布置如图1所示。 图1 ××大桥总体布置图 现场试验工作于2004年11月15—16日进行。 二、测试内容及测点布置 根据交通部颁试行办法[1],结合现场条件,考虑到简支变连续箱梁桥的受力特点,并根据桥梁调查的结果,选取边跨跨中截面、1#墩墩顶主梁截面、2#跨跨中截面和2#墩墩顶主梁截面作为静载试验的分析和检测对象。共进行了以下项目的检测: ①1#跨跨中截面的应力和挠度; ②2#跨跨中截面的应力和挠度; ③1#墩墩顶箱梁截面的应力; ④2#墩墩顶箱梁截面的应力; 测试截面布置见图2,测点布置见图3。

图2 测试截面布置图 a) 1-1、2-1测试截面测点布置图 b) 1-2、2-2测试截面测点布置图 图3 测试截面测点布置图 三、测试方法 应变测试:本试验采用静态电阻应变仪测量混凝土的应变。应变测试中,注意了温度的补偿,在布片截面的梁底搁置贴有温度补偿的试块。边跨跨中和1#墩墩顶主梁截面应变片的布置采用搭设钢管支架进行,2#跨跨中截面和2#墩墩顶主梁截面应变片的布置采用桥梁检测车。 挠度测试:本试验通过装置在独立的刚性比较大的支撑上的数显式电子位移计和百分表直接测读梁底挠度。

桥梁计算书规定

桥梁计算书规定 一.混凝土连续梁结构(含预应力、钢筋砼结构) ●(一)静力计算采用荷载 ●1.活载:按规范取用 ●汽车冲击力: ●汽车荷载的冲击力为汽车荷载乘以冲击系数。 ●总体静力计算的冲击系数按照《公路桥涵设计通用规范》( JTG D60-2004 )的规定计 算,悬臂板上冲击系数采用1.3。 ●2.支座沉降:桥梁不均匀沉降采用1/3000跨径。 ●3.温度:体系温度按(如150C合拢)升温,降温计算;日照梁上温度梯度仅计沥青 层作为桥面铺装,沥青层下砼调平层不考虑温度梯度作用、折减; ●4.砼弹性模量折减: ●1)计算结构强度及应力时不折减; ●2)计算结构变形时折减,按新规范取用; ●5.梁体计算时砼容重按预应力结构26KN/m3,普通钢筋混凝土结构25KN/m3;沥青 混凝土容重:24kN/m3、混凝土调平层容重:25 kN/m3 ●6.桥梁下部结构考虑纵横向外力组合; ●7.曲线段桥梁按规范考虑离心力; ●8.梁体偏载、剪滞影响按弯矩增大1.2~1.25。 ●9.支座摩阻力按作用于支座上的竖向力乘以支座的摩擦系数计算;盆式活动支座的摩擦 系数为0.05,板式活动支座(聚四氟乙烯板与不锈钢板)摩擦系数为0.06。 ●(二)动力荷载 ●设计风速按基本风压换算; ●施工风速根据施工周期确定。 ●(三)计算控制及注意问题 ●预应力梁体 ?小于100米跨径预应力结构按部分预应力A类构件设计; ●2)施工阶段 ●(1)注意挠度计算及预拱度设置; ●(2)注意计算局部应力; ●(3)按规范控制砼拉、压应力(建议拉应力不大于-0.5 Mpa),钢束应力。

●对于悬臂浇注连续梁施工阶段荷载: ●(1)施工时桥面一侧均布荷载2KN/m; ●(2)挂篮重;冲击系数u=0.2; ●(3)砼容重不均匀性,主跨侧26 KN/ m3,边跨侧25KN/ m3; ●(4)节段差; ●(5)施工风力; ●(6)悬臂施工时一侧挂篮脱落。 ?使用阶段 ●(1)长期效应控制砼无拉应力,短期效应控制砼拉应力不大于0.5Mpa;钢束应力不 超规范;弹性阶段C50混凝土压应力不大于15MPa(规范规定不大于16.2 MPa)。 短期效应主拉应力不大于-1.3 MPa。弹性阶段混凝土主压应力标准值不大于17.5 MPa (规范规定不大于19.4MPa),弹性阶段混凝土主拉应力标准值≤-1.3 MPa按构造配置箍筋,大于-1.3 MPa按规范7.1.6配置箍筋。 ●(2)注意挠度计算; ●4)注意支座偏移量的设置; ●5)注意梁体预应力径向力引起的整体、局部应力计算及处理; ●6)原则上预应力控制张拉应力腹板束采用1395 MPa,顶、底板束采用1339 MPa, 采用塑料波纹管,计算参数u=0.155,k=0.0015;预应力钢束松弛率:0.035;一端锚具变形、钢束回缩及垫板压密值:6mm; ●7)钢束定位网采用“井”字形,钢筋直径10mm,定位网在钢束直线段每80cm一道, 曲线段每50cm一道;计算钢束曲线段保护层厚度; ●2.普通钢筋混凝土结构 ●1)桥面板及框架整体计算,变高梁注意加入预应力径向力,注意控制底板裂缝宽度, 汽车布载工况考虑周全; ●2)横梁计算注意由于腹板刚度不同而引起的腹板传力不同。 ●3)普通钢筋混凝土梁体裂缝控制不大于0.18mm; ●4)梁体腹板近支座处1倍梁高箍筋加强; ●5)普通钢筋混凝土梁体主筋按受力需要,并要考虑受扭、剪滞等影响; ●下部结构 ●1)墩身:按规范钢筋砼计算。 ●2)承台:计算考虑抗弯、撑杆-系杆强度、冲剪、剪切、主拉应力等; ●3)桩:计算考虑偏压强度、裂缝宽度、地基承载力; ●4)计算考虑墩顶水平位移,基础总沉降量、相临墩台沉降差;

道路桥梁荷载计算与设计方法

道路桥梁荷载计算与设计方法 摘要:桥梁荷载是指桥梁结构设计所应考虑的各种可能出现的荷载的统称。本文依托实测车辆的统计数据,对桥梁车辆设计荷载进行了研究和分析,为公路桥梁荷载设计理念和设计方法的逐步完善实现科学化和合理化。 关键词:设计荷载;公路桥梁;荷载效应;分项系数 前言 桥梁荷载是指桥梁结构设计所应考虑的各种可能出现的荷载的统称,包括恒载、活载和其他荷载。包括铁路列车活载或公路车辆荷载,及它们所引起的冲击力、离心力、横向摇摆力(铁路列车)、制动力或牵引力,人群荷载,及由列车车辆所增生的土压力等。在公路桥上行驶的车辆种类很多,而且出现机率不同,因此把大量出现的汽车排列成队,作为计算荷载;把出现机率较少的履带车和平板挂车作为验算荷载。车辆活载对桥梁结构所产生的动力效应中,铅直方向的作用力称冲击力、它使桥梁结构增加的挠度或应力对荷载静止时产生的挠度或应力之比称为动力系数μ,也称冲击系数。最近的研究成果把动力系数分为两部分:一为适用于连续完好的线路部分μ1;另一为受线路不均匀性影响部分μ2。动力系数则为μ1与μ2之和。在计算公式中,除考虑桥梁的跨度外,反映了车辆的运行速度和桥梁结构的自振频率。公路桥梁汽车荷载的冲击力为汽车荷载乘以冲击系数,平板挂车和履带车不计冲击力。 1 公路桥梁荷载标准 2004 年修订的《公路桥涵设计通用规范》(JTGD60-2004)采用车道荷载形式。2004 版公路桥梁荷载标准中规定:汽车荷载修改调整为车道荷载的模式,废除车队荷载计算模式。并且提出车道荷载的均布荷载kq和集中荷载KP 的标准值 2 荷载效应计算 2.1 影响线计算 桥梁结构必须承受桥面上行驶车辆时的移动荷载的作用,结构的内力也随作用点结构上的变化而变化。所以需要研究并确定其变化范围和变化规律和内力的最大值此过程中作为设计标准。因此,需要确定的是荷载最不利位置和最大值。首先要确定在移动荷载作用下,结构内力的变化规律,将多种类型的移动荷载抽象成单位移动荷载P=1 的最简单基本形式。只要经过清楚地分析内力变化规律,其他类型的荷载就可以根据单位移动荷载作用下的结构内力变化规律叠加原理求出。影响线是内力(或支座反力)在移动单位荷载的作用下的引起的变化规律的图形。所以,影响线是研究车辆荷载等移动荷载作用下桥梁结构内力最大值的基本工具。初步选定对周围环境的影响的工程规模及结构类型、使用要求、材料

桥梁计算题2014.10.6

六、计算题 1、某公路桥梁由多跨简支梁组成,总体布置如图6-1所示,每孔标准跨径25m ,计算跨径24m ,桥梁总宽10m ,行车道宽8m ,每孔上部结构采用后张法预应力混凝土箱梁,每个桥墩上设四个支座,支座横桥向中心距为4m 。桥墩支承在岩基上,由混凝土独柱墩身和带悬臂 的盖梁组成,桥梁设计荷载等级为公路-I 级,混凝土的重力密度为25kN/m 2 。 问:(1)该桥按规模分为哪一类? (2)该桥的设计安全等级为几级? (3)在计算汽车设计车道荷载时,设计车道数取几? (4)桥梁的车道横向折减系数为多少? (5)在计算主梁的剪力和弯矩时,车道荷载标准值如何取用? 图6-1(图中尺寸单位:m ) 【解】(1)根据《桥规》第1.0.11条表1.0.11可知:该桥按规模分类属大桥; (2)根据《桥规》第1.0.9条表1.0.9可知:该桥的设计安全等级为二级; (3)根据《桥规》第4.3.1条表4.3.1-3可知:设计车道数取2; (4)根据《桥规》第4.3.1条表4.3.1-4可知:车道横向折减系数为1.0; (5)在计算主梁的剪力和弯矩时,车道荷载的均布荷载标准值均为kN/m 5.10=k q ;集中荷载标准值,当桥梁计算跨径小于或者等于5m 时,kN 180=k P ;当桥梁计算跨径等

于或大于50m 时,kN 360=k P ;当桥梁计算跨径在5m ~50m 之间时,k P 值采用直线内插求得。计算剪力时,集中荷载标准值k P 乘以1.2的系数。本题中,计算跨径024m l =。 所以:计算主梁弯矩时的集中荷载标准值:180180(245)/(505)256kN k P =+?--=; 计算主梁剪力时的集中荷载标准值:256 1.2=307.2kN k P =?。 2、某预应力钢筋混凝土箱形截面简支梁桥,计算跨径40m ,设计荷载等级为公路-I 级,桥梁采用上、下行双幅分离式横断面形式,单幅行车道宽16m ,两侧防撞栏杆各0.6m ,单幅桥全宽17.2m 。 问:(1)计算汽车设计车道荷载时,采用几个设计车道数? (2)桥梁的车道横向折减系数为多少? (3)在计算主梁的剪力和弯矩时,车道荷载标准值各为多少? 【解】(1)根据《桥规》第4.3.1条表4.3.1-3可知:设计车道数取4; (2)根据《桥规》第4.3.1条表4.3.1-4可知:车道横向折减系数为0.67; (3)在计算主梁的剪力和弯矩时,车道荷载的均布荷载标准值均取为kN/m 5.10=k q ;集中荷载标准值:当计算主梁弯矩时:180180(405)/(505)320kN k P =+?--=; 当计算主梁剪力时:320 1.2=384kN k P =?。 3、某预应力钢筋混凝土箱形截面简支梁桥,计算跨径40m 。若该主梁跨中横断面面积 2m 6.9=F 、主梁采用C50混凝土,混凝土的弹性模量MPa 1045.34?=c E ,跨中截面的截面 惯性矩4m 75.7=c I 、材料重力密度3 kN/m 0.26=γ,试计算汽车荷载冲击系数μ为多少? 【解】已知:m 40=l ,2 m 6.9=F ,MPa 1045.34?=c E ,3kN/m 0.26=γ,4m 75.7=c I 结构跨中处延米结构重力: 3 26109.6249600N/m G F γ==??= 结构跨中处的单位长度质量:22 /249600/9.8125443Ns /m c m G g === 简支梁桥基频: 3.18Hz f = == 冲击系数:189.00157.01826.3ln 1767.00157.0ln 1767.0=-=-=f μ。 4、图6-2所示为一座桥面板铰接的T 形截面简支梁桥,桥面铺装厚度为0.12m ,桥面板净跨径为 1.42m ,车辆两后轮轴距为 1.4m ,车辆后轮着地宽度和长度分别为:20.6m b =和 20.2m a =;车辆荷载的轴重kN 140=P ,冲击系数3.11=+μ,计算桥面板根部在车辆荷

拱桥荷载试验报告

万盛经开区青山湖水库张三塘社人行天桥 (副桥) 检测报告 委托单位:重庆市綦江区金桥镇人民政府 检测项目:桥梁荷载试验

陕西海嵘工程试验检测有限公司 二零一八年一月 万盛经开区青山湖水库张三塘社人行天桥 (副桥) 检测报告

陕西海嵘工程试验检测有限公司 二零一八年一月 桥梁荷载试验简表

检测项目 主跨结构静力试验,包括: 1?试验荷载作用下,桥跨结构控制截面应力测试、挠度测试、开裂观测; 2.桥跨结构承载力评定。 检测依据1?《公路桥梁荷载试验规程》(JTG/T J21-01-2015 ); 2?《公路桥梁承载能力检测评定规程》( JTG/T J21-2011 ); 3?《公路桥涵设计通用规范》(JTG D60-2004 ); 4. 《公路钢筋混凝土及预应力混凝土桥涵设计规范》( JTG D62-2004 ); 5. 试验桥梁相关资料及设计文件。 评定依据 《公路桥梁荷载试验规程》(JTG/TJ21-01-2015 ) 《公路桥梁承载能力检测评定规程》(JTG/T J21-2011 ) 、检测结论 检测结论 1. 该桥主跨结构控制截面控制部位经历了荷载效率0.88的试验加载,试验桥跨未出现其它异常现象; 2. 静力试验加载下,实测最大活载挠度为0.170mm,量值较小;卸载后整体变形回复良好;挠度结构校验系数为0.36?0.42,在正常范围。桥跨结构整体刚度满足设计要求; 3. 静力试验加载下,实测最大活载拉应力为0.618MPa,量值正常;卸载后控制部位局部变形回复良好;应力结构校验系数为0.29~0.54 ,在正常范围;加载期间主拱圈控制区域未发现受力开裂。试验桥跨结构强度满足设计要求。 综上所述,对试验的桥跨结构承载力评定意见为: 该桥试验的主跨结构承载力满足“人群 3.5kN/m 2”的设计活载等级要求。 二、建议 1. 严格按照设计荷载等级通行,运营期间保持桥面完好及平整清洁; 2. 按照现行桥梁养护规范的要求,做好对桥梁的定期检查和日常维护工 作。 报告签发日期:2018年01月02日 备注本检测报告共18页,检测报告详细内容见第1页?第13页。

《公路桥梁抗风设计规范》概要及大跨桥梁的抗风对策

《公路桥梁抗风设计规范》概要及大跨桥梁的抗风对策 摘要:随着我国桥梁工程的不断发展,迫切需要编制适合我国国情的《公路桥梁抗风设计规范》。本文介绍了该规范编制中的几个主要问题,其中包括基本风速图和风压图、风荷载的表达方式、桥梁动力稳定性检验和风洞试验要求等,此外,还讨论了大跨桥梁成桥和施工阶段的各种抗风对策。 关键词:桥梁抗风、设计规范 0. 前言 1999年10月,江阴长江大桥正式建成通车标志着中国有了第一座超千米的悬索桥,同时也成为世界上能够建造千米级大桥的第六个国家。自从80年代初中国改革开放以来,中国已建成了一百余座各种类型的斜拉桥,成为世界上建造斜拉桥最多的国家。如果把即将于2001年建成的南京长江二桥和福州闽江大桥统计在内,在跨度超过500m的世界斜拉桥中中国的斜拉桥已占有十分重要的地位。1996年我国人民交通出版社出版了我国第一部由同济大学和中交公路规划设计院编写的《公路桥梁抗风设计指南》,几年来已被广泛用于多座大路桥梁的抗风设计中。在此基础上,受交通部的委托,同济大学、中交公路规划设计院、中央气象研究院以及西安公路交通大学针对其中的几个关键问题进行了专题研究,为形成最终的《公路桥梁抗风设计规范》奠定了基础。这几个专题的内容以及通过多次修改形成的报批稿的目录如表1所示。本文将主要介绍该规范编制中的几个主要问题,其中包括基本风速的确定、风荷载的表达方式、桥梁动力稳定性检验和风洞试验要求等 二、全国基本风速图和风压图 基本风速定义为桥梁所在地区的开阔平坦地貌条件下,地面以上10m高度处,100年重现期的10min 平均年最大风速。 本次规范编制,采用我国657个基本台站1961年至1995年间自己记录的风速资料,以极值I型分布曲线进行拟合,将基准高度从原来的20m高改为10m高,并考虑100年重现期,得到相应各气象台站百年一遇的最大风速值。鉴于目前我国有相当多的气象台站,由于近年来城市建设的快速发展,使得台站环境不能满足空旷无遮挡的要求,致使风速记录明显受人为因素的影响而偏小。本次研究,对其部分计算结果参照周围台站的情况予以适当的修正。与此同时,参照国内其他的规范确定基本风压的下限值100年一遇为0.35kN/m2,50年一遇为0.30kN/m2,10年一遇为0.20kN/m2,相应的基本风速下限分别为24m/s,22m/s和18m/s。全国基本风压图和风速图有如下特点: 1.东南沿海为我国大陆上的最大风压区。风压等值线大致与海岸平行,风压从沿海向内陆递减很快,到达离海岸50km处的风速约为海边风速的75%,到100km处则仅为50%左右,这和造成这一地区大风的主要天气系统--台风有关。在这一区域内,大致有三个特大风压带,即湛江以南至海南沿海地区、广东沿海地区以及浙江到福建省中部沿海地带,百年一遇风压在0.90kN/m2(38m/s)以上。由于台湾岛对台风屏障作用,福建南部的风压有所减弱。 2.西北至华北北部和东北中部为我国大陆上风压的次大区。这一地区的大风主要与西伯利亚寒流引起强冷空气活动有关,等风压线梯度由北向南递减。 3.青藏高原为风压较大区。这一地区大风主要是因海拔高度较高所造成的。但该区空气密度较小,因此,虽然风速很大,但所形成的风压相对较小。从风压图和风速图的对比中可以反映出这一特点。 4.云贵高原、长江中游以及南丘陵山区风压较小,特别是在四川中部、贵州、湘西和鄂西为我国风压最小的区域。大部分地区风压在0.4kN/m2(25m/s)以下。 5.台湾、海南岛和南海诸岛的风压各自独立成区,台湾是我国风压最大的地区。据分析,其东部沿海风压可

浅谈风荷载对桥梁结构的影响

浅谈风荷载对桥梁结构的影响 121210104 罗余双 摘要:风荷载是桥梁结构设计需要考虑的重要内容之一。本文先分析了风荷载的静力作用和动力作用对桥梁结构的影响,然后考虑桥梁结构进行抗风设计的主要影响因素,并给出了桥梁结构抗风设计的主要流程。 关键词:桥梁、风荷载、抗风设计 The Impact of Wind Load on the Bridge Structure 121210104 Luo Yushuang Abstract:Wind load is one of the important contents of the bridge structure design needs to consider.At first,this paper analyzes the static effect and dynamic wind load effect on the influence of the bridge structure, and then it considers main influencing factors of wind resistance design of bridge structure, giving the bridge structure wind resistance design of the main process. Key words:Bridge、Wind load、Wind-resistance design 一、风荷载对桥梁结构影响研究的必要性 桥梁的风毁事故最早可以追溯到1818年,苏格兰的Dryburgh Abbey桥首先因风的作用而遭到毁坏。之后,英国的Tay桥因未考虑风的静力作用垮掉,造成75人死亡的惨剧。但直到1940年,美国华盛顿新建成的Tacoma Narrows悬索桥,在不到20 m/s 的风速作用下发生了强烈的振动并导致破坏(见图1),才使工程界注意到桥梁风致振动的重要性。现代桥梁抗风研究自此开始。 众所周知,桥梁是一种在风荷载作用下容易产生变形和振动的柔性结构,而且桥梁一般修建在江河、海峡等风速较大的区域。故此,抗风设计是桥梁结构设计的重要内容之一。 为避免此类惨剧就必须要把风荷载对桥梁结构的影响降到最低,而有效抵抗和预防风荷载对桥梁结构的影响的一大前提,就是清楚的把握风荷载对桥梁结构的影响。

关于桥梁荷载与限载的说明

关于桥梁荷载与限载的说明 我国公路、城市桥梁设计用标准车辆荷载的基本演变 目前运行的桥梁大多数采用三套设计规范设计建造:《公路桥涵设计通用规范》(JTJ 021-89)、《城市桥梁设计荷载标准》(CJJ77-98)(2008年建设部废除)、《公路桥涵设计通用规范》(JTGD60-2004)。对于89年以前的,其荷载规定类似公路89规范。 1、对于按照《公路桥涵设计通用规范》(JTJ 021-89)及以前规范设计的桥梁,均为车队荷载,所以可按照车队中最重的车辆进行限载,如汽车-10级,应限载15T;汽车-15级,应限载20T;汽车-20级,应限载30T;汽车-超20级,应限载55T。 2、对于按照《城市桥梁设计荷载标准》(CJJ77-98)设计的桥梁,由于其分车道荷载和车辆荷载,车道荷载为均载加集中荷载,是整桥计算荷载,车辆荷载为标准车荷载,是构件及局部计算荷载,城A为70T,城B为30T。由此,可以进行限载,城A限载70T,城B限载30T。 3、对于按照《公路桥涵设计通用规范》(JTGD60-2004)设计的桥梁,荷载总分公路一级和公路二级,并再分车道荷载和车辆荷载,车道荷载为均布荷载+集中荷载,是整桥计算荷载,车辆荷载为标准车荷载,是构件及局部计算荷载,公路一级和公路二级标准车均为55T。由此,不论公路一级还是公路二级,均可限载55T。 综上所述,汽车-10级,应限载15T;汽车-15级,应限载20T;汽车-20级,应限载30T;汽车-超20级,应限载55T。车辆荷载标准汽-20、城B级与公路二级产生的荷载效应相当,应限载30T;汽-超20、城A与公路一级产生的荷载效应相当,应限载55T。

风荷载特点

高层建筑横向承载力 摘要:随着经济的发展,近年来高层建筑尤其是体型复杂的超高层建筑得到了蓬勃的发展。一般而言,高层建筑物占地面积少,建筑面积大,造型独特,相对集中。这一特点使得高层建筑物在人口稠密的大城市迅速发展。但是高层建筑物上风荷载也越来越大,导致水平荷载不断增大。因此,高层建筑物需要较大的承载力和刚度来解决水平荷载的问题。关键词:风载荷高层建筑物影响 在高层建筑中,竖向荷载对结构设计产生重要影响,但水平荷载却起着决定性作用。因为建筑自重和楼面使用荷载在竖向构件中所引起的轴力和弯矩的数值,仅与建筑高度的一次方成正比;而水平荷载对结构产生的倾覆力矩、以及由此在竖向构件中所引起的轴力,是与建筑高度的两次方成正比;另一方面,对一定高度建筑来说,竖向荷载大体上是定值,而作为水平荷载的风荷载和地震作用,其数值是随着结构动力性的不同而有较大的变化。对一些较柔的高层建筑,风荷载是结构设计的控制因素,随着建筑物高度的增高,风荷载的影响越来越大。高层建筑中除了地震作用的水平力以外,主要的侧向荷载是风荷载,在荷载组合时往往起控制作用。因此,高层建筑在风荷载作用下的结构分析与设计引起了研究人员和工程师们的重视。 建筑设计应符合抗震概念设计的要求,不应采用严重不规则的设计方案。高层建筑不应采用严重不规则的结构体系,应符合下列要求:1、应具有必要的承载能力、刚度和变形能力;

2、应避免因部分结构或构件的破坏而导致整个结构丧失承受重力荷载、风荷载和地震作用的能力; 3、对可能出现的薄弱部位,应采取有效措施予以加强。 高层建筑的结构体系尚宜符合要求:结构的竖向和水平布置宜具有合理的刚度和承载力分布,避免因局部突变和扭转效应而形成薄弱部位。风荷载是结构的重要设计荷载,特别对于高耸结构(如烟囱、塔架、桅杆等)、高层建筑、大跨度桥梁、冷却塔、屋盖等,有时甚至起到决定性的作用,因而抗风设计是工程结构中的重要课题。 近二十年来,国内外建造了超高层建筑和大跨度结构。对这些限高层建筑结构风荷载和风震响应的计算分析,确保高层建筑物的质量是十分必要的。 参考文献: [1]黄本才,结构抗风分析原理及应用[M],天津:同济大学出版社,2001,1-7 [2]张向庭.工程抗风设计计算手册[M],北京:中国建筑工业出版社,1998 [3]GB50009)2001建筑结构荷载规范[S],2001,北京:中国建筑工业出版社,2002

桥梁计算荷载

桥梁计算荷载 文件管理序列号:[K8UY-K9IO69-O6M243-OL889-F88688]

桥梁计算荷载 一、桥梁设计作用的分类: 1.概念: 作用——公路桥涵设计术语 直接作用(荷载):施加在结构上的一组集中力或分布力 间接作用:引起结构外加变形或约束变形的原因 2.分类: 二、桥梁工程作用取值方法 (一)设计时,对不同的作用采用不同的代表值 1.永久作用:采用标准值作为代表值 2.可变作用:根据不同的极限状态分别采用标准值、频遇值、准永久值 作为代表值 标准值:承载能力极限状态设计、按弹性阶段计算结构强度 频遇值:正常使用极限状态按短期效应组合设计 准永久值:按长期效应组合设计 3.偶然作用:采用标准值作为代表值 (二)代表值的取用规定 1.永久作用的标准值: 结构自重(包括结构附加重力):按结构构件的设计尺寸与材料 的重力密度计算确定 2.可变作用的标准值:

(1)汽车荷载: 汽车荷载分为公路—I级和公路—II级 车道荷载:桥梁结构整体计算 车辆荷载:桥梁结构的局部加载、涵洞、桥台、挡土墙土压力 等的计算 车辆荷载和车道荷载的作用不重叠 (2)车道荷载的计算图式: (3)公路—I级车道荷载: 均布荷载标准值:q k=10.5kN/m 集中荷载标准值: =180 kN 桥梁计算跨径≤5m,P k 5m<桥梁计算跨径<50m,采用直线内插求得 =360 kN 桥梁计算跨径≥50m,P k 计算剪力效应,上述集中荷载标准值P k×1.2 (4)公路—II级车道荷载: 均布荷载标准值q k和集中荷载标准值P k按公路—I级车道荷 载的0.75倍采用 (5)车道荷载的分布: 均布荷载标准值应满布于使结构产生最不利效应的同好影响线 上 集中荷载标准值只作用于相应影响中一个最大影响线峰值处(6)人群荷载标准值的采用规定:

风荷载计算文档

风荷载计算报告 一 计算依据 《公路桥涵设计通用规范》 二 计算原理 横桥向风荷载假定垂直地作用于桥梁各部分迎风面积的形心上,其标准值按下式计算: 013w h d w h F k k k w A = 式中: w h F —横桥向风荷载标准值; w h A —横桥向迎风实际面积; d w —设计基准风压; 0k —设计风速重现期换算系数; 1k —风载阻力系数; 3k —风载阻力系数; 其中:2102d v w g γ=,2510d v k k v =, γ—空气重力密度 0.00010.012017z e γ-= 2k —考虑地面粗糙度类别梯度风的风速高度变化修正系数 5k —阵风系数 10v —桥梁所在地区设计基本风速 z —距地面高度 三 计算参数 (1) 模型几何参数 上下弦杆单元迎风面积:2 0.41 2.20.902m ?= 腹杆单元迎风面积:20.168.268 1.323m ?= 桁架高:7m 主桁间距:4.7m

间距比:0.67s = 实面积比:0.11φ= (2) 风载参数 参考规范给出的“全国各气象台站的基本风速和风压值”,按百年一遇的标准,本模型的基本风速与相关参数取值如下: 基本风速:1030/v m s =; 桥梁距地面高度:50m ; 考虑上述模型参数和风载参数以及较为适中的地理环境,可以确定如下计算参数: 00.9k =;1 1.9k =;2 1.12k =;3 1.1k =;5 1.7k =; 四 计算横桥向风荷载标准值 将上述参数带入规范给出的公式可得; 2 1.9884/d w kN m = 则可得上下弦杆节点力、腹杆集中力 0130.9 1.9 1.1 1.98840.9023.355w h d w h F k k k w A kN ==????= ' 0130.9 1.9 1.1 1.9884 1.3234.948w h d w h F k k k w A kN ==????= 考虑到腹杆上的风荷载按均布荷载计算更符合实际情况,故将集中力化为线荷载; ' /4.948/8.2680.5985/w h q F l kN m === 将上述荷载值带入MIDAS 模型,可得其各阶屈曲系数,其中一阶屈曲系数为18.49>4。 即在考虑自重与风荷载作用时,结构满足规范要求。

连续梁桥梁荷载试验报告

XX成桥荷载试验报告 1 工程概述 连接道上有一座4×32m连续箱梁桥。 上部结构箱梁采用单箱三室断面,梁高为1.7米,顶宽18米,底宽1.4米,两侧翼缘宽2m,跨中顶底板厚度均为0.25m,腹板厚0.5m;在端横梁和墩顶横梁处顶底板厚度增大至0.5m,腹板均增厚至0.9m。 下部结构桥墩采用桩柱式结构,桥台采用桩承式桥台。上部结构采用C50混凝土,下部结构采用C30混凝土结构。 主要设计参数: ①设计荷载:汽车荷载:城-A级;人群荷载:4.0kN/㎡;花台:8.0kN/㎡(单 侧)。 ②桥宽:36m=8m(人行道、绿化带)+20m(车行道)+8m(人行道、绿化带)。 ③桥梁最大纵坡:0.3%。 ④地震设防类别:场地地震基本烈度为6度(7度构造设防)。设计基本地震加速度值为0.05g。 ⑤基准期、使用年限及安全等级:设计基准期:100年,设计使用年限:100 年,桥梁设计安全等级为一级。 图1.1 XX立面图(单位:mm) 图1.2 XX典型断面图(单位:mm)

2 试验依据 本次桥梁试验依据、参考下列规范或技术文件执行: 1)所签订的合同及试验桥梁的相关资料; 2)《公路桥梁承载能力检测评定规程》JTG/T21-2011; 3)《大跨径混凝土桥梁的试验方法》(YC4-4/1982); 4)《城市桥梁养护技术规程》(DB50/231-2006); 5)《城市桥梁工程施工与质量验收规范》(CJJ2-2008); 6)《公路桥梁承载能力检测评定规程》(JTG/T21-2011); 7)《混凝土结构工程施工质量验收规范》(GB50204-2002); 8)《城市桥梁检测和养护维修管理办法》(2004); 9)《城市桥梁安全性评估规程》(DB50/272-2008); 10)《建筑变形测量规程》(JGJ 8-2007); 11)《公路桥涵设计通用规范》(JTG D60-2004); 12)国家及各部委颁布的其他相关标准。 3 试验目的 通过对桥梁进行荷载试验检测以及必要的观测,了解桥梁结构现状并考查桥跨结构强度、刚度等,达到以下目的: 1)测试桥梁在设计荷载作用下的结构变形、强度及裂缝是否满足设计和规范的要求; 2)检验桥梁的施工质量,判断实际承载能力,评价桥跨结构的工作性能,为竣工验收提供科学的依据。 4 检测设备 本次试验所用到的主要仪器设备见表4.1。 表4.1 检测仪器设备表

高层建筑在风荷载作用下的相关研究

高层建筑在强风作用下由于脉动风的影响将产生振动,这种振动有可能使在高层建筑内生活或工作的人在心理上产生不舒适的感觉,从而影响建筑物的正常使用"由于风是一种经常性的荷载作用,因此有必要将风引起的高层建筑的振动限制在人体舒适的感觉范围之内"重现期的选择也最大风速样本的取法影响着平均风速的数值"如果以口最大风速为样本,则一年有365个样本,平时低风速的口子的风速值占有很大的权,而最大风速那一天的风速只占1/365的权,因而最大风速重要性大大降低了,统计出的平均风速必将大大偏低"如果采用月最大风速,则每年最大风速在整个数列中也只占1/12的权,也降低了最大风速所起的重要性,所得结果也是偏低的"对十工程结构应该能承受一年中任何口子的极大风速,因此取年最大风速为样本"最大风速有它的自然周期,每年季节性地重复一次,因而采用年最大风速作为一个样本,较为合适"世界各国基本上是取年最大风速作为统计样本的" 平均风的时距 平均风速的数值与时距的取值有很大的关系"如果时距取得很短,例如3秒钟, 则必定将记录中最大值附近的较大数据都突出反映在计算中,较低风速在平均风速中的作用难以得到反映,因而平均风速值很高"如果取得很长,例如1天,则必定将1天中大量的小风平均进去,较高风速在该长时距中起不到显著作用,其值一般偏低"一般来说,时距愈短,平均风速愈大,时距愈长,平均风速也就愈小"风速记录表明,阵风的卓越周期约为1min,通常认为10min(约10个周期)至1小时(约60个周期,由于阵风有较长的持续性,衰减较慢)其平均值基本上是一个稳定值,因而我国规范规定以10分钟作为取值标准"一般我们所研究的对象不会出现异常风的气候,称为良态气候"对十这种气候,我们可以认为年最大风速的每一个数据都对极值的概率特性起作用,因此,世界上许多国家把年最大风速作为概率统计的样本,由重现期和风速的概率分布获得该地区的设计最大风速,或者称为基本风速"我国规定基本风速采用极值I型概率分布函数进行统计分析"对于多层建筑和高层建筑的风致响应问题,连续体系,采用随机振动理论进行分析。 从结构工程师的角度来看,获取设计风荷载信息的最有效途径就是风荷载规范"在过去的规范制定过程中,尽管表达形式有所不同,但其基本依据均为Davenport提出的阵风荷载因子方法"如前所述,这类方法只适用于顺风向响应及等效风荷载的计算,因此,随着风工程的不断发展,世界上各个主要国家的风荷载规范都开始发展(在初步设计阶段)估算横风向和扭转方向动态响应的经验公式"在目前应用的规范中,只有日本规范包含顺横风向和扭转方向响应的内容;澳大利业规范!加拿大规范则只有顺风向和横风向响应。

桥梁计算(常用的计算方法)

***桥梁仿真单元类型 (1) 一、建议选用的单元类型 (1) 二、常见桥梁连接部位 (2) 三、桥梁基础的处理方式 (2) ***桥梁常见模型处理 (2) 一、桥梁中常用的模型可以用相应的单元 (2) 二、桥梁建模要综合运用各种合适的单元 (3) 三、选用合适的分析方法 (3) 施加预应力的方式 (3) 一、预应力的模拟方式 (3) 二、建立预应力的模型 (5) ***土弹簧的模拟 (5) ***混凝土的模拟 (5) 工况组合 (6) 一、典型的荷载工况步骤 (6) 二、存储组合后的荷载工况 (6) 风荷载的确定 (7) 地震波的输入 (7) 初应力荷载 (8) Ansys可采用两种方法来实现铰接: (8) AUTOCAD模型输入 (9) 用ANSYS作桥梁计算十三(其他文件网格划分) (12) (一)时间选项 (13) (二)子步数和时间步大小 (13) (三)自动时间步长 (14) (四)阶跃或递增载荷 (14) 关于阶跃载荷和逐渐递增载荷的说明: (14) 一、用于动态和瞬态分析的命令 (14) 二、非线性选项 (14) 三、输出控制 (15) 重新启动一个分析 (16) 一、重启动条件 (16) 二、一般重启动的步骤 (17) 三、边界条件重建 (17)

在Ansys单元库中,有近200种单元类型,在本章中将讨论一些在桥梁 工程中常用到的单元,包括一些单元的输人参数,如单元名称、节点、自由度、实常数、材料特性、表面荷载、体荷载、专用特性、关键选项KEYOPl等。***关于单元选择问题 这是一个大问题,方方面面很多,主要是掌握有限元的理论知识。首先 当然是由问题类型选择不同单元,二维还是三维,梁,板壳,体,细梁,粗梁,薄壳,厚壳,膜等等,再定义你的材料:各向同性或各向异性,混凝土的各项’参数,粘弹性等等。接下来是单元的划分与网格、精度与求解时间的要求等 选择,要对各种单元的专有特性有个大概了解。 使用Ansys,还要了解Ansys的一个特点是笼统与通用,因此很多东西 被掩盖到背后去了。比如单元类型,在Solid里面看到十几种选择,Solid45,Solidl85,Solid95等,看来区别只是节点数目上。但是实际上每种类型里还 有Keyopt分成多种类型,比如最常用的线性单元Solid45,其Keyopt(1):in cludeorexclude extradisplacement shapes,就分为非协调元和协调元,Keyopt (2):fullintegration。rreducedintegration其实又是两种不同的单元,这样不同 组合一下这个Solid45实际上是包含了6种不同单元,各有各的不同特点和 用处。因此使用Ansys要注意各单元的Keyopt选项。不同的选项会产生不 同的结果。· 举例来说:对线性元例如Solid45,要想把弯曲问题计算得比较精确,必 须要采用非协调模式。采用完全积分会产生剪切锁死,减缩积分又会产生 零能模式(ZEM),非协调的线性元可以达到很高的精度,并且计算量比高阶 刷、很多,在变形较大时,用Enhanced Strain比非协调位移模式(Enhaced Displacement)更好(Solidl85)。但是这些非协调元都要求网格比较规则才 行,网格不规则的话,精度会大大下降,所以如何划分网格也是一门实践性 很强的学问。 采用高阶单元是提高精度的好办法,拿不定主意时采用高阶元是个比 较保险的选择,但是高阶单元在某些情况下也会出现剪切锁死,并且很难发 现,因此用减缩积分的高阶元通常是最保险的选择,但是在大位移时,网格 扭曲较大,减缩积分就不适用。 不同结构形式的桥梁具有不同的力学行为,必须针对性地创建其模型,’选择维数最低的单元去获得预期的效果(尽量做到能选择点而不选择线,能 选择线而不选择平面,能选择平面而不选择壳,能选择壳而不选择三维实 体)。下面的几节介绍一下桥梁工程计算中经常会用到的单元。 ***桥梁仿真单元类型 一、建议选用的单元类型 在桥梁用Ansys建立模型时,可参照以下建议用的单元进行桥梁模型 的建立。 .1.梁(配筋)单元:桥墩、箱梁、纵横梁。 2.板壳(配筋)单元:桥面系统。 3.实体(配筋)单元:桥墩系统、基础结构。 4.拉杆单元:拱桥的系杆、吊杆。

相关主题
文本预览
相关文档 最新文档