当前位置:文档之家› 实用堰水力计算公式

实用堰水力计算公式

实用堰水力计算公式
实用堰水力计算公式

1、 游水位较低,水流在流出堰顶时将产生第二次跌落。

2、 4、 100

>H δ时,用明渠流理论解决不能用堰流理论。f h 不可忽略。

同一堰,当堰上水头H 较大时,视为实用堰;当堰上水头较小时,视为宽顶堰。

§8-2 堰流的基本方程

以宽顶堰为例来推求堰流的基本方程 取渐变流断面1-1

C-C (近似假设渐变流) 以堰顶为基准面, 列两断面能量方程:

g v g

v h g

v H c

c

c 2222

2

000?

α

α++=+

02H g

v H =+

α作用水头

c h 与H 有关,引入一修正系数k 。则

00

H h k c =

机0kH h co =。修正系数k 取决于堰口的

形状和过流断面的变化。

代入上式,整理得:

21211

gH

k

gH

k v c -=++=

??

α

2

3

0021H g b k k b RH v b h v Q c c c -===?

2

3

02H g mb = 式中:b ——堰宽

?——流速系数

?α?+=

1

m ——流量系数,k k m -=1? 适用:堰流无侧向收缩

注:堰流存在侧向收缩或堰下游水位对堰流的出水能力产生影响时,可对此公式进行修正。

§8-3 薄壁堰

一、一、分类:

矩形薄壁堰→较大流量

按堰口形状: 三角形薄壁堰→较小流量

梯形薄壁堰→较大流量

1、 1、 矩形薄壁堰

① ① 矩形薄壁堰的自由出流;在无侧向收缩的影响时,其流量公式为:

2

3

02H g mb Q =

上式为关于流速的隐式方程,了;两边均含有流速,一

般计算法进行计算,较复杂,于是,为计算简便,将上式改写成:

2

3

02H

g b m Q =

0m ——已考虑流速影响的薄壁堰的流量系数 0m 的确定:

矩形薄壁8的流量系数由1898年法国工程师Basin 提出经验公式为:

]

)(

55.01)[0027

.0405.0(2

0p

H H H m +++

=

式中:H ——堰上水头(m )

p ——上游堰高 (m )

适用条件:m H 24.1~25.0= m p 75.0~24.0= m b 0.2~2.0= 2、 2、 三角形薄壁堰:

当流量较小时,堰上水头较小时,采用三角形薄壁堰 ⑴公式:

取微元,则流量表达式为:db h g m dQ 23

02= (*)

设h 为db 处水头,则由几何关系:

2)(θ

tg

h H b -=

dh

tg

db 2

θ

-=

代入*式,得

dh

h g tg

m dQ 23

022

θ

-= 积分得:

dh

h g

tg m Q H ?

-=0

23

022

2

5

022

54H

g tg

m θ

=

90=θ,m H 25.0~05.0=时,实验得395.00=m 。于是:25

4.1H Q = 当

90=θ,m H 55.0~25.0=时,经验公式为:47

.2343.1H

Q =

式中H ——以顶点为起点的堰上水头(m )Q ——流量(

s m

3

) ⑵公式适用条件:①薄壁堰水面四周均为大气,必要时设通气管与大气相通。 ②无侧向收缩的影响。 ③堰流为自由出流。 ⑶薄壁堰是测量渠道流量的装置: 注意:①水面与大气相通,

②避免形成淹没式水流。

§8-4 实用堰

一、一、实用堰:

1、 1、 用途 挡水、泄流 (水利工程中)

2、 2、 分类: 曲线形实用堰

折线形实用堰

3、 3、 计算公式:2

3

02H g mb

Q =

m 与实用堰的具体曲线类型有关,也与堰上水头有关 一般曲线型的实用堰可取45.00=m 折线型实用堰可取42.0~35.00=m 一、三、实用堰所受影响

1、 1、 淹没影响

淹没式出流:当堰下游水位超过堰顶标高时,即0>-=p h H s

淹没式出流公式:设s σ为淹没系数,与淹没程度有关,淹没式实用堰的流量公式为:3

02H g mb Q s σ= s σ具体见P169 表8-1 2、 2、 侧面收缩的影响:

堰宽﹤堰上游渠道 {过堰水流发生侧向收缩,泄流能力减小}

用侧面收缩系数ε表示,堰流流量为:2

3

02H g b m Q ε= 侧面收缩系数一般取值:95.0~85.0=ε

§8-5 宽顶堰

一、一、自由出流:

1、 1、 分类: 直角形

按进口纵剖面的形式 圆弧形 ,阻力,泄流能力不同,流量系数μ不同。 斜角形

2、 2、 流量公式:2

3

02H g mb Q =m 流量系数,取决于堰口的类型和相对堰高。

m 的经验公式和经验数据如下: ⑴矩形直角进口宽顶堰:

当0

.30<≤H

p 时,

H p H

p m 75

.046.0301

.032.0+-

+=

当0

.3≥H

p

时,32.0=m

⑵矩形圆弧进口宽顶堰: 当0

.30<≤H

p 时,

H p H p m 5

.12.1301

.036.0+-

+=

当0

.3≥H

p

时,36.0=m

二、二、淹没式出流:

下游水位高于堰顶且使堰顶水流由急流变缓流 1、特点:①过堰水流水位﹤下游水位

②水流由急流→缓流(k k h h h h >→<)充分条件 ③堰过水能力下降 2、淹没式堰流的充分条件是:

'

8.0H p h h s >-=

3、计算公式 23

02H g mb Q s σ=

s σ——淹没系数,取值范围见P171 表8-2 三、三、侧向收缩的影响:

1、 1、 侧向收缩:当堰宽小于上游渠道宽时,水流流入堰口后,A 流道断面面积变化,

水流在惯性的作用下,流线发生弯曲,产生附加的局部阻力,造成过流能力降低。其影响用收缩系数表示。 2、 2、 计算公式:

自由出流:23

02H g mb Q ε=

ε——收缩系数,与堰宽和渠道的比值B b

边墩的进口形状及进口断面变化有关。

ε的经验公式为:

)

1(2.014

3

B

b B

b H

p -

?+

-

=αε

α——墩形系数,矩形边缘19.0=α,圆形边缘10.0=α

例8-1 见P171

§8-6 小桥孔径的水力计算

一、

1、 1、 流经小桥孔径的水流特点:(水力现象) 与宽顶堰相同

① ① 具有侧向影响,造成局部阻力 ② ② 桥孔前水位整齐,桥孔内流速增加,造成第一次水面跌落 ③ ③ 桥孔后流速减小,产生局部阻力,造成第二次水面跌落。 2、 2、 形成原因:

水流在缓流河道中,由于桥墩或桥的边墩侧向收缩,使水流过水断面减小造成的。 3、分类:自由出流 淹没出流 二、自由出流:

1、 1、 自由出流——当桥的下游水位不影响小桥的过水能力时,水面有明显的两次跌落,

这时的小桥出流为自由出流。 2、 2、 特点(判断准则):

一般桥的下游水深,k h h 3.1≤(k h —桥下渠道的临界水深)

桥下水深 k a h h ≤

对于矩形桥进口断面:

3

2

33

2

2)

(b g Q

gb

Q h k εαα=

=

把k a h b v h b v Q ?εε)()('

'

==代入上式,得g

v

h k 2

'2

α?=

3、 3、 公式推求:

列1-1、2-2能量方程:

g v g v

h g

v H a 2222

2

?

α

α++=+

式中令

g v H H 22

0α+=k z h h ?= ?垂直收缩系数1≤?

具体数据由小桥进口形状而定 平滑进口:85.0~80.0=? 非平滑进口:80.0~75.0=? v ——流速

)

(20a h H g v -=?

?——?α+1

)

(20a a

h H g mbh

Q -= ?=m (小桥)

考虑侧向收缩 )(20a a h H g mbh Q -?=ε ε——侧向收缩系数 小桥孔径流速系数?与侧面收缩系数ε数据见P174 表8-3 三、淹没出流

1、淹没出流——当小桥下游水深k h h 3.1≥时,下游水位将影响桥的过水能力,此流动成为淹没出流。

2、特点: ①下游k h h 3.1≥

②小桥水面上只发生一次跌水。h h b =

3、计算公式:

)(20h H g v -=?

)

(20h H g mbh

Q -=

例8-2 见0174

堰流

明渠缓流溢过建筑在渠道中的障碍物的流动。障碍物称为堰,在工程中,障碍物为坝、桥涵、溢流设备等,它们使上游水位壅高,对堰流起侧向收缩和底坎约束的作用。明渠急流流过障碍物,产生不同于堰流的水力现象。当流经侧收缩段时,发生冲击波。

堰流主要研究水流流经堰的流量与其他特征量的关系。

表示堰流特征量,除流量外,尚有:堰宽,即水流漫过堰顶

宽度;堰顶水深,即堰上游水位在堰顶上的最大超高;堰壁

厚度和它的剖面形状;下游水深及下游水位高出底坎的高

度;为堰高;为堰下游坎高;0为趋近流速。如图[堰

流]所示。

堰的分类根据堰壁的相对厚度/的大小分为:薄壁堰(/

<0.67)、实用断面堰(0.67

上游渠宽对过堰水流的收缩作用分为:上游渠宽大于堰宽

的有侧收缩堰,=时的无侧收缩堰。按下游水位对过堰水流

的淹没作用分为:自由堰流和淹没堰流。当一定流量流经堰时,若下游水位较低(<0),下游水位不影响上游水位,称

为自由堰流;若下游水位较高(>0),下游水位影响上游水

位,称为淹没堰流。

流量计算堰流流量公式为[0648-01]

或[0648-02]式中=+/2;为堰流

流量系数,与堰的进口尺寸和/有关,一般分别按薄壁堰、

实用断面堰和宽顶堰通过实验求得经验公式或数据;为计

及趋近流速水头/2[kg2]的流量系数;为侧收缩系数,与

引水渠及堰的尺寸有关,亦由实验求得,当无侧收缩时,=1;为淹没系数,一般分别按薄壁堰、实用断面堰和宽顶堰由实

验求出[kg1]与/的关系,当为自由堰流时,=1;为重力

加速度。

薄壁堰主要用作量测流量的设备,在距离堰壁上游三倍以上水头的地方测出水头,可直接计算流量。堰口为矩形的

无侧收缩自由薄壁堰的流量公式为

[0648-03]

堰口为直角三角形的流量公式为

=1.4适用范围为≥2,≥(3~4)。

实用断面堰主要作为蓄水挡水构筑物的溢流坝和净水构筑物的溢流设备,用途较广,形式多样。低溢流堰的堰身

断面常为折线形;而用混凝土修筑的中、高溢流堰的堰身则做成适合水流情况的曲线形。流量系数,根据堰顶剖面外

形而采取不同值沿用较广的克-奥曲线型剖面,适用于/

≥3~5的高堰,流量系数=0.49。美国WES标准剖面,其设计

水头的流量系数=0.502。实验流量计算也要考虑上游收缩

和下游淹没条件。

宽顶堰在工程中是很常见的,如小桥涵过水构筑物,当闸门全开时的节制闸、分洪闸等均是。

当满足=-<0.8时为自由式宽顶堰。无侧收缩自由

式宽顶堰的流量系数为/[kg1]的经验函数关系,直角进口

/>3时,=0.32;/<3时,=0.32+0.01[684-01]

给水排水管道系统水力计算汇总

第三章给水排水管道系统水力计算基础 本章内容: 1、水头损失计算 2、无压圆管的水力计算 3、水力等效简化 本章难点:无压圆管的水力计算 第一节基本概念 一、管道内水流特征 进行水力计算前首先要进行流态的判别。判别流态的标准采用临界雷诺数Re k,临界雷诺数大都稳定在2000左右,当计算出的雷诺数Re小于2000时,一般为层流,当Re大于4000时,一般为紊流,当Re介于2000到4000之间时,水流状态不稳定,属于过渡流态。 对给水排水管道进行水力计算时,管道内流体流态均按紊流考虑 紊流流态又分为三个阻力特征区:紊流光滑区、紊流过渡区及紊流粗糙管区。 二、有压流与无压流 水体沿流程整个周界与固体壁面接触,而无自由液面,这种流动称为有压流或压力流。水体沿流程一部分周界与固体壁面接触,另一部分与空气接触,具有自由液面,这种流动称为无压流或重力流 给水管道基本上采用有压流输水方式,而排水管道大都采用无压流输水方式。 从水流断面形式看,在给水排水管道中采用圆管最多 三、恒定流与非恒定流 给水排水管道中水流的运动,由于用水量和排水量的经常性变化,均处于非恒定流状态,但是,非恒定流的水力计算特别复杂,在设计时,一般也只能按恒定流(又称稳定流)计算。 四、均匀流与非均匀流 液体质点流速的大小和方向沿流程不变的流动,称为均匀流;反之,液体质点流速的大小和方向沿流程变化的流动,称为非均匀流。从总体上看,给水排水管道中的水流不但多为非恒定流,且常为非均匀流,即水流参数往往随时间和空间变化。 对于满管流动,如果管道截面在一段距离内不变且不发生转弯,则管内流动为均匀流;而当管道在局部有交汇、转弯与变截面时,管内流动为非均匀流。均匀流的管道对水流的阻力沿程不变,水流的水头损失可以采用沿程水头损失公式进行计算;满管流的非均匀流动距离一般较短,采用局部水头损失公式进行计算。

水闸、冲沙闸坝段水力及结构计算书

计算书名称:进水闸、冲沙闸坝段水力及结构计算书 目录 1工程概况 (1) 2水力计算 (1) 2.1进水闸坝段过水能力计算 (1) 2.2消能防冲设计 (3) 2.3冲砂闸过水能力复核 (4) 2.4消能防冲设计 (5) 3稳定及应力计算 (6) 3.1基本资料与数据 (6) 3.2结构简化 (6) 3.3计算公式 (6) 3.4荷载计算及组合 (8) 3.5计算成果 (9) 3.6冲沙闸荷载计算 (12) 3.7计算成果 (13) 3.8计算简图 (17)

1工程概况 某调水工程由关山低坝引水枢纽和穿越秦岭山区的输水隧洞两大部分组成,按其供水对象及性质,根据《防洪标准》(GB50201—94)和《水利水电工程等级划分及洪水标准》(SL252—2000),工程等别为三等中型工程,主要建筑物按3级建筑物设计。 低坝无调节引水枢纽由拦河坝、冲砂闸、进水闸和输水暗渠四部分组成,前三部分在平面上呈一条直线南北方向并列布置,输水暗渠紧接进水闸并连接进水闸和输水隧洞。两个闸均设在坝的左侧。坝轴线位于两河口下游95m ,关山村上游约1km 处,此处河谷宽度74m ,河床宽度约60m ,高程为1467.2m ,河床漂卵石覆盖层厚5~12m ,最大15m ,其下的基岩为黑云片麻岩和斜长片麻岩,岩石强风化层厚约2~3m ,岩体分类为Ⅱ~Ⅲ类,岩层倾向上游,对防渗有利。 进水闸位于冲砂闸左侧,设计流量13.5m 3/s ,单孔布置,孔口尺寸3.0m ×2.5m ,设潜孔式弧形工作闸门和平面检修闸门。闸室后接4m 长的1:4陡坡,陡坡后接消力池,消力池池长14m ,池深1.0m ,底板厚度1.0m ,为C20钢筋混凝土结构;消力池后与输水暗渠相接。 2水力计算 2.1进水闸坝段过水能力计算 2.1.1引水渠内水深的确定 Q= 3 /22/11R Ai n 式中Q -引水渠流量,13.5m 3/s ; n -引水渠糙率,0.015; A 、χ、R 、b 、h 、m 分别为过水断面面积、湿周、水力半径、渠道底宽、水深及边坡系数,其表达式如下: A=(b+mh)h χ=b+2h 21m +; R= χ A = 2 12)(m h b h mh b +++ 故 13.5=1/0.015×(3+0 h )h ×(1/1000)1/2×3 /2)23).03(( h h h ++

流体力学 第五章 压力管路的水力计算资料

流体力学第五章压力管路的水力计算

第五章压力管路的水力计算 主要内容 长管水力计算 短管水力计算 串并联管路和分支管路 孔口和管嘴出流 基本概念: 1、压力管路:在一定压差下,液流充满全管的流动管路。(管路中的压强可以大于大气压,也可以小于大气压) 注:输送气体的管路都是压力管路。 2、分类: 按管路的结构特点,分为 简单管路:等径无分支 复杂管路:串联、并联、分支 按能量比例大小,分为 长管:和沿程水头损失相比,流速水头和局部水头损失可以忽略的流动管路。短管:流速水头和局部水头损失不能忽略的流动管路。

第一节管路的特性曲线 一、定义:水头损失与流量的关系曲线称为管路的特性曲线。 二、特性曲线 l l L g V d L g V d l l g V d l d l g V d l g V h h h f j w + = = + = ?? ? ? ? ? + = + = + = 当 当 当 其中, 2 2 2 2 2 2 2 2 2 2 λ λ λ λ λ ζ (1) 把2 4 d Q A Q V π = = 代入上式得: 2 2 5 2 2 2 28 4 2 1 2 Q Q d g L d Q g d L g V d L h w α π λ π λ λ= = ? ? ? ? ? = = (2) 把上式绘成曲线得图。 第二节长管的水力计算 一、简单长管 1、定义:由许多管径相同的管子组成的长输管路,且沿程损失较大、局部损失 较小,计算时可忽略局部损失和流速水头。 2、计算公式:简单长管一般计算涉及公式 2 2 1 1 A V A V=(3) f h p z p z+ + + γ γ 2 2 1 1 = (4) g V D L h f2 2 λ = (5) 说明:有时为了计算方便,h f的计算采用如下形式:

水闸计算案例

xxxx防洪挡潮闸重建工程 水工结构设计计算书 审核: 校核: 计算:

目录 一、基本设计资料 (1) 1.1 堤防设计标准 (1) 1.2 水闸设计标准 (1) 1.3 特征水位 (1) 1.4 结构数据 (2) 1.5 水闸功能 (2) 1.6 地基特性 (2) 1.7 地震设防烈度 (3) 二、闸顶高程计算 (4) 2.1 按《水闸设计规范》中的有关规定计算闸顶高程 (4) 2.2 按《堤防工程设计规范》中的有关规定计算堤顶高程 (5) 2.3 闸顶高程计算结果 (7) 2.4 启闭机房楼面高程复核计算 (8) 三、水闸水力计算 (9) 3.1 水闸过流能力复核计算 (9) 3.2 消能防冲计算 (11) 四、渗流稳定计算 (21) 4.1 渗流稳定计算公式 (21) 4.2 闸侧渗流稳定计算 (22) 4.3 闸基渗流稳定计算 (24) 五、闸室应力稳定计算 (28) 5.1 计算工况及荷载组合 (28) 5.2 计算公式 (29) 5.3 计算过程 (31) 5.4 计算成果及分析 (31) 六、闸室结构配筋计算 (32) 6.1 基本资料 (32) 6.2 边孔计算 (33) 6.3 中孔计算 (50) 6.4 胸墙计算 (50) 6.5工作桥配筋及裂缝计算 (52) 6.6 闸门锁定座配筋及裂缝计算 (53) 6.7 水闸交通桥面板计算 (56) 七、翼墙计算 (57) 7.1 计算方法 (57)

7.4 计算成果 (59) 7.5 配筋计算 (59) 八、其他连接挡墙计算 (60) 8.1 埋石砼挡墙计算(具体计算详见堤防设计计算书案例) (60) 8.2 埋石砼挡墙基础处理 (61) 8.3 中控楼浆砌石墙计算(具体计算详见堤防设计计算书案例) (62) 九、上下游护岸稳定计算 (63) 9.1 计算断面的选取与假定 (63) 9.2 计算工况 (63) 9.3 计算参数 (63) 9.4 计算理论和公式 (64) 9.5 计算过程(具体计算详见堤防设计计算书案例) (65) 9.6 计算结果 (65) 十、施工围堰计算 (66) 10.1导流级别及标准 (66) 10.2围堰顶高程确定 (66) 10.3围堰稳定计算(具体计算详见堤防设计计算书案例) (67) 十一、基础处理设计计算 (69) 11.1 闸室基础处理设计计算 (69) 11.2 翼墙基础处理设计计算 (73) 十二、闸室和翼墙桩基础配筋计算 (75) 12.1 计算方法 (75) 12.2 计算条件 (75) 12.3 第一弹性零点到地面的距离t的计算 (75) 12.4 桩的弯距计算 (76) 12.5 桩顶水平位移Δ计算 (76) 12.6 配筋计算 (76) 12.7 灌注桩最大裂缝宽度验算 (78)

燃气管道水力计算

1.高压、中压燃气管道水力计算公式: Z T T d Q L P P 0 5 210 2 2 2 110 27.1ρ λ ?=- 式中:P 1 — 燃气管道起点的压力(绝对压力,kPa ); P 2 — 燃气管道终点的压力(绝对压力,kPa ); Q — 燃气管道的计算流量(m 3/h ); L — 燃气管道的计算长度(km ); d — 管道内径(mm ); ρ — 燃气的密度(kg/m 3);标准状态下天然气的密度一般取0.716 kg/m 3。 Z — 压缩因子,燃气压力小于1.2MPa (表压)时取1; T — 设计中所采用的燃气温度(K ); T0 — 273.15(K )。 λ— 燃气管道的摩擦阻力系数; 其中燃气管道的摩擦阻力系数λ的计算公式: 25 .06811.0??? ? ??+ =e R d K λ K — 管道内表面的当量绝对粗糙度(mm );对于钢管,输送天然 气和液化石油气时取0.1mm ,输送人工煤气时取0.15mm 。 R e — 雷诺数(无量纲)。流体流动时的惯性力Fg 和粘性力(内摩擦 力)Fm 之比称为雷诺数。用符号Re 表示。层流状态,R e ≤ 2100;临界状态,R e =2100~3500;紊流状态,R e >3500。 在该公式中,燃气管道起点的压力1P ,燃气管道的计算长度L ,燃气密度ρ,燃气温度T ,压缩因子Z 为已知量,燃气管道终点的压力2P ,燃气管道的计算流量Q ,燃气管道内径d 为参量,知道其中任意两个,都可计算其中一个未知量。 如燃气管道终点的压力2P 的计算公式为: ZL T T d Q P P 0 5 210 2 1210 27.1ρ ?-= 某DN100中压输气管道长0.19km ,起点压力0.3MPa ,最大流量1060 m 3/h ,输气温度为20℃,应用此公式计算,管道末端压力2P =0.29MPa 。

水闸过流能力及稳定计算

水闸过流能力及结构计算计算说明书 审查 校核 计算 ***市水利电力勘测设计院 2011 年 08 月 29日

1、水闸过流能力复核计算 水闸的过流能力计算对于平底闸,当为堰流时,根据《水闸设计规范》(SL265-2001)附录A.0.1规定的水力计算公式: 23 02H g b m Q s εσ= 22 '02?g bh Q h H c c ? ?? ? ??+= 40 01171.01s s b b b b ???? ? ? - -=ε 式中:B 0—— 闸孔总净宽,(m ); Q ——过闸流量,(m 3/s ); H 0——计入行进流速水头的堰上水深,(m ); h s ——由堰顶算起的下游水深,(m ); g ——重力加速度,采用9.81,(m/s 2); m ——堰流流量系数,采用0.385; ε——堰流侧收缩系数; b 0——闸孔净宽,(m ); b s ——上游河道一半水深处的深度,(m ); b ——箱涵过水断面的宽度,m ; h c 进口断面处的水深,m ; s σ——淹没系数,按自由出流考虑,采用1.0; ?——流速系数,采用0.95; 已知过闸流量Q=5.2(m 3/s )先假设箱涵过流断面净宽确定箱涵过流断面高度,经试算得: 综上,过流断面尺寸为2.5m ×2.0m (宽×高),设计下泄流量Q 为5.2m 3/s ,过流能力满足要求。

2、结构计算 **堤防洪闸均为钢筋砼箱涵结构,对防洪闸进行抗滑稳定、抗倾覆稳定和墙基应力计算。 (1)抗滑稳定计 1)计算工况及荷载组合 工况一:施工完建期,荷载组合为自重+土压力 工况二:外河设计洪水位,荷载组合为自重+土压力+扬压力+相应的闸前闸后静水压力+风浪压力 2)荷载计算 计算中砼强度等级为C20,钢筋采用Ⅰ、Ⅱ级,保护层厚度梁25mm、板20mm,符号规定:力向下为正,向上为负,力矩逆时针为正,顺时针为负。 闸门重 2.352×9.81=23.07 KN; 闸底板重25×4.0×0.7×4.1=287 KN; 闸墩重25×0.8×4×2*2=320 KN; 平台板,梁25×(0.25×0.45×2+1.05×0.15)×2.5=23.91 KN; 柱25×2.82×0.4×0.4×4=45.12 KN; 启闭力-100 KN; 启闭机重0.56×9.81=5.49 KN; 启闭梁25×(0.3×0.5+0.25×0.4+1.35×0.12)×2×3.5=72.1 KN; 工作桥25×(5.9×0.12+0.2×0.25×3)×2.0=42.9 KN; 25×(6.28×0.13×2×0.13+1.2×0.15×5×0.15)×2=34.73 KN; 启闭房砖墙22×0.864×4.1×4=311.73 KN; ∑自重=23.07+287+320+23.91+45.12-100+5.49+72.1+38.815+340 =1016.98KN; 水重10×2.0×2.0×2.5=100 KN;

(完整版)水力计算

室内热水供暖系统的水力计算 本章重点 ? 热水供热系统水力计算基本原理。 ? 重力循环热水供热系统水力计算基本原理。 ? 机械循环热水供热系统水力计算基本原理。 本章难点 ? 水力计算方法。 ? 最不利循环。 第一节热水供暖系统管路水力计算的基本原理 一、热水供暖系统管路水力计算的基本公式 当流体沿管道流动时,由于流体分子间及其与管壁间的摩擦,就要损失能量;而当流体流过管道的一些附件 ( 如阀门、弯头、三通、散热器等 ) 时,由于流动方向或速度的改变,产生局部旋涡和撞击,也要损失能量。前者称为沿程损失,后者称为局部损失。因此,热水供暖系统中计算管段的压力损失,可用下式表示: Δ P =Δ P y + Δ P i =R l + Δ P i Pa 〔 4 — 1 〕 式中Δ P ——计算管段的压力损失, Pa ;

Δ P y ——计算管段的沿程损失, Pa ; Δ P i ——计算管段的局部损失, Pa ; R ——每米管长的沿程损失, Pa / m ; l ——管段长度, m 。 在管路的水力计算中,通常把管路中水流量和管径都没有改变的一段管子称为一个计算管段。任何一个热水供暖系统的管路都是由许多串联或并联的计算管段组成的。 每米管长的沿程损失 ( 比摩阻 ) ,可用流体力学的达西.维斯巴赫公式进行计算 Pa/m ( 4 — 2 ) 式中一一管段的摩擦阻力系数; d ——管子内径, m ; ——热媒在管道内的流速, m / s ; 一热媒的密度, kg / m 3 。 在热水供暖系统中推荐使用的一些计算摩擦阻力系数值的公式如下: ( — ) 层流流动 当 Re < 2320 时,可按下式计算;

水闸设计及闸室稳定计算

[附录一:泄洪冲砂闸及溢流堰的水力计算 1.1设计资料: 根据设计任务书中提供的资料和该枢纽布置段的基本地形资料本工程中的河流属于山溪性河流天然来水量多集中在洪水季节,平时来水量仅占全年来水量的10%;河水中泥沙含量较大尤其是伴随洪水中的泥沙较多;再根据其地形资料来看本工程布置段的地形坡度比较合适,因此在选择泄洪冲砂闸地板高程1852.40m。 根据上述本工程中的泄洪冲砂闸为宽顶堰,堰顶高程1852.40m,过闸水流 流态为堰流。汛期通过闸室的设计洪水流量Q 设=1088m3/s,校核洪水流Q 校 =1368 m3/s。 因为泄洪冲砂闸为宽顶堰所以尺寸拟定用堰流公式: δ- 为淹没系数,取为1.0; m---为流量系数,因为是前面无坎的宽顶堰所以m=0.385; ε--为侧收缩系数,先假定为1.0; H--- 位总水头,初设阶段不考虑行进流速,即假设的堰上水头; b—闸门净宽; 来洪水时洪水将由溢流堰和泄洪冲砂闸两部分共同承担,这样可减去一部分闸孔的净宽并设置溢流侧堰初步拟定溢流堰为折线形实用堰。 初步拟定溢流堰堰顶高程=进水闸设计流量的堰顶水头对应的水位+(0.2—0.3m)=进水闸闸底高程1853.60m +闸前水位1.40m +超高0.2m =1856.4m 采用共同水位法和堰流公式计算两种工作情况下的特征洪水位:先假设一个水位,用堰流公式分别计算过堰流量和过闸流量,二者相加等于实际流 接近计算工作情况下的洪水流量时,该水位就为所求。因为泄洪冲砂闸为宽顶堰 所以尺寸拟定用堰流公式:

δ- 为淹没系数,取为1.0 m---为流量系数,因为是前面无坎的宽顶堰所以m=0.385;计算溢流堰时因为溢流堰为折线形实用堰m=0.3. ε--为侧收缩系数,先假定为1.0; H--- 位总水头,初设阶段不考虑行进流速,即假设的堰上水头。 b—闸门净宽 计算结果如附表1-1,1-2 (a)设计洪水情况下:洪水流量Q=1018 m3/s。 (b)校核洪水情况下:洪水流量Q=1368 m3/s 经过计算泄洪冲砂闸净宽96m,溢流堰长度95m,设计洪水位1855.8m校核洪水位1856.30m。 泄洪冲砂闸净宽为96m,每孔取净宽8m,边墩宽0.8m ,中墩宽1.0m缝墩1m。

闸门水力计算说明

水闸水力计算说明 一、过流能力计算 1.1外海进水 外海进水时,外海水面高程取5.11m ,如意湖内水面高程取1.0m 。中间三孔放空闸,底板高程为-4.0m ,两侧八孔防潮闸底板高程为2.0m ,每孔闸净宽度为10m 。 表2 内海排水时计算参数特性表 外海水位/m 湖内水位/m 5.11 1.0 1.1.1中间三孔放空闸段 a.判定堰流类型 27.511 .948 == H δ 式中δ为堰壁厚度,H 为堰上水头。 2.5<5.27<10,为宽顶堰流。 b.堰流及闸孔出流判定 11 .95 = H e =0.549≤0.65,为闸孔出流。 式中,e 为闸门开启高度,H 为堰、闸前水头。 c.自由出流及淹没出流判定 闸孔出流收缩断面水深h c=ε1e=5.0×0.650=3.25m 。 式中,e 为闸门开启高度,为5.0m ; ε 1为垂向收缩系数, 查《水利计算手册》(2006年第二版)中表3-4-1 得0.650。 收缩断面处水流速为 υc=)(20c h H g -?=)(25.311.981.9295.0-???=10.19m/s 。 式中,ψ为闸孔流速系数,查《水利计算手册》(2006年第二版)中表3-4-3,取0.95; H 0为闸前总水头,为9.11m ; hc 为收缩断面水深。

收缩断面水深hc 的共轭水深 hc”=)181(22 -+ c c c gh h ν=)125 .381.919.1081(225.32 -??+=6.83m ; 下游水深ht=5.0m <hc”=6.83m ,故为自由出流。 d.过流量计算 根据闸孔自由出流流量计算公式 Q 1=002gH be μ=11.981.92530503.0?????=1008.71m3/s 。 式中,μ0为流量系数,平板闸门流量系数可按经验公式 μ0=0.60-0.176 H e =0.60-0.176×0.549=0.503; b 为闸孔宽度,为3×10=30m 。 1.1.2两侧八孔防潮闸段 a.判定堰流类型 43.1511 .348 == H δ >10,过渡为明渠流。 式中δ为堰壁厚度,H 为堰上水头。 b .过流量计算 因泄洪闸下游与陡坡相连,水利计算可按堰流计算方法进行。 H h t =11 .31-=-0.32<0.8,为自由泄流; 式中,h t 为堰顶下游水深,H 为堰顶上游水深。 因堰顶设有闸墩,应考虑侧收缩影响,采用宽顶堰流量公式计算泄流量: Q 2=2 3 02H g mnb c σ=2 311.381.92108377.0985.0??????=721.70m3/s 。 式中,m 为流量系数,因进口为斜坡式进口,P/H=7/3.11=2.25,cot θ=30/7=4.286,查《水利计算手册》(2006年第二版)中表3-2-1取m=0.377; b 为每孔闸净宽,为10m ; n 为孔数,为8孔; H 0为堰上水头,为3.11m ; ζc 为侧收缩系数,为有底坎宽顶堰的侧收缩系数,可由别津斯基公式计算

流量与管径、力、流速之间关系计算公式

流量与管径、压力、流速的一般关系 一般工程上计算时,水管路,压力常见为0.1--0.6MPa,水在水管中流速在1--3米/秒,常取1.5米/秒。 流量=管截面积X流速=0.002827X管内径的平方X流速(立方米/小时)。 其中,管内径单位:mm ,流速单位:米/秒,饱和蒸汽的公式与水相同,只是流速一般取20--40米/秒。 水头损失计算Chezy 公式 这里: Q ——断面水流量(m3/s) C ——Chezy糙率系数(m1/2/s) A ——断面面积(m2)

R ——水力半径(m) S ——水力坡度(m/m) 根据需要也可以变换为其它表示方法: Darcy-Weisbach公式 由于 这里: h f——沿程水头损失(mm3/s) f ——Darcy-Weisbach水头损失系数(无量纲) l ——管道长度(m) d ——管道内径(mm) v ——管道流速(m/s)

g ——重力加速度(m/s2) 水力计算是输配水管道设计的核心,其实质就是在保证用户水量、水压安全的条件下,通过水力计算优化设计方案,选择合适的管材和确经济管径。输配水管道水力计算包含沿程水头损失和局部水头损失,而局部水头损失一般仅为沿程水头损失的5~10%,因此本文主要研究、探讨管道沿程水头损失的计算方法。 1.1 管道常用沿程水头损失计算公式及适用条件 管道沿程水头损失是水流摩阻做功消耗的能量,不同的水流流态,遵循不同的规律,计算方法也不一样。输配水管道水流流态都处在紊流区,紊流区水流的阻力是水的粘滞力及水流速度与压强脉动的结果。紊流又根据阻力特征划分为水力光滑区、过渡区、粗糙区。管道沿程水头损失计算公式都有适用范围和条件,一般都以水流阻力特征区划分。 水流阻力特征区的判别方法,工程设计宜采用数值做

水闸工程设计万能模板

水闸工程设计万能模板 压力扬压力渗流压力合计- 1956 浮托力 - 闸室基底应力计算 根据《水闸设计规范》SL265—20XX[2] 条规定:当结构布置及受力情况对称时,闸室基底应力可按以下公式计算。 PPminmaxmaxminGMAWG16e AB式中:——闸室基底应力的最大值或最小值; G——作用在闸室上的全部竖向荷载; M——作用在闸室上的全部竖向和水平向荷载对于基础底面垂直水流方向 的形心轴的力矩; A——闸室基底面的面积; W——闸室基底面对于该底面垂直水流方向的形心轴的截面矩;e——竖向力对底板底面中心的偏心距;e B——底板顺水流方向长度。 各种情况下,闸室基底应力具体计算结果见表9—6。 表9—6 闸室基底应力计算表 计算情况完建情况设计情况 B23 2MG;

M A 2B e PmaxPmin 36 校核情况 1956 - 地基承载能力验算 已知地基允许承载力[P]为100(kPa)。基底压力不均匀系数Pmaxpmin的允许 值《水闸设计规范》SL265—20XX[2]表可知:基本组合=~;特殊组合=。验算P 表9—7 验算P计算表 完建情况设计情况校核情况 Pmax Pmin PmaxPmin2P [P] P 100 100 100 经验算,符合设计要求。验算PmaxR 具体计算见表 表9—8 验算Pmax计算表 完建情况设计情况校核情况 Pmax [P] 120 120 120 经验算,符合设计要求。验算PmaxPmin 37 表9—9 验算计算表 完建情况设计情况校核情况 Pmax Pmin ~ ~ 经验算,符合设计要求。 闸室抗滑稳定计算 闸底板上、下游端设置的齿墙深度为,按浅齿墙考虑,闸基下没有软弱夹层。根据《水闸设计规范》SL265—

水闸设计计算

一、初步设计 兴化闸为无坝引水进水闸,该枢纽主要由引水渠、防沙设施和进水闸组成,本次设计主要任务是确定兴化闸的型式、尺寸及枢纽布置方案;并进行水力计算、防渗排水设计、闸室布置与稳定计算、闸室底板结构设计等,绘出枢纽平面布置图及上下游立视图。 二、设计基本资料 1. 概述 兴化闸建在兴化镇以北的兴化渠上,闸址地理位置见图。该闸的主要作用有: 防洪:当兴化河水位较高时,关闸挡水,以防止兴化河水入侵兴化渠下游两岸农田,保护下游的农田和村镇。 灌溉:灌溉期引兴化河水北调,以灌溉兴化渠两岸的农田。 引水冲淤:在枯水季节,引兴化河水北上至下游的大成港,以冲淤保港。 7.0 北 至大成港 9.0 渠 化 11.0 兴 闸管所 兴化闸 兴化 河 兴化镇 闸址位置示意图(单位:m) 2.规划数据 兴化渠为人工渠道,其剖面尺寸如图所示。渠底高程为0.5m,底宽50.0m,两岸边坡均为1:2。该闸的主要设计组合有以下几方面:

11.8 0.5 50.0 兴化渠剖面示意图(单位:m) 2.1孔口设计水位、流量 根据规划要求,在灌溉期由兴化闸自流引兴化河水灌溉,引水流量为300m3/s,此时闸上游 水位为7.83m,闸下游水位为7.78m;在冬季枯水季节由兴化闸自流引水送至下游大成港冲淤保 港,引水流量为100m3/s,此时相应的闸上游水位为7.44m,下游为7.38m。 2.2闸室稳定计算水位组合 (1)设计情况:上游水位10.3m,浪高0.8m,下游水位7.0m。 (2)校核情况:上游水位10.7m,浪高0.5m,下游水位7.0m。 2.3消能防冲设计水位组合 (1)消能防冲的不利水位组合:引水流量为300m3/s,相应的上游水位10.7m,下游水位为 7.78m。 (2)下游水位流量关系 下游水位流量关系见表 3.地质资料 3.1闸基土质分布情况 根据钻探报告,闸基土质分布情况见表 层序高程(m)土质情况标准贯入击数(击) Ⅰ11.75~2.40 重粉质壤土9~13 Ⅱ 2.40~0.7 散粉质壤土8 Ⅲ0.7~-16.7 坚硬粉质粘土 (局部含铁锰结核) 15~21 Q(m3/s)0.0 50.0 100.0 150.0 200.0 250.0 300.0 H下(m)7.0 7.20 7.38 7.54 7.66 7.74 7.78

输水管道水力计算公式

输水管道水力计算公式 1.常用的水力计算公式: 供水工程中的管道水力计算一般均按照均匀流计算,目前工程设计中普遍采用的管道水力计算公式有: 达西(DARCY )公式: g d v l h f 22 **=λ (1) 谢才(chezy )公式: i R C v **= (2) 海澄-威廉(HAZEN-WILIAMS )公式: 87 .4852.1852.167.10d C l Q h h f ***= (3) 式中 h f -----------沿程损失,m λ----------沿程阻力系数 l -----------管段长度,m d-----------管道计算内径,m g-----------重力加速度,m/s 2 C-----------谢才系数 i------------水力坡降; R-----------水力半径,m Q-----------管道流量m/s 2 v------------流速 m/s C n -----------海澄―威廉系数 其中达西公式、谢才公式对于管道和明渠的水力计算都适用。海澄-威廉公式影响参数较小,作为一个传统公式,在国内外被广泛用于管网系统计算。三种水力计算公式中 ,与管道内壁粗糙程度相关的系数均是影响计算结果的重要参数。 2.规范中水力计算公式的规定 3.查阅室外给水设计规范及其他各管道设计规范,针对不同的设计条件,推荐 采用的水力计算公式也有所差异,见表1: 表1 各规范推荐采用的水力计算公式

3.1达西公式 达西公式是基于圆管层流运动推导出来的均匀流沿程损失普遍计算公式,该式适用于任何截面形状的光滑或粗糙管内的层流和紊流。公式中沿程阻力系数λ值的确定是水头损失计算的关键,一般采用经验公式计算得出。舍维列夫公式,布拉修斯公式及柯列勃洛克(C.F.COLEBROOK )公式均是针对工业管道条件计算λ值的著名经验公式。 舍维列夫公式的导出条件是水温10℃,运动粘度1.3*10-6 m 2/s,适用于旧钢管和旧铸铁管,紊流过渡区及粗糙度区.该公式在国内运用较广. 柯列勃洛可公式)Re 51.27.3lg(21 λ λ+?*-=d (Δ为当量粗糙度,Re 为雷诺数)是根据大量工业管道试验资料提出的工业管道过渡区λ值计算公式,该式实际上是泥古拉兹光滑区公式和粗糙区公式的结合,适用范围为4000

水力计算公式选用

水力计算公式选用 IMB standardization office【IMB 5AB- IMBK 08- IMB 2C】

长距离输水管道水力计算公式的选用 1.常用的水力计算公式: 供水工程中的管道水力计算一般均按照均匀流计算,目前工程设计中普遍采用的管道水力计算公式有: 达西(DARCY )公式: g d v l h f 22 **=λ (1) 谢才(chezy )公式: i R C v **= (2) 海澄-威廉(HAZEN-WILIAMS )公式: 87 .4852.1852.167.10d C l Q h h f ***= (3) 式中h f ------------沿程损失,m λ―――沿程阻力系数 l ――管段长度,m d-----管道计算内径,m g----重力加速度,m/s 2 C----谢才系数 i----水力坡降; R ―――水力半径,m Q ―――管道流量m/s 2 v----流速 m/s

C n----海澄――威廉系数 其中大西公式,谢才公式对于管道和明渠的水力计算都适用。海澄-威廉公式影响参数较小,作为一个传统公式,在国内外被广泛用于管网系统计算。三种水力计算公式中,与管道内壁粗糙程度相关的系数均是影响计算结果的重要参数。 2.规范中水力计算公式的规定 3.查阅室外给水设计规范及其他各管道设计规范,针对不同的设计条件,推荐采用的水力计算公式也有所差异,见表1: 表1 各规范推荐采用的水力计算公式

4.公式的适用范围: 3.1达西公式 达西公式是基于圆管层流运动推导出来的均匀流沿程损失普遍计算公式,该式适用于任何截面形状的光滑或粗糙管内的层流和紊流。公式中沿程阻力系数λ)公式均是针对工业管道条件计算λ值的着名经验公式。 舍维列夫公式的导出条件是水温10℃,运动粘度*10-6 m 2/s,适用于旧钢管和旧铸铁管,紊流过渡区及粗糙度区.该公式在国内运用教广. 柯列勃洛可公式 )Re 51 .27.3lg( 21 λ λ +?*-=d (Δ为当量粗糙度,Re 为雷诺数)是根据大量工业管道试验资料提出的工业管道过渡区λ值计算公式,该式实际上是泥古拉兹光滑区公式和粗糙区公式的结合,适用范围为4000

水闸设计实例

1基本资料 1.背景资料 前进闸建在前进镇以北的红旗渠上,该闸的作用是: 1.1.防洪:当胜利河水位较高时,关闸挡水,以防止胜利河的高水入侵红旗渠下游两岸的低田,保护下游的农田和村镇。 1.2.灌溉:灌溉期引胜利河氺北调,以灌溉红旗渠两岸的农田。 1.3.引水冲淤:枯水季节,引水北上至下游的红星港,以冲淤保港。 1.2 地质资料 1.2.1 闸基土质分布情况如下表所示 表1-1闸基土层分布 1.2.2 闸基土工试验资料 根据土工试验资料,闸基持力层坚硬粉质粘土的各项参数指标为:凝聚力C=60.0kpa;内摩擦角?=19°;天然孔隙比e=0.6g;天然容重r=20.3KN/ m3。建闸所用回填土为啥壤土,其内摩擦角?=26°,凝聚力C=0。天然容前r=18KN/ m3。 1.3 气象资料 1.3.1气象资料不全 1.4 三材情况 1.4.1该地区“三材”供应不足。闸门采用平面钢闸门,尺寸字定,由工厂设计,加工制造。

1.4.2 该地区地震设计烈度为6度,故不可考虑地震影响。 1.5 基本水文资料 1.5.1 孔口设计水位、流量 根据规划要求,在灌溉期前进闸自流胜利河水灌溉,引水量为320 m3/s。此时相应的水位为:闸上游水位为1.86 m;闸下游水位为1.80 m。 枯水季节冬季,由前进闸自流引水送至下游的红星港冲淤保港,引水流量为100m3/s。此时相应的水位为:闸上游水位为1.44m;闸下游水位为1.38m。 1.5.2 闸身稳定计算水位组合 (1)设计情况:上游水位4.3m,浪高0.8m,下游水位1.0m。 (2)校核情况:上游水位4.7m,浪高0.5m,下游水位1.0m。 1.5.3 消能防冲设计水位组合 根据分析,消能防冲的不利水位组合是:引水流量300m3/s,相应的上游水位4.7m,下游水位1.78m。 1.5.4 下游水位流量关系 表1-2下游水位流量关系 1.6 闸的设计标准 根据《水闸设计规范》SI265—2001(以下简称SI265—2001),前进闸按III级建筑物设计。 1.7 水闸设计应用表格资料 1.7.1 闸身稳定计算水位资料 表1-3闸身稳定计算水位资料

水力计算公式选用

长距离输水管道水力计算公式的选用 1. 常用的水力计算公式: 供水工程中的管道水力计算一般均按照均匀流计算,目前工程设计中普遍采用的管道水力计算公式有: 达西(DARCY )公式: g d v l h f 22**=λ (1) 谢才(chezy )公式: i R C v **= (2) 海澄-威廉(HAZEN-WILIAMS )公式: 87 .4852 .1852.167.10d C l Q h h f ***= (3) 式中h f ------------沿程损失,m λ―――沿程阻力系数 l ――管段长度,m d-----管道计算内径,m g----重力加速度,m/s 2 C----谢才系数 i----水力坡降; R ―――水力半径,m Q ―――管道流量m/s 2 v----流速 m/s C n ----海澄――威廉系数

其中大西公式,谢才公式对于管道和明渠的水力计算都适用。海澄-威廉公式影响参数较小,作为一个传统公式,在国内外被广泛用于管网系统计算。三种水力计算公式中,与管道内壁粗糙程度相关的系数均是影响计算结果的重要参数。 2.规范中水力计算公式的规定 3.查阅室外给水设计规范及其他各管道设计规范,针对不同的设计条件,推荐采用的水力计算公式也有所差异,见表1: 表1 各规范推荐采用的水力计算公式

4.公式的适用范围:

3.1达西公式 达西公式是基于圆管层流运动推导出来的均匀流沿程损失普遍计算公式,该式适用于任何截面形状的光滑或粗糙管内的层流和紊流。公式中沿程阻力系数λ值的确定是水头损失计算的关键,一般采用经验公式计 算得出。舍维列夫公式,布拉修斯公式及柯列勃洛克(C.F.COLEBROOK )公式均是针对工业管道条件计算λ值的著名经验公式。 舍维列夫公式的导出条件是水温10℃,运动粘度1.3*10-6 m 2/s,适用于旧钢管和旧铸铁管,紊流过渡区及粗糙度区.该公式在国内运用教广. 柯列勃洛可公式 )Re 51 .27.3lg( 21 λ λ +?*-=d (Δ为当量粗糙度,Re 为雷诺数)是根据大量工业管道试验资料提出的工业管道过渡区λ值计算公式,该式实际上是泥古拉兹光滑区公式和粗糙区公式的结合,适用范围为4000

管道的水力计算及强度计算.

第三章管道的水力计算及强度计算 第一节管道的流速和流量 流体最基本的特征就是它受外力或重力的作用便产生流动。如图3—1所示装置,如把管道中的阀门打开,水箱内的水受重力作用,以一定的流速通过管道流出。如果水箱内的水位始终保持不变,那么管道中的流速也自始至终保持不变。管道中的水流速度有多大?每小时通过管道的流量是多少?这些都是实际工作中经常遇到的问题。 图3—1水在管道内的流动 为了研究流体在管道内流动的速度和流量,这里先引出过流断面的概念。图3—2为水通过管道流动的两个断面1—1及2—2,过流断面指的是垂直于流体流动方向上流体所通过的管道断面,其断面面积用符号A来表示,它的单位为m2或cm2。 图32管流的过流断面 a)满流b)不满流 流量是指单位时间内,通过过流断面的流体体积。以符号q v表示,其单位为m3/h,cm3/h或m3/s,cm3/s。 流速是指单位时间内,流体流动所通过的距离。以符号。表示,其单位为m/s或cm /s。 图3—3管流中流速、流量、过流断面关系示意图

流量、流速与过流断面之间的关系如下: 以水在管道中流动为例,如图3—3所示,在管段上取过流断面1—1,如果在单位时间内水从断面1—1流到断面2—2,那么断面1—1和断面2—2所包围的管段的体积即为单位时间内通过过流断面1—1时水的流量q v,而断面1—1和断面2—2之间的距离就是单位时间内水流所通过的路程,即流速。 由上可知,流量、流速和过流断面之间的关系式为 q v=vA (3—1) 式(3—1)叫做流量公式,它说明流体在管道中流动时,流速、流量和过流断面三者之间的相互关系,即流量等于流速与过流断面面积的乘积。如果在一段输水管道中,各过流断面的面积及所输送的水量一定,即在管道中途没有支管与其连接,既没有水流出,也没有水流入,那么管道内各过流断面的水流速度也不会变化;若管段的管径是变化的(即过流断面的面积A是变化的),那么管段中各过流断面处的流速也随着管径的变化而变化。当管径减小时,流速增大;而当管径增大时,流速即减小。然而,当流速一定时,流量的变化随管径成几何倍数变化,而不是按算术倍数变化。因为在管流中,管道的过流断面面积与管径的平方成正比。也就是说,管径扩大到原来的2倍、3倍、4倍时,面积增加到原来的4倍、9倍、16倍。如DN50mm的管子过流断面面积是DN25mm的管子的4倍,那么在流速相等的条件下,DN50mm管子中所通过的流量即是DN25mm管子的4倍;同理,DNlOOmm的管道内所通过的流量应是DN25mm管子的16倍。在日常施工中,常有人认为在流速一定时,管径之比就是所输送的流量之比,这无疑是错误的。 以上提到的以m3/h和cm3/s等为单位的流量又称为体积流量。如果指的是在单位时间内通过过流断面的流体质量时,该流量则称为质量流量,以符号qm表示,常采用的单位为kg/h或kg/s。质量流量与体积流量之间的关系为 qm=ρq v 而由式(3—1)知 q v=vA 则 q m=ρvA (3—2) 式中q m——质量流量(kg/s); ρ——流体的密度,即单位体积流体的质量(ks/m3); V——流体通过过流断面的平均流速(m/s); A——过流断面面积(m2)。 例管径为DNlOOmm的管子,输送介质的流速为lm/s时,其小时流量为多少? 解DNlOOmm管子的过流断面面积为 A=πD3/4=3.14×0.12/4=0.00785m2 则q v=1×0.00785×3600=28.3m3/h 答:该管道的小时流量为28.3m3/h。 第二节管道的阻力损失 流体在管渠中流动时,过流断面上各点的流速并不是相同的。例如在河沟中,靠近岸边的水,流动较慢;而河沟中心的水,流速就较大。管道内流动的流体也是如此,靠近管内壁面的流体流速较小,处在管中心的流体流速最大。产生这一现象的原因在于,流体流动时与管内壁面发生摩擦产生阻力,同时管内流体各流层之间由于流速的变化而引起相对运动所产生的内摩擦阻力,也阻挠流体的运动。流体在流动中,为了克服阻力就要消耗自身所具有的机械能,我们称这部分被消耗掉的能量为阻力损失。流体的性质不同,流动状态相同,流动时所产生的阻力损失大小也不同。流动是产生阻力损失的外部条件,流速越高,流体与管壁及流体自身之间的摩擦就越剧烈,阻力也就越大。相反,流速越小,摩擦减弱,阻力也就越

相关主题
文本预览
相关文档 最新文档