当前位置:文档之家› 酶工程的研究进展及前景展望

酶工程的研究进展及前景展望

酶工程的研究进展及前景展望
酶工程的研究进展及前景展望

酶工程的研究进展及前景展望

摘要:概述了21 世纪国际上酶工程研究的新进展和新趋势。本文意在阐述近年来酶工程在分子水平的研究进展,并对其未来前景进行了展望。简单介绍了酶工程研究的进展, 对酶工程的发展前景进行了探讨。介绍了酶工程的应用现状,并对酶工程的作用和发展做出了展望。

关键词: 酶工程; 抗体酶;酶的固定化;开发研究; 进展;

Abstract:An overview of the enzyme engineering in the 21st century international research progress and new trends. This paper aims to elaborate in recent years, progress in enzyme engineering research at the molecular level, and its future prospects. Briefly introduced the progress of the study of enzyme engineering, discussed the prospects for the development of enzyme engineering. Introduced the application status of the enzyme works , and the role and development of enzyme engineering to make the outlook.

Keywords:Enzyme Engineering; Antibody enzyme; Immobilization;Research and development;Progress

1 前言

跨入21 世纪,人们在20 世纪认识生命本质高度一致性的基础上,迎来了后基因组时代,将有可能从整个基因组及其全套蛋白质产物的结构- 功能机理的角度,进一步阐明生命现象的核心和本质, 并系统整合生物学的全部知识,建立起真正的统一的普通生物学(general biology)。而生物技术将为解决人类所面临的食品和营养、健康和长寿、资源和能源、环境保护和生态平衡,以及可持续发展等重大问题,发挥无可替代的作用, 为人类作出更大的贡献。

酶工程是生物技术的一个重要组成部分, 指在一定的生物反应器内, 利用酶的催化作用, 进行物质转化的技术。其应用范围已遍及工业、医药、农业、化学分析、环境保护、能源开发和生命科学理论研究等各个方面。与此同时,酶工程产业的发展非常迅速。1998年全世界工业酶制剂销售额高达16亿美元。预计到2008年,销售额将达到30亿美元。

近年来,美国、欧洲共同体国家和日本,在酶工程研究和酶工程产业方面发展

非常迅速,继续居于领先地位。本文拟就21世纪国际酶工程研究领域的若干“热点”和前沿课题, 对21世纪酶工程研究的发展动向作一概述[1]。

2 酶的分离和提纯

酶的分离和提纯是酶生产的一个关键问题,也是酶工程的一项中心环节,它不仅影响酶的产率、酶的活性,而且还直接影响到其它技术的发挥,如固定化技术、酶的使用稳定性和稳定化、酶的保存等。从微生物、动植物细胞中得到含有多种酶的提取液后,为了从提取液中获得所需要的某一种酶,必须将提取液中的其它物质分离,这就是酶的分离纯化。经过分离纯化后得到的酶,活性不能降低,因此,分离纯化必须在适宜的条件下进行。可选择各种沉淀法、离心法、膜分离法、柱层析法、双水相系统萃取法等分离纯化酶[2]。

3 酶工程研究进展

酶的生产和应用的技术过程称为酶工程。其主要任务是通过预先设计, 经人工操作而获得大量所需的酶, 并利用各种方法使酶发挥其最大的催化功能[3]。本文将二十多年来围绕酶工程的主要任务进行了一系列的阐述,现将主要研究成果介绍如下:

3.1 酶的生物合成及其调节控制研究

所有生物体在一定的条件下都能合成多种多样的酶。酶的生物合成受细胞内外许多因素的影响。研究酶的生物合成及其调节控制,对指导酶的生产以及阐明某些抗生素和药物的作用机制有重要意义。1980年郭勇等人[4]研究了二环素对大肠杆菌中碱性磷酸酶生物合成、B_半乳糖苷酶诱导合成和其他蛋白质生物合成的影响。发现BCM 能明显阻遏碱性磷酸酶的合成和B_半乳糖苷酶的诱导合成,同时却诱导产生一种47K蛋白。这一结果阐明了二环素杀菌作用的主要原因。1982年,研究了枯草杆菌碱性磷酸酶的生物合成及其调节[5]。发现枯草杆菌AS1.398 细胞在无机磷酸含量受到限制的培养基中生长时,若培养基中的无机磷酸含量降到0.01 mmol/ L以下,枯草杆菌细胞内将迅速合成碱性磷酸酶;在碱性磷酸酶生物合成的高峰期, 添加1.0 mmol/ L的磷酸盐,该酶的合成完全被阻遏;枯草杆菌碱性磷酸酶的生物合成不受其作用底物的诱导,也不受分解代谢物的阻遏。可见,控制培养基中磷的含量是加速枯草杆菌碱性磷酸酶的合成和提高酶产率的主要措施。此外,我们还对菊糖酶、纳豆激酶、超氧化物歧化酶等的生物合成及其调控进行

了研究[6~7]。

3.2 酶、细胞和原生质体固定化研究

1985 年开始, 郭勇等人承担了国家自然科学基金(高技术)项目、国家科委重点项目、国家“七·五”攻关项目和广东省重点项目等多个科研项目,从固定化载体、固定化方法、固定化条件、固定化酶生产药物、固定化细胞生产胞外酶和固定化原生质体生产胞内酶等方面对酶、细胞和原生质体固定化技术进行了系统研究.固定化细胞生产A_淀粉酶、糖化酶和果胶酶的研究结果[8]表明,固定化细胞生产胞外酶具有稳定性好、酶产率高、可以反复多次使用和可连续生产等显著特点, 有利于胞外酶生产技术的发展。1988年,“固定化微生物细胞发酵生产胞外酶”获广东省生物技术专项奖一等奖,”光交联树脂固定化细胞生产A_淀粉酶和糖化酶研究”获广东省生物技术专项奖二等奖。1989年, 郭勇赴美国爱达荷大学进行合作研究,圆满完成了固定化细胞生产A_淀粉酶的动力学研究。

4 酶的定向固定化技术

固定化酶技术的发展使酶工程效率更高、成本更低,产品更加丰富多彩,固定化酶在工业、临床、分析和环境保护等方面有着广泛的应用。但是,在大多数情况下, 酶固定化以后活性部分失去, 甚至全部失去。一般认为,酶活性的失去是由于酶蛋白通过几种氨基酸残基在固定化载体上的附着( attachment)造成的。这些氨基酸残基主要有:赖氨酸的E- 氨基和N- 末端氨基,半胱氨酸的巯基,天门冬氨酸和谷氨酸的羧基和C- 末端氨基,酪氨酸的苯甲基以及组氨酸的咪唑基,由于酶蛋白多点附着在载体上,引起了固定化酶蛋白无序的定向和结构变形的增加。

近来,国外的研究者们在探索酶蛋白的固定化技术方面,已经寻找到几条不同途径,使酶蛋白能够以有序方式附着在载体的表面,实现酶的定向固定化,而使酶活性的损失降低到最小程度。目前,文献中涉及的定向固定化方法有如下几种[9]: (1)借助化学方法的位点专一性固定化;(2) 磷蛋白的位点专一性固定化;(3) 糖蛋白的位点专一性固定化;(4)抗体(免疫球蛋白)的位点专一性固定化;(5)利用基因工程的位点专一性固定化。这种有序的、定向固定化技术已经用于生物芯片、生物传感器、生物反应器、临床诊断、药物设计、亲和层析以及蛋白质结构和功能的研究。

这种定向固定化技术具有以下一些优点:(1) 一个酶蛋白分子通过其一个特定的位点以可重复的方式进行固定化;(2)蛋白质的定向固定化技术有利于进一

步研究蛋白质结构;(3)这种固定化技术可以借助一个与酶蛋白的酶活性无关或

影响很小的氨基酸来实现。

5 酶工程的应用进展[10]

5.1 活性多肽的开发研究

近年来,人们利用酶工程技术来开发功能性活性肽取得了很大的进展。生物活性肽是蛋白质20种天然氨基酸以不同排列组合方式构成的从二肽到复杂的线性或环形结构的不同肽类的总称,是源于蛋白质的多功能化合物。活性肽具有多种人体代谢和生理调节功能,易消化吸收,有促进免疫、激素调节、抗菌、抗病毒、降血压、降血脂等作用,且食用安全性极高。

生物活性肽主要是通过化学法或酶法降解蛋白质而制得。其中,酶法降解蛋白质生产活性多肽安全性极高,能在温和的条件下进行定位水解分裂产生特定的肽, 且水解过程易控制, 因而近几年报道的活性肽的制备方法皆为酶解法。目前已从酪蛋白、乳清蛋白、大豆蛋白、玉米蛋白、水产蛋白的酶解物中制得一系列功能各异的生物活性肽。

5.2 在污染治理中的应用:(1)辣根过氧化物酶。辣根过氧化物酶是酶处理废水领域中应用最多的一种酶。有过氧化氢存在时,它能催化氧化多种有毒的芳香族化合物,其中包括酚、苯胺、联苯胺及其相关的异构体,反应产物是不溶于水的沉淀物。(2)木质素过氧化物酶。木质素过氧化物酶,也叫木质素酶,是白腐真菌细胞酶系统的一部分。它可以处理很多难降解的芳香族化合物和氧化多种多环芳烃、酚类物质。(3)漆酶。漆酶由一些真菌产生,通过聚合反应去除有毒酚类。而且,由于它的非选择性,能同时减少多种酚类的含量。漆酶的去毒功能与被处理的特定物质、酶的来源及一些环境有关。(4)蛋白酶。蛋白酶是一类水解酶,在鱼、肉加工工业废水处理中得到了广泛应用。蛋白酶能使废水中的蛋白质水解,得到可回收的溶液或有营养价值的饲料。(5)微生物脂酶。脂酶应用于被污染环境的生物修复以及废物处理是一个新兴的领域。石油开采和炼制过程中产生的油泄漏, 脂加工过程中产生的含脂废物,都可以用不同来源的脂酶进行有效处理。一项日本专利报道了直接在废水中培养亲脂微生物来处理废水。脂酶在生物修复受污染

环境中获得了广泛的应用。

6 酶工程的发展前景[11]

21世纪,生物科学与生物工程的发展将进一步揭示生命的奥秘,在世界科技和经济发展中起主导和支柱作用。作为生物工程重要组成部分的酶工程亦将飞速发展, 前景广阔。我们将在原有的基础上,运用已经熟悉掌握的酶工程基本理论和基本技术,进一步进行酶工程新技术、新工艺和新产品的研究开发,特别是在研究成果的产业化方面下功夫,使我校酶工程研究在新世纪取得新的辉煌。

21世纪酶工程的发展主题是: 新酶的研究与开发,酶的优化生产,酶的高效应用。

6.1 新酶的研究与开发

随着酶工程的发展,目前已知的酶已不能满足人们的需要,研究和开发新酶已成为酶工程发展的前沿课题。新酶的研究与开发,除采用常用技术外,还可借助基因组学和蛋白质组学的最新知识,借助DNA 重排和细胞、噬菌体表面展示技术。目前最令人瞩目的新酶有抗体酶和端粒酶等。我们已经了解了这些新酶的基本特性, 并已开展部分研究,有望在这些新酶的研究中取得突破性的进展。

6.1.2 抗体酶的研究与开发

抗体酶( Abzyme) 又称为催化性抗体( Cata_lyzed Antibo dies)。是一类具有生物催化功能的抗体分子。抗体是由抗原诱导产生的能与抗原特异性结合的蛋白质。预计人体的免疫系统具有产生10万种抗体的能力。只要在抗体与抗原的结合部位赋予酶的催化特性,抗体就有可能成为有催化活性的抗体酶。其中有些是原本在自然界不存在的新酶.抗体酶可以采用诱导法,也可采用修饰法获得。修饰法是采用分子修饰技术,将抗体结合部位的结构改变成为酶分子的活性中心,从而产生有催化活性的抗体。诱导法可以采用某种酶为抗原,诱导生成该酶的抗体,再以该酶的抗体为抗原,诱导抗抗体的产生。这样,抗抗体的结合部位与作为抗原的酶的活性中心具有相同的构象,就有可能筛选得到抗体酶,也可以采用某种化合物为半抗原,将它与蛋白质相结合后作为抗原,诱导抗体酶的产生。抗体酶将成为本世纪新酶研究开发的重要方面。

6.1.3 端粒酶的研究与开发

端粒酶( Telomerase ) 是催化端粒( Telomere)合成和延长的酶,与细胞的

衰老及癌症的发生有很大关系。端粒能保护真核生物染色体DNA 免遭破坏,由于细胞中存在各种破坏染色体DNA 的不良因素,加上真核生物中存在的“末端复制问题”,若细胞无法填补这些空隙,染色体DNA 将随每一次细胞分裂而缩短,直至D NA 被破坏而引起细胞消亡。端粒的存在不但可避免外界因素对D NA 的破坏,而且可在复制过程中,通过牺牲自我而保护染色体DNA的完整。自一出生,人的正常体细胞内就有很长的端粒,但却检测不到端粒酶的活性( 生殖细胞和干细胞除外),所以正常体细胞的端粒不能延长,只会不断缩短,直至生命结束。可见端粒酶与人的衰老有密切关系,端粒酶的研究对延缓衰老有重要意义,在各种癌细胞中都可检测到很强的端粒酶活性。因此癌细胞能不断分裂而不会自然消亡,研究、开发端粒酶的抑制剂,在癌症治疗方面开创崭新的局面。

6.2 酶的优化生产

酶的优化生产是通过各种调控技术使酶的生产在最优化的条件下进行,以获得更多更好的酶。这是酶工程研究成果产业化的重要条件,常用的方法是对培养基、培养条件和分离纯化条件等进行优化。然而在生物工程高速发展的今天,用于生产酶的细胞大多数都是经过基因转移或基因改造的细胞,传统的方法已不能适应酶工程发展的要求,必须在代谢调控理论的指导下,采用先进的调控技术对酶的生物合成进行全面的调节控制,并采用先进的生化分离技术,才能达到优化生产的目的。我们在酶的生物合成及其调节控制、酶的分离纯化等方面的研究成果和经验,为进一步的研究、开发打下了坚实基础。

7 展望

酶工程作为生物工程的重要组成部分,其作用之重要、研究成果之显著已为世人所公认。充分发挥酶的催化功能、扩大酶的应用范围、提高酶的应用效率是酶工程应用研究的主要目标。21世纪酶工程的发展主题是[12]:新酶的研究与开发、酶的优化生产和酶的高效应用。除采用常用技术外,还要借助基因组学和蛋白质组学的最新知识,借助DNA重排和细胞、噬菌体表面展示技术进行新酶的研究与开发,目前最令人瞩目的新酶有核酸类酶、抗体酶和端粒酶等。要采用固定化、分子修饰和非水相催化等技术实现酶的高效应用,将固定化技术广泛用于生物芯片、生物传感器、生物反应器、临床诊断、药物设计、亲和层析以及蛋白质结构和功能的研究,使酶工程技术在医药工业中发挥更大的作用。展望未来, 酶这一

神奇的生物催化剂将在更加广泛的领域中得到应用, 酶制剂工业将成为国民经

济中不可或缺的重要组成部分。我国的酶制剂工艺起步晚, 底子薄, 虽然近年来发展很快, 但我们也应清醒地看到, 由于我们起步较迟、技术水平落后, 目前酶制剂工业的发展还不能适应国民经济的发展要求。我国的酶制剂与技术进入国际市场参与竞争还有相当大的难度, 我们还必须继续学习, 取人之长,紧跟国际酶工程技术的最新发展, 提高我国的酶工程技术。

参考文献

[1] 居乃琥. 21世纪酶工程研究的新动向[J]. 工业微生物,2001,31(1):37-44.

[2] 周祥,胡兴,邹国林.酶工程技术与进展[J]. 化学与生物工程,2003,(5):4-7.

[3] 郭勇.酶工程[M]. 北京: 中国轻工业出版社, 1994:45-60

[4] 郭勇,永井和夫,田村学造.二环素对大肠杆菌蛋白质合成的选择性作用[J]. 微生物学报,1982,22(1):40-47.

[5] 郭勇.枯草杆菌碱性磷酸酶生物合成的调节[A].见:中国微生物学会编.微生物学论文集[M].北京:科学出版社,1985.

[6] 谢秋玲,郭勇.纳豆激酶液体发酵条件的优化[J].华南理工大学学报,1999, 27(5):127- 131.

[7] 张毅,李弘剑,郭勇等.大蒜细胞培养及超氧化物岐化酶产生的研究[J].华南理工大学学报,1993,21(3):91- 94.

[8] 陈满香,郭勇,彭志英等. 固定化细胞生产果胶酶[J].工业微生物,

1989,18(2):10-13.

[9] 李晓燕,董志贤. 酶工程及其新进展[J]. 甘肃农业,2004,(9):35-36.

[10] 熊吉敏,武晋娴.酶工程的新研究及应用进展[J].SCIENCE & TECHNOLOGY INFORMATION, 2008(26):16-18

[11] 郭勇. 酶工程研究进展与发展前景[J].华南理工大学学报( 自然科学版),2002,30(11):130-133 .

[12] 郭勇.酶丁程研究进展与发展前景[J].华南理丁大学学报(自然科学版),2002,30(11);130—132.

酶工程的研究进展及前景展望

酶工程的研究进展及前景展望 摘要:概述了21 世纪国际上酶工程研究的新进展和新趋势。本文意在阐述近年来酶工程在分子水平的研究进展,并对其未来前景进行了展望。简单介绍了酶工程研究的进展, 对酶工程的发展前景进行了探讨。介绍了酶工程的应用现状,并对酶工程的作用和发展做出了展望。 关键词: 酶工程; 抗体酶;酶的固定化;开发研究; 进展; Abstract:An overview of the enzyme engineering in the 21st century international research progress and new trends. This paper aims to elaborate in recent years, progress in enzyme engineering research at the molecular level, and its future prospects. Briefly introduced the progress of the study of enzyme engineering, discussed the prospects for the development of enzyme engineering. Introduced the application status of the enzyme works , and the role and development of enzyme engineering to make the outlook. Keywords:Enzyme Engineering; Antibody enzyme; Immobilization; Research and development;Progress 1 前言 跨入21 世纪,人们在20 世纪认识生命本质高度一致性的基础上,迎来了后基因组时代,将有可能从整个基因组及其全套蛋白质产物的结构- 功能机理的角度,进一步阐明生命现象的核心和本质, 并系统整合生物学的全部知识,建立起真

溶菌酶

溶菌酶 溶菌酶 溶菌酶( Lysozyme,E.C.3.2.17),全称为1,4-p -N -溶菌酶,又称为细胞壁溶解酶,是自然界普遍存在的一种酶,因其能溶解细菌细胞壁具有溶菌作用而得名。 (一)溶菌酶的结构及物理化学性质 溶菌酶易溶于水,遇碱易破坏,不溶于丙酮、乙醚,是一种白色、无臭的结晶粉末。相对分子质量为14.7ku,由129个氨基酸残基组成,碱性氨基酸残基及芳香族氨基酸如色氨酸残基的比例很高,含有4个二硫键,如图2 -24所示,其等电点为10~11。在37℃条件下溶菌酶的生物学活性可保持6h,当温度较低时保持时间更长,利于溶菌酶在体内发挥作用。禽蛋蛋清是溶菌酶的重要来源,蛋清溶菌酶的物理化学性质如表17 -1所示。溶菌酶由两个区域组成,由一个长的α螺旋所联接,其二级结构大多是α螺旋。N末端的区域( f40~80)由一些螺旋线组成,大多数是反平行的β折叠。第二个区域由fl~39和f89~129氨基酸残基组成。分子中的这两个区域被一个螺旋体(f87天冬氨酸- 114精氨酸)所分离,分子组成了内部疏水外部亲水的基本结构,对溶菌酶发挥抗菌功能起着巨大的作用。 表17 -1 蛋清溶菌酶的物理化学特性 特性数值 相对分子质量14 400 亚基数 1 氨基酸129 等电点10.7 二硫键数 4 碳水化合物所占比例0 E1%280nm 26.4 93℃时的D热值(每分钟破坏90%的活性)110 酶活力的实验通过浑浊溶壁微球菌的细胞溶解 (二)溶菌酶的来源 溶菌酶在自然界中普遍存在,在人和许多哺乳动物的组织和分泌液中,均发现有溶菌酶存在,其物化性质基本相似,溶菌酶的来源如表17 -2所示。溶菌酶主要分布于禽蛋和鸟类蛋清中,尤其是浓厚蛋白的系带膜状层中。禽蛋中异常丰富,占整个蛋清中的 3.5%,鸡蛋蛋清是溶菌酶的主要商业来源。 表17 -2溶菌酶的来源

植酸酶在饲料中的应用及其研究进展(精)

植酸酶在饲料中的应用及其研究进展 植酸酶是一种新型的、可作为动物饲料添加剂的重要酶制剂。它对提高饲料中磷利用率,提高动物的生产性能,以及减轻高磷粪便对环境水域的磷污染有重要意义。本文综述了植酸酶在饲料中的应用现状及工业化生产方法,讨论了其进一步的研究发展方向。 植酸酶是一种水解酶,它能将植酸磷(六磷酸肌醇)降解为肌醇和无机磷酸。此酶分两类:3-植酸酶和6-植酸酶。植酸酶广泛存在于植物和微生物中。磷在植物中的主要存在形式为植酸磷,由于植酸磷不能被单胃动物直接利用,从而造成磷源浪费和形成高磷粪便污染环境。另外,植酸磷还是一种抗营养因子,它在动物胃肠道的消化吸收过程中会与多种金属离子如Zn2+、Ca2+、Cu2+、Fe2+等以及蛋白质螯合成不溶性复合物,降低了动物对这些营养物质的利用。因此,开展饲用植酸酶的研究,对提高畜禽业生产效益及降低磷对环境的污染有重要意义。1植酸酶的来源及酶学性质 早在1907年Suzuki等就在谷粮中发现了具有植酸酶活性的磷酸酶。第一个纯化的植酸来源于麸皮,研究发现它虽具有植酸酶活性,但植酸并不是它特异性底物。来源于植物的植酸酶均属于6-植酸酶,最适pH范围在5.0~7.5,在单胃动物酸性的胃环境中不起作用。60年代末植酸酶的研究转向最适pH为酸性、酶含量较高的微生物来源的植酸酶。 许多微生物都能产生植酸酶,尤其在曲霉属中。1968年Shien等从68个土样中对2000个菌株进行考察发现,在所用的22株黑霉菌中有21株能产生植酸酶。第一个被分离纯化的植酸酶来源于Aspergillus terreus NO.9A-1,它的最适pH为 4.5,最适反应温度为70℃,此酶在pH1.2~9.0均能稳定维持活性。从此以后,陆续从十几种微生物中分离得到植酸酶,其中来源于A.ficcum NR-RL3135(A.niger var.awamori)的植酸酶phyA具有较好的耐热性,在酸性的条件下有较高酶活性,被认为是目前最具应用前景的饲用植酸梅,其酶学性质的研究也较为深入。 植酸酶phyA属于3-植酸酶,是一种糖基化蛋白,表观分子量为85KD。它的最适pH为2.5和5.5,最适反应温度为55℃。在37℃、pH2.5的条件下,以植酸为底物的Km值为50mmol,Ca2+、Fe2+对酶活性无影响,Mn2+、Co2+有激活作用,能使酶活性分别提高30%和13%。Cu2+、Zn2+、Fe2+、Cu+对酶活性有抑制作用,其中前两种为非竞争性抑制,后两种为竞争性抑制。对酸性磷酸酶有抑制作用的抑制剂如L(+)-酒石酸对它却没有抑制作用。它是目前发现的比活性最高的植酸酶之一,它降解植酸磷形成的终产物是单磷酸肌醇和无机正磷酸。 2植酸酶在饲料中的应用效果

酶工程发展概况及应用前景

酶工程发展概况及应用前景 【摘要】酶的生产和应用的技术过程称为酶工程。其主要任务是通过预先设计,经人工操作而获得大量所需的酶,并利用各种方法使酶发挥其最大的催化功能。本文意在阐述近年来酶工程在分子水平的研究进展,展示酶工程在医药、农业、食品、环境保护等领域的应用进展,并对其未来前景进行了展望。 【关键词】酶工程;概况;应用;前景 酶工程,从定义上来说,是酶制剂在工业上的大规模应用,主要由酶的生产、酶的分离纯化、酶的固定化和生物反应器四个部分组成。简而言之,酶工程就是将酶或者微生物细胞,动植物细胞,细胞器等在一定的生物反应装置中,利用酶所具有的生物催化功能,借助工程手段将相应的原料转化成有用物质并应用于社会生活的一门科学技术。它包括酶制剂的制备,酶的固定化,酶的修饰与改造及酶的反应器等方面内容。 酶工程的前景 酶因其反应的专一性,高效性和温和性的特点,已和生物工程,信息科学和材料科学构成了当今的三大前沿科学。而作为生物工程的重要组成部分,将在未来的发展中,在世界科技和经济发展中起着主导和支柱作用。而工业用酶日益广泛地应用于化学,医药,纺织,农业,日化,食品,能源,化妆品以及环保等行业。据报道,到2003年,欧洲工业用酶的市场增加至9亿美元,年增长率达百分之十;而2000年的中国,酶制剂总产量达272吨,同比增长8.8%,可谓发展迅速,前景十分广阔。 酶工程的发展 酶工程的发展,是一部科学的成长史。在二次世界大战后,酶工程发展成为新的工业领域—酶工程工业。酶工程的发展历史从那时算起, 至今已经三十多个年头了。六十年代以后, 由于固定化酶、固定化细胞及固定化活细胞的崛起, 使酶制剂的应用技术面貌一新。七十年代以后,伴随着第二代酶——固定化酶及其相关技术的产生,酶工程才算真正登上了历史舞台。固定化酶正日益成为工业生产的主力军,在化工医药、轻工食品、环境保护等领域发挥着巨大的作用。几十年来酶制剂的品种和应用不断扩大。不仅如此,还产生了威力更大的第三代酶,它是包括辅助因子再生系统在内的固定化多酶系统,它正在成为酶工程应用的主角。近年来, 国际上酶工程技术发展迅速, 硕果累累,主要有基因工程、蛋白质工程、人工合成酶、模拟酶、核酸酶、抗体酶、酶的定向固定化技术、酶化学技术、非水酶学、糖生物学、糖基转移酶、极端环境微生物和不可培养微生物的新品种等。 酶工程的应用 酶工程的发展日新月异,现举几个例子更加形象地说明酶工程地应用: 酶工程在污染处理中的作用:可利用过氧化物酶和聚酚氧化酶处理含酚废水和造纸废水,如辣根过氧化物酶,木质素过氧化物酶,植物来源的过氧化物酶;酪氨酸酶,漆酶等;可利用氰化物酶和氰化物水合酶处理含氰废水;利用蛋白酶,淀粉酶处理食品加工废水;并且,可以通过设计复合代谢途径,拓宽氧化酶的专一性等基因工程的运用,提高微生物的降解速率;拓宽底物的专一性;维持低浓度下的代谢活性;改善有机污染物降解过程中的生物催化稳定性等。酶在废物处理及资源化过程中正在发挥重要作用, 利用基因工程和蛋白质工程扩展酶的代谢途经, 是治理难降解有毒污染物的重要方法。

溶菌酶的研究及应用简介

溶菌酶的研究及应用简介 摘要溶菌酶(lysozyme)是一种专门作用于微生物细胞壁的水解酶,又称胞壁质酶(muramidase)。人们对溶菌酶的研究始于20 世纪初,英国细菌学家Fleming在发现青霉素的前6年(1922年)发现人的唾液、眼泪中存在能溶解细菌细胞壁的酶,因其具有溶菌作用,故命名为溶菌酶,其中鸡蛋溶菌酶的研究和应用已相当深入和广泛[1]。通过对它的结构、性质、来源的研究;溶菌酶已广泛的应用于医药、生物工程和食品工业等多个方面。 关键词溶菌酶;结构;应用;研究进展 溶菌酶(Lysozymc EC3.2.1.17)又名胞壁质酶(muramidase)、乙酞胞壁酸聚糖水解酶(N-acctylmuramide glyca-nohydrolase),广泛地分布于自然界[2]。在病毒(如噬菌体T4)、细菌(如枯草杆菌)、植物(如番木瓜)、动物(如鼠、狗)及人体都含有。人体多数组织器官含有一定浓度的溶菌酶。但以脾、肾含量较高。在鼻及支气管分泌液、泪液、脑脊液、唾液、乳汁及血液中均含有一定量的溶菌酶。此酶自被发现以来,经科学家们不断地研究,使得它在酶学及临床医学中均占有一定的重要位置,也将其应用于医疗、食品、畜牧及生物工程中。 1 溶菌酶的发现 1907年Nicollc[2]猜测芽胞杆菌(Bacillus)及枯草杆菌中含有溶解细菌的酶。1909年https://www.doczj.com/doc/4e9847960.html,schtchenko[3]第一个报道了鸡蛋清含有溶解细菌的酶。1922年Alexander Fleming[2]发现鼻粘液里有一种能溶解微球菌(micrococcus

lysodeikticus)及其他细菌的酶,他把这种酶命名为溶菌酶(lysozyme)。经过仔细的观察和研究,他发现此酶广泛地存在于生物组织及机体的某些分泌物中。之后Robert及Wolff 也从鸡蛋清里提取出溶菌酶。1937~1946年间Abraham[3],Robinson, Alderson及Fevold等人通过实验从而分别获得了溶菌酶的结晶。 2 溶菌酶的理化性质、空间结构 2.1溶菌酶的理化性质 溶菌酶由129个氨基酸构成的单纯碱性球蛋白,在酸性环境下,溶菌酶对热的稳定性很强。当pH值为1.2~11.3围剧烈变化时,但其结构几乎维持不变。当pH值为4~7,96℃热处理15 min仍能保持87%的酶活性;当pH值为3 时能耐100℃加热处理45min;但碱很容易破坏酶活性,当处于碱性pH 值围时,溶菌酶的热稳定性就很差[4]。在干燥条件下,溶菌酶可以长期在室温存放,其纯品为白色或微黄色。黄色的结晶体或无定形粉末,无臭,味甜。易溶于水,易遭碱破坏,不溶于丙酮和乙醚。其分子结构如下: 2.2 空间结构 溶菌酶是第一个结构弄清楚的酶,在很长一段时间中,其中有许多蛋白晶体研究及蛋白质结构与功能关系研究。这些进展都是利用溶菌酶获得的溶菌酶一直

中国酶制剂产业发展现状和前景

中国酶制剂产业发展现状和前景 ——中国发酵工业协会酶制剂分会程池酶制剂产业的完整概念应该包括酶制剂的生产和应用两个方面。酶制剂应用领域的不断开拓和深入成为酶制剂产业持续发展的动力,而现代生物工程技术的发展,尤其是基因工程、蛋白质工程和发酵工程的进步又使酶制剂生产和产品能够不断满足酶制剂应用领域的需要。 酶制剂产业经历了半个多世纪的起步和迅速成长之后,现已形成一个富有活力的高新技术产业,保持持续高速度发展。过去10年里,国际酶制剂产业的生产技术发生了根本性的变化,以基因工程和蛋白质工程为代表的分子生物学技术的不断进步和成熟,以及对各个应用行业的引入和实践,把酶制剂产业带入了一个全新的发展时期。伴随着全球经济一体化的经济浪潮,世界生物技术产业也在全球范围内进行着产业结构和产品结构的调整,世界酶制剂产业表现活跃。2001年世界酶制剂年销售额达16亿美元,我国各种工业酶制剂总产量超过32万吨,产值6亿多元,应用覆盖洗涤剂、纺织、酒精、白酒、啤酒、味精、有机酸、淀粉糖、制药、制革、饲料、造纸、果汁、肉、蛋、豆、奶、面制品加工等诸多工业领域,创造工业附加值数千亿元。 酶制剂是一种生态型高效催化剂,具有高效、安全、生态和环保等特点,能够有效带动相关领域技术水平的提高,对应用产业开发新产品、提高质量、节能降耗、保护环境具有重要意义,产生了巨大的社会效益和经济效益。酶制剂产业已经成为生物技术领域的前卫产业和21世纪最有希望的新兴产业之 一。" 发展现状产量激增质量优异 据中国发酵工业协会最新统计,我国2001年酶制剂生产量为32万吨。中国酶制剂产业多年来一直保持较高的发展速度,特别是六五至八五期间,生产量年平均增长分别达到22%、28%和21%。目前我国酶制剂生产企业约100家,均为中小型企业,现有生产能力40多万吨。已实现工业化生产的酶种有20多种。

国内的溶菌酶的应用与发展 陈邱

国内的溶菌酶的应用与发展 溶菌酶,又称胞壁质酶。球蛋白G、N - 乙酰胞壁质聚糖水解酶。最早对溶菌酶的研究起于 N icolle 1907 年发表的枯草芽孢杆菌中的溶解子,1922年 Flem ing等发现,在人的唾液、眼泪中存在有能够溶解细胞壁杀死细菌的酶,因而被命名为溶菌酶 [1] 。1965年,英国的菲利普等用 X衍射法对溶菌酶进行研究分析,第一个完全弄清了溶菌酶的立体结构 [ 2 ]。此后人们发现溶菌酶广泛地存在于高等动物组织及分泌物,植物及各种微生物中,其中在新鲜的鸡蛋清中含量最高。溶菌酶可选择性地分解微生物细胞壁的同时不破坏其它组织,且本身无毒无害,因而它是一种天然的安全性能很好的杀菌剂,防腐剂,将可应用于食品防腐、医药制剂日用化工等行业。在我国,溶菌酶的应用范围和应用量还比较有限,但可以预计,溶菌将会是应用于我国食品工业中一种重要的功能性食品添加剂。 溶菌酶的结构特点和抗菌作用机制结构特点与复杂性 大多数鸡蛋清溶菌酶是由129个氨基酸组成的碱性球状蛋白 ,相对分子量在14000 ~18000。其等电点可达 10 7,存在 4 个二硫键。正常条件下溶菌酶作用的最适温度为45℃~50 ℃。蛋清溶菌酶在低温干燥下可长期保存。其纯品为白色粉末状结晶,无臭、味甜 ,易溶于低浓度的食盐水。在碱性条件下易被破坏,但在酸性溶液中其化学性质稳定,热稳定性很强 ,在 pH4 ~7 时,100℃下处理1m in 酶仍保持良好的活性,在pH3时,100℃加热处理 45m in 仍能保持活性{3}。溶菌酶在水溶液中6215 ℃下,维持30min则完全失活,在2015%

的乙醇中,在 6215 ℃下维持 20m in而不失活[4]。王玮等[5]研究表明。在一元醇和二元醇溶液中溶菌酶分子的稳定性均随着醇浓度的增大而提高。人溶菌酶分子量为14600,由130个氨基酸组成 ,也存在4个二硫键,其酶活性比鸡蛋清溶菌酶高2倍左右。在生产或应用溶菌酶时,由于工艺或环境的变化,极易造成酶的变性失活,因此必须采取一定的手段使蛋白复性,减少损失。史晋辉等[7]研究发现 ,当酶浓度较低时,017mol/L 的盐酸胍即可使溶菌酶完全复性。此外 , 溶菌酶和其它酶具有相似的性质 , Karupp iah等[8]研究表明,向复性溶液中加入适量的β- 环糊精,可使变性的碳酸脱水酶的复性率达到80% 。董晓燕等[9]利用β-环糊精和十六烷基三甲基溴化的联合作用,在适宜盐酸胍浓度下,溶菌酶可完全复性。王彦等利用离子交换色谱法研究发现,当复性缓冲液中不含其它盐类时,脲浓度为 210mol /L时复性产率最高,当脲浓度高时,硫酸铵能很好地提高溶菌酶的复性回收率。 溶菌酶的抗菌作用机制 目前已知的几种溶菌酶有:内- N -乙酰己糖胺酶、酰胺酶β-1,3、β-1,6葡聚糖酶和甘露聚糖酶、几丁质酶、磷酸甘露糖酶脱、乙酰壳多糖酶[11]。参与细菌细胞壁溶解作用的溶菌酶大致可分为作用于糖苷键和作用于肽和酰胺部分的两类。内- N -乙酰己糖胺酶、β- 1, 3、β 1, 6葡聚糖酶等主要作用于糖苷键,使糖苷键断裂,破坏细胞壁的分子结构,而酰胺酶等则主要作用于多肽,使多肽断裂。以内 - N - 乙酰己糖胺酶为例,内- N-乙酰己糖胺酶能够催化水解细胞壁肽聚糖分

植酸酶及其生产应用

植酸酶及其生产应用 植酸即肌醇六磷酸,作为磷酸的储存库,广泛存在于植物中。植物组织中的磷主要是以肌醇六磷酸钠的形式存在,难以被单胃动物吸收。而且,肌醇六磷酸分子可以螯合金属离子,其作用相当于抗营养因子,抑制了营养的吸收。没有被充分的利用磷,通过动物排泄进入水体最终导致水体富营养化。 植酸酶是水解植酸及其盐类生成肌醇和磷酸的一类酶的总称,破坏了植酸对矿物元素强烈的亲和力。因而,在动物饲料中添加微生物植酸酶正在逐渐被推广和应用,可以解决磷的利用问题。 一、植酸酶及其分类 植酸酶是对可水解植酸磷释放磷酸基团形成肌醇衍生物的一类酶的总称,属于磷酸单酯水解酶。 广义植酸酶包括三种类型:肌醇六磷酸-3-磷酸水解酶(3-植酸酶),肌醇六磷酸-6-磷酸水解酶(6-植酸酶)及非特异性的正磷酸酯磷酸水解酶(酸性磷酸酶),该类酶可将肌醇磷酸脂彻底分解成肌醇和磷酸。 根据植酸酶结构上的差异将植酸酶分为组氨酸酸性磷酸酶、β-螺旋植酸酶和紫色酸性磷酸酶。同时植酸酶还可根据酶的最适pH可分为酸性植酸酶、中性植酸酶、碱性植酸酶。 二、植酸酶来源 植酸酶是一种胞外酶,广泛存在于自然界中,在动物、植物、微生物中均有发现。在植物组织如谷物、豆类、蔬菜,特别是萌发的种子和花粉中都发现了植酸酶。此外,自然界中产植酸酶的微生物种类繁多,如细菌、霉菌、真菌等。 1.植物源植酸酶

1907年,Suzuki等在米糠内首次发现具有植酸酶活性的磷酸酶。到目前为止,已经从小麦、大豆、玉米、水稻分离纯化得到植酸酶。 研究表明,当温度在47~62℃时植物源植酸酶酶活较稳定,但当温度达到70℃以上,酶活几乎完全丧失。而在饲料的加工过程中制粒温度高(80~90℃),显然植物源植酸酶不适合应用到饲料添加剂中。 2.动物源植酸酶 动物源植酸酶主要存在于哺乳动物的小肠和脊椎动物的红细胞中,其活性一般较低。 研究表明,鼠、牛、鸡、人肠道黏膜中的植酸酶最适pH分别为7.0、8.2~8.4、7.5~7.8、7.4,且体内或体外条件对动物源植酸酶活性影响较大,可能和碱性磷酸酶是属于同种酶,但对该酶亚基结构了解甚少。 3.微生物源植酸酶 目前,陆续发现各种产植酸酶的微生物,如枯草芽胞杆菌、假单孢杆菌、大肠杆菌、乳酸杆菌、克雷伯氏菌、黑曲霉、米曲霉、根霉、酵母等。不同菌种产植酸酶能力不同,研究表明,在土样产植酸酶的菌株中,真菌代谢磷的能力比细菌更高效。由于来源于微生物的植酸酶作用范围广,且微生物源植酸酶较适用于胃pH呈酸性的单胃动物及一些鱼类等,稳定性好,易规模化生产,使其成为研究的集中点。以下主要讨论关于微生物源植酸酶的生产及分离纯化技术。 三、植酸酶的应用 植酸酶作为一种新型饲料添加剂,在动物营养及环境保护等领域具有很大的应用潜力。植酸酶最主要的应用是作为饲料添加剂提高磷的利用率,减少环境中磷的排放。当前,植酸酶正被大量运用到不同的生物技术领域。 中国植酸酶产业在饲料添加剂领域的发展日渐成熟,在科研、创新和应用等方面也形成了较完整的体系,已经发展成为最为完善的饲用酶制剂产业。 1.饲料工业中的应用 植酸酶一般只适于在单胃动物中使用。反刍动物由于瘤胃微生物能合成植酸酶,因此在饲料中一般不需要使用植酸酶。植酸酶作为饲料添加剂已经广泛应用到猪、家禽、鱼饲料中,多数研究中发现,植酸酶可以释放磷酸盐中的磷。同时因其可提高不同营养物质的利用度,不同来源的植酸酶常被单独或混合使用在饲料工业领域中。饲用植酸酶已经成为工业酶产业中增长势头最快的一类且正呈逐年上升之势。 Simons等的研究已经表明在玉米、豆粕日粮中添加植酸酶,可使磷的利用率提升60%,粪便中磷的排出量减少了50%。值得注意的是,2009年由中国农业科学院生物技术研究所培育的转植酸酶基因玉米获得生产应用的安全证书,是世界第一例获得生产应用许可的转植酸酶基因玉米。该转植酸酶基因玉米加工成饲料后仍然保留了大部分植酸酶活性,可分解饲料中的植酸,不但可释放出无机磷,还可减少饲料中磷酸氢钙的添加量,减少动物排泄物中磷的排放。 2.食品工业中的应用 在人类食品中添加植酸酶,市场上还没有相关的食品开发报道。谷物中存在的植酸可抑制很多矿物的吸收,在人的小肠里植酸酶活性非常低,难以利用食物中的植酸盐。此外,虽然人的小肠黏膜中具有植酸酶和碱性磷酸酶,但在植酸盐的降解中却不起作用,所以食物中的植酸酶在水解植酸盐过程中扮演重要角色。体外模仿生理条件的实验表明,植酸酶通过对植酸的水解可使铁的利用率提高67%~98%。此外,植酸对锌的利用率也有影响。在体内,锌离子和植酸形成螯合物,降低了其利用率。谷物食粮中植酸存在是造成人体缺锌的因素之一。因而在食品中添加植酸酶可有效增强它们的营养价值。 3.作为土壤改良剂

-中国饲料酶制剂 产业运行态势及发

前言 2012年,是中国零售业充满机遇与挑战的一年,国内外经济形势复杂多变,零售企业经营压力增大。面对复杂经济环境,零售业继续保持增长,商品销售额进一步提升,从业人数继续增加,营业面积继续扩大。行业发展呈现出一些新的特点:网络零售高速增长,实体零售加速调整;渠道下沉,企业扩张重点转向“三四线城市”;成本费用增加,利润上升但利润率有所下降;专卖店、便利店保持良好发展,百货店、超市竞争压力加大;传统盈利模式探索转型,行业现代化程度进一步提升。 零售业发展过程中也面临一些问题,主要是网点布局欠均衡,结构优化步伐慢;费用增加过快,经营压力增大;竞争手段单一,不利于市场秩序优化;物流配送等配套服务有待提升等。解决这些问题,需要坚持扩大内需、促进消费的方针,在转变发展方式,提高流通效率,加快转型创新,规范市场秩序等方面做出不懈努力。 随着经济发展方式转变、居民消费结构加快升级以及城镇化、信息化、新型工业化加快推进特别是电子商务方兴未艾,势必带来零售业态结构、经营模式乃至整体格局新的调整与变化。未来,零售企业将加快转型升级,实体与网络零售加快融合,通过全渠道、复合型、差异化经营,加强供应链管理,跨区域并购重组,加快业态创新、品牌建设以及绿色循环发展,提高行业组织化程度与整体质量水平。2013-2017年中国饲料酶制剂产业运行态势及发展前景咨询报告 第一章中国饲料酶制剂行业进展 第一节饲料酶制剂行业政策和规划 第二节饲料酶制剂行业主要法律与法规 第三节饲用酶制剂行业标准的发展 第四节饲料酶制剂行业进入壁垒分析(技术壁垒,资金壁垒,营销渠道壁垒,政策壁垒)第五节饲料酶制剂生产企业发展状况 第六节国内饲料酶制剂生产状况

溶菌酶

1922年,英国细菌学家Fleming发现人的唾液、眼泪中存在有溶解细菌细胞壁的酶,因其具有溶菌用,故命名为溶菌酶。溶菌酶广泛地分布于自然界中,在人的组织及分泌物中可以找到,动物组织中也有,以鸡蛋清中含量最多。其他植物组织及微生物细胞中也存在[1]。它是由动物特定细胞内的核糖体上合成的一种蛋白酶,分泌到细胞外杀死细菌的。它存在于卵清、唾液等生物分泌液中,催化细菌细胞壁肽聚糖N-乙酰氨基葡糖与N-乙酰胞壁酸之间的1,4-β-糖苷键水解的酶。它可以溶解掉细菌的细胞壁,杀死细菌。 由于溶菌酶能够选择性地分解微生物的细胞壁,并且自身没有毒害,因此作为一种天然、安全的杀菌剂和防腐剂,在食品工业、医药制剂、日用化工等行业被普遍重视。随着开发和应用研究的进一步深入,溶菌酶的发展前景将会十分广阔。下面主要陈述溶菌酶的一些基本情况及其在食品工业中的应用。在食品工业中,溶菌酶是无毒的蛋白质,能选择性地使目标微生物细胞壁溶解而使其失去生理活性,而食品中的其他营养成分几乎不会造成任何损失。因此,它可以安全地替代有害人体健康的化学防腐剂(如苯甲酸及其钠盐等),以达到延长食品货架期的目的,是一种很好的天然防腐剂。现已广泛应用于水产品、肉食品、蛋糕、清酒、料酒及饮料中的防腐。 1 溶菌酶的分类 溶菌酶按其所作用的微生物不同分两大类,即细菌细胞壁溶菌酶和真菌细胞壁溶菌酶。真菌细胞壁溶菌酶包括酵母菌细胞壁溶解酶和霉菌细胞壁溶解酶。 1.1 细菌溶菌酶细菌溶菌酶通常可分为三大类:N-乙酰氨基己糖苷酶,它催化水解肽聚糖中糖骨架中的β(1→4)糖苷键;N-乙酰胞壁酰-丙氨酸酰胺酶,它催化裂解肽聚糖中糖基与肽基;内肽酶,它催化裂解肽聚糖肽桥中的肽键。 1.2 真菌溶菌酶真菌溶菌酶主要包括几丁质酶和β-葡聚糖酶。 1.2.1 几丁质酶 虽然一些外几丁质酶(exochitinases;EC3.2.1.30)也表现出抗真菌的特性,但抗真菌的几丁质酶主要是内几丁质酶(endochitinases;EC3.2.1.14)。人们已经研究了许多来自于植物和微生物的几丁质酶,并对有些几丁质酶抑制真菌生长/裂解真菌细胞的作用进行了研究。科学家们首先在植物中发现了几丁质酶的抗真菌作用,这类几丁质酶可以对抗侵入植物体的真菌病原体。微生物几丁质酶主要是由链霉菌属、杆菌和大多数真菌产生的。细菌分泌几丁质酶主要用于真菌细胞壁的降解和重组,但在大多数产几丁质酶的真菌中,此酶主要用于真菌细胞壁的成型过程。只有在一些特定的寄生霉菌中,如Trichodermaharzianum、APhanocladium album和Gliocladium vixens中,胞外几丁质酶和β-葡聚糖酶用来附着和降解目的菌丝。这些抗真菌的几丁质酶与植物几丁质酶相似,多为内几丁质酶。由于肽聚糖和甲壳质的糖骨架具有相似的结构,因此,一些几丁质酶也具有溶菌酶活性。 1.2.2 β-葡聚糖酶 β-葡聚糖酶(β-glucanases;EC 3.2.1.39)具有抗真菌作用主要是因为它能水解β(1→3)糖苷键。研究表明:β(1→3)葡聚糖酶对几丁质降解真菌细胞壁具有显著的协同作用。如将纯化的几丁质酶和β-葡聚糖酶合用,抗灰色葡萄孢(Botrytis cinera)的作用提高了10倍。内葡聚糖酶与外葡聚糖酶、不同内葡聚糖酶间也具有协同抗真菌作用。因为许多植物性食品中含有β-葡聚糖成分,它对维持产品的组织性、黏度和外观都有重要作用,将β-葡聚糖酶加入这类食品,可能会引起不良影响。真菌的细胞壁主要组分为几丁质和β-葡聚糖,但一些真菌和大多数酵母细胞壁含有其他类型的多糖(甘露聚糖、α-葡聚糖和纤维素),因此,甘露聚糖酶、α-葡聚糖酶也可作为抗真菌的酶类应用于食品工业。 2 溶菌酶的结构

溶菌酶的提纯结晶和活力测定.实验报告doc

溶菌酶的提纯结晶和活力测定 姓名:学号: 班级:指导老师: 一、实验前言 1.实验背景 溶菌酶(lysozyme)是一种能够水解细胞壁成分中N- 乙酰胞壁酸与N- 乙酰葡萄糖胺之间的β- 1,4 糖苷键的酶,被广泛应用于医药、食品工业、生物工程等方面,现从鸡蛋蛋清中提取溶菌酶已达到工业化生产水平。蛋清中的溶菌酶含量越高,酶活力越强,越有利于鸡蛋的保存,因此测定鸡蛋蛋清中的溶菌酶对我国溶菌酶生产、禽蛋产品加工有重要的指导作用,也为蛋品质评定提供了一个重要参数。 活力测定的基本原理是用一种细菌悬液作为基质,加入待测标本后保持一定时间,如样 品中含有溶菌酶则细菌被溶解,即其细胞壁不溶性多糖变成可溶性粘肤。测定方法很多:如平皿测定法、光电比浊法、粘度测定法、分解产物测定法(因为底物往往过量,通常不用底物)、化学滴定法、分光光度法及同位素技术,其中以平皿测定法和比浊法最为常用。 溶菌酶分布很广,而且不是单独存在的,往往是和许多因子共同作用、相互协调。同时,可以直接或间接地通过酶的分解产物而起作用。在这里许多问题正处于摸索阶段,有些方面通过特定的实验,预测其应用。而这些特定的实验往往对某种或某一个动物而言,还有其局限性。未定论的问题很多,许多应用尚未大面积使于临床,但是溶菌酶必将越来越引起人们的重视,特别是其广布于人体,在医药、科研方面的作用尤为重要. (l)抗菌 溶菌酶不但作用于革兰氏阳性细菌,而且它作为一种非特异性免疫,即对所有的病原微 生物都有一定程度的抵抗力,没有特殊的选择性,对身体的自然防御起很大作用.如鼻粘膜,口

腔中含有一些溶菌酶,临床用于治疗副鼻窦炎和龋齿;眼泪和白血球中溶菌酶含量最高,因此在干燥综合症诊断上,认为泪液溶菌酶值的下降可以提供敏感可靠的指标,并能反映泪腺受损程度;在白血病患者的尿中,含有大量溶菌酶,临床上可有效地诊断白血病。白血球中的溶菌酶在脱颗粒过程中被排列到噬菌体内,噬菌体感染宿主(抗原)后,诱导产生溶菌酶(抗体),这种溶菌酶是噬菌体染色体组,通过细胞壁分解酶和膜多糖分解酶的作用而表现,其主要功能一是使噬菌体产生吸附作用,二是使噬菌体向宿主菌体内注入DNA,溶菌酶在噬菌体侵入宿主菌细胞和溶菌的整个过程中都起着重要作用,此溶菌酶(抗体)和补体共同作用,使某些微生物敏感,因此,溶菌酶可能和噬菌体内其他抗微生物系统有协同作用,主要作用是消化细菌,而不是杀死细菌。普遍认为,这种白细胞具有抗肿瘤作用和治疗由细菌、病毒引起的炎症。以上这种抗原—抗体反应也可以在体外进行溶菌反应,即血清学反应,可解析细菌表层结构和作为研究分子生物学的材料,通过它寻找新酶类,也可用做病毒性传染病的诊断。 (2)抗病毒 一方面如流行感冒和腺病毒,可能它的蛋白质外壳具有溶菌酶的作用点,现已证明,腺病毒在人体内引起呼吸道炎症,在实验动物中引起肿瘤。因此,用溶菌酶可以治疗呼吸道疾患,抗动物肿瘤。另一方面溶菌酶作用的细菌产物可诱发产生干扰素,而干扰素主要功能是抗病毒。 (3)提高抗菌素疗效 因为抗菌素是微生物合成的代谢产物,通过抑制细菌细胞壁肤聚糖及核酸和蛋白质的合成,影响细胞膜,因而具有抑制或致死其他微生物的作用。而溶菌酶也作用于细胞膜,与抗菌素合用可提高疗效。 (4)组织修复

植酸酶及其生产概述

植酸酶及其生产概述 李大刚 1 张秉胜 2 张广民 1 ( 1 东北农业大学动物营养研究所哈尔滨 150030 2 大连翔大科技股份有限公司 116620 ) 磷在畜禽营养中发挥着重要的作用,是机体重要的结构成分,同时参与机体诸多重要的生理、生化过程。例如,在能量代谢、碳水化合物代谢、氨基酸和脂肪代谢、神经组织代谢、骨骼生长以及脂肪和其他脂类运输方面起着重要作用。因此,如果日粮中磷缺乏或不足,会引起生长缓慢或停滞,出现骨病,甚至死亡等严重后果。饲料原料中含有大量的磷,但一般谷物中60%以上的磷以植酸磷形式存在而不能为单胃动物所利用。而植酸酶是一类催化植酸(肌醇六磷酸酯)及植酸盐水解成无机磷和肌醇的酶的总称。植酸酶不但可以使单胃动物利用有机磷,还可减少磷的排出,减轻环境污染,所以植酸酶引起众多科研工作者的广泛关注。 1 植酸酶的应用 猪、禽等单胃动物饲料的主要原料是玉米、豆粕、糠麸、棉籽粕、菜籽粕等,它们所含的磷大部分以植酸磷形式存在,占总磷的60%~90%。但是单胃动物的饲料中,植酸具有强烈的抗营养作用,其原因是:(1)单胃动物缺乏分解植酸的酶类,因而无法利用植酸中的磷。(2)由于植酸上的磷酸基团呈负电性,它与一些阳离子如Ca 2+ 、Mg 2+ 、Zn 2+ 、Cu 2+ 、Mn 2+ 、 Fe 2+ 和K +等有很强的螯合能力,形成不溶性盐,从而影响畜禽对这些矿物元素的吸收和利用,因而降低了这些矿质元素的生物效价。(3)植酸上的磷酸基团还可以与饲料中的蛋白质、氨基酸、淀粉和脂质等物质上的阳离子基团结合,使其溶解性降低,从而影响畜禽对这些营养物质的消化率,降低蛋白质的生物有效性。(4)植酸还可以与动物体内的蛋白质,如淀粉酶,胃蛋白酶,胰蛋白酶和酸性磷酸酶等结合,降低这些酶的活性,使整个日粮的养分利用率降低。(5)植酸对维生素也存在不利影响。因此动物采食高植酸含量的饲料后常表现厌食、消瘦、繁殖机能衰退等。 表1 某些饲料原料中磷的含量及利用率(NRC,1994) 植酸酶用于饲料,可以提高饲料中植酸磷的利用率,减少磷的排放量,降低环境中磷的污染,并能解除植酸抗营养作用,从而提高饲料消化利用率。表1列举了几种常用动物饲料原料中磷的存在形式和畜禽利用情况,从表中可以看出这些原料中磷的利用率比较低。如果植酸磷能够被充分利用,则日粮中的磷含量已基本可满足畜禽营养需要,可较少甚至不用再额外添加无机磷。 2 植酸酶的分子生物学特性 植酸酶属于磷酸单酯水解酶,是磷酶的一种特殊类型。植酸酶广泛分布于自然界,存在于微

溶菌酶结晶实验的步骤及其注意事项 (1)

溶菌酶晶体培养实验 获得质量较好的晶体是开展X-射线衍射技术的前提。溶菌酶结晶实验就是要让学生亲自动手实验来获得实实在在的晶体。溶菌酶易于结晶,结晶条件简单,通常被选来作为蛋白晶体入门教学。 原理和方法: 溶菌酶(lysozyme)是由129个氨基酸组成的,分子量为14307Da的较稳定的无毒的碱性球蛋白。 蛋白质结晶通常是利用气相扩散(Vapor Diffusion)的原理来完成:也就是将含有高浓度的蛋白质(5-50mg/ml)溶液加入合适的溶剂,慢慢降低蛋白质的溶解度,使其接近自发性的沉淀状态时,蛋白质分子将整齐的堆积形成晶体,包含纯化蛋白、缓冲液和沉淀剂的小液滴,与大样品池中相似缓冲液和更高浓度的沉淀剂之间形成平衡。起初,蛋白质溶液中的小液滴包含了低浓度的沉淀剂,随着水分的蒸发并转移到大样品池中,沉淀剂浓度也增大到最合适蛋白结晶的水平。当系统处于平衡状态,这种最佳条件就继续维持直至晶体产生。 利用气相扩散原理获得晶体的实验操作方法有两种,分别是:悬滴法和座滴法。此次实验采用的是悬滴法。 下面是模式图:

这次实验所用的为5mg/ml,10mg/ml,20mg/m,30mg/ml的溶菌酶溶液(已经在实验前准备好了)。 池液:A液0%(M/V)的NaCl溶液,pH=4.8 B液30%(M/V)的NaCl溶液,pH=4.8 实验步骤: 1.将16孔板向下轻磕几下,将孔内可能存在的杂物磕出来,并用洗耳球吹几次。 2.向针管中装填真空脂。 3.用针管在16孔板的边缘涂真空脂,确保均匀。 4.向16孔板中的每个孔按照一定的比例加入A液和B液,总体积为300微升, 接着用移液枪将池液吹打混合均和。下附参考的池液混合比例表(也可自行安 排混合比例,标准的生长溶菌酶的条件:20mg/ml的溶菌酶溶液和10%的 NaCl溶液。过高浓度可能会发生沉降,过低浓度可能会生长的晶体太小,但 是作为探究性试验,可以在标准的附近拉一下梯度。) 5.取出一个硅化好的玻璃片,确保光滑面朝上,用洗耳球吹干净其表面。

酶工程的发展

酶工程的发展 酶工程,从定义上来说,是酶制剂在工业上的大规模应用,主要由酶的生产、酶的分离纯化、酶的固定化和生物反应器四个部分组成。简而言之,酶工程就是将酶或者微生物细胞,动植物细胞,细胞器等在一定的生物反应装置中,利用酶所具有的生物催化功能,借助工程手段将相应的原料转化成有用物质并应用于社会生活的一门科学技术。它包括酶制剂的制备,酶的固定化,酶的修饰与改造及酶的反应器等方面内容。 酶工程的前景 酶因其反应的专一性,高效性和温和性的特点,已和生物工程,信息科学和材料科学构成了当今的三大前沿科学。而作为生物工程的重要组成部分,将在未来的发展中,在世界科技和经济发展中起着主导和支柱作用。而工业用酶日益广泛地应用于化学,医药,纺织,农业,日化,食品,能源,化妆品以及环保等行业。据报道,到2003年,欧洲工业用酶的市场增加至9亿美元,年增长率达百分之十;而2000年的中国,酶制剂总产量达272吨,同比增长8.8%,可谓发展迅速,前景十分广阔。 酶工程的发展 酶工程的发展,是一部科学的成长史。在二次世界大战后,酶工程发展成为新的工业领域—酶工程工业。酶工程的发展历史从那时算起, 至今已经三十多个年头了。六十年代以后, 由于固定化酶、固定化细胞及固定化活细胞的崛起, 使酶制剂的应用技术面貌一新。七十年代以后,伴随着第二代酶——固定化酶及其相关技术的产生,酶工程才算真正登上了历史舞台。固定化酶正日益成为工业生产的主力军,在化工医药、轻工食品、环境保护等领域发挥着巨大的作用。几十年来酶制剂的品种和应用不断扩大。不仅如此,还产生了威力更大的第三代酶,它是包括辅助因子再生系统在内的固定化多酶系统,它正在成为酶工程应用的主角。近年来, 国际上酶工程技术发展迅速, 硕果累累,主要有基因工程、蛋白质工程、

溢多利:国内饲用酶制剂行业先行者

? 投资要点: 公司为饲用酶制剂领导企业 溢多利公司是我国第一家饲用酶制剂生产企业。自 1991年成立以 来,一直从事饲用酶制剂的研发、生产和销售,目前是国内最大的饲用酶制剂生产商。公司核心产品为饲用酶制剂,包括饲用复合酶、饲用植酸酶和饲用木聚糖酶等。 收入增速较快、盈利能力强 近三年公司的收入和净利润实现快速增长,其中2011和2012年度的营业收入分别增长24.71%和24.76%,归属于母公司股东的净利润分别增长53.19%和26.72%。13年上半年,营业收入和归属于母公司股东的净利润较上年同期分别增长8.54%和15.92%。 募投项目提高公司市场竞争力 通过本次募投,公司综合竞争实力和盈利能力将得到大幅提升。内蒙古二期工程项目和珠海基地生产基地技改项目,产能瓶颈得到解决,尤其是复合酶微丸、液体剂型的产能得到了较大提升,市场占有率扩大,盈利能力不断增强;研发中心扩建项目、营销服务网络建设项目是保证公司未来发展、产能消化的有益举措,提升公司的盈利能力,并将产生较好的经济效益和社会效益。 盈利预测 公司在未来几年将保持增长势头,初步预计2013-2014年归于母公司的净利润将实现年递增10.76%和20.11%,相应的稀释后每股收益为1.17元和1.40元。 定价结论 考虑到需募投资金16,647万元,给予公司13年净利润20-25倍估值,对应的价格区间为26.81元-34.58元,发行新股数量为551.17万股,13、14年摊薄后EPS 为1.36元、1.64元。我们建议按照10.00%的折价率询价,询价区间为24.13-31.12元。 ? 数据预测与估值: 营业收入 27,045.45 33,742.57 35,310.53 40,398.28 58,852.48 年增长率 24.71% 24.76% 4.65% 14.41% 4 5.68% 归属于母公司的净利润 4,317.62 5,471.46 6,060.28 7,279.29 10,488.04 年增长率(%) 53.19% 26.72% 10.76% 20.11% 44.08% (发行后摊薄)每股收益(元) 0.97 1.23 1.36 1.64 2.36 数据来源:公司招股意向书;上海证券研究所整理;按发行551.17万股摊薄 日期:2014年1月14日 行业:食品制造业 滕文飞 021-********-1969 tengwenfei@https://www.doczj.com/doc/4e9847960.html, 执业证书编号:S0870510120025 上市合理定价 RMB 26.81~34.58元 基本数据(IPO ) 发行数量不超过(百万股) 13.00 发行后总股本(百万股) 52.00 发行数量占发行后总股本 25.00% 发行方式 网上定价发行 网下询价配售 保荐机构 民生证券 主要股东(IPO 前) 金大地投资 65.00% 态生源 10.00% 王世忱 10.00% 收入结构(13H1) 饲用酶制剂 93.78% 其他饲料添加剂 5.70% 报告编号: TWF14-NSP02 首次报告日期: 国内饲用酶制剂行业先行者 溢多利(300381.SZ ) 证券研究报告/公司研究/新股定价

工程菌人溶菌酶的纯化和性质_叶军

* “八五”国家科技攻关项目(No .85-722-05-02) 收稿日期:1997-07-18,修回日期:1997-12-25 工程菌人溶菌酶的纯化和性质* 叶 军 钱世钧 (中国科学院微生物研究所 北京 100080) 提 要 将人溶菌酶工程菌株在发酵培养、菌体经超声破碎、变性和复性后所得的粗酶液经Ex press -Ion S 阳离子交换柱层析,得到电泳纯的酶,比活达到48000u /mg 。此酶的最适pH 为6.5;等电点为8.91;对溶壁微球菌的米氏常数K m =0.0311mg /m L ;60℃保温30min ,酶活力剩余48.3%。N 末端氨基酸序列除了第一个M et ,其余4个与预期相符。一些重金属离子对酶的活性影响不尽相同,在0.01mol /L 的浓度下Cu 2+可使该酶完全失活。关键词 重组人溶菌酶,纯化,性质 分类号 Q55 文献标识码A 文章编号 0001-6209(1999)01-0055-59 天然人溶菌酶主要存在于人奶、人胎盘和唾液等中,不易提取,且价格昂贵。而通过人工合成基因,用微生物发酵法生产人溶菌酶将为其在食品、医药等方面的广泛应用提供 有利条件。本实验室已经成功地合成了人溶菌酶基因并构建重组质粒[1~2],在E .coli 中得到了高水平表达[3]。本文在此基础上对该酶进行了纯化,得到SDS -PAGE 纯的酶,并对其性质作了一些研究。 1 材料和方法 1.1 菌种 工程菌株JBP -H LY ,由本课题组构建。1.2 仪器和试剂 Ex press -Ion S 阳离子交换剂、卵清溶菌酶、溶壁微球菌(M icrococcus lysodeikticus )均为Sigma 公司产品。测定等电点的标准蛋白及电泳装置为Pharmacia 公司产品,Ampho -line 为LKB 公司产品。其它试剂均为国产分析纯试剂。1.3 菌体制备、粗酶液的提取及酶活性的测定方法见参考文献[3~4]。1.4 人溶菌酶的纯化 将粗酶液经冷冻干燥浓缩,对0.01moL /L ,pH5.0的柠檬酸-柠檬酸钠缓冲液透析,再通过经上述缓冲液平衡的Express -Ion S 阳离子交换柱,用0~1moL /L NaCl 进行梯度洗脱。收集活性部分的下柱液,用聚乙二醇反透析浓缩,利用SDS -PAGE 检查纯度。1.5 蛋白含量和等电点测定 蛋白含量用Folin -phenol 法测定[5]。等电点测定参照文献[6]进行。 39卷 1期1999年2月微生物学报Acta Microbiologica Sinica Vol .39February No .1 1999 DOI :10.13343/j .cn ki .wsxb .1999.01.009

相关主题
文本预览
相关文档 最新文档