当前位置:文档之家› 冷却水系统设计选用及施工说明

冷却水系统设计选用及施工说明

冷却水系统设计选用及施工说明
冷却水系统设计选用及施工说明

冷却水系统设计选用及施工说明

1空调冷却水系统的定义与分类

1.1空调冷却水系统的定义:吸收空调制冷设备冷凝器排热,并将此热量排入大气,低温水体,低温土壤,传递给显热回收装置,传递给水——水热泵机组或是几种状态兼而有之的循环水系统.

1.2空调冷却水系统分类

1.2.1按照流经空调制冷设备冷凝器的冷却水是否与大气接触分为开式冷却水系统

和闭式冷却水系统.

1.2.2按照空调制冷设备冷凝器排热渠道分为单一型系统(如仅通过冷却塔向大气排热)和耦合型系统(如设有冷却塔的井水抽灌型与埋管型地源热泵系统)

1.2.3按照冷却水低位热能是否利用分为单纯冷却型(冷凝热不利用)和热回收型.1.2,4冬季供冷型,冬季不经空调制冷设备由冷却塔直接制备空调冷水.

2空调冷却水系统设计原则

2.1系统形式的确定

2.1.1除非水质要求严格,冷却水宜采用开式系统.

2.1.2对井水抽灌型地源热泵空调系统.当按设计制热工况负荷确定的水浑流量不能满足设计制冷工况的排热要求时,经技术经济分析可考虑采用耦合式冷却水系统.2.,.3对地埋管地源热泵空调系统,属于下列条件之一时,应采用耦合式冷却水系统:1)当按制热设计工况负荷确定的地埋管换热器热交换能力不能

满足制冷设计工况的排热要求时;

2)空调设备全年向土壤的总排热量大于总取热量25%时.

2.1.4空调制冷设备制冷工况运行时间长,且有集中生活热水需要,可采用热回收空调冷却水系统,常用形式有两种:一种是空调制冷设备设有专门用于热回收的冷凝器,用于自来水预热;一种是设有热泵热水机组的空调冷却水系统.

2.1.5空调系统冬季有供冷需求,当地冬季气象参数能使冷却塔出水温度满足冬季空调系统要求,且持续时间足够长时,宜考虑采用能实现冷却塔冬季直接供冷的冷却水系统形式.

2.2系统的设计要点

2.2.1空调冷却水系统由空调制冷设备水冷式冷凝器,循环水泵、冷却塔,除污器和水处理装置等组成.通常无需设置冷却水箱或水池.

2.2.2提倡实现冷却塔风机的集中控制.以在系统部分负荷运行时,能充分利用冷却塔组的自然冷却能力,减少冷却塔风机的运行时间.降低能耗.

2.2.3通过共用集管连接的冷却塔.其冷却水管道系统的设计应实现各塔间的流量平衡.并使接水盘水位相同。

2,2.4通过共用集管连接的多台空调制冷设备与多合冷却塔组成的冷却水系统的设

计应采取措施,避免系统在“减”合数运行时,冷却水在冷却塔与冷凝器处的‘旁流’:即冷却水流过风机不工作的冷却塔和停止工作的冷机冷凝器.

2.2.5冷却塔的设置位置,应保证:

1)其接水盘的最低水位成为冷却水系统的最高点;

2)额定流量运行时冷却水循环泵进口处不应产生负压;

2.2.6冷却水循环泵相对于冷凝器的安装位置宜根据空调制冷设备的冷凝器额定承

压能力确定.

2,2.7冷却水系统的温差应与空调制冷设备冷凝器的工况要求相适

应.当采用大温差参数时,必须符合空调制冷设备的技术要求,进行冷却塔的性能校核,并应综合空调制冷设备能耗与冷却水系统进行技术经济评价.

2.2.8电动空调制冷设备的冷却水系统宜设计为定流量运行.吸收式空调制冷设备的冷却水系统可设计为变流量运行.变流量冷却水系统的交流量范围应与空调制冷设备的技术要求相适应,并应采取保证机组安全运行的下限流量控制措施.

2.2.9交流量冷却水系统应采用循环水泵变频调速,控制逻辑宜为:保证水冷冷凝导合理进水温度的定温差控制.

2.2.10 热回收型空调冷却水系统,必须设有能实现功能转换与确保排除全部冷凝热的控制装置。

3 冷却塔

3.1 冷却塔的类型和性能标准。空调制冷较多采用抽风式(机械抽风、喷射抽风)低温型冷却塔。冷却塔分类见下表:

3.2.1机械通风开式冷却塔包括抽吸型与鼓风型两种,通过风机排出水蒸气降低冷却水温度来排除空调系统及制冷压缩机做功转换的热量.系统循环冷却水与从直接触,适用于多数民用建筑中央空调系统,但不适用于水环热泵等水冷分散型空调系统(如用于此类空调系统时应与水——水换热器配合使用).与闭式冷却塔相比,冷却效率高,冷幅较小,有利于冷水机组COP值的提高.冷却水与大气直接接触.需设置冷却水水质处理系统.

3.2.2鼓风型冷却塔由于采用离心风机.压头大但嗓音小,除风机进口和空气出口外,其他部位均封闭可以接风管.适用于设在室内、半室内、下沉地面等较恶劣的环境.且填料处于半封闭状态,有利于冬季防冻.

3.2.3喷射式冷却塔是开式冷却塔的另一种形式,利用冷却水通过布水器喷嘴产生的喷射诱导通风作用替代冷却塔风机.排走水蒸气,降低水温.此种冷却塔亦称无风机(无动力)冷却塔,实际上并非无动力,只是排走冷却水水蒸气的动力不是冷却塔风机,而是冷却水循环泵的额外扬程·相对于机械通风冷却塔,此种冷却塔噪声较低.无运转部件,较适合对嗓声环境要求严格的场合·除前述特征外,此种冷却塔的特征与机械通风开式冷却塔相同.

3.2.4闭式冷却塔相当于将开式机械通风冷却塔与换热器组合在一起,通常外形与开式冷却塔相似.由于实现了冷却水的闭式循环,冷却水水质易于控制.常用于对冷却水水质要求较高的工艺生产过程.

在空调系统中适用于水环热泵等水冷分散型空调水系统,可实现冬季运行.相对于开式冷却塔加换热器的闭式冷却水系统.冷却效率更高,但闭式冷却塔的造价较高.3.3空调用冷却塔的性能标准.冷却塔标准设计工况为:进水温度37℃,出水温度32℃,湿球温度28℃,设计温差5℃.此性能标准不应与制冷机标准工况混淆.3.4冷却塔的选用原则与选型计算

3.4.1选用原到二

1)应优先选用无布水压力要求的节能型冷却塔.

2)安装与景观条件允许时,宜优先采用逆流型冷却塔.

3)应根据建筑空调制冷设备类型与环境要求确定冷却塔的具体

形式,并宜优先选用机械通风开式冷却塔.

4)冷却塔的出水温度,进出口水温差和循环水量.在夏季空调

室外计算湿球温度条件下.应满足空调制冷设备的工况要求.

5)多台冷却塔通过共用集管连接时,其合数宜与冷却水泵台数

对应.

6)供暖室外计算温度在0℃以下的地区,冬季运行的冷却塔应采取防冻措施,其原则如下:

①宜单独设置,且应采用自身有利于防冻的冷却塔类型.

②设在室外的补水管、冷却水供回水管应保温并采取伴热措施,

存水的冷却塔底盘也应设置伴热设施.

③设置能通过全部或部分循环水量的旁通水管.

7)冷却塔的制作材料应符合防火要求.其燃烧性能不应低于B1级.

3.4.2选型步骤

1)确定气象参教:

①基本气象参数应包括空气干球温度T d(℃)、空气湿球温度Tw(℃),大气压力p(k Pa),夏季主导风向.风速或风压,冬季最低气温等.

②冷却塔设计计算所采用的空气干、湿球温度,应与空调系统的夏季室外空气计算干、湿球温度相吻合,并应采用历年平均不保证50h的温度值.

③在选用气象参数时,应考虑因冷却塔排出的湿热空气回流和干扰对冷却效果的影响,必要时应对干、湿球温度进行附加.如:多台冷却塔布置时,取当地空调计算湿球温度值附加0.1℃~1.3℃作为冷却塔选型用湿球温度.

④冷却塔选型的设计风压值应大于冷却塔安装场所设计风压值.

2)确定冷却水参数:查阅空调制冷设备样本,确定设计工况时冷凝器的进水温度与流量,进而确定冷却水系统的温度和温差.

3)确定冷却塔设计水量G:

G=1.13600Q

ρC?t

=

0.953Q

?t

(

m3

h

)

式中1.1——余量系数

Q——空调制冷设备冷凝热(kW),Q=空调制冷设备制冷量+压缩机输入功率;ρ——35℃时水的密度(993.96kg/m3);

C——水的定压比热(4.1784Kj/kg?k)

?t——冷却水系统温差(℃)。

4)确定冷却塔类型.

5)选型:通常有两种方法:一是将2),3)、4)步骤中得到的有关参教与希望的冷却塔形式提供给冷却塔制造商,由其根据产品选型软件选择冷却塔规格,并提供性能曲线.二是以3)步骤计算的设计水量及其他参教为依据在产品样本上初选冷却塔规格,根据样本性能曲线校核所选冷却塔规格是否能满足冷却水的参数要求;如不满足,则应进行规格修正,通常经过规格修正的冷却塔名义水量会大于设计水量.6)当所选择的冷却塔用于冬季直接供冷时.应根据工程所在地冬季设计工况点气象参数,对冷却塔冬季能实现的冷却水出水温度值及其持续时问进行分析校核,并应综合考虑以下因素确定冷却塔供冷的各项参教和设备规格:

①末端盘管的供冷能力,应在所能获得的空调冷水的最高计算供水温度和供回水温差条件下,满足冬季冷负荷需求;宜尽可能提高计算供水温度,利于廷长冷却塔供冷时间.

②冷却塔的最高计算供冷水温、温差和冬季供冷冷却塔的使用台数,应根据冬季冷负荷需求、空调冷水的计算温度、冷却塔在冬季室外气象参数下的冷却能力(由生产厂提供或参考有关资料),换热器的换热温差等因素,经计算确定.

③开式冷却塔应设置板式换热器.可考虑1℃~2℃换热温差,实现冷却塔间接供冷;闭式冷却塔可直接供冷水.

④冬季空调冷水的循环泵和设置板式换热器的冷却水循环泵的规格,台数,应与冬季供冷工况相匹配·

3.5冷却塔的布置原则

3,5.1气流应通畅,湿热空气回流影响小,且应布置在建筑物的最小频率风向的上风侧.

3.5.2冷却塔不应布置在热源,废气和烟气的排放口附近,不宜布置在高大建筑物中间的狭长地带上.

3.5.3冷却塔宜单排布置,当需要多排布置时,逆流塔塔排之间的距离应符合下列要求:

1)长轴位于同一直线上的相邻塔排,净距不小于4m.

2)长轴不在同一直线上.相互平行布置的峪排,净距不小于塔

的进风口高度的4倍,每排的长度与宽度之比不宜大于5:1.

3.5.4单侧进风塔的进风面宜面向夏季主导风向,双侧进风塔的进风面宜平行夏季主导风向.

3.5.5冷却塔进风侧与建筑物的距离宜大于塔进风口高度的2倍;冷却塔四周除满足通风要求和管道安装位置外,还应留有检修通道,通道净距不宜小于1.0m·

3.5.6冷却塔与相邻建筑物面向冷却塔的有窗房间之间的距离不宜小于3.0m.不但要满足塔的通风要求,还应考虑噪声、漂水等对建筑物的影响.

3.5.7间歇运行的开式冷却水系统,冷却塔底盘或集水箱的有效集水容积,应大于湿润冷却塔填料等部件的所需水量与停泵时靠重力流入的管道水容量之和.

3.5.8冷却水集水箱应尽量靠近冷却塔设置.

3.5,9冷却塔应设在专用基础上,不得直接设置在楼板或屋面上.

3.5.10冷却塔安装环境对嗓音控侧要求较高时,可采取下列措施:

l)冷却塔的位置远离对噪声敏感的区域;

2)采用低噪声型或超低噪声型冷却塔;

3)进水管、出水管、补水管上设置隔振防噪装置;

4)冷却塔设导风罩,将冷却塔出风导向远离建筑物的方向;

5)建筑上安装隔声吸音屏障;

6)冷却塔基础设隔振装置.

3.6冷却塔管道设计

3.6.,冷却塔循环管道的流速.宜采用下列数据;

塔的平衡连通管.

3.7对进口水压有要求的多台开式冷却塔通过共用集管连接,应在每合冷却塔的劫管上设开关型电动阀;无集水箱或连通管、连通水槽时,还宜在每台冷却塔的出水管上设置开关型电动两通阀.电动阀应与对应的冷却水泵联锁.

3.8不同规格型号的冷却塔不宜通过共用集管连接.

4冷却水循环泵

4.1除采用分散设里的水冷整体式空气调节器或小型户式冷水机组等,可以合用冷却水系统外,冷却水泵合数和流量应与冷水机组相对应;冷却水泵的扬程应能满足冷却塔的进水压力要求.

4.2冷却水循环泵的流量,应按空调制冷设备产品技术资料提供的数据确定.冷却水量可按下式计算:

G=0.86Q/△t.

5冷却水系统补水和水处理

5.1室外空气温度低于0℃时使用的冷却塔,宜采用自来水直接向冷却塔补水,但补水管应设置伴热装置.采用自来水直接补水,但室外空气温度低于0℃时不使用的冷却塔,自来水管室外部分冬季应能泄空.

5.2冷却水补水管管径应按补水量q bc确定,冷却水补水量为冷却水

5.3为防止冷却水泵启动时缺水空蚀及停泵时的溢水浪费,应采取以下措施:

5.3.1冷却塔底盘存水容积应能够保证水泵吸水口所需的最小淹没深度,当吸水管内流速小于等于0.6m/s时,最小淹没深度不应小于0.3m;当吸水管内流速为1.2m/s 时,最小淹没深度不应小于0.6m;

5.3.2冷却水箱或冷却塔底盘存水量,不应小于满足湿润冷却塔填料等部件所需水量与靠重力可自流到冷却水箱或冷却塔底盘的管道水量之和.其中湿润冷却塔填料部件水量由厂家提供或按冷却塔的小时循环水量进行枯算,逆流塔为循环水量的

1.2%.横流塔为1.5%.

5.3.3冬季运行的制冷系统宜设置冷却水箱.

5.4在设置集水箱且冬季不需防冻的条件下,当管径较大、管段较长时,应采取在停机时使管道内存水的措施,以减少冷却水箱容积.

5.5冷却水系统应配置适当的水处理设施.经过处理的水应符合《工业循环冷却水处理设计规范》GB50050—2007关于冷却水水质的规定.

5.5.1为了控制循环冷却水系统内由水质引起的结垢、污垢、菌藻和腐蚀,保证制冷机组的换热效率和使用年限,应对循环冷却水进行水质处理.

5.5.2循环冷却水水质应满足被冷却设备的水质要求,

5.5.3循环冷却水的浓缩倍数不宜小于2.5.对补充水水质属严重腐蚀性时,浓缩倍数可取高些.但不宜大于4.

5.5.4循环冷却水处理方法有化学药剂法和物理水处理法两种,应结合水质条件、循环水量大小和浓缩倍数等因素,合理选择处理方法及设备.

6空调冷却水系统自动控制

6,1冷却水系统的基本监测内容包括:

6.1.1冷却水泵的启停状态;

6.1.2冷却塔风机的启停状态;

6.1.3冷却水进/出水温度;

6,1,4冷却水水质.

6.2冷却水系统的基本控制要求包括:

6.2.1冷却水最低温度度控制:冷却水最低温度应满足制冷机的技术要求.通常电制冷机要求冷却水最低进水温度大于等于15.5℃;吸收式冷水机组大于等于22℃;

6.2,2冷却塔风机的运行台数控制或风机调速控制;

6.2.3制冷机与冷却塔供冷的模式转换控制;

6.2.4冷却塔直接供冷水时的最低供水温度控制与防冻控制;

6.2,5冷却水变流量运行控制;

6.2.6基于保证冷却水水质的排污控制.

6.3冷却水温度控制.可采用以下方法:

6.3.1根据设定的冷却水出水温度控制冷却塔风机.包括冷却塔风机运行台数控制及调速控制,调速控制方式宜为分级调速.

6.3.2全年运行的制冷系统,当采用控制冷却塔风机不能满足最低进水温度要求时.可辅助采用调节冷却塔进出水混合比的水温控制方式.

6.3.3租户冷却水系统用户侧宜采用调节一次侧流量的水温控制方式.循环水泵宜采用变频变流量运行方式.但此时末端机组水路应设与机组联锁的开关型电动两通阀.6.4当根据本说明2.2.8的原则确定采用变流量冷却水系统时,冷却水泵变流量控制应符合以下要求:

6.4.1当冷凝器进水温度小于等于设计值,出水温度小于等于冷凝器出水温度上限值时,可使冷却水流引低于额定流量;

6.4.2冷却水泵宜采用变频调速的变流量运行方式;

6.4.3冷却水泵变流量运行时的控制对象为冷却水温度,即采用恒定冷却水温差为设计温差的水泵变频控制.

6.5冷却水系统变流量运行时,应根据冷却水系统综合电耗(冷却塔风机与冷却水循环泵)及冷却水温度,流量对空调制冷设备COP值的影响等因素确定冷却塔风机控制与水泵变频调速的优先原则.

6.6冷却水系统设备的启停顺序为:

6.6.1启动:冷却塔进/出水电动阀→冷却水泵→视冷却水回水温度启动(不启动)冷却塔风机.

6.6.2关闭:冷却塔风机→冷却水泵→冷却塔进/出水电动阀.

6.7冷却水系统温度传感界的测量范围宜为0℃~50℃;冷却水系统压力传感器的测量范围宜为系统最大工作压力的1.5倍.

7空调冷却水系统的安装

7.1安装前的准备工作

安装工作开始前,须具备下列资科:冷却塔,循环水的产品出厂合格证及使用说明书,辅助设备产品出厂合格证.阀门和仪表产品出厂合格证.

7.2设备安装

7.2.1冷却塔安装:

l)冷却塔的安装要求应符合《通风与空调工程施工质量验收规范》GB50243—2002和《建筑节能工程施工质量验收规范》GB50411—2007

2)安装冷却塔时其纵向和横向的不水平度不应超过0.5‰。

3)冷却塔基础,特别是安装在屋面上的冷却塔基础应结合屋面结构进行施工,并应做好防水.浇制时应与实物或安装资料核对地脚螺栓孔位里及螺栓长度,基础面应为麻面.

4)冷却塔组装就位前,应将基础地脚螺栓孔清除干净.螺孔灌浆用水泥砂浆等级应比基础的混凝土等级高一级.地脚螺栓的螺母应在固定地脚螺栓的砂浆达到设计强度75%以后方允许拧紧.

5)冷却塔应按相关规范要求设置防雷装置,并在安装过程中采取严格的防火措施.6)冷却塔上电气设备的外露可导电部分应可靠接地·

7.2,2循环水泵安装:

1)循环水泵安装要求应符合《压缩机、风机、泵安装工程施工及验收规范》GB50275—98.

2)整体安装的水泵:其内部零件不可拆洗,如超过保证期或有明显缺陷应进行拆洗.3)安装循环水泵时其纵向与横向的不水平度不应超过2‰

4)水泵基础应采用C20或C25素混凝土现场浇制,浇制前应与实物核对地脚螺孔位置及螺栓长度.基础初次浇灌高度,同图中所注尺寸.为使灌浆层紧密粘合在基础

面上,其基础面应为麻面,并保持清洁与湿润.灌浆应一次完成,灌浆和养护期间的室内工作温度不宜低于5℃,否则需采取措施,如加入防冻剂等.

7.2.3冷却水系统管道安装:

1)冷却水系统管材选用焊接钢管或无缝钢管,连接方式为焊接或法兰连接,

2)冷却水系统阀门:设计无明确要求且主要用于关断目的.当阀径小于DN100。时,采用截止阀或闸阀;当阀径大于等于DN100时.宜采用蝶阀.阀门用于调节目的.当阀径小于等于DN150时,采用调节阀;当阀径大于DN150。时.可采用蝶阀.有关阀门的材质和安装应符合设计要求,且应符合以下规定:

①工作压力大于1.0MPa及在主干管上起到切断作用的阀门,应进行强度和严密性试验.

②强度试验压力为公称压力的1.5倍,持续时间不小于5min.严密性试验压力为公称压力的1.1倍,持续时间应符合国家标准GB50243—2002表9.2.4的要求.

7.3管道安装前必须清除内部污垢和杂物.安装中断时敞口处应临时封堵,管道安装应符合设计要求,并按施工质量验收规范执行.

7.4管道系统安装应有坡度,最小坡度1‰,其坡向除供水管道与水流方向相反外,其余水管的坡向均应与水流方向相同.管道高点应有放气装置.管道低点应有泄水装置.

7.5全年运行的空调冷却水管道、非全年运行但处于阳光照射环境且管内流里低于50m3/h以及设有冬季防冻伴热的冷却水管道应保温.保温材料宜为橡塑,并应设金属保护层.

7.6防腐涂料的品种、性能、颜色等应符合设计要求,当设计无明确要求时,对明装无保温非铁锌管道,应在除垢后涂防锈漆一道、面漆两道.镀锌管道可仅在表面锌层缺损处涂防锈漆一道.

7.7保温材料及制品应有产品合格证、性能测试教据、现场抽测资料,其规格、性能应满足设计要求.管道保温应在管道试压及油饰后进行,并应对隔汽及保护层做法的施工质量予以充分重视,确保其隔汽及保护作用,不允许出现厚薄不均或搭接不良而产生漏缝漏点.保温材料及制品在安装施工时应确保其干燥.

7.8管道支吊架的型式、位置、间距应符合设计或有关技术标准的要求.设计无规定时,应符合《通风与空调工程施工质量验收规范》GB50243——2002中9.3.8的规定.

7.9管道系统安装完毕投入使用之前应进行水压试验,且系统静水压头超过0.6MP。时可分段试压.冷却水系统试验压力:当工作压力小于等于1.0MPa时为工作压力的1.5倍,最低不小于0.6MPa;当工作压力大于1.0MPa时为工作压力加0.5MPa.水压试验时,以在10min内压力下降不大于0.02MPa为合格.

7.10冷却水系统安装完毕后应进行冲洗,至排出清水为合格,冲洗结束后应对除污器、泄水阀门进行清理.

工业循环冷却水系统设计规范标准

《》 条文说明 1总则目录 1.01为了控制工业循环冷却水系统由水质引起的结垢、污垢和腐蚀,保证设备的换热效率和使用年限,并使工业循环冷却水处理设计达到技术先进、经济合理,制定本规。 1.02本规适用于新建、扩建、改建工程中间接换热的工业循环冷却水处理设计。 1.03工业循环冷却水处理设计应符合安全生产、保护环境、节约能源和节约用水的要求,并便于施工、维修和操作管理。 1 总则全文 1.0.1本条阐明了编制本规的目的以及为了达到这一目的而执行的技术经济原则。 在工业生产中,影响水冷设备的换热器效率和使用寿命的因素来自两个方面,一是工艺物料引起的沉积和腐蚀;二是循环冷却水引起的沉积和腐蚀。后者是本规所要解决的问题。 因循环冷却水未加处理而造成的危害是很严重的,例如,某化工厂,原来循环水的补充水是未经过处理的深井水,每小时的循环量9560t。由于井水硬度大、碱度高,每运行50h后,有50%的碳酸盐在设备、管道沉积下来,严重影响换热器效率。据统计,空分透平压缩机冷却器,在运转3个月后,结垢厚度达20㎜。打气减少20%。该厂不少设备、在运转3个月后,必须停车酸洗一次,不但影响生产,而且浪费人力、物力。为了防止设备管道产生结垢,该厂在循环水中直接加入六偏磷酸钠、EDTMP和T—801水质稳定剂之后,机器连续3年运行正常。虽然每年需要增加药剂费用2万元,但综合评价经济效益还是合算的。又如某石油化工厂,常减压车间设备腐蚀与结垢现象十分严重,Φ57×3.5面碳钢排管平均使16-20个月后,垢厚达15-40㎜。后经投加聚磷酸盐+膦酸盐+聚合物的复合药剂进行处理,对腐蚀、结垢和菌藻的控制取得了良好的效果。每年可节约停车检修费用约60万元,延长生产周期增产的利润约70万元。减少设备更新费用约4.7万元。现将该厂水质处理前后的冷却设备更新情况列表如下: 某厂冷却设备更新情况统计(单位:台)表1 从上述情况可以看出,循环冷却水采取适当的处理方法,能够控制由水质引起的

船舶冷却水系统设计指导

编制大纲: 需要补充的内容:1,水泵(定速离心泵,变频泵);2,温控阀;3,节流孔板;4,热平衡计算的理论公式,温升热量水量公式;5,特殊案例的区分(温控阀,板冷,变频泵对整个冷却系统形式选定的影响;分离封闭式,高低温混流式,配置变频海水泵没有温控阀的中央式。)6,利用目前的实船进行计算公式的验证,还有一些经验系数的反推导(特别是一些厂家自己的经验系数)7,膨胀水箱;8,补充开发设计需要的部分,参考《船舶管舾装设计工艺实用手册》 前言(目的) 以《船舶设计实用手册---轮机分册》---国防工业出版社为蓝本,将其中的冷却水系统做了进一步内容扩展和深化描述,提供给详细设计人员参考。 参考《船舶管舾装设计工艺实用手册》,补充一部分工程计算公式; 系统发展核心: 1,稳定调节; 2,节省能源,余热循环利用; 3,节省成本,替代方案的方式; 关键词: 将冷却水稳定可靠的输送到需要冷却的设备中:这个可靠和稳定来源于几个参数:稳定的压力,稳定的流量,稳定的温度,稳定的水质(这个水质包含化学成分稳定不结垢,物理成分稳定,极少气泡,气泡会影响热交换器的效率)

冷却水系统 目录 1,范围 2,冷却水系统的基本形式 3,系统形式的选择 4,冷却水系统实例 5,中央冷却系统热平衡计算 6,冷却水系统的主要设备配置要点 7,制淡装置(造水机) 8,具有冰区航行船级符号船舶的冷却水系统特殊要求9,海水进水阀操纵位置的要求 10,冷却水系统的温控阀 11,冷却水系统的节流孔板 12,冷却水系统的泵 13,冷却水系统的膨胀水箱

冷却水系统 1,冷却水系统的基本形式 冷却水系统的基本形式见表1, 注解: (1),所谓开式和闭式冷却水系统是指柴油机本身冷却水系统而言。开式系统是指柴油机本身直接用舷外海水或者江水冷却。如今除江河小船之外,基本不采用开式系统。海拖(海洋港口拖轮)还在使用海水直接冷却柴油机。(潜在问题:船内海水泄露,在及柴油机连接的弹性管配置不正确时容易出现,已有其他公司的海拖因为这个弹性管破裂造成沉船) (2),在闭式系统中,柴油机是用淡水冷却,而淡水在经过热交换器用舷

汽车冷却系统匹配设计

一、冷却系统说明 二、散热器总成参数设定及基本性能要求 三、膨胀箱总成参数设定及基本性能要求 四、冷却风扇总成参数设定及基本性能要求 五、橡胶水管参数设定及基本性能要求 一、冷却系统说明

内燃机运转时,与高温燃气相接触的零件受到强烈的加热,如不加以适当的冷却,会使内燃机过热,充气系数下降,燃烧不正常(爆燃、早燃等),机油变质和烧损,零件的摩擦和磨损加剧,引起内燃机的动力性、经济性、可靠性和耐久性全面恶化。但是,如果冷却过强,汽油机混合气形成不良,机油被燃烧稀释,柴油机工作粗爆,散热损失和摩擦损失增加,零件的磨损加剧,也会使内燃机工作变坏。因此,冷却系统的主要任务是保证内燃机在最适宜的温度状态下工作。 1.1 发动机的工况及对冷却系统的要求 一个良好的冷却系统,应满足下列各项要求: 1)散热能力能满足内燃机在各种工况下运转时的需要。当工况和环境条件变化时,仍能保证内燃机可靠地工作和维持最佳的冷却水温 度。 2)应在短时间内,排除系统的压力。 3)应考虑膨胀空间,一般其容积占总容积的4-6%; 4)具有较高的加水速率。初次加注量能达到系统容积的90%以上。 5)在发动机高速运转,系统压力盖打开时,水泵进口应为正压; 6)有一定的缺水工作能力,缺水量大于第一次未加满冷却液的容积; 7)设置水温报警装置; 8)密封好,不得漏水; 9)冷却系统消耗功率小。启动后,能在短时间内达到正常工作温度。 10)使用可靠,寿命长,制造成本低。 1.2 冷却系统的总体布置 冷却系统总布置主要考虑两方面:一是空气流通系统;二是冷却液循环系统。在设计中必须作到提高进风系数和冷却液循环中的散热能力。 提高通风系数:总的进风口有效面积和散热器正面积之比≥30%。对于空气流通不顺的结构,需要加导风装置使风能有效的吹到散热器的正面积上,提高散热器的利用率。 在整车空间布置允许的条件下,尽量增大散热器的迎风面积,减薄芯子厚度。这样可充分利用风扇的风量和车的迎面风,提高散热器的散热效率。一般货车芯厚不超过四排水管,轿车芯厚不超过二排水管。 在整车布置中散热系统中,还要考虑散热器和周边的间隙,散热器到保险杠外皮的最小距离100毫米,如果发动机的三元崔化在前端的话,还要考虑风扇到三元催化本体距离至少100毫米,到三元催化隔热罩距离至少80毫米。一般三元催化的隔热罩到本体大概有15毫米,隔热罩厚度为0.5-1毫米,一般材料为st12。 1.2.1散热器布置 货车散热器一般采用纵流水结构,因为货车的布置空间也较宽裕。而且纵流

工业循环冷却水处理系统

工业循环冷却水处理系统 一、概述 循环冷却水在使用之後,水中的Ca2+、Mg2+、Cl-、SO42-等离子,溶解固体和悬浮物相应增加,空气中污染物如灰尘、杂物、可溶性气体以及换热器物料泄露等,均可进入循环冷却水,使循环冷却水系统中的设备和管道腐蚀、结垢,造成换热器传热效率降低,过水断面减少,甚至使设备管道腐蚀穿孔。 循环冷却水系统中结垢、腐蚀和微生物繁殖是相互关联的,污垢和微生物粘泥可以引起垢下腐蚀,而腐蚀产品又形成污垢,要解决循环冷却水系统中的这些问题,必须进行综合治理。 采用水质稳定技术,用物理与化学处理相结合的办法控制和改善水质,使循环冷却水系统中的腐蚀、结垢、生物污垢得到有效的解决,从而取得节水、节能的良好效益。臭氧产品已在国内电子、电力、饮料、制药行业广泛应用,质量达到国外同行业90年代水平。投入产出比的可比效益为:1:2-1:10以上,节约能源,提高设备使用效率,延长设备的使用寿命和运行的安全性,减少环境污染。 臭氧可以作为唯一的处理药剂来替代其它的处理冷却水处理剂,它能阻垢、缓蚀、杀菌、能使冷却水系统在高浓缩倍数甚至在零排污下运行,从而节水节能,保护水资源;同时,臭氧冷却水处理不存在任何环境污染。国外应用臭氧进行循环水处理已经取得了成功,而我国在这个领域却是空白。 二、系统工艺 循环水冷却通常分为密闭式循环水冷却系统和敞开式循环水冷却系统。密闭式循环水冷却系统中,水是密闭循环的,水的冷却不与空气直接接触。敞开式循环水冷却系统,水的冷却需要与空气直接接触,根据水与空气接触方式的不同,可分为水面冷却、喷水冷却池冷却和冷却塔冷却等。 敞开式循环水冷却系统可分为以下3类: 1.压力回流式循环冷却系统 此种循环水系统一般水质不受污染,仅补充在循环使用过程中损失的少量水量。补充水可流入冷水池,也可流入冷却构筑物下部。冷水池也可设在冷却塔下面,与集水池合并。 补充水→ 冷水池→ 循环泵房→生产车间或冷却设备→冷却塔 压力回流式循环冷却系统

汽车冷却系统设计要求

汽车冷却系统设计要求

汽车冷却系统设计 ——叶海见 汽车冷却系统设计 (2) 一、概述 (3) 二、要求 (3) 三、结构 (3) 四、设计要点 (6) (一)散热器 (6) (二)散热器悬置 (6) (三)风扇 (6) (四)副水箱 (8) (五)连接水管 (8) (六)发动机水套 (8) 五、设计程序 (8) 六、匹配 (8) 七、设计验证 (9) 八、设计优化 (9)

一、概述 二、汽车对冷却系统的要求 (一)汽车对冷却系统有如下几点要求 1、保证发动机在任何工况下工作在最佳温度范围; 2、保证启动后发动机能在短时间内达到最佳温度范围; 3、保证散热器散热效率高,可靠性好,寿命长; 4、体积小,重量轻,成本低; 5、水泵,风扇消耗功率小,噪声低; 6、拆装、维修方便。 (二)冷却系统问题对汽车的影响 1、冷却不足时,会导致内燃机过热,充气系数下降,燃烧不正常(爆燃、早燃等),机油变质和烧损,零部件摩擦和磨损加剧(如活塞、活塞环和缸套咬伤,缸盖发生热疲劳裂纹等),引起内燃机的动力性、经济性、可靠性全面恶化。 2、冷却过剩时(40~50℃),汽油机混合气形成不良,机油被燃油稀释;柴油机工作粗暴,散热损失增加,零部件磨损加剧(比正常工作温度工作时大好几倍),也会使内燃机工作变坏。 三、冷却系统布置选型 (一)冷却系统结构 1、分类: 液体蒸 发 简单蒸发冷 却 以加注冷却液来补偿冷却介 质蒸发损失的蒸发冷却。

冷却冷 却 带辅助水箱 的蒸发冷却 用辅助水箱补充冷却介质的 蒸发冷却。 带冷凝器的 蒸发冷却 蒸发的冷却介质在冷凝器中 凝结后,通。过冷却回路流 回到发动机加水箱的蒸发冷 却。 循 环 冷 却 对流冷却 利用热虹吸作用使冷却液自 然循环的冷却方式。 强 制 冷 却 开式强 制冷却 冷却介质不进行再循环的强 制。冷却方式。 单循环 强制冷 却 冷却介质在冷却水箱、冷却 塔、管式冷却器、散热器等 中进行冷却的强制冷却方 式。 双循环 强制冷 却 利用副回路(外循环)中的 冷却液在热交换器中对发动 机冷却介质进行再冷却的强 制冷却方式。 空气冷却自然空气冷却 利用自然空气循环的冷却方 式。 强制空气冷却 利用风扇迫使空气循环的冷 却方式。 2、常用结构:

循环冷却水旁滤和加药系统设计方案

目录 第一部分设计前言 (1) 第二部分设计水质水量及设计原则 (2) 2.1、设计水质水量 (2) 2.1.1、原水水质水量 (2) 2.1.2、供水的水质水量 (2) 2.1.3、补水的水质(采用自来水,供参考) (3) 2.2、标准与规范 (3) 2.3、设计原则 (3) 2.4、设计范围 (4) 第三部分工艺的确定及流程说明 (4) 3.1、工艺的确定 (4) 3.2、工艺流程及工艺说明 (5) 3.2.1、工艺流程方框图 (5) 3.3、循环冷却水水量计算平衡表 (6) 3.4、系统工艺流程说明 (7) 第四部分主要设备介绍 (9) 4.1、在线磷酸盐分析仪(阻垢剂) (9) 4.2、次氯酸钠投加装置 (10) 4.3、硫酸投加装置 (10) 4.4、管道混合器 (10) 4.5、絮凝剂加药装置 (10) 4.6、重力式无阀过滤器 (11) 第五部分电气系统控制简要说明 (12) 第六部分主要设备仪表参数 (14) 一、主要设备参数 (14)

二、电气系统及检测仪表参数 (17) (电配箱内配套电器) (19)

第七部分设备材料清单 (20) 第八部分安装接口事项及文件交付 (21) 8.1、安装接口事项 (21) 8.2、文件交付 (21) 8.3、文件的单位及语言 (21) 第九部分质量保证和技术服务 (23) 9.1、质量保证 (23) 9.2、工程技术服务 (23)

3000t/h循环冷却水旁滤系统 设计方案 第一部分设计前言 随着工业的发展和生活的需要,水的用量急剧增加。因此,节约水资源如同节约能源,保护环境一样,成了当务之急。节约用水最大的潜力是节约工业冷却水,采用循环冷却水是节约水资源的一条重要途径,但循环冷却水结垢、腐蚀比较严重,容易滋生菌藻,以致影响设备的传热效率,威胁设备的使用寿命,因此对循环冷却水进行水质稳定处理是必不可少的。 本设计方案就是:通过一系列的过程控制,在达到要求的浓缩倍数(K=4.0)的情况下,满足循环冷却水系统的过程要求。其循环冷却水工程主要有以下过程控制: 1、投加一定量的阻垢剂,减少循环冷却水对冷介质的热交换器的腐蚀,并控制其腐蚀速率达到国家标准; 2、通过对系统自动补充洁净的水源以平衡由于:蒸发、风吹、排污等水量的损失,以维持循环冷却水的水量平衡,进而维持循环水的电导率等相对恒定; 3、通过在线控制,自动投加一定量的杀菌剂,以防止微生物的滋生,减少生物污泥量和减少对系统管路、换热器等的腐蚀; 4、通过旁路净化系统,使循环冷水的悬浮物(SS)浓度处于相对低值,以减少系统的结垢趋势; 通过上述过程的控制,可实现以下目的: 1、达到循环冷却水要求的浓缩倍数,从而节约大量的水源,并且可降低生产成

冷却水系统设计选用及施工说明

冷却水系统设计选用及施工说明 1空调冷却水系统的定义与分类 1.1空调冷却水系统的定义:吸收空调制冷设备冷凝器排热,并将此热量排入大气,低温水体,低温土壤,传递给显热回收装置,传递给水——水热泵机组或是几种状态兼而有之的循环水系统. 1.2空调冷却水系统分类 1.2.1按照流经空调制冷设备冷凝器的冷却水是否与大气接触分为开式冷却水系统 和闭式冷却水系统. 1.2.2按照空调制冷设备冷凝器排热渠道分为单一型系统(如仅通过冷却塔向大气排热)和耦合型系统(如设有冷却塔的井水抽灌型与埋管型地源热泵系统) 1.2.3按照冷却水低位热能是否利用分为单纯冷却型(冷凝热不利用)和热回收型.1.2,4冬季供冷型,冬季不经空调制冷设备由冷却塔直接制备空调冷水. 2空调冷却水系统设计原则 2.1系统形式的确定 2.1.1除非水质要求严格,冷却水宜采用开式系统. 2.1.2对井水抽灌型地源热泵空调系统.当按设计制热工况负荷确定的水浑流量不能满足设计制冷工况的排热要求时,经技术经济分析可考虑采用耦合式冷却水系统.2.,.3对地埋管地源热泵空调系统,属于下列条件之一时,应采用耦合式冷却水系统:1)当按制热设计工况负荷确定的地埋管换热器热交换能力不能 满足制冷设计工况的排热要求时; 2)空调设备全年向土壤的总排热量大于总取热量25%时. 2.1.4空调制冷设备制冷工况运行时间长,且有集中生活热水需要,可采用热回收空调冷却水系统,常用形式有两种:一种是空调制冷设备设有专门用于热回收的冷凝器,用于自来水预热;一种是设有热泵热水机组的空调冷却水系统. 2.1.5空调系统冬季有供冷需求,当地冬季气象参数能使冷却塔出水温度满足冬季空调系统要求,且持续时间足够长时,宜考虑采用能实现冷却塔冬季直接供冷的冷却水系统形式. 2.2系统的设计要点 2.2.1空调冷却水系统由空调制冷设备水冷式冷凝器,循环水泵、冷却塔,除污器和水处理装置等组成.通常无需设置冷却水箱或水池. 2.2.2提倡实现冷却塔风机的集中控制.以在系统部分负荷运行时,能充分利用冷却塔组的自然冷却能力,减少冷却塔风机的运行时间.降低能耗. 2.2.3通过共用集管连接的冷却塔.其冷却水管道系统的设计应实现各塔间的流量平衡.并使接水盘水位相同。 2,2.4通过共用集管连接的多台空调制冷设备与多合冷却塔组成的冷却水系统的设 计应采取措施,避免系统在“减”合数运行时,冷却水在冷却塔与冷凝器处的‘旁流’:即冷却水流过风机不工作的冷却塔和停止工作的冷机冷凝器. 2.2.5冷却塔的设置位置,应保证: 1)其接水盘的最低水位成为冷却水系统的最高点; 2)额定流量运行时冷却水循环泵进口处不应产生负压;

电子信息系统机房项目冷却水系统设计

在现代科学技术高度发展的社会里,计算机越来越广泛地应用于各个领域。计算机系统只有可靠的运行,才能发挥其效益,而计算机的可靠运行,需要一个比较严格的物理环境。如供电、配电、温度、湿度、洁净度等,这样就需要有一个现代化的机房系统满足计算机对环境的要求。各种类型的互联网数据中心(IDC ,Internet Data Center ),企业数据中心,灾备中心(或称灾备恢复中心,BRC,business recovery center )等都属于电子信息系统机房(数据中心),在国民经济及人们的日常生活中,越来越发挥其重大作用。在电子信息系统机房项目中,温度要求恒定,常年需要使用制冷设备,冷却水系统设计和冷却塔设计有一定特点。 1. 电子信息系统机房(数据中心)项目制冷特点及节能需求 1.1 电子信息系统机房项目发热及制冷特点。 电子信息系统机房项目的发热主要来源于机房内的服务器、网络设备等IT 设备在运行过程中散发的热量,以及变电所、配电室、UPS 电池室等电气设备运行过程中散发的 热量。这些设备发热的特点是设备集中,发热量大,连续运行,并且一年四季发热量基本保持恒定。要保持机房内和电气房间内的空气温度在一定的范围内,这就需要大量的冷风将热量带走。数据中心一般采用机房专用空调,这是考虑到IT 设备的特点,在相同制冷量的基础上,风量远大于舒适性空调,能够迅速、有效地带走IT 设备散发的热量。由于IT 设备和电气设备一年四季发热量基本保持恒定,使得数据中心项目对制冷量的需求一年四季也基本保持恒定,制冷系统需要常年稳定运行。 1.2 机房冷通道、热通道的设置与节能。 由于整个制冷系统需要常年运行,如何节能显得尤为重要。在工艺设备布置上,当机柜内的设备为前进风/ 后出风方式冷却时,机柜采用面对面、背对背的布置方式。机柜面对面布置形成冷风通道,背对背布置形成热风通道,配合合理布置送回风口取得合理气流组织,提高空调设备的使用效率,能够降低空调设备的功耗。 冷通道内温度可以设置为18?27 C,相应热通道温度可以设置为29?38 C,此运行工 况完全能够保证机柜正常运行,且提高了回风温度后,可以提高末端空调水-空气侧换热效率。冷、热通道的分隔,使得制冷系统可以采用中温冷冻水供冷,这样便提高冷冻机效率,整个制冷系统实现节能运行。中温冷冻水常采用供水温度12 C ~13 C,回 水温度17 C ~18 C,根据具体项目不同技术参数要求。合理选择中温冷冻水供回水温度,与冷冻机相匹配,可以节能。一般是采用温差为6C的大温差供回水,这样可以 减小循环水量,缩小管道直径。 2. 冷却水系统设计 2.1 冷却塔自由冷却的使用与节能由于数据中心项目的机房可以采用中温冷冻水,这就使得利用冷却塔冬季自由冷却以及过渡季节部分自由冷却有一定的可实施性及方便性。当采用闭式冷却塔时,冬季

循环水系统设计

循环水系统设计 1.1循环水系统设备组成 循环水系统作用为为窑炉、xx通道、xx设备提供降温冷却水。为了满足上述设备的不间断冷却水的供应,循环水系统分为水泵系统,柴油机泵系统和自来水系统三个小系统,以备设备故障,停电停水故障使上述设备出现无法冷却导致火灾发生。以下对系统进行逐个分解。 水泵系统和柴油机泵系统是组合在一起的,其中有水箱一个,电水泵两台,保安过滤器两台,板式换热器两台减压阀两套,安全阀一套,冷冻水一路,纯水补水管路一路,各型号阀门若干,不锈钢管道若干。 自来水系统是由自来水管道,保安过滤器一台组成,接入水泵系统的供水管道上。1.1循环水系统工作原理 整个循环水系统采用一用三备的工作方式,通过西门子S7100PLC冗余控制方式,水泵将纯水由水箱抽至保安过滤器,经过再次过滤后,纯水进入板式换热器与冷冻水进行热交换,使纯水温度降至10℃,然后经过减压阀降压至设备所需要的压力,供窑炉,xx通道,xx设备降温,回水由回水管道流入水箱进行循环使用。当其中一台水泵故障时,PLC控制系统自动切换至另一台水泵进行运行,两台水泵都故障时,系统自动启动柴油机,由柴油机带动柴油机水泵进行工作。当上述三台水泵全部故障时,设备管理人员手动开启自来水供水阀门,用自来水给设备紧急降温冷却。 循环水水质管理:动力部化验室每天对循环水水质进行检测,发现硬度、电导率等参数超标时通知设备管理人员进行换水,保证水质在规定的规格范围之内。 控制系统操作 本系统是采用西门子S7100冗余控制方式,系统可靠性高。控制柜上有“手动/自动”转换开关,可以在手动自动状态下运行,注意,手动状态一般用于调试阶段,正常运行不用手动,一定要用自动。自动状态下有两种运行方式:单动和联动。正常生产时用联动,程控运行。运行之前先观察冷却水水箱液位,如果低液位低于设定液位1.1米,电磁阀自动打开补水,补至1.6米自动停止。

工业循环冷却水系统处理的重要性

工业循环冷却水系统处理的重要性 循环水的使用及水处理的重要性 用水来冷却工艺介质的系统,我们称作冷却水系统,通常可分为以下两种类型:直流冷却水系统和循环冷却水系统。其中,循环冷却水系统目前已被广泛地应用于各行各业之中,比如,石油化工、电力、冶金、医药、纺织、机械、电子等等传统工业企业中的工艺用循环冷却水系统,及各楼宇的中央空调用循环冷却水系统。 最早使用的是直流冷却水系统,冷却水仅仅通过换热设备一次,用过后水就被排放掉。这种系统虽然投资少、操作简便,但它的用水量却很大,冷却水的操作费用也大,不符合节约使用水资源的要求,目前基本都改成了循环冷却水系统(除了海水中还在使用的直流冷却水系统),即冷却水用过后不立即排放掉,而是收回循环再用。从直流水系统到循环水系统,水资源的节约非常可观,例如:一个年产30万吨的合成氨工厂,如采用直流水系统,每小时用水量约25000T,而改成循环水系统,并以3倍的浓缩倍数运行,则每小时耗水量只需约550T。 冷却水循环后遇到什么问题? 腐蚀:冷却水在循环使用中,水在冷却塔内和空气充分接触,使水中的溶解氧得到补充,所以循环水中溶解氧总是饱和的,水中溶解氧是造成金属电化学腐蚀的主要原因,这是冷却水循 环后易带来的问题之一。 结垢:水在运行中蒸发(尤其是在冷却塔的环境中),使循环水中含盐量逐渐增加,加上水中二氧化碳在塔中解析逸散,使水中碳酸钙或其它盐类在传热面上结垢析出的倾向增加,这是问题之二。 生物污垢:冷却水和空气接触,吸收了空气中大量的灰尘、泥沙、微生物及其孢子,使系统的污泥增加;冷却塔内的光照、适宜的温度、充足的氧和养分都有利于细菌和藻类的生长,从而使系统粘泥增加,在换热器内沉积下来,造成了粘泥的危害,这是水循环使用后易带来的问题之三。 冷却水循环后,冷却水补充水量可大幅度降低,节约了用水,这是我们所希望的。但水循环后突出的腐蚀、结垢和生物污垢等问题如不解决,生产装置的长周期、满负荷、安全稳定运行是难以保证的,那么采用循环水后所期望的经济、技术效益不仅不能充分发挥,而且将给企业带来许多危害——严重的沉积物的附着、设备腐蚀和微生物的大量滋生,由此形成的黏泥污垢堵塞管道或各种材料及设备严重受损等问题,会威胁和破坏工厂的安全生产;而由于各种沉积物使换热设备的水流阻力加大,水泵及相关设备的能耗大幅增加,传热效率降低,从而降低产品品质或生产效率,这一切都可能造成极大的经济损失,例如:电厂出现此类问题,必然使凝汽器凝结水的温度升高、真空度下降,严重影响汽轮机的出力和电厂的发电量,并且大幅增加能耗(有一个经验数值:发电机组真空度每下降1%,多耗燃料原油0.8%)。 所以,必须要选择一种科学合理、全面有效且经济实用的循环冷却水处理方案,使上述问题得到妥善解决或改善,水处理就是通过水质处理的办法来解决以上问题。如能真正做好水处理,不但能保证保质保量、安全生产,而且还能通过大幅降低能耗、节约材料、节约用水来降低生产成本,直接创造可观的经济效益,例如在电厂,就可以提高汽轮机凝汽器的真空度,一般可提高7~8%,提高汽轮机的功率,提高电负荷5~6%,增加发电能力;如应用在低压锅炉炉内处理,不但可将水处理运行费用从仅使用炉外处理方式时的0.5元/吨降到0.3元/吨左右,而且据统计,可使每台2t?h-1的锅炉节煤约5%;现代工业一般水冷换热器在未进行水处理时的寿命为2年左右,经水处理后的寿命可达7~8年,检修费和检修工作量可降低90%,一个小型化工厂由此节约的检修费即可达50万元。 科学合理且全面完整的化学水处理方案

汽车冷却液单片机课程设计精选文档

汽车冷却液单片机课程 设计精选文档 TTMS system office room 【TTMS16H-TTMS2A-TTMS8Q8-

桂林航天工业学院 课程设计报告 系(部):汽车工程系专业班级: 学生姓名:学号: 设计题目: 完成日期年月日 指导教师评语: _____________________________________ ______________________________________________ _________ ______________________________________________ _____ 成绩(五级记分制): 指导教师(签字): _____________________

摘要 汽车的发动机冷却液具有冷却、防腐蚀、防垢和防冻四大功能,是发动机正常运转不可缺少的散热介质。水温高分很多种,各种不同现象会带来不同影响。最严重的水温高会带来发动机报废,需更换新发动机才能解决问题。一般水温高会导致油耗增加、水箱爆裂、水管爆裂、发动机中各金属元件膨胀带来磨损、发动机、供油系统与尾气排放超表等许不利的影响。 所以冷却液的温度需要实时监测并显示,这是很重要的,影响力汽车的行驶各方各面。 这次是对冷却液的温度监测,使用单片机加传感器来监测。由于使用环境比较复杂,要求实时监测,并且监测温度要求100多度。所以使用18b20来监测, 各个方面上这个传感器监测比较快速,反应速度快,而且只需要接一条线就可以监测。 关键词:温度检测、单片机、传感器

目录 引言(四号黑体) (1) 1(空两格)(四号黑体) (3) (空一格)(小四号黑体) (3) (不用空格)(楷体小四号) (6) 5结论(四号黑体) (34) 参考文献(四号黑体) (35) 附录(四号黑体) (36) 1 设计内容 设计题目:汽车冷却液温度测量电路设计

工业循环水国标word版本

工业循环水国标

中华人民共和国标准 工业循环冷却水处理设计规范 Code for design of industrial recirculating cooling water treatment GB50050-95 主编部门:中华人民共和国化学工业部 批准部门:中华人民共和国建设部 施行日期:1995年10月1日 中国计划出版社 1995年北京 目次 1总则 2术语、符号 2.1术语 2.2符号 3循环冷却水处理 3.1一般规定 3.2敞开式系统设计 3.3密闭式系统设计 3.4阻垢和缓蚀 3.5菌藻处理 3.6清洗和预膜处理 4旁流水处理 5补充水处理 6排水处理 7药剂的贮存和投配 8监测、贮存和化验 附录A水质分析项目表 附录B本规范用词说明 附加说明 附:条文说明 1总则 1. 01为了控制工业循环冷却水系统内由水质引起的结垢、污垢和腐蚀,保证设备的换热效率和使用年限,并使工业循环冷却水处理设计达到技术先进、经济合理,制定本规范。 1. 02本规范适用于新建、扩建、改建工程中间接换热的工业循环冷却水处理设计。 1. 03工业循环冷却水处理设计应符合安全生产、保护环境、节约能源和节约用水的要求,并便于施工、维修和操作管理。 1. 04工业循环冷却水处理设计应在不断地总结生产实践经验和科学试验的基础上,积极慎重地采用新技术。 1. 05工业循环冷却水处理设计除应按本规范执行外,尚应符合有关现行国家标准、规范的规定。 2术语、符号 2.1术语

2.1.1循环冷却水系统Recirculating cooling water systemc 以水作为冷却介质,由换热设备,水泵、管道及其它关设备组成,并循环使用的一种给水系统。 2.1.2敞开式系统Open system 指循环冷却水与大气直接触冷却的循环冷却水系统。 2.1.3密闭式系统Closed system 指循环冷却水不与大气直接触冷却的循环冷却水系统。 2.1.4药剂Chemicals 循环冷却水处理过程中使用的各种化学物质。 2.1.5异状养菌数学课Count of heterotrophic bacteria 按细菌平皿计数法求出每毫升水中的异养菌个数. 2.1.6粘泥Slime 指微生物及其分泌的粘液与其它有机和无机的杂质混合在一起的粘浊物质。2.1.7粘泥量Slime content 用标准的浮游生物网,在一定时间内过滤定量的水,将截留下来的悬浊物放入量筒内静置一定时间,测其沉淀后粘泥量的容积,以mg/m3表示。 2.1.8.污垢热阻值Fouling resistance 表示换热设备传热面上因沉积物而导致传热效率下降程度的数值,单位为m2.k/w。 2.1.9腐蚀率Corrosion rate 以金属腐蚀失重而算得的平均腐蚀率,单位为mm/a。 2.1.10系统容积System capacity volume 循环冷却水系统内所有水容积的总和。 2.1.11浓缩倍数Cycle of concentration 循环冷却水的含盐浓度与补充水的含盐浓度之比值。 2.1.12监测试片Monitoring test coupon 放置在监测换热设备或测试管道上监测腐蚀用的标准金属试片。 2.1.13预膜Prefilming 在循环冷却水中投加预膜剂,使清洗后的换热设备金属表面形成均匀密致的保护膜的过程。 2.1.14间接换热Indirect heat exchange 换热介质之间不直接接触的一种换热形式。 2.1.15旁流水Side stream 从循环冷却水系统中分流部分水量,按要求进行处理后,再返回系统。 2.1.16药剂允许停留时间Permitted retention time of chemicals 药剂在循环冷却水系统中的有效时间。 2.1.17补充水量Amount of makeup water 循环冷却水系统在运行过程中补充所损失的水量。 2.1.18排污水量Amount of blowdown 在确定的浓缩倍数条件下,需要从循环冷却水系统中排放的水量。 2.1.19热流密度Heat load intensity 换热设备的单位传热面每小时传出的热量。以W/m2。 2.2符号 编号符号含义

真空中频感应熔炼炉循环冷却水系统设计探述

真空中频感应熔炼炉循环冷却水系统设计探述 发表时间:2018-04-28T15:00:59.310Z 来源:《建筑学研究前沿》2017年第33期作者:陈松 [导读] 随着近年来科学仪器的不断发展和普及,各种配套产品也得到了突飞猛进的发展。 广东先导稀材股份有限公司 摘要:随着近年来科学仪器的不断发展和普及,各种配套产品也得到了突飞猛进的发展,其中冷却水循环就是其中的一种,它的作用是通过温度相对较低的水来把仪器所产生的热量带走,从而使仪器部分的温度保持在一个较低的水平。基于此,本文就从真空中频感应熔炼炉循环冷却水系统设计展开分析。 关键词:真空炉;循环冷却水系统;设计 1、真空炉循环冷却水系统概述 真空炉的冷水系统包括以下6部分的进、出口冷却系统:各种真空泵,感应线圈,集电系统和铜排,电容器组,炉体(炉盖、炉座),冷阱、捕集器。在真空炉的熔炼过程中,循环冷却水水质的好坏,温度的高低,压力的高低等,都对设备能否正常运行起着至关重要的作用。 某车间有4台真空炉:2台25 kg真空炉,1台50 kg真空炉,1台300kg真空炉。车间生产品种多,产量小,为非连续式生产。4台真空炉均用于正常生产,但4台设备同时运行的机率较小,主要运行300kg真空炉,25kg及50kg真空炉用于生产小规格特种钢锭、电极棒以及实验研究。该文介绍的是该车间真空炉的循环冷却系统设计。 2、循环冷却水系统设计(如图1) 2.1冷却池及冷却塔 4台设备共用一个冷却池。该冷却池约60m3,设置了排水孔及低水位自动补水装置。当水位过高时,水自动从排水孔中排出。水位低于设定的水位值时,自动补水。冷却池分为冷水池和热水池两个区域。热水池的水经过冷却塔冷却后再回到冷水池,供生产使用。冷却池上方检修口上加盖板,防止杂物进入水池中。冷却水通过水塔喷淋冷却后通过回水池进入炉内循环水路,故选用100m3/h无填料喷雾式冷却塔,实际冷却总量可调至120m3/h。冷却水进塔压力在0.08~0.15MPa。冷却塔湿球温度在28℃时,进水温度t1≥45℃,出水温度 t2≤35℃,冷却温差≥10℃。 2.2水泵 循环冷却系统共有4台泵。进水泵两台,一用一备;回水泵一台;应急柴油泵1台。考虑到车间场地及嘈音等因素,在室外修建泵房,所有泵均安装在泵房内,方便管理和维护。在熔炼过程中,如果泵出现故障或是突然断电等原因导致冷却水中断,无法对感应线圈、扩散泵及中频电源等重要部件进行冷却,会对设备造成严重的损害并可能发生安全事故,所以,循环水泵设计为一用两备,两台自吸式水泵和一台柴油泵。两台自吸式水泵可以随时切换,柴油泵则作为应急装置一并纳入循环系统中。根据设备的冷却水需求量,循环水泵流量设计为100m3/h。考虑到管损等因素,泵的扬程选择为32m。冷却水池在地平面以下,循环水泵选择自吸泵,并增加底阀,作为双重保险。 熔炼过程中,如果突然断水,熔炼必须中止,应急水的主要作用是对感应线圈、扩散泵和中频电源等重要部件进行冷却,使其尽快冷却以保护设备,以细水长流为冷却原则。故柴油泵流量设计为30m3/h,扬程30m。在断电后,柴油泵获取断电信号,马上自动启动,进行供水。柴油泵需严格按要求进行日常的维护保养,保证在出现特殊情况时柴油泵能正常工作。从真空炉出来的冷却水为无压力回水,故需要在管路中设置1台泵,用于将回水泵入冷却塔中。 2.3管路设计 布置一根主进水管道DN150,统一分配给4台设置。车间以运行300kg真空炉为主,且300kg真空炉用水量最大。当大、小设备同时运行时,为避免300kg真空炉回水倒流进其他小设备,在室内布置2根回水管道,其中一根DN150的回水管专用于300kg真空炉的回水,另一根DN150的回水管用于另外3台设备的回水,留有足够的坡度,使回水顺畅,并在回冷却塔之前汇总。进、回水管道刷不同颜色的油漆以示区别,方便检修。4台设备同时运行的机率不大,故冷却水实际总需求量<100m3/h。炉内冷却水的流速一般保证在1~1.5m/s:水速过快,会使感应线圈表面温度过低,形成凝露,导致圈内短路;水速过慢,水温过高,会加速水中无机物的沉淀,使铜管内部结垢。所以在泵的出水管及设备的总进水管处均设置了调节阀及压力表,便于调节流量及进水压力,使冷却水保持一个适中的流速。每台设备均设计了单独的水箱,水箱中有多路进水管道和回水管道,将冷却水分送至所需的各个冷却点位,再分不同的管道回到水箱,进入回水管道。由于是重力回水,操作人员可以很直观地通过观察回水流量,触摸回水温度等方法来判断设备内部的冷却水路是否畅通。尤其是真空炉的中频电源柜中有很多小管径的冷却管道,容易堵塞,造成某些部件的烧损,从而影响设备的正常运行,故在中频电源的外部也设置这样的水箱,并入总循环管路中。 图1 2、保证水质的相关措施 冷却水太硬,会加速设备内部冷却管道的结垢,使铜管被腐蚀并短路;冷却水中含有杂质,会使管道堵塞,达不到冷却效果而导致电气元件被烧毁。系统中采用了以下措施来保证冷却水质。 2.1软水器的使用。厂区所用的自来水,除硬度超标,其他指标均能满足冷却水质要求。系统中选择了一台全自动软水器对自来水进行处理。当含有硬度离子的原水通过交换器树脂层时,水中的钙、镁离子与树脂内的钠离子发生置换,树脂吸附了钙、镁离子而钠离子进入

空调冷却水系统设计的几个问题

空调冷却水系统设计中的几个问题 Several Problems in the Design of the Air-Conditioning Cooling Water System 摘要:冷却水系统是中央空调系统的重要组成部分,现结合有关工程实例阐明冷却水系统设计中在系统形式选择、循环水量确定、冷却塔选型、出水温度调节、冷却塔位置确定等方面应该注意的几个问题。 关键词:中央空调、冷却水系统设计、冷却塔 1.引言:各地对冷却水系统设计分工不同,有些地区是由暖通专业连同冷冻水系统一起完成,而浙江地区则通常由给排水专业来完成。由于空调冷却水系统组成相对简单,长期以来冷却水系统设计未受到应有的重视。现结合自己的工程实践谈谈其设计中应注意的几个重要问题。 2.系统形式选择:和空调冷冻水系统一样,按冷却水泵相对于制冷机组的位置,可分为水泵后置式(下图1所示)和水泵前置式(下图2所示)两种布置方式。后置式一般用于高层建筑以便减少制冷机冷凝器侧承压。 曾有一超高层建筑,由于用地红线十分紧张,建筑没有裙房,而室外也没有放置冷却塔的合适位置。冷却塔设在200米以上的主楼屋面,此时应该采用水泵后置式布置方式以便近可能减少制冷机冷凝器侧依然承压。另外一种情况刚好相反。某

西北国际会展中心,制冷机房在布置在地上一层。同时该建筑屋面为网架屋面,冷却塔又不能布置在屋面。因此冷却塔只有在室外地面考虑。此时应该采用水泵前置式布置。为了满足冷却水泵吸入口不发生汽蚀的要求,设计中将冷却塔在室外以钢支架架高处理并加大回水管道管径,采用阻力小的成品弯头等配件以尽量减少系统阻力,降低其安装高度,减少其对建筑景观的影响。其安装剖面如下图: 3.系统循环水量的确定:一些设备供应商习惯以制冷机制冷量乘以放大系数的方法来对冷却塔进行选型。这种估算方法其实是不确切的。对于不同类型的制冷机而言其相同制冷量下的冷却负荷是不同。对封闭式压缩机其冷凝器冷却负荷不仅包含制冷负荷还包括电机的冷却负荷。因此正确的方法应该是由选型确定的制冷机冷凝器所需冷却负荷和工程所确定的冷却水供回水温差来确定对应冷却水系统水量。 4.系统供回水温度的确定:现行冷却塔制造标准[1]中规定的冷却塔标准设计工况下进出水温度为37℃/32℃。这个参数对应的室外湿球温度为28℃。对于某些室外湿球温

某TFT厂房工艺冷却水系统设计的思考

某TFT厂房工艺冷却水系统设计的思考 摘要:本文简要介绍某TFT厂房工艺冷却水系统工程设计概况及系统特点,并探讨此系统诸如水箱平衡,水泵选型,过滤器选型,热交换器选型及自控设计要求等设计相关问题。 关键词:TFT厂房;工艺冷却水;水箱平衡;设计选型;自控; ABSTRACT:This paper shortly discusses one project design of Process Cooling Water for one TFT Plant and characteristics of this system.At the same time discusses such as tank blance,choice of pupms, choice of strainer, choice of heat exchanger,design of Auto-Control. KEY WORDS:TFT Plant;Process Cooling Water;Tank Blance;Design and Choose;Auto-Control 随着电子工业的发展,国内TFT-LCD(液晶面板)半导体行业也出现与日俱增的局面。投资大,风险高是建设半导体厂房的一大特点,作为支持生产工艺稳定运行的工艺(制程)冷却水系统,如何做到最优化,最合理可靠的设计,以最小的投资,最好的回报,最大的节能,无疑是半导体工程行业设计者应该注意的问题,本文简要介绍本工程设计实例,并就此系统设计,列出此系统相关设计问题,浅述自己的看法,以期与同行共同提高。 1.0 系统概况及特点 1.1 系统概况 在半导体厂房中工艺冷却水(或称制程冷却水、工艺设备冷却水、简写:PCW)系统主要用于生产工艺设备的冷却,①且管网多采用密闭循环形式。本TFT厂房工艺冷却水系统主要用于TFT生产工艺设备的冷却,该系统设计主要由三个环路组成,一个环路负责冷却水的“制备”,即高温水箱中的水由循环水泵提压,经热交换器冷却后进入低温水箱,此部分管路称为一次侧环路。二次侧环路负责冷却水的输配,既低温水箱中的水经循环水泵提压,过滤,由输水管线送到生产工艺车间与工艺介质热交换,交换后的高温水沿回水管线流回高温水箱。另一环路即为冷媒侧冷冻水供回水环路,经冷机制备的冷冻水经输水管路至交换器冷量交换后回到冷机侧。 该系统设计可简单表述为系统流程简图图1。 ①、有水箱的循环水系统均为开式系统,无水箱采用定压罐定压的为闭式循环系统

工业循环冷却水处理设计规范2007

工业循环冷却水处理设计规范 中华人民共和国国家标准 GB50050--2007 工业循环冷却水处理设计规范 Code for design of industrial recirculating cooling water treatment 中华人民共和国建设部 关于发布国家标准《工业循环冷却水处理设计规范》的公告 中华人民共和国建设部公告第742号 现批准《工业循环冷却水处理设计规范》为国家标准,编号为GB50050-2007,自2008年5月1日起实施。其中,第3.1.6(2、4、5、6)、3.1.7、3.2.7、6.1.6、8.1.7、8.2.1、8.2.2、8.5.1(1、2、3、4、5、6、7)、8.5.4条(款)为强制性条文,必须严格执行。原《工业循环冷却水处理设计规范》GB50050-95同时废止。本标准由建设部标准定额研究所组织中国计划出版社出版发行。 中华人民共和国建设部 二〇〇七年十月二十五日 1 总则 1.0.1 为了贯彻国家节约水资源和保护环境的方针政策,促进工业冷却水的循环利用和污水资源化,有效控制和降低循环冷却水所产生的各种危害,保证设备的换热效率和使用年限,减少排污水对环境的污染,使工业循环冷却水处理设计做到技术先进,经济实用,安全可靠,制定本规范。 1.0.2 本规范适用于以地表水、地下水和再生水作为补充水的新建、扩建、改建工程的循环冷却水处理设计。 1.0.3 工业循环冷却水处理设计应符合安全生产、保护环境、节约能源和节约用水的要求,并便于施工、维修和操作管理。 1.0.4 工业循环冷却水处理设计应不断地吸取国内外先进的生产实践经验和科研成果,积极稳妥地采用新技术。 1.0.5 工业循环冷却水处理设计除应按本规范执行外,还应符合国家有关现行标准和规范的规定。 2 术语、符号 2.1 术语 2.1.1 循环冷却水系统Recirculating Cooling Water System 以水作为冷却介质,并循环运行的一种给水系统,由换热设备、冷却设备、处理设施、水泵、管道及其它有关设施组成。 2.1.2 间冷开式循环冷却水系统(间冷开式系统)Indirect Open Recirculating Cooling Water System 循环冷却水与被冷却介质间接传热且循环冷却水与大气直接接触散热的循环冷却水系统。2.1.3 间冷闭式循环冷却水系统(闭式系统)Indirect Closed Recirculating Cooling Water System 循环冷却水与被冷却介质间接传热且循环冷却水与冷却介质也是间接传热的循环冷却水系

相关主题
文本预览
相关文档 最新文档