当前位置:文档之家› 氧化锌是一种重要的陶瓷熔剂

氧化锌是一种重要的陶瓷熔剂

氧化锌是一种重要的陶瓷熔剂
氧化锌是一种重要的陶瓷熔剂

氧化锌是一种重要的陶瓷化工熔剂原料,特别在建筑陶瓷墙地砖釉料与低温瓷釉料用量较多。在艺术陶瓷釉料中也广泛使用。

氧化锌在釉中的作用与用途:氧化锌在釉中有较强的助熔作用,能够降低釉的膨胀系数,提高产品的热稳定性,同时能增加釉面的光泽与白度,提高釉的弹性。在扩大熔融范围的同时能够增加釉色的光彩。不过在含有铬的黑釉中不宜使用。概括地讲氧化锌主要用于以下几个方面。

一.用作熔剂:氧化锌在低温熔块釉中作为熔剂使用时,一般用量在5%~10%之间,在低温生料釉中用量普通为5%左右。

二.用作乳浊剂:在含有Al2O3较高的釉料中加入氧化锌,可提高釉面的乳浊性。因为氧化锌能与Al2O3生成锌尖晶石 ZnO·Al2O3晶体。在含锌乳浊釉中,Al2O3能够提高釉面的白度和乳浊度。SiO2则可以提高釉面的光泽。

三.用作结晶剂:在艺术釉结晶釉中,氧化锌是不可缺少的结晶剂,在熔釉急冷却时,就形成为较大的晶体花纹,非常漂亮。在结晶釉中、氧化锌的用量高达20~30%。

四.用以制作钴天蓝釉:氧化锌在钴天蓝釉中是非常重要的助熔剂,它能够使氧化钴在釉中形成美丽的天蓝色。

五.用作陶瓷颜料:由于具有较强的助熔作用,氧化锌可以作为陶瓷颜料的助熔剂,矿化剂及釉料载体。

氧化锌在使用中应该注意以下几点:

1.在使用前须经过高温煅烧,煅烧温度在1200℃左右。如果不

煅烧直接加入生釉中,将会影响釉料的工艺性能。在加入熔块料中则无需煅烧。

2.氧化锌在釉料中用量过大将会影响釉面光泽。

3.氧化锌对某些色釉有不佳影响,尤其是铬釉

在涂料配方设计中,氧化锌可为设计者提供许多高性能的涂料配方。氧化锌具有优异的防霉性和控制微生物真菌的功效。由于ZnO具有吸收紫外光的能力,它能与涂料中的羧酸根离子形成配位化合物从而降低涂膜中水的敏感性,因此,ZnO可以提高涂膜的耐候性和抗粉化性能力。另外,由于ZnO的折射率较高,因此也具有较高的遮盖力。一般来说,陶瓷、罐桶涂料均用粒径小、纯度高的间接法氧化锌;室内涂料、乳胶涂料则多用针状的直接法氧化锌,使之吸油值较高,能改进悬浮性能。

当ZnO用于乳胶漆中时,若用量太大,会引起涂料粘度大大增加,降低涂料的稳定性,可通过选择合择的分散剂、TiO2品种、基料品种、pH值、原始粘度和PVC等来得到稳定的涂料配方。

氧化锌是合成橡胶的硫化促进剂和良好的补强剂,而且有着色作用.

氧化锌具有良好的颜料性能,因而被广泛用于涂料行业,特别是防锈

漆和底漆,配方中氧化锌用量有时可高达30%,随着无机涂料和乳胶漆的日益发展,对氧化锌的需求将日趋增加.

氧化锌与磷酸反应,制得磷酸锌,可用于金属表面的防腐、防锈,即在金属表面形成锌-铁-磷酸盐涂层,作为防锈颜料。

氧化锌了作为石油产品添加剂,如T202(即二烷基二硫代磷酸盐),简写为ZDDP,是润滑油中必不可少的复合添加剂,约占各类添加剂消耗量的10-15%,有着抗氧、抗腐、抗磨多效添加剂的作用。

玻璃中加入氧化锌,可增加透明度、光亮度和抗张力变形,可减少热膨胀系数,在光学玻璃、电气玻璃及低熔点玻璃中得到了新的作用。

在电子工业中,氧化锌主要用来制造电子结构元件的磁性材料-铁氧体,电视机、电气通讯装置、变阻器等均采用这种磁性材料。

在陶瓷业中,氧化锌被广泛用于砖瓦釉及粗陶的半透明釉和工艺餐具的透明粗釉后熟釉。

在塑料工业中,氧化锌用作紫外线稳定剂,能使聚乙烯的耐大气性得到改善,树脂酸与氧化锌反应制得的锌树脂可用来生产快干油量。

纳米氧化锌制备法

氧化锌制备工艺 2008-06-04 12:21阅读(4)评 论(0) D0208、氧化锌制备工艺(本技术资料含国家发明专利、实用新型专利、科研成果、技术文献、技术说明书、技术配方、技术关键、工艺 流程等,全套价格26 0元) (氧化锌*制备氧化锌*制取氧化锌*生产氧化锌*开发氧化锌*研究) (氧化锌制备氧化锌制取氧化锌生产 氧化锌开发氧化锌研究) 1、氨法制取氧化锌方法 2、氨浸法生产低堆积密度纳米氧化锌的方法 3、氨水·碳铵联合浸取络合制备高纯度活性氧化锌的方法 4、氨水循环络合法生产高纯度活性氧化锌的工艺 5、表面包覆金属钛或铝化合物的纳米氧化锌粉体及制备方法 6、表面改性的纳米氧化锌水分散体及其制备方法和用途 7、超声波-微波联合法

从锌浮渣中制备活性氧化锌的方法 8、超微粒子氧化锌及其制造方法和使用其的化妆材料 9、超微氧化锌制取的工艺与装置 10、超细活性氧化锌的制备方法 11、超细氧化锌复合物及其制备方法 12、成核生长分步进行的液相制取超细氧化锌的方法 13、从低品位含锌物料制备纳米活性氧化锌的方法 14、从含锌烟道灰制取氧化锌的工艺 15、从菱锌矿制氧化锌技术 16、从铜--锌废催化剂中回收铜和氧化锌的方法 17、等离子法制取氧化锌工艺及设备 18、低温热分解法制备纳米氧化锌 19、低温易烧结的纳米级氧化锌粉末的制备方法 20、多功能纳米氧化锌悬浮液及其制备方法21、改进的碳酸氢铵全湿法制取高活性氧化锌22、改性的超细氧化锌

及其制备方法 23、高白色氧化锌微粒及其制造方法 24、高级氧化锌制备工艺 25、固相低温热分解合成晶态和非晶态超微氧化锌粉末的制备 26、过氧化锌的制备方法 27、回转窑冶炼生产氧化锌的工艺方法 28、活性氧化锌的生产工艺方法 29、活性氧化锌及高纯氧化锌制备工艺 30、活性氧化锌生产工艺 31、碱法生产活性氧化锌的工艺方法 32、颗粒氧化锌的生产工艺方法 33、颗粒状氧化锌生产装置 34、粒状高活性氧化锌的制造方法及其产品35、联合法矿粉直接生产高纯度氧化锌新工艺36、菱锌矿制取高纯氧化锌的方法 37、硫化锌精矿焙砂与氧化锌矿联合浸出工艺38、硫化锌矿与软锰矿同槽浸出制取氧化锌和碳酸锰的方法 39、纳米氧化锌材料的

《纳米氧化锌制备法》word版

氧化锌制备工艺2008-06-04 12:21阅读(4)评论 (0) D0208、氧化锌制备工艺(本技术资料含国家发 明专利、实用新型专利、科研成果、技术文献、技术说明书、技术配方、技术关键、工艺流程等,全套价格260元) (氧化锌*制备 氧化锌*制取氧化锌*生产氧化锌*开发氧化锌*研究) (氧化锌制备氧化锌制取氧化锌生产 氧化锌开发氧化锌 研究) 1、氨法制取氧化锌方法 2、氨浸法生产低堆积密度纳米氧化锌的方法 3、氨水·碳铵联合浸取络合制备高纯度活性氧化锌的方法 4、氨水循环络合法生产高纯度活性氧化锌的工艺 5、表面包覆金属钛或铝化合物的纳米氧化锌粉体及制备方法 6、表面改性的纳米氧化锌水分散体及其制备方法和用途

7、超声波-微波联合法从锌浮渣中制备活性氧化锌的方法 8、超微粒子氧化锌及其制造方法和使用其的化妆材料 9、超微氧化锌制取的工艺与装置 10、超细活性氧化锌的制备方法 11、超细氧化锌复合物及其制备方法 12、成核生长分步进行的液相制取超细氧化锌的方法 13、从低品位含锌物料制备纳米活性氧化锌的方法 14、从含锌烟道灰制取氧化锌的工艺 15、从菱锌矿制氧化锌技术 16、从铜--锌废催化剂中回收铜和氧化锌的方法 17、等离子法制取氧化锌工艺及设备 18、低温热分解法制备纳米氧化锌 19、低温易烧结的纳米级氧化锌粉末的制备方法 20、多功能纳米氧化锌悬浮液及其制备方法21、改进的碳酸氢铵全湿法制取高活性氧化锌

22、改性的超细氧化锌及其制备方法 23、高白色氧化锌微粒及其制造方法 24、高级氧化锌制备工艺 25、固相低温热分解合成晶态和非晶态超微氧化锌粉末的制备 26、过氧化锌的制备方法 27、回转窑冶炼生产氧化锌的工艺方法 28、活性氧化锌的生产工艺方法 29、活性氧化锌及高纯氧化锌制备工艺 30、活性氧化锌生产工艺 31、碱法生产活性氧化锌的工艺方法 32、颗粒氧化锌的生产工艺方法 33、颗粒状氧化锌生产装置 34、粒状高活性氧化锌的制造方法及其产品35、联合法矿粉直接生产高纯度氧化锌新工艺36、菱锌矿制取高纯氧化锌的方法 37、硫化锌精矿焙砂与氧化锌矿联合浸出工艺38、硫化锌矿与软锰矿同槽浸出制取氧化锌和碳酸锰的方法

添加剂在ZnO压敏陶瓷中作用机理的综述

收稿日期:2003-09-26  作者简介:刘文斌(1980-),男,西南科技大学在读研究生.  文章编号:1009-9700(2004)02-0001-04 添加剂在ZnO 压敏陶瓷中作用机理的综述 刘文斌,徐光亮,刘桂香 (西南科技大学,四川绵阳621000) 摘 要:简要介绍压敏陶瓷的一些基本理论,并综述每种添加剂对ZnO 压敏陶瓷微观结构和性能的影响规律,从理论上阐述各类添加剂的作用机理.关键词:添加剂;ZnO 压敏陶瓷;作用机理 中图分类号:T M 54;T N 304193 文献标识码:B A revie w on the effects of additives on the property of Z nO varistor ceramics LI U Wen 2bin ,X U G uang 2liang ,LI U G ui 2xiang (S outhwest University of Science and T echnology ,M ianyang 621000,S ichuan ) Abstract :The basic theory of varistor ceramics is briefly elucidated ,and the effects of different additives on the properties of ZnO varistor ceramics summarized.The mechanism by which the additives affect the properties of the ceramics are als o elucidated.K ey w ords :additive ;ZnO varistor ceramics ;affecting mechanism 压敏电阻器是一种电阻值随外加电压的增加而敏感地变化的电子陶瓷器件.其材料是半导体,通常由半导体晶粒和绝缘性的晶界形成特殊的微观结构,所具有的高非线性特性使其在过电压保护及稳压等方面的用途广泛.近年来,很多人对以ZnO 为基体掺入多种微量添加剂而形成的低压ZnO 压敏陶瓷进行了大量的研究,本文着重对这方面的研究情况作一综述. 1 基本理论 ZnO 压敏电阻的压敏电压可表示为: V 1mA =NV 0=L (V 0/d 0) (1) 式中:N 为电极间平均晶粒数;V 0为每个晶粒的电压降;L 为ZnO 陶瓷芯片厚度;d 0为晶粒直径. 根据G.D.Mahan 等 [1~4] 人提出的分立双肖特 基势垒模型(见图1). 求解泊松方程[5] ΦB =q Ψ=q 2Ns 2/2ε0εr Nd (2)b =Ns/Nd =(2ε0εr ΦB /q 2Nd )1/2(3 ) 图1 分立双肖特基势垒模型 式中:ΦB 是平衡时费米能级至边界势垒顶部的高度,Ψ为电势,q 为电子电荷,Nd 为施主浓度,N S 为受主面电荷密度,ε0为真空介电常数,εr 为相对介电常数,b 为耗尽层宽度. 由隧道效应解释ZnO 压敏电阻器的特性[6],可写出热激发电流J 的表达式如下: J =J 0exp [-4(2m ) 1/2 ΦB 3/2/3qhE] =J 0exp[-r/E] (4)α=r/E =4(2m )1/2ΦB 3/2/3qhE (5) 式中:α为非线性系数,E 为能量与热激发的激 活能相关. 总第137期2004年4月 南 方 金 属 S OUTHERN MET A LS Sum.137April 2004

氧化锌生产设备 工艺

氧化锌生产设备工艺 氧化锌生产工艺: 间接法:间接法的原材料是经过冶炼得到的金属锌锭或锌渣。锌在石墨坩埚内于1000°C的高温下转换为锌蒸汽,随后被鼓入的空气氧化生成氧化锌,并在冷却管后收集得氧化锌颗粒。 间接法生产氧化锌的工艺技术简单,成本受原料的影响较大。间接法生产的氧化锌颗粒直径在0.1-10微米左右,纯度在99.5%-99.7%之间。按总产量计算,间接法是生产氧化锌最主要的方法。 间接法生产的氧化锌可用于橡胶、压敏电阻、油漆等产业。锌锭或锌渣的重金属含量直接影响产物的重金属杂质含量,重金属含量低的产品,还可用于家畜饲料、药品、医疗保健等产业。 直接法:直接法以各种含锌矿物或杂物为原料。氧化锌在与焦炭加热反应时,被还原成金属锌被蒸汽,同时再被空气中的氧气氧化为氧化锌,以除去大部分杂质。直接法获得的氧化锌颗粒粗,产品纯度在75%-95%之间,一般用于要求较低的橡胶、陶瓷行业。 湿化学法:湿化学法大体可分为两类:酸法与氨法。二者分别使用酸或碱与原料反应,而后制备碳酸锌或氢氧化锌沉淀。经过过滤、洗涤、烘干和800°C的煅烧后,最终得到粒径在1~100纳米的高纯度轻质氧化锌。 喷雾热分解法:喷雾热解法是将金属盐溶液以雾状喷入高温气氛中,通过溶剂的蒸发及随后的金属盐热分解,直接获得纳米氧化物粉体,或者是将溶液喷入高温气氛中干燥,然后经热处理形成粉体的生产方法。 经洛阳钙丰工贸实践可知该法制备的纳米粉体纯度高,分散性好,粒径分布均匀,化学活性好,并且工艺操作简单,易于控制,设备造价低廉,是最具产业化潜力的纳米级别氧化锌粉体的制备方法之一。 生产氧化锌的设备有: 1、氧化锌选矿设备:锌矿石按其所含矿物不同而分为硫化矿和氧化矿用黄药作氧化铅的捕收剂、胺作氧化锌的捕收剂、优先浮铅的开路流程能够获得的锌品位和锌回收率分别为30%和65%。 2、氧化锌烘干机:转筒式烘干机简称烘干机是一种处理大量物料的干燥器。由于运转可靠、操作弹性大、适应性强、处理量大,广泛使用于冶金、化工等产业中。 3、氧化锌转炉筒体设备:该旋转炉适用范围极广,可以用于:化工粉料和颗粒料的干燥和焙烧;金属氧化物的干燥和焙烧分解;无机盐和稀土材料的干燥和焙烧等。

ZnO压敏陶瓷的发展现状

430 材料科学 华北电力大学博士电力基金资助 ZnO 压敏陶瓷的发展现状 刘东雨1, 2 徐鸿1 杨昆1 李斌1 蔡国雄2 1. 华北电力大学动力工程系,北京102206 2. 中国电力科学研究院,北京100085 摘要: 本文从高电压和低电压两个方面综述了ZnO 压敏陶瓷的发展现状。指出化学法制备压敏陶瓷粉体是一种很有发展潜力的方法。在制备低压ZnO 压敏电阻方面需深入研究抑制晶粒异常长大,提高压敏电阻非线性系数和通流能力的添加剂。 关键词:ZnO 压敏陶瓷,压敏电压,通流能力 Development of Zinc Oxide Varistor Ceramic Liu Dongyu 1,2, Xu Hong 1, Yang Kun 1, Li Bin 1, Cai Guoxiong 2 (1. Department of Power Engineering, North China Electric Power University, Beijing 102206 2. China Electric Power Research Institute, Beijing 100085) Abstract: The development of high-voltage and low-voltage zinc oxide varistor ceramic was reviewed in this paper. Manufacturing ZnO varistor ceramic powder by chemical method is a potential method for improving varistor’s electric properties. For making low voltage varistor, it is worth to study additives which improve nonlinearity exponent and current capacity of the ZnO varistor. Key Words: ZnO varistor, breakdown voltage, current capability 自1968年日本松下电器公司首先研制成功氧化锌压敏陶瓷以来,由于它具有优异的非 线性电压──电流特性和吸收能量(浪涌)的能力,经过近三十年的研究与开发,在电子线路和电力系统的过电压保护中得到广泛的应用。在高电压方面,用ZnO 压敏陶瓷阀片制作的氧化物避雷器(MOA )已取代SiC 避雷器用于电力系统的过压保护和浪涌吸收,用ZnO 压敏陶瓷制作的压敏电阻已取代齐纳二极管用于电子线路中稳压和脉冲抑制[1~4]。在低电压 方面,用ZnO 压敏陶瓷制作的低压压敏电阻已用作IC 保护,CMOS 保护,液晶显示驱动元件,电压波动检测元件,直流电平移位元件以及均压元件等[3,5,6]。虽然经过35年的发展ZnO 压敏陶瓷无论是在高电压方面还是在低电压均得到了广泛的应用,但MOA 存在尺寸偏大的问题,尤其是配合GIS 时,尺寸问题更为突出[7]。在低压方面,随压敏电压降低,非线性系数降低,使ZnO 压敏电阻性能恶化。然而作为液晶显示驱动元件,若压敏电阻的压敏电压低于15V ,就可以显著降低能耗,降低液晶显示器的成本。为此,本文从高压和低压两方面介绍ZnO 压敏电阻研究进展情况。 1. ZnO 压敏陶瓷的电性能参数 ZnO 压敏陶瓷或称压敏变阻器(varistor )是一类电阻值随加于其上的电压而灵敏变化 的电子陶瓷。其工作原理是基于所用压敏电阻特殊的非线性电流─电压(I─V)特性。电流─电压的非线性特性主要表现在, 当电压低于某一临界电压(阀值电压V B )之前, 变阻器的阻值非常高, 其作用接近于绝缘体(其I─V关系服从于欧姆定律), 当电压超过这一临界值时, 电阻就会急剧减少, 其作用又相当于导体(其I─V关系为非线性), 此时,I─V关系可用下式表示: I=(V/C)α _______________________________________________________________________________https://www.doczj.com/doc/5015431835.html,

纳米氧化锌的制备实验报告

纳米ZnO2的制备 实验报告 班级:应091-4 组号:第九组 指导老师:翁永根老师 成员:任晓洁 1428 邵凯 1429 孙希静 1432 【实验目的】 1.了解纳米氧化锌的基本性质及主要应用 2.通过本实验掌握纳米氧化锌的制备方法

3.对于纳米氧化锌的常见产品掌握制备原理和方法,并学会制备简易产 品。 4.通过本实验复习并掌握EDTA溶液的配制和标定,掌握配位滴定的原 理,方法,基准物质的选择依据以及指示剂的选择和pH的控制。 5.掌握基础常用的缓冲溶液的配制方法和原理。 6.加深对实验技能的掌握及提高查阅文献资料的能力。 【实验原理】 1. 超细氧化锌是一种近年来发展的新型高功能无机产品,晶体为六方结构,其颗粒大小约在1~100纳米。纳米氧化锌由于颗粒小、比表面积大而具有许多其表面电子结构和晶体结构发生变化,产生了宏观物体所不具有的特殊的性质,呈现表面效应、体积效应、量子尺寸效应和宏观隧道效应以及高透明度、高分散性等特点。近年来发现它在催化、光学、磁学、力学等方面展现出许多特殊功能,使在陶瓷、化工、电子、光学、生物、医药等许多领域有重要的应用价值,具有普通氧化锌所无法比较的特殊性和用途。纳米氧化锌在纺织领域可用于紫外光遮蔽材料、抗菌剂、荧光材料、光催化材料等。纳米氧化锌一系列的优异性和十分诱人的应用前景。 2. 纳米氧化锌的制备方法主要有:水热法,均相沉淀法,溶胶一凝胶法,微乳液法,直接沉淀法 3. 本工艺是将锌焙砂(主要成份是ZnO,主要伴生元素及杂质为铁,铜,铅,镍,铬,镍,此外,还含有其它微量杂质,因而用锌焙砂直接酸浸湿法生产活性氧化锌,必须利用合理的酸浸及除杂工艺,分离铅,脱铁、锰,除钙、镁等重金属)与硫酸反应,生产出粗制硫酸锌,加高锰酸钾、锌粉等,经过提纯得到精制硫酸锌溶液后,再经碳化母液沉淀,制得碱式碳酸锌,最后经烘干,煅烧制成活性氧化锌成品。 4. 氧化锌含量的测定采用配位滴定法测定,用NH3-NH4Cl缓冲溶液控 制溶液pH≈10,以铬黑T为指示剂,用EDTA标准溶液进行滴定,其主要反应如下: 在氨性溶液中: Zn2++4NH3?Zn(NH3)42+ 加入EBT(铬黑T)时: Zn(NH3)42++EBT(蓝色)?Zn-EBT(酒红色)+4NH3 滴定开始-计量点前: Zn(NH3)42++EDTA?Zn-EDTA+4NH3 计量点时: Zn-EBT(酒红色)+EDTA?Zn-EDTA+EBT(蓝色)

氧化锌制备方法

将mol·L-1的NaOH乙醇溶液缓慢滴加到含有mol·L-1的Zn(NO3)2·6H2O乙醇溶液中. 将混合溶液转移至高压反应釜中, 在130℃下反应12 h, 将反应产物经二次去离子水、乙醇等洗涤后, 在130 摄氏度下干燥,即可获得纯ZnO纳米棒. 在 ZnCl2 溶液 mol/L) 中加入一定量的 SDS, 搅拌下于 65 ℃将 Na2CO3 溶 液滴加到该溶液中 (120 滴/min, n(Na 2CO 3 )/n(ZnCl2) = 2),恒温反应 h. 将反 应液倒入聚四氟乙烯罐中, 在150~160 ℃进行水热反应 12 h, 自然冷却后离心分离, 用去离子水洗涤到无水Cl?离子, 再用无水乙醇洗涤 2~3 次, 50 ℃真空干燥 2 h, 300 ℃焙烧 3 h, 即制得 ZnO 纳米管. 将0. 1 L0. 1 mo l/ L二水合醋酸锌的乙醇溶液置于带冷凝管和干燥管的0. 5 L 圆底烧瓶中, 在80 ℃搅拌3 h, 不断收集冷凝物, 最后可获得0. 04 L 中间物和0. 06 L 冷凝物. 将中间物迅速用冷的绝对乙醇稀释至0. 1 L, 冷至室温, 得0. 1 mol/ L 中间产物. 氨水沉淀法制备纳米氧化锌 在水——乙醇介质中用氨水沉淀法制备出了纳米Zn(OH) 2 和ZnO材料,讨论了介质组成对沉淀产物ZnO微粒的粒径范围及形貌的影响,并研究出由Zn(OH)2分解为纳米ZnO的最佳干燥脱水条件为200℃、2h。表明本方法不需高温处理就可得到颗粒均匀且分布窄的ZnO纳米材料,粒径可达17~6nm。 一、试剂与仪器 主要原料为氯化锌、无水乙醇、氨水等,均为分析纯试剂。 仪器为微型滴定管、磁力搅拌器、恒温干燥烘箱。 二、试验方法 以水——乙醇为溶剂,其中醇的体积含量分别为0%(去离子水)、20%、60%、100%。将氯化锌、氨水配制成不同浓度的溶液(不同浓度是多少)。取一定体积(一定体积是多少)的氯化锌乙醇溶液于烧杯中,加以适当速度搅拌,不同浓度的氨水从微型滴管中缓慢滴入氯化锌乙醇溶液中,使之进行反应。控制氨水用量,调节pH值为左右,确定滴定终点。反应得到的白色沉淀物,经抽滤洗涤后自然风干 即为Zn(OH) 2纳米粉,Zn(OH) 2 经干燥(200℃、2h)脱水后,为ZnO纳米粉

ZnO压敏陶瓷的研究进展概要

ZnO压敏陶瓷的研究进展 摘要:ZnO压敏陶瓷是众多压敏陶瓷中性能最优异的一种,它是以ZnO为主原料,通过掺杂Bi2O3、TiO2、Co2O3、MnO2、Cr2O3和Nb2O5等氧化物改性烧结而成。本文通过介绍ZnO粉体的合成方法、掺杂改性等方面入手,对ZnO压敏陶瓷的发展趋势进行探讨,并针对某些共性问题提出自己的一些看法。 关键词:ZnO压敏陶瓷;掺杂;制备;发展趋势 The development trends of ZnO varistor ceramic Abstract: The ZnO varistor ceramic is one of the varistor ceramics which with best properties. The main raw material is ZnO, then mixed with some oxides ,such as Bi2O3、TiO2、Co2O3、MnO2、Cr2O3、Nb2O5 and so on ,to change it’s properties and sinter it .This text briefly described the methods of producing ZnO powder and mixing something to change the properties of it .Present situation in development of varistor ceramic as well as its developing tendency was also analyzed .Some suggestions and opinions were proposed for problems on common characteristics. Key words: ZnO varistor ceramic; mixed; produce; developing tendency 1.前言 ZnO压敏陶瓷是一种多功能新型陶瓷材料,它是以ZnO主为体,添加若干其他改性金属氧化物的烧结体材料。它显示出优良的伏安特性,具有非线性系数大,耐大电流冲击,抗浪涌能力强等特点,能起到过压保护、抗雷击、抵制瞬间脉冲的作用,成为应用最广泛的压敏变阻器材料[1]。ZnO压敏电阻器按其外形和结构的特征可分为[2]:单层结构压敏电阻器、多层结构压敏电阻器和避雷器用压敏电阻片(或阀片)。ZnO压敏材料表现为由晶界阻抗所确定的具有高阻值的线性电阻性质,一旦电压超过就成为导体,表现为由晶粒和晶界共同确定的具有低阻值的非线性电阻性质,非线性系数α愈大,则保护性能愈好,对稳压元件来说,则电压稳定度起高。ZnO压敏陶瓷是最为常见的压敏陶瓷,主要应用于航空、航天、邮电、铁路、汽车和家用电器等领域。随着集成电路的快速发展,各种电子元器件的驱动电压及耐压值逐渐下降,由于ZnO压敏陶瓷电压较高和介电常数较低,限制了其在低压微电子领域的应用。近年来,低压压敏电阻材料的发展受到了广泛的关注[3]。

活性氧化锌(形态、性质、制备、性能表征)

活性氧化锌(形态、性质、制备、性能表征) 活性氧化锌形态 活性氧化锌是一种多功能性的新型无机材料,其颗粒大小约在1~100纳米。由于晶粒的细微化,其表面电子结构和晶体结构发生变化,产生了宏观物体所不具有的表面效应、体积效应、量子尺寸效应和宏观隧道效应以及高透明度、高分散性等特点。近年来发现它在催化、光学、磁学、力学等方面展现出许多特殊功能,使其在陶瓷、化工、电子、光学、生物、医药等许多领域有重要的应用价值,具有普通氧化锌所无法比较的特殊性和用途。活性氧化锌在纺织领域可用于紫外光遮蔽材料、抗菌剂、荧光材料、光催化材料等。由于活性氧化锌一系列的优异性和十分诱人的应用前景,因此研发活性氧化锌已成为许多科技人员关注的焦点。 活性氧化锌金属氧化物粉末如氧化锌、二氧化钛、二氧化硅、三氧化二铝及氧化镁等,将这些粉末制成纳米级时,由于微粒之尺寸与光波相当或更小时,由于尺寸效应导致使导带及价带的间隔增加,故光吸收显著增强。各种粉末对光线的遮蔽及反射效率有不同的差异。以氧化锌及二氧化钛比较时,波长小于350纳米(UVB)时,两者遮蔽效率相近,但是在350~400nm(UV A)时,氧化锌的遮蔽效率明显高于二氧化钛。同时氧化锌(n=1.9)的折射率小于二氧化钛(n=2.6),对光的漫反射率较低,使得纤维透明度较高且利于纺织品染整。活性氧化锌还可用来制造远红外线反射纤维的材料,俗称远红外陶瓷粉。而这种远红外线反射功能纤维是通过吸收人体发射出的热量,并且再向人体辐射一定波长范围的远红外线,除了可使人体皮下组织中血液流量增加,促进血液循环外,还可遮蔽红外线,减少热量损失,故此纤维较一般纤维蓄热保温。 活性氧化锌性质 氧化锌是一种半导体催化剂的电子结构,在光照射下,当一个具有一定能量的光子或者具有超过这个半导体带隙能量的光子射入半导体时,一个电子从价带NB激发到导带CB,而留下了一个空穴。激发态的导带电子和价带空穴能够重新结合消除输入的能量和热,电子在材料的表面态被捕捉,价态电子跃迁到导带,价带的空穴把周围环境中的羟基电子抢夺过来使羟基变成自由基,作为强氧化剂而完成对有机物(或含氯)的降解,将病菌和病毒杀死。活性氧化锌制备 氧化锌的制备方法分为三类:即直接法(亦称美国法)、间接法(亦称法国法)和湿化学法。目前许多市售氧化锌多为直接法或间接法产品,粒度为微米级,比表面积较小,这些性质大大制约了它们的应用领域及其在制品中的性能。云南化工冶金研究所采用湿化学法(NPP-法)制备纳米级活性氧化锌,可用各种含锌物料为原料,采用酸浸浸出锌,经过多次净化除去原料中的杂质,然后沉淀获得碱式碳酸锌,最后焙解获得活性氧化锌。与以往的制备纳米级超细氧化锌工艺技术相比,该新工艺具有以下技术方面的创新之处: 1.平衡条件下反应动力学原理与强化的传热技术结合,迅速完成碱式碳酸锌的焙解。 2.通过工艺参数的调整,可以制备不同纯度、粒度及颜色的各种型号的活性氧化锌产品。 3.本工艺可以利用多种含锌物料为原料,将其转化为高附加值产品。 4.典型绿色化工工艺,属于环境友好过程。 活性氧化锌性能表征 活性氧化锌的突出特点在于产品粒子为纳米级,同时具有纳米材料和传统氧化锌的双重特性。与传统氧化锌产品相比,其比表面积大、化学活性高,产品细度、化学纯度和粒子形

沉淀法制备纳米氧化锌粉体讲义

沉淀法制备纳米氧化锌粉体 一、实验目的 1.了解沉淀法制备纳米粉体的实验原理。 2.掌握沉淀法制备纳米氧化锌的制备过程和化学反应原理。 3.了解实验产物粒度的表征手段,掌握激光纳米粒度仪的使用。 4.了解沉淀剂、实验条件对产物粒径分布的影响。 二、实验原理 氧化锌是一种重要的宽带隙(3.37eV)半导体氧化物,常温下激发键能为60meV。近年来,低维(0维、1维、2维)纳米材料由于具有新颖的性质已经引起了人们广泛的兴趣。纳米氧化锌由于晶粒的细微化,其表面电子结构和晶体结构发生变化,产生了宏观物体所不具有的表面效应、体积效应、量子尺寸效应和宏观隧道效应以及高透明度、高分散性等特点,已经广泛的应用在陶瓷、化工、电子、光学、生物、医药等许多领域。纳米氧化锌的制备方法有物理法和化学法,物理法主要包括机械粉碎法和深度塑形变形法,化学法包括沉淀法、溶胶—凝胶法、水热法、微乳液法等方法。本实验采用沉淀法制备纳米氧化锌粉体。 沉淀法包括直接沉淀法和均匀沉淀法。直接沉淀法是制备纳米氧化锌广泛采用的一种方法。其原理是在包含一种或多种离子的可溶性盐溶液中,加入沉淀剂(如OH-,CO32-等)后,在一定条件下生成沉淀并使其沉淀从溶液中析出,再将阴离子除去,沉淀经热分解最终制得纳米氧化锌。其中选用不同的沉淀剂,可得到不同的沉淀产物。均匀沉淀法是利用某一化学反应使溶液中的构晶离子从溶液中缓慢地、均匀地释放出来,所加入的沉淀剂并不直接与被沉淀组分发生反应,而是通过沉淀剂在加热的情况下缓慢水解,在溶液中均匀地反应。 纳米颗粒在液相中的形成和析出分为两个过程,一个是核的形成过程,称为成核过程;另一个是核的长大,称为生长过程。这两个过程的控制对于产物的晶相、尺寸和形貌是非常重要的。 制备氧化锌常用的原料是可溶性的锌盐,如硝酸锌Zn(NO3)2、氯化锌ZnCl2、醋酸锌ZnAc2。常用的沉淀剂有氢氧化钠(NaOH)、氨水(NH3·H2O)、尿素(CO(NH2)2)等。一般情况下,锌盐在碱性条件下只能生成Zn(OH)2沉淀,不能得到氧化锌晶体,要得到氧化锌晶体需要进行高温煅烧。均匀沉淀法通常使用尿素作为沉淀剂,通过尿素分解反应在反应过程中产生NH3·H2O与锌离子反应生成沉淀。反应如下: OH-的生成: CO32-的生成: 形成前驱物碱式碳酸锌的反应: 热处理后得产物ZnO: 用NaOH作沉淀剂一步法直接制备纳米氧化锌的反应式如下: 该实验方法过程简单,不需要后煅烧处理就可以得到氧化锌晶体,而且可以通过调控Zn2+/OH-的摩尔比控制氧化锌纳米材料的形貌。 三、实验仪器与试剂

完整版ZnO陶瓷及其应用

ZnO陶瓷及其应用 压敏陶瓷介绍 压敏陶瓷或称压敏变阻器,指对电压变化敏感的非线性电阻陶瓷(即电阻值与外加电压成显著的非线性关系),其伏安特性曲线如图。当电压低于某一临界值时,压敏陶瓷的阻值非常高,几乎为一绝缘体,当电压超过这一临界值时,电阻值急剧减小,接近于导体。 已经出现了多种压敏陶瓷电阻器的应用,SiC用来吸收雷击突波以来,从1931年日本将微型电动机彩色电视机用它吸收异常电压、硅整流器、如有线电话交换机用它消除电火花、用它来吸收噪声及对电机进行过压保护和继电保护等、其中BaTiO3SnO2、、SrTiO3等。BaTiO3SiC制造压敏半导体陶瓷材料有、ZnO、、Fe2O3利用的是晶界非欧姆特SrTiO3、ZnO、利用的是电极与烧结体界面的非欧姆型,Fe2O3而SiC ZnO压敏半导体陶瓷。性。目前应用最广、性能最好的是 远优于其他材料ZnO可见ZnO简介历史起源. 结构 性能 制备

应用:(压敏陶瓷、掺杂半导体) 前景 历史起源 人类很早便学会了使用氧化锌作涂料或外用医药,但是人类发现氧化锌的历史难以追溯。 氧化锌在古代和近代的另一主要用途是涂料,称为锌白。 在20世纪后半叶,氧化锌多用在了橡胶工业。在20世纪70年代,氧化锌的第二大用途是是复印纸添加剂。 现在,晶粒微小的氧化锌开始在纳米材料领域扩展应用范围 结构 ZnO的晶体结构 纤锌矿晶体结构,其中氧离子以六方密堆积排列,锌离子占据了一半四面体间隙。也有立方闪锌矿结构,以及比较罕见的氯化钠式八面体结构,纤锌矿结构在三者中稳定性最高,最常见 ZnO的能带结构2+-2能级所组成的。当离子相互靠近而形成晶4s空的Zn能级和2p满的 O的能带由ZnO. 体时,这些能级就形成能带。满的2p和空的4s之间的禁带宽度约为3.2~3.4 eV。从禁带宽度看,室温下ZnO应是一绝缘体。 (禁带宽度是指一个带隙宽度(单位是电子伏特(eV)),固体中电子的能量是不可以连续取值的,而是一些不连续的能带,要导电就要有自由电子存在,自由电子存在的能带称为导带(能导电),被束缚的电子要成为自由电子,就必须获得足够能量从价带跃迁到导带,这个能量的最小值就是禁带宽度。绝缘体的禁带宽度一般很宽,约为3 ~ 6eV,半导体的禁带宽度较窄,约为0.1 ~ 2eV。) ZnO的半导体化有三种情况。 1.由于本证缺陷。ZnO晶格结构间隙大,晶格中的Zn很容易脱离原来的位置进入间隙位置,形

简单的制备纳米氧化锌的制备方法

在水——乙醇介质中用氨水沉淀法制备出了纳米()和材料,讨论了介质组成对沉淀产物微粒地粒径范围及形貌地影响,并研究出由()分解为纳米地最佳干燥脱水条件为℃、.表明本方法不需高温处理就可得到颗粒均匀且分布窄地纳米材料,粒径可达~. 一、试剂与仪器 主要原料为氯化锌、无水乙醇、氨水等,均为分析纯试剂. 仪器为微型滴定管、磁力搅拌器、恒温干燥烘箱. 二、试验方法 以水——乙醇为溶剂,其中醇地体积含量分别为(去离子水)、、、.将氯化锌、氨水配制成不同浓度地溶液(不同浓度是多少?).取一定体积(一定体积是多少?)地氯化锌乙醇溶液于烧杯中,加以适当速度搅拌,不同浓度地氨水从微型滴管中缓慢滴入氯化锌乙醇溶液中,使之进行反应.控制氨水用量,调节值为左右,确定滴定终点.反应得到地白色沉淀物,经抽滤洗涤后自然风干即为()纳米粉,()经干燥(℃、)脱水后,为纳米粉体.资料个人收集整理,勿做商业用途 三、不同乙醇浓度对粒径地影响 并且含量越高,这种抑制作用也越强.资料个人收集整理,勿做商业用途 氯化锌地浓度对地粒径影响不大,规律性不强;氨水地浓度对地粒径稍有影响,浓度增大,粒径是减小趋势,浓度为时,粒径为~,浓度为时,粒径为~.资料个人收集整理,勿做商业用途 五、该方法操作简单,条件温和,所用原材料成本低,过程易控制等,是制备纳米粉地好方法,值得推广. 固相合成氧化锌 一、试剂与前驱物地准备 七水硫酸锌、无水草酸纳均为分析纯; 准确称取比为地七水硫酸锌和无水草酸纳,分别研磨后,充分混合,再转入同一研钵中共研磨.热水洗去副产物后,再用无水乙醇淋次,于℃烘干.资料个人收集整理,勿做商业用途二、纳米氧化锌地制备 由前驱物地热分析得地热分解温度为℃.将置于马弗炉中加热升温至分解温度,保持,即得浅黄色纳米氧化锌.资料个人收集整理,勿做商业用途 液相沉淀制备氧化锌 一、单组分锌氨溶液地制备

氧化锌压敏陶瓷个人总结

探究掺杂二氧化钛对氧化锌压敏陶瓷 的影响 个人项目总结 学院材料与化学工程学院 专业无机非金属材料与工程 班级 13级无机非2班 指导教师徐海燕 提交日期 2016、1、2 在大三刚开学的时候,李燕老师对我们说我们大三的学生要做一

个CDIO项目,刚听到这个消息的时候,我的心里就在想“完了,自己的实践能力不好,以前从来没有做过这种项目,怎么办呢”,当时不知道怎么办,就按照老师的说法去找指导老师,我和室友一起找的老师是徐海燕老师,刚开始去见老师的时候,什么都没有准备,被老师教育了一顿,后来我们在去见老师的时候,都是先准备好每个人要说的东西,然后这样就不会害怕了,就这样在老师的指导下,我们一点一点把实验给做完,得到了我们想要的东西,在这次试验中,我学到了“学中做,做中学”实验原则和团队合作的实验精神,刚开始做实验的时候,我们一窍不懂,对要做什么,怎么去做一点都不了解,从最开始的实验任务布置下来,到去图书馆网上查找文献资料,再到实验方案的设计,以及后来的实验具体操作过程,我从中间的过程学到了很多知识,从对实验的一无所知,到后来知识的一点一点总结,我感觉到从书本上学到的知识得到了充分的运用。 我们一大组有十个人,后来因为实验的需要,我们学要不同条件下的实验结果,所以我们这一大组分成了三个小组,我们这组有四个人,在我们这四个人之中,每个人都有自己的任务,在每一次老师布置任务下来之后,我们都会分工好每个人需要做的东西,这样每个人都有事情可做,避免了有人偷懒的情况。 经过了差不多一个学期的实验,CDIO就快要结束了,结题汇报很快就要进行了,在整个CDIO项目期间,我感觉最重要的不是实验结果,而是实验过程让我们学到了些什么,需要掌握的知识,实验态度,

实验7--沉淀法制备纳米氧化锌粉体

实验七沉淀法制备纳米氧化锌粉体 一、实验目的 1、了解沉淀法制备纳米粉体的实验原理。 2、掌握沉淀法制备纳米氧化锌的制备过程和化学反应原理。 3、了解反应条件对实验产物形貌的影响,并对实验产物会表征分析。 二、实验原理 氧化锌是一种重要的宽带隙(3.37 eV)半导体氧化物,常温下激发键能为60 meV。近年来,低维(0维、1维、2维)纳米材料由于具有新颖的性质已经引起了人们广泛的兴趣。氧化锌纳米材料已经应用在纳米发电机、紫外激光器、传感器和燃料电池等方面。通常的制备方法有蒸发法、液相法。我们在这里主要讨论沉淀法。 沉淀法是指包含一种或多种离子的可溶性盐溶液,当加入沉淀剂(如OH--,CO32-等)后,或在一定温度下使溶液发生水解,形成不溶性的氢氧化物、氧化物或盐类从溶液中析出,并将溶剂和溶液中原有的阴离子洗去,得到所需的化合物粉料。 均匀沉淀法是利用化学反应使溶液中的构晶离子由溶液中缓慢均匀地释放出来。而加入的沉淀剂不是立即在溶液中发生沉淀反应,而是通过沉淀剂在加热的情况下缓慢水解,在溶液中均匀地反应。 纳米颗粒在液相中的形成和析出分为两个过程,一个是核的形成过程,称为成核过程;另一个是核的长大,称为生长过程。这两个过程的控制对于产物的晶相、尺寸和形貌是非常重要的。 制备氧化锌常用的原料是可溶性的锌盐,如硝酸锌Zn(NO3)2、氯化锌ZnCl2、醋酸

锌。常用的沉淀剂有氢氧化钠(NaOH )、氨水(NH 3. H 2O )、尿素(CO(NH 2)2)。一般情况下,锌盐在碱性条件下只能生产Zn(OH)2沉淀,不能得到氧化锌晶体,要得到氧化锌晶体通常需要进行煅烧高温。均匀沉淀法通常使用尿素作为沉淀剂,通过尿素分解反应在反应过程中产生NH 3 H 2O 与锌离子反应产生沉淀。反应如下: O H NH CO O H NH CO 23222223)(?+→+ (1) OH -的生成: -++→?OH NH O H NH 423 (2) CO 32-的生成: O H CO NH CO O H NH 223422322++→+?-+ (3) 形成前驱物碱式碳酸锌的反应: ()↓??→+++--+O H OH Zn ZnCO O H OH CO Zn 2232232243 (4) 热处理后得产物ZnO : ()O H CO ZnO O H OH Zn ZnCO 22223232+↑+→?? (5) 本实验通过Zn(NO 3)2和NaOH 之间反应得到的Zn(OH)42-进行热分解反应制备了氧化锌纳米晶体。用NaOH 作沉淀剂一步法直接制备纳米氧化锌的反应式如下: ↓→+-+22)(2OH Zn OH Zn (6) --→+2 42)(2)(OH Zn OH OH Zn (7) --++↓→OH O H ZnO OH Zn 2)(224 (8) 该实验方法过程简单,不需要后煅烧处理就可得到氧化锌晶体,而且可以通过调控Zn 2+/OH  ̄的摩尔比控制氧化锌纳米材料的形貌。 三、实验仪器与试剂

生产氧化锌的工艺介绍

氧化锌的几种生产方法 氧化锌的几种生产方法 1.直接法:用锌精矿为原料,经高温氧化焙烧再加煤还原为锌蒸气,锌蒸气与热空气氧化得氧化锌。现在主要用的原材料为锌矿石,锌灰等.一般有以下几种窑炉结构:(一)平窑.高温氧化焙烧过程在一用耐火转建的立方体窑炉里面,炉渣从窑下面漏掉.原料:锌矿石,锌灰,要求锌含量30%以上.产量:炉体6平方左右的每天2到3吨左右.含量在85%-99%之间.设备投资40万左右.优点:由于是用无烟煤烧制,氧化锌颜色好,硫根,氯根含量低.原材料充沛,产品销路广. (二)转窑.高温焙烧过程在一倾斜20度左右长度40米左右的圆形铁筒里,从上方加料,下方出渣,蒸气收集氧化成氧化锌.原料:各种工业含锌废渣,一般含锌量16%以上就可以用,产量圆形铁筒一米左右的每天10吨货左右,含量在55%-92%之间,设备投资60万左右.优点:原材料要求不高,回收率高.产量高.氧化锌颜色有的发黄,有的发灰.硫根氯根含量高.一般作为原材料用于别的行业. (三)烟化炉.具体生产工艺不详.原料:工业含锌废渣,一般含锌量14%以上,产量每天20吨,含量在45-80%.设备投资100万.优点:回收率高,产量高.氧化锌颜色微黄色或灰色.生产工控制好的话硫根氯根不高. 2.间接法:把锌锭熔入蒸发坩锅内,加热后气化遇空气氧化经过冷却用布袋捕集得到成品.产量每天5吨左右.含量99.7%,不过现在也有用锌渣自己炼成锌块代替锌锭,生产的氧化锌含量在99.5左右.设备投资40万.优点:产品含量高,产量高,工艺容易控制.氧化锌为白色微黄.活性好.不过由于原材料为锌锭,价格随锌锭价格起伏变化较大. 3.化学法:次氧化锌、氨水与碳酸氢铵,按1(有效锌)∶8∶1~1.5(重量比)配比投放在浸取槽中,加热至50℃~80℃进行反应,调节PH值后除去杂质.蒸发5~8小时,而得碱式碳酸锌沉淀液固混合物,分解的氨气用吸收后,经氨循环系统导至工序(1)的浸取槽内循环利用,获得的碳酸锌经甩干,焙烧得到含量99.8%左右的氧化锌.原料:转窑或烟化炉生产的次氧化锌或别的低含量氧化锌.产量:每天4吨左右.设备投资100万.优点:产品纯度好,含铅,镉,坤等杂质少.由于次氧化锌都含有一定量的铅,生产过程中的废铅泥也可抵消部分生产成本.稳定的原料和开拓市场要掌握好.由于生产过程中氨气循环利用,也称为氨法生产氧化锌工艺.

氧化锌压敏陶瓷的制备应用性能

氧化锌压敏陶瓷 1.功能陶瓷 所谓功能陶瓷,就是指在微电子、光电子信息和自动化技术以及生物医学、能源和环保工程等基础产业领域中所用到的陶瓷材料。功能陶瓷所具有的独特声、光、热、电磁等物理特性和生物、化学以及适当的的力学特性,在相应的工程和技术中起到了关键的作用。这种陶瓷材料从其形态上可以分为块体、粉体、纤维和薄膜四种类型。 2.压敏陶瓷 压敏陶瓷既是功能陶瓷的一种,它是指一定温度下,某一特定电压范围内,具有非线性伏安特性且其电阻随电压的增加而急剧减小的一种半导体陶瓷材料。目前压敏陶瓷主要有4大类—— SiC、TiO2、SrtiO3和ZnO。其中应用广、性能好的当属氧化锌压敏陶瓷。由于ZnO压敏陶瓷呈现较好的压敏特性,压敏电阻α值(非线性指数)高( α>60,比SiC压敏电阻器10倍以上),有可调整C值和较高的通流容量,因此得到广泛的应用。在电力系统、电子线路、家用电器等各种装置中都有广泛的应用,尤其在高性能浪涌吸收、过压保护、超导性能和无间隙避雷器方面的应用最为突出。 3.氧化锌压敏陶瓷 ZnO压敏陶瓷生产方法是在ZnO 中添加Bi2 O3、Co2 O3、MnO2、Cr2 O3、Al2 03、Sb2 03、Ti02、Si02、B2O3 和PbO 等的氧化物。在配方中常含有Bi 元素,其主晶相为具有n型半导体特性的ZnO;此外,瓷相中除有少量添加物与ZnO形成的固溶体外,大部分添加物在ZnO晶粒之间形成连续晶相。主晶相ZnO 是n型半导体,体积电阻率为10 ·m以上的高电阻层。因此,外加电压几乎都集中在晶界层上,其晶界的性质和瓷体的显微结构对ZnO电阻的压敏特性起着决定性作用。一般ZnO的粒径d为几微米到几十个微米,晶界层厚度为0.02~0.2 ;也有人认为晶界相主要集中于三到四个ZnO晶粒交角处,晶界相不连续,在ZnO 晶粒接触面间形成有一层厚度20U左右的富铋层,其性质对非线性特性起重要作

活性氧化锌的制备、应用及技术发展

活性氧化锌的制备、应用及技术发展 Ξ 戴兴征 (昆明云冶锌业股份有限公司,云南 昆明 650102) 摘要:介绍了活性氧化锌的性质和质量标准,分析了活性氧化锌的市场和应用情况,阐述了活性氧化锌的生产方法和技术发展,提出了生产活性氧化锌的具体设想。 关键词:活性氧化锌;制备;应用;技术发展 中图分类号:TQ132141 文献标识码:A 文章编号:1004-2660(2003)S1-0029-06 1 概述 活性氧化锌出现于1925年,由英国专利公布了将硫酸锌溶液喷在热气流的沸面上,制备活性氧化锌的技术。二战前后,德国将活性氧化锌用于军品橡胶中,随后日本、前苏联也开始研究试制活性氧化锌。 在我国,1958年天津第三橡胶厂试制成功活性氧化锌,1965年天津曙光化工厂也进行了活性氧化锌试制,但因种种原因其发展较慢。近年来,随着我国经济的快速增长,活性氧化锌越来越受到人们的关注,特别是我国汽车工业和建筑业的飞速发展,带来轮胎业、涂料业以及陶瓷业随之迅速发展,活性氧化锌的应用还在不断扩大。一般普通氧化锌价格在6500~8000元/t ,活性氧化锌的价格为12000~16000元/t ,而纳米氧化锌价格更高达100000~250000元/t 。本文在介绍活性氧化锌的技术标准、制备方法、技术发展和应用之后,提出云冶开发活性氧化锌的原则建议。 2 活性氧化锌的性质和质量标 准 211 普通氧化锌的性质和质量要求 普通氧化锌为白色粉末或六角晶系结晶体,无嗅无味,受热变为黄色,冷却后又变为白色。普通氧化锌的遮盖力比铅白小,是二氧化钛和硫化锌的一半,着色力是碱式碳酸锌的2倍,其主要物理性质见表1,质量标准见表2。 212 活性氧化锌的性质和质量标准 活性氧化锌的英文名称为Activated Zinc Oxi de ,颜色为白色或微黄色球状细粉末,密度为5147g/cm 3,熔点为1800℃,不溶于水和醇,溶于酸、碱、氯化铵、氨水等。在潮湿空气中,活性氧化锌能吸收CO 2和水生成碱式碳酸锌。 活性氧化锌与工业级普通氧化锌的主要差别在于活性氧化锌颗粒更细,活性更高。普通氧化锌粒度015μm ,呈粒状、棒状,比表面积1~5m 2/g ,而活性氧化锌粒度0105μm ,呈球状,比表面积35~45m 2/g 。活性氧化锌行业标准见表3。 第30卷增刊 有色金属设计 Vol 130Su pp. 2003 NON FERROUS M ETALS DESI G N 2003  Ξ收稿日期35 作者简介戴兴征(66),男,安徽人,高级工程师,主要从事有色冶炼生产及技术管理方面的工作:200-11-0:19-.

相关主题
文本预览
相关文档 最新文档