当前位置:文档之家› 水压爆破新技术教学教材

水压爆破新技术教学教材

水压爆破新技术教学教材
水压爆破新技术教学教材

长堵塞水压爆破新技术

露天、洞室开挖均可采用“长堵塞水压爆破新技术”。所谓长堵塞水压爆破就是指在炮孔内装入用密封塑料水袋进行增长堵塞段长度的爆破作业,该项新技术为铁道建筑研究设计院何广沂教授等人的发明加上日本的长堵塞爆破技术的综合成果。

一、其主要技术经济指标为:

1)洞内掘进是炮眼利用率>95%;

2)300~700元/m

3)洞内爆渣粒径缩小25%,露天浅孔80cm大块率下降45%,露天深孔无需解炮;

4)洞内抛散距离缩短21%,露天岩石沿地松动破碎;

5)粉尘浓度洞内降低42.5%,露天降低70%;

6)爆破振动速度降低21%;

7)露天深孔爆破每个炮眼可减少17%装药量;

8)露天爆破无飞石、无噪音(指城市允许标准以下)。

装药结构如图1、2、3所示

图1 水压爆破炮眼装药结构

水袋水袋炮泥

图2 光面爆破拱部装药结构

水袋

图3 光面爆破边墙装药结构

二、洞室掘进中“水压爆破”与常规爆破在掏槽形式、炮眼布置、炮眼数量与深度、起爆顺序与间隔等钻爆参数完全一样,所不同的是在炮眼底部和堵塞炮泥的下部增加了水袋,露天深孔爆破亦然,详见图1。

图1中:L为炮眼深度,L= L1+ L2 +L3+L4

L1为炮眼底部水袋长,L1=1~2倍单支药卷长度;

L2为装药长度,为常规装药长度的80%左右;

L3为炮眼中上部的水袋长度;

L4为堵塞炮泥长度。

值得注意的是:L3/ L4<1,如果L3过短而L4过长,水的作用不大,;如果L3过长而L4过短,则抑制爆破膨胀气体作用不大而造成冲孔影响爆破效果,因此L3/ L4应该有个最佳比例,一般L3/ L4=3/4~1/1范围内。

(一)露天深孔爆破实例

某铁路路堑扩挖4m~10m深孔爆破,孔网参数为b×a(w)=2.5m×3.0m,φ100炮眼,钻孔深度L=4.0~11.00m,底部水袋1支(φ85mm×30cm),即L1=30cm(一倍左右药卷长度);主装药φ70mm×34cm/1.5kg, 15(5)支=510cm/22.5kg(170cm/7.5kg),即L2=510(170)cm;堵塞处水袋8支(8×φ85mm×30cm)(3支),即L3=240(90)cm;炮泥堵塞长度320(110)cm,即L4=320(110)cm。云

(二)洞室爆破实例

崩落孔结构:L1=40cm, L2=195cm, L3=60cm, L4=85cm

三、水袋制作要求:1)对于洞室爆破,一般为水平炮眼,为了便于填装水袋,其规格以φ35mm×200mm为宜,对于深孔露天爆破其规格以φ85mm×300mm为宜;2)水袋厚度δ=0.8mm,采用有一定强度的塑料膜加工为宜;3)水袋要盛满水,封口严实,不漏水、不渗水,合格的水袋坚实挺拔,能够很方便装入炮眼中。

四、炮泥制作要求:炮泥的主要成分为黏土和细砂,在与水拌和之前如有石块必须捡出来,如果小石过多则应过

5mm×5mm的筛网。配比=黏土:砂:水=0.75:0.1:0.15 。拌和后制作成φ35mm×200mm炮泥保湿待用。

五、炮泥制作以及水袋制作都已经有现成的设备(PSJ-1

封口机:700只/h,50~250g/袋,850mm×370mm×

1000mm/100kg/0.85kw/220V/50Hz;PNJ-1炮泥机:电动机二台1.5Kw+2.2Kw, 600~900个/h,料斗搅拌量20kg(黏土:砂:水=70~80:8~10:12~20),炮泥规格=φ35(40)mm ×200mm,750mm×590mm×1293mm/310kg),可以购买。因为原理简单也可以自制。

水压爆破试验机

水压爆破试验机 一、产品概况 SUP水压爆破试验机爆破实验压力0-70Mpa,适用于各种汽车软管、胶管、空调管、汽车总成、阀体、缸筒的水压、耐压、爆破性能的测试,是生产厂商及检测机构的必备检测设备,能充分体现企业的产品质量的水平。 水压爆破试验机的典型应用: 软管水压试验 胶管水压爆破试验 汽车总成耐压爆破试验 阀体水压强度试验 缸筒出厂检测 Pvc塑料管 Pe塑料管 氟胶管 散热器 冷却器 油缸

水箱 水带 二、水压爆破试验机的特点 ①配备思明特气体驱动自动增压泵,可分段保压,轻松实现输出压力可调可控。 ②具有断电数据自动保存功能 ③一机多用:水压测试,耐压强度试验,爆破测试 ④液压部件全部为不锈钢材质,使用寿命长 ⑤试验结束后可重新调出试验线,通过曲线遍历重现试验过程,或进行曲线比 较,曲线放大。 三、控制方式的选择 手动控制、PLC控制、电脑控制

四、性能参数 1.爆破试验介质:水、 2.试验压力范围:0—70Mpa,根据客户实际需求,选择相对应的压力。 3.设备动力空气:2-8bar驱动气压范围:0.1~0.69Mpa。 4.爆破测试工位数量:1 5.最大耗气量:1m3/min 6.控制精度:试验压力上限的+2% ,下限的-1% 7.爆破试验温度:常温,或高温 8.电脑实时显示压力曲线,打印报告,保存数据。 五、其他事项 1产品包装及存放 水压爆破试验机表面刷漆,发货时包一层保护膜装入木箱 存放在干燥的仓库中,存放和运输时不准倒置。 3售后服务 签订终验收合格报告的同时,合同规定的保修期开始。属设备正常使用,设备的保修期限为一年(发生人力不可抗拒的因素除外)。 在为期一年的设备保修期内,发生设备故障,24小时内拿出解决方案,必要时48小时内到达现场解决问题(人力不可抗拒的因素除外)。 保修期内任何零部件均免费更换。 保修期到期之日,供方派人来需方现场免费检查、维护和保养一次。 在设备保修期结束以后,继续提供技术支持及售后服务。 设备软件终身免费升级。

水压爆破施工方案

目录 一、编制依据 (2) 二、编制原则 (2) 三、工程概况 (2) 四、工程水文地质 (3) 4.1地形、地貌 (3) 4.2地质构造 (3) 4.3场地水文地质情况 (4) 4.4不良地质、地下障碍物与特殊岩土 (4) 五、施工工艺 (5) 5.1爆破参数 (5) 5.2炮孔布置图 (9) 5.3炮眼内安装沙袋 (11) 5.4炮泥的制作 (11) 5.5工艺原理 (11) 5.6水压爆破施工工艺流程图 (12) 5.7施工要点 (14) 六、施工安全措施 (15) 6.1安全措施 (15) 6.2现场爆炸物品安全管理措施 (16)

一、编制依据 ?杭州市紫之隧道(紫金港路-之江路)工程第Ⅱ标段施工合同; ?杭州市紫之隧道(紫金港路-之江路)工程第Ⅱ标段施工图设计; ?设计、施工过程中涉及的有关规范、规程; ?紫之隧道(紫金港路-之江路)工程Ⅰ标《岩土工程勘察报告》 《公路隧道施工技术规范》JTJ042-94 《爆破安全规程》GB6722-2003 《民用爆炸物品安全管理条例》2006.9 《爆破作业项目管理要求》GA991-2012 《爆破作业单位资质条件和管理要求》GA990-2012 《中华人民共和国安全生产法》 ?国内相关工程的施工经验。 二、编制原则 遵循招标文件、设计文件、施组、质量标准等规定,严格按照有关规定条款进行施工组织、运作,确保工程按照规定要求达标,即质量、安全、工期、文明施工、环境保护、工程成本等的最佳组合;强化内部管理、提高技能素质,依靠科技,精心施工,合理安排,严格按照项目法管理原则进行操作,实现工程成本与管理的最佳组合。 三、工程概况 紫之隧道(紫金港路—之江路)工程南起之浦路,北至紫金港路,隧道南北端各设一对匝道,线路全长约14.4km,其中隧道全长约13.9km。工程总体规模为双向六车道,为机动车专用车道。 本标段为杭州市紫之隧道(紫金港路—之江路)工程第Ⅱ标段施工,标段涵盖内容为:1#隧道部分区段(西线K1+530~K3+550、东线K1+570~K3+555)、南

水压试验机技术协议(技术要求)2

水压试验机技术协议(技术要求)2 3000T 水压试验机技术协议 甲方:西安623所高科技开发公司 乙方:陕西贸润机械设备技术有限公司 水压试验机技术协议 西安623所高科技开发公司(以下简称甲方)委托陕西贸润机械设备技术有限公司(以下简称乙方)为其制造水压泵站一台,用于3000T复合加载试验台的石油钢管的性能试验及测试,为满足试验及测试要求,经双方协调,就试验台水压泵站的有关功能、性能、可靠性、安全保护和工期等达成如下协议: 1、设备用途 用于金属石油钢管的水压爆破试验和静压试验。 2主要技术要求 2.1引用标准和规范 除非另作特别规定,所有合同设备的设计、制造、检查、试验及特性除本规范书中规定的标准外,都必须遵照最新版本的中国国家设计标准(GB)及机械行业标准。 上述标准和规范仅规定了基本要求,只要乙方认为有必要且经甲方认可,即可超越这些标准,采用更好、更经济的设计和材料,使乙方的设备持续稳定地运行。 2.2 水压泵站主要技术要求 1) 试压范围:0-40000psi 2) 最大输出流量:1.16L/Min 3) 压力测量精度: ??0.5%

4) 温度范围:-10?到40? 5) 电源电压:220V AC 6) 控制方式: , 手动控制:按钮和指示灯:启动、停止、复位、急停、自动手动转换开关; 高压手动卸荷阀的操作;两块数显表,驱动气源压力、工作压力; , 计算机控制:为上位机留有开关量接口,上位机通过开关量接口可获得当前设备的状态(电源状态、设备状态、报警状态等);可开关设备,可急停设 备,可增压、卸压。 2.3安全保护要求 水压泵站应充分考虑齐全的安全保护功能,如过载保护、断电保护和钢管破坏保护等,要有有效的防护措施,以确保人身安全、试验设备和试验件的安全。 2.4与控制计算机的接口要求 能满足系统实时监控要求,要有与主控计算机通讯和系统数据交换接口。 2.5系统安装调试 1) 系统必须在现场安装前调试好,现场安装调试时间不超过一周; 2) 乙方要配合甲方完成系统联调和试验应用考核与验收; 2.6其他要求 1) 提出用电要求和其他特殊要求; 2) 提出地基要求及其水压泵站安装所需预埋件的有关设计图; 3) 设计时充分考虑设备的功能的同时,要求设备结构简单实用,尺寸合理、比例 协调,加工精细,移动方便,颜色淡雅,移动方便,外形美观; 4) 安装调试及其验收条件。 3、主要功能

水压爆破施工技术要点分析与应用效果

水压爆破施工技术要点分析与应用效果 发表时间:2019-07-30T09:52:35.377Z 来源:《基层建设》2019年第14期作者:贺鑫 [导读] 摘要:水压爆破施工技术是不可以压缩的过程,通过减少爆炸能量,从而达到控制围岩的损失,这有利于调整岩石破损问题。 中铁十二局集团第一工程有限公司陕西西安 710038 摘要:水压爆破施工技术是不可以压缩的过程,通过减少爆炸能量,从而达到控制围岩的损失,这有利于调整岩石破损问题。爆炸气体出现膨胀,产生水膜的效果,促进岩体深层次的破裂,产生雾化降尘的效果,解决水压爆破可能产生的各类危害问题,及时处理各类施工技术要点。本文将针对水压爆破施工的技术要点进行分析,研究水压爆破施工中可以采取的技术应用方式和效果内容。 关键词:水压爆破;技术要点;应用效果 引言 工程水压爆破过程中,需要采用预裂爆破、光面爆破等方式。利用炸药产生的冲击波、龅牙爆破气体作用,实现结构岩体上的作用,完成爆破施工处理。其主要体现在飞石、噪声、空气、冲击波上的影响。根据周围建筑物、环境的整体影响水平,将药包放置在满水的容器内,完成设计位置的水压爆破处理。这种方法是通过水传播爆破压力控制,作用在容器上,使其破坏,达到空气冲击波、飞石噪声的效果。水压爆破可以有效的减少炸药的整体使用比例关系,提高整体利用率,提升施工效率,降低经济成本,提高经济价值水平,降低空气中可能产生的污染程度,从而减少环境污染及人体可能造成的各类损失问题。 一、水压爆破的具体类别分析 水压爆破是通过药包的作用条件进行区别的。钻孔水压爆破是通过药包的整体位置,确定水钻孔的爆破标准,确定截止抵抗线大小。根据破坏截止的时间长度,气质作用状况,整体运行可能引发的介质厚度水平,载荷作用等,对应分析介质的时间长度、波传播的速度、整体运用的效果。在整体应力的传播过程中,直接考虑整体惯性的运动效果。利用水的特性作用,分析传播能量的损失比例。爆炸瞬间水传播冲击到容器壁,发生变形,产生位移,产生二次的加载,破坏容器,最终使容器均匀的破损。 二、水压爆破的工作标准原理 水压爆破被破坏的形式有两种,一种是冲击波,一种是气泡压力波。冲击波是利用爆炸超压力的破坏作用,气泡脉动压力波是实现相关因素的力量作用。 炸药爆炸后,能量是以冲击波的形式进行水中径向的传播。爆炸瞬间产生较强的高压,高压能量可以实现有效的转化。在水中传播的强压波、水扩散运动过程。随着压缩爆炸形成的膨胀过程,压力快速的衰减。冲击波在传播速度超过超声速度的时候,四周迅速冲击运动。冲击快速的衰减,持续时间超过几毫秒。冲击波在传播过程中,压力距离逐步增大,然后逐步下降,直到冲击波能量的距离反比。爆炸的球形汽包内温度可以达到3000℃,压力控制在5万大气压范围内。爆炸后短时间内,可以达到峰值的压力。汽包脉动压力波是通过高压气团向周围扩散产生的。伴随着运动排开的水吸收能量,达到组织气泡膨胀,运动停止的过程。气泡内压力,冷却,周围压力下降。随着海水的惯性作用,气泡压缩达到一定程度,内压超过周围的静压,产生二次气泡作用。气泡脉动在水中膨胀、压缩、又膨胀、又压缩。二次波的作用时间可能超过冲击波压力的作用效果,造成目标破坏。根据不同原因,不同位置,不同改变,目标的距离爆心半径位置发生变化,引发冲击波。 三、水压爆破的基本特点 常规工程爆破技术分析中,水的物理力学作用在不同的情况下,水压爆破可能产生的特点不同。对不同的水压爆破技术进行分析,判断水压的整体基本特点和特殊情况。 1 压缩性较小、密度大、流动年度较大 水肿爆炸可能产生爆轰的膨胀过程。爆炸冲击的整体强度高,作用时间长。 2 水介质压缩性作用均匀 水介质压缩性、高度传递、堵塞作用传递长,爆破能量分布均匀,利用率水平高。 3 水压爆破产生碎块 水压爆破作用会产生碎块,爆破震动、空气冲击波、飞石等,水压爆破过程中,需要合理的调整控制和安全可靠水平,以有效的限制作用,调整毒气体产生的古城,逐步降低爆破产生的粉尘,从而降低施工对人体可能造成的损害。 水压爆破施工技术中,工程应用具有较强的价值。在拆除地形结构过程中,需要对建筑构造、矿石进行二次的破碎分析,提高整体有效的利用优势效果。 四、钻孔水压爆破的处理方式 按照实际应用过程,调整炸药的比例量、类型、岩体性质等,对不同的使用需求,不同的装药结构进行分析。根据药包的不同类型、不同位置,调整水压爆破的装药结构主体方式。分析径向水耦合的爆破过程,分析药包间隔的爆破,药包底的水间隔。 根据雷管脚线、水、炸药等进行处理。准确的分析径向水耦合的爆破,调整药包的尺寸,炮孔的位置,大小、充水耦合、爆破能量等,使其云军的施加在孔壁的不同位置上。炮孔药包上进行水间隔的爆破,调整上、下两个药包的爆破效果,调整水柱的产生强度冲击过程,确定密闭的高压效果。爆炸孔药包底部水间隔,确定炮孔底端。在冲击的作用下,底部间隔段水快速的移动,形成密闭、高压的水激泼效果。作用在孔底岩石上,克服根底,实现缓水的快速移动。通过水的缓冲,降低岩石过度粉碎的过程。 炮孔上下间隔爆破处理过程中,需要对装药的方式进行调整,根据药量,根据水的传递介质,调整水孔底装药的比例关系。调整装药量的大小,判断爆破块产生的状况。 根据同等的药量,调整水作用下的传递介质,控制衰减的作用。水孔底部的装药相比无水集中装药的比例关系,装药位置对爆破的作用较大,表现战鼓纲要的坐位水平较低。控制装药量的多少,分析爆破不会产生的较大比例影响关系,调整装药量的数量,爆破块与药量的多少相反。当不耦合系数相同的时候,水压爆破药量相对较为独立,爆破基本不会随着药量的降低发生变化。当药量较少的时候,块度均匀;非钻孔水压爆破,空气不耦合装药结构的时候,药量降低,块度会明显增大。 五、水压爆破施工技术的应用 根据拆除岩石、建筑物进行破碎处理,调整露天水压爆破、进水压爆破等比例关系。使用炮孔水压的爆破关系,降低飞石的距离。以

隧道爆破方案

歌乐山隧道爆破方案 1、编制依据 《新建兰渝铁路引入重庆枢纽工程及广元地区相关工程站前施工总承包代建站前施工1标段--投标文件技术分册》; 《铁路隧道工程施工技术指南》(TZ204——2008)。 2、隧道地质情况 低山丘陵地貌,隧道穿越地层由新到老为侏罗系中统新田沟组、中下统自流井组、下统珍珠冲组,三叠系上统须家河组、雷口坡组、嘉陵江组、飞仙关组。观音峡背斜DRK3+980处与线路近垂直相交,两翼地层对称,层理产状渐变明显,构造节理发育。侏罗系中、下统以泥岩夹砂岩为主,工程地质条件一般;三叠系须家河组含第4-第1段,其中2、4段为长石石英砂岩、石英砂岩夹页岩、炭质页岩,节理较发育,岩体较完整,工程地质条件较好;第1、3段为泥质砂岩、砂岩夹页岩、薄煤层,一般地下水具侵蚀性,同时施工时可能会遇煤层采空区及瓦斯等不良地质,揭穿煤洞可能造成突水、突泥,工程地质条件较差。T2i及T1j 的2、4段为白云岩、灰岩及岩溶角砾岩,围岩稳定性差,易产生洞内坍塌,且含有石膏,地下水具有硫酸盐侵蚀;T1j 的1、3段及T1f的三段以灰岩为主,夹泥质灰岩及白云岩,地表见溶洞、溶蚀洼地、溶槽等岩溶形态发育,隧道施工可能揭穿暗河、溶洞等岩溶形态,造成突水、突泥。隧道开挖遇有害气体。核部段,岩体较破碎。地下水较发育,施工可能会产生突水、突泥,工程地质条件较差。非可溶岩地带最大涌水量4080m3/d,正常涌水量39391m3/d,雨季最大涌水量58080m3/d。 3、隧道爆破设计 (1)爆破设计的原则 尽量提高炸药能量利用率,以减少炸药用量。 采用光面爆破,要求炮眼痕迹残留率硬岩≥90% ;中硬岩≥80% ;软岩≥60%。减少对围岩的破坏,控制好开挖轮廓。 合理设计起爆顺序,提高光爆效果。 在保证安全的前提下,尽可能提高掘进速度、缩短工期。 掏槽及底板眼按抛掷爆破设计,采用楔形掏槽法,及充分利用楔形掏槽的易抛掷来减轻震动,保持围岩稳定。 其它炮眼采用浅孔微振动控制爆破,在保证爆破效果的前提下,尽量减少炮眼的炸药用量。采用微差爆破,减少对围岩的扰动及降低振动强度,采取光面爆

光面爆破施工工法

隧道全断面开挖光面爆破工法光面爆破是通过正确选择爆破参数和合理的施工方法,达到爆后壁面平整规则、办公设备线符合设计要求的一种控制爆破技术。隧道全断面开挖光面爆破工法,是应用光面爆破技术,对隧道实施全断面一次开挖的一种施工方法。它与传统的爆破法相比,最显著的优点是能有效地控制周边眼炸药的爆破作用,从而减少对围岩的扰动,保持围岩的稳定,确保施工安全,同时,又能减少超、欠挖,提高工程质量和进度。 一、光面爆破作用原理 光面爆破的破岩机理是一个十分复杂的问题,目前仍在探索之中。尽管在理论上还不甚成熟,但在定性分析方面已有共识。一般认为,炸药起爆时,对岩体产生两种效应:一是药包爆炸气体膨胀做功所起的作用。光面爆破是周边眼同时起爆,各炮眼的冲击波向其四周作径向传播,相邻炮眼的冲击相遇,则产生应力波的叠加,并产生切向拉力,拉力的最大值发生在相邻炮眼中心边线的中点,当岩体的极限抗拉强度小于此拉力时,岩体便被拉裂,在炮眼中心边线上形成裂缝,随后,爆炸气的膨胀使裂缝进一步扩展,形成平整的爆裂面。 二、光面爆破的技术要点 要使光面爆破取得良好效果,一般需掌握以下技术要点: 1、根据围岩特点,合理选定周边眼的间距和最小抵抗线,尽最大努力提高钻眼质量。 2、严格控制周边眼的装药量,尽可能将药量沿眼长均匀分布。 3、周边眼宜使用小直径药卷和低猛度、低爆速的炸药。为满足装结构要求,可借助导爆索(传爆线)来实现空气间隔装药。 4、采用毫秒微差有序起爆。要安排好开挖程序,使光面爆破具

有良好的临空面。 (一)周边眼常用参数的选择 1、周边眼间距E 它是直接控制开挖轮廓面平整度的主要因素。一般情况下E=(12~15)d,其中炮眼直径d=35~45mm。对于节理较发育、层理明显以及开挖轮廓要求较高的地下工程,周边眼间距可适当减小,也可在两炮眼之间增加一个不装药的导向空眼。 2、最小抵抗线W(光面层厚度) W直接影响光面爆破效果和爆碴块度。其取值在(13~22)d围,且W≥E。 3、周边眼密集系数K 一般情况,以K=E/W=0.7~1.0为宜。 4、装药集中度q 采用2号岩石炸药进行光面爆破时,若预留光爆层,q=0.15~0.2kg/m;若全断面一次爆破,则q=0.2~0.3kg/m。如果采用其它炸药,则需进行换算,其换算系数C按下式求得: C=1/2(2#岩石炸药猛度/换算炸药猛度+2#岩石炸药爆力/换算炸药爆力) 选取光面爆破参数可用类比法或查表(见表1),必要时要在与所做工程地质条件相类似的岩层中试验,以求得更准确的爆破参数。

爆破压力测试仪-水压爆破试验

爆破压力测试仪-水压爆破试验机 设备图片 一、产品简介 思明特爆破压力试验机采用自动化控制系统,爆破实验装置广泛用于各生产机构,检测机构。主要用于0~300Mpa的水压爆破试验,用于测定热塑性管材、复合管材(PP-R、PP-B、PP-A、PE、PE-X、PVC、PVC-U、PVC-C)、胶管、软管、阀门、容器在长时间恒定内压和恒定温度下的耐压破坏时间或瞬时爆破的最大压力值。能够满足各种汽车软管、胶管、空调管、汽车总成的出厂检验,并同时能够满足上述产品的耐压、爆破性能试验。 二、爆破压力测试仪的技术参数 思明特爆破压力测试仪采用自动化控制系统。控制方式采用自动化仪器控制台,爆破试验机全程采用自动控制设备

1.试验介质:水、油、乳化液 2.压力测试范围:0—300Mpa,根据客户实际需求,选择相对应的 压力。 3.驱动气压范围:0.1~0.69Mpa。 4.最大耗气量:1m3/min 5.控制精度:试验压力上限的+2% ,下限的-1% 6.试样安装方式:手动或自动夹紧 7.压力值分辨率:0.1Mpa 8.电脑实时显示压力曲线,打印报告,保存数据。 三、爆破压力测试仪的特点

1.配备思明特气体驱动自动增压泵,可轻松实现输出压力可调可控。 2.所有承压配件都采用国际知名品牌。 3.试验压力控制精确。 4.液压部件全部为不锈钢材质,使用寿命长。 5.电脑控制显示器显示界面,简单直观,操作简单,可手动操作也 可全自动控制。 6.技术先进,设计合理 四、设备控制方式 爆破压力测试仪分为手动控制与自动控制两种方式。 爆破检测装置质保一年。 五、典型应用 ?汽车软管类:转向管、胶管、空调管、燃油管、冷却水管、散热 器 ?工程液压软管、容器、阀门、管路 ?航空软管和管汇 ?暖风软管、空调滤芯器软管、涡轮增压系统软管 ?其他硬管或接头以及汽车刹车泵、缸体

隧道水压爆破

推广隧道掘进水压爆破成果报告 中铁二十局集团沪昆客专贵州段工程指挥部 2013年12月15日

中铁二十局集团承建沪昆客专贵州段9标 推广隧道掘进水压爆破成果报告 冯军武岐峰军汪东瑞谭德庆 由我集团承建的沪昆客专贵州段9标,共有隧道19座,累计长43.566㎞,占线路长68.3%。为加快施工进度、降低成本,自2013年6月10日开始,首先在全标段最长的岗乌隧道推广隧道掘进水压爆破,紧接着在其它隧道相继推广,均取得令人满意的爆破效果,凸显了隧道掘进水压爆破独居的“三提高一保护”极其显著的作用与效果。下面仅以岗乌隧道1#横洞工区主洞水压爆破为例,分析总结推广隧道掘进水压爆破所取得的成果。 1.岗乌隧道工程概况 岗乌隧道全长13.187km,进口里程D1K868+415,出口里程D1K881+602,为单洞双线隧道。岗乌隧道位于溶蚀中山槽谷、沟谷,总体地势北高南低,受北盘江及其支流深切,山高坡陡,沟深窄长。隧道洞身穿越区域以碳酸盐岩广泛分布为主要特征,具构造剥蚀~溶蚀槽谷地貌特点。 2.隧道掘进常规爆破 隧道掘进所谓“常规爆破”,系指炮眼只装药卷而无回填堵塞,对光爆炮眼用炸药箱纸壳捲成卷浸水后堵塞在炮眼口(这种做法不可取),这种炮眼装药结构的隧道掘进爆破,惯称隧道掘进常规爆破。 岗乌隧道掘进采取上下台阶法常规爆破,III级围岩上台阶开挖断面为80.75m2。上台阶钻爆炮眼分布见图1,炮眼参数见表1。 图1上台阶炮眼分布图

岗乌隧道2013 年6月10日之前,均采取常规爆破,其爆破效果见表2 3.隧道掘进水压爆破 3.1基本原理 隧道掘进水压爆破定义是往炮眼中一定位置放入水袋,最后用炮泥回填堵塞到炮眼口为止。 爆破时围岩的破碎主要依靠炮眼中炸药爆炸在围岩中产生的应力波以及爆炸气体膨胀共同作用而完成,而隧道掘进常规爆破炮眼无回填堵塞,(如图2)炸药爆炸能量因压缩炮眼中的空气受到一定损失,造成应力波强度下降,不利于围岩破碎,而爆炸生成的膨胀气体由于炮眼中无阻挡对围岩没形成二次破碎而冲向炮眼口变成冲击波损失掉,此外炮眼无回填堵塞爆破时还会产生粉尘,严重污染作业环境。这是当前国内外隧道爆破存在多年已久的未能充分利用炸药能量和爆破严重污染环境等两大难题。我国著名爆破专家何广沂教授研发的隧道掘进水压爆破,很好的破解了这两大难题。 图2:炮眼无回填堵塞

隧道爆破方案.(DOC)

重庆轨道交通三号线一期工程新牌坊~郑家院子、郑家院子车站、郑家院子~唐家院子区间 爆 破 施 工 方 案 施工单位: 项目负责人: 项目总工程师: 项目安全质量负责人: 编制人: 2007年12月20日

爆破方案 一、工程概况 该工程属重庆轨道交通公司新建轻轨3号线一期工程,位于重庆市渝北区,本标段主要由三部分组成,即一个地下车站和两个地下区间,线路总长1487.347m,其中新郑区间长894m,郑家院子车站163.8m,郑唐区间427.947m。 新郑区间由上下行两条单洞单线组成,起讫里程为SK14+753.67~SK15+647.25,线路位于半径分别为325m、338m 的曲线上。其中SK14+753.67~SK15+113为明挖段,SK15+113~+647.25为暗挖段,埋深为5~14m。 郑家院子站为三层地下岛式车站,为明挖地下车站,埋深2m,主体结构为箱型框架结构,结构总宽20m。 郑唐区间为单洞三线结构,起讫里程为SK16+112.053~SK16+540明挖地下段,其中SK16+340~SK16+540段为敞开段。 主要工程数量包含:开挖土石方41万方,回填土石方20万方,灌注砼数量76391方,喷砼数量10390方。 二、工程地质 该标段地表上覆人工填土、粉质粘土、强风化基岩,下伏基岩为呈互层状的砂岩和砂质泥岩,岩体呈大块状的砌体结构,裂隙不发育~较发育,岩体较完整,地下水贫乏。或厚度小于1.5倍压力拱高度的中等风化砂岩和砂质泥岩,洞室围岩V级。 上覆层及下伏层厚度在本标段内变化较大,地质构造复杂。 隧道暗挖段围岩类型分别为Ⅳ、Ⅴ、Ⅵ级,其中Ⅳ级围岩长696.32m,Ⅴ级围岩长236.769m,Ⅵ级围岩长136.78m。 三、工程特点及周围环境 1、本标段工程位于重庆市主城区,钻爆施工不但要有严格的安全要求,而且还有严格的减震、降噪要求。 2、本标段车站工程及郑唐区间工程所处地段地面建筑物众多,

1、全断面法施工工艺工法讲解

全断面法施工工艺工法 QB/ZTYJGYGF-SD-0101-2011 第五工程有限公司李雪峰 1 前言 1.1工艺工法概况 钻爆法是目前国内应用最为广泛的隧道施工方法,其具有适应性强,灵活方便,机械化程度高等优点,其中全断面钻爆法施工掘进速度最快,该方法能够创造大的作业空间,并尽可能地实现了各工序间的平行作业,在长大隧道施工中得到广泛的应用和发展。 1.2工艺原理 全断面法施工借助新奥法原理,强调充分发挥岩体(围岩)结构的自承作用,尽量减少对围岩的多次扰动和破坏,借助施工作业平台并配备相应功能的大型机械设备,按照一定设计和规范确定循环进尺,在隧道设计断面轮廓线上和轮廓内部按照设计布置钻孔,利用炸药能量一次性爆破成型进尺内断面,外运碴体,紧跟施工设计的初期支护措施,待掌子面循环掘进超前一定距离,围岩监控量测变形量满足要求判定为稳定状态后,再开始组织仰拱和二次衬砌工序施工,通过各工序沿隧道纵向错开合理安全距离,形成各主要工序平行作业,最终完成整个隧道设计措施。 2 工艺工法特点 2.1采用全断面法施工可减少对围岩的扰动,充分发挥围岩的自承作用,利于施工安全的管控。 2.2全断面法施工可一次创造大的作业空间,较分部法施工可减少工序及循环时间,可使各道工序尽可能平行交叉作业,大幅提高施工进度。 2.3全断面法施工机械化程度高,可有效减少劳动力配置,降低作业人员工作强度,提高工作效率,经济效果显著。 2.4全断面法施工一次轮廓成型并及时进行下道工序——初期支护的施工,对初期支护质量和作业安全有利。 2.5全断面法一次掘进开挖量大,应进行严密爆破设计,并在施工过程不断需根据地质围岩情况进行优化调整,减少一次爆破用药,达到光爆效果,减少对围岩扰动,节省成本。

炮孔填塞水袋隧道水压爆破施工工法

炮孔填塞水袋隧道水压爆破施工工法 RJGF(闽)—1—2009 完成单位:中铁二十四局集团福建铁路建设有限公司 主要完成人:郑志强杨水波林志勇罗跃林 1 前言 1.0.1为了解决温福铁路客运专线长、大隧道开挖过程中存在进度慢、洞内环境差、用炸药量大的难题,中铁二十四局集团福建铁路建设有限公司在承建的温福铁路(福建段)第Ⅱ合同段的施工过程中,应用了水压爆破技术,根据大断面隧道的特点,完善和推广了这种开挖方法,并形成了本工法。 1.0.2 本工法于2006年初在温福铁路客运专线首次应用,2007年在甬台温客运专线的隧道中再次得到了成功的应用。本工法于2007年底通过了中铁二十四局集团公司组织的成果评审,并鉴定为达到中国铁道建筑总公司先进水平。 2 工法特点 2.0.1本工法显著的特点是往炮眼中一定位置安装一定量的水袋并用专用设备制成的炮泥回填堵塞。 2.0.2 通过在炮孔内配置水袋和回填堵塞,提高了炸药能量利用率,提高了炮眼使用效率,提高了经济效益,并保护了作业环境。 3 适用范围 本工法适用范围为铁路、公路、矿山和水电等建设的隧道爆破掘进。 4 工艺原理 4.0.1 隧道爆破掘进,围岩能够达到破碎是由炸药爆炸产生的应力波和爆炸气体膨胀共同作用的结果。炮眼中的炸药,从起爆点爆炸开始到炸药爆炸完毕,在炸药中传播的是爆轰波,爆轰波沿炮眼方向传到炮眼的空间称为击波,而击波传到炮眼围岩中称为应力波,炮孔填塞水袋隧道爆破法最大可能地降低了击波的能量损失,阻止了爆炸气体从炮眼口冲出。炮孔填

塞水袋隧道爆破法与目前全国普遍采用的隧道爆破掘进无回填堵塞相比显著提高了炸药能量利用率,即炸药爆炸产生的应力波和爆炸高压气体利用率提高,非常有利于围岩的破碎。 4.0.2 隧道掘进常规爆破即炮眼无回填堵塞,如图4.0.2所示。因炮眼无回填堵塞而被空气充满,一旦炸药爆炸,压缩空气大大损失了击波的能量,这就相应地削弱了在围岩中传播的应力波能量,降低了应力波的强度,不利于岩石的破碎;同时,由于炮眼无回填堵塞,爆炸气体膨胀从炮眼口冲出,因而损失了膨胀气体大部分的能量,从而削弱了膨胀气体进一步破碎岩石的作用。 雷管炸药 图4.0.2 隧道掘进爆破炮眼无回填堵塞示意图 4.0.3将图4.0.2中炮眼无回填堵塞部位改为图4.0.3中的用水袋与炮泥回填堵塞,这样在水中传播的击波对水不可压缩,爆炸能量没有损失地经过水传递到炮眼围岩中,十分有利于围岩破碎,由于用专门设备制成的炮泥回填堵塞炮眼,抑制膨胀气体冲出炮眼口,提高了爆炸能量使用效率。 水袋炸药 图4.0.3 炮孔填塞水袋炮眼装药结构示意图 5 施工工艺流程及操作要点 5.1 工艺流程 炮孔填塞水袋爆破与隧道掘进常规爆破相比主要区别在于增加了以下两道工序: 5.1.1 炮眼注水工艺 往炮眼中注水的工艺是先把水灌入到塑料袋中密封,然后把水袋填入炮眼底部和中部。 水袋是由2004年研制成功的PSP-1型炮孔水袋自动封装机生产而成,水袋机为普通设

隧道聚能水压爆破施工技术

聚能水压爆破施工技术 一、工程概况 该隧道处于陕北东南部黄土残塬区,上部覆盖厚层黄土,由于受到强烈侵蚀作用,黄土塬已破碎不堪,零星分布,地表沟壑纵横,冲沟发育,地质主要为冲积砂质新黄土,冲洪积砂质老黄土、黏质老黄土及砂类土;下部为水平层状砂岩、泥岩等,最大埋深310m在施工过程中主要存在滑坡、高地应力、游离态有害气体、浅埋、断层等高风险,隧道结构穿越黄土、土石混合断面、水平岩层。施工难度大、安全风险高等诸多不利因素。 二、常规光面爆破技术 1 、技术原理 常规光面爆破技术原理是炮眼中的炸药爆炸后,在岩石中传播应力波产生径向压应力和切向拉应力 , 由于炮眼相邻互为“空眼” , 所以在炮眼连线两侧产生应力集中度很高的拉应力 ,超过岩石抗拉强度 , 炮眼之间的岩体形成的初始裂缝要比其他方向厉害的多 , 除此之外 ,由于炸药爆炸生成的高压气体膨胀产生的静力作用促使初始裂缝进一步延伸扩大。 2、工艺流程 3、装药结构 常规(或普通、传统)隧道爆破采用连续装药,炮眼间距炮眼中仅装炸药而无回填堵塞,其装药结构如下图所示。 炮眼无回填堵塞装药结构 4、爆破参数 常规爆破设计参数表 周边眼深度3.5m,进尺2.8m,开挖断面面90.98m3,炸药单耗0.98kg/m3 5、常规爆破存在的问题 1)炮眼间距为40-50cm,布眼过密、打眼过多、打眼作业时间占用时间过长。 2)由于炮孔内充满了空气,应力波部分能量因压缩空气而损失,所以应力波的强度因无回填堵塞而降低,结果削弱了对围岩的破碎。 3)常常出现超挖,增加混凝土衬砌量提高施工成本,隧道爆破开挖出现亏损,超挖是致命的“罪魁祸首”。 4)常规爆破后有害气体浓度高,粉尘大。再加上斜井通风困难,放炮后通风时间需要 30-40 分钟,机械才能够到达掌子面进行出碴,对工序衔接造成了极大的影响。 三、水压光面爆破技术 1 、技术原理 水压光面爆破原理为“往炮眼中一定位置注入一定量的水,并用专用的炮泥回填堵塞炮眼,利用在水中传播的冲击波对水的不可压缩性,使爆炸能量经过水传递到围岩中几乎无损失,同时,水在爆炸气体膨胀作用下产生的“水楔”效应,有利于岩石破碎,炮眼中的水可以起到雾化降尘作用,大大降低粉尘对环境的污

大量渗水、涌水隧道施工方案

大量渗水、涌水隧道施工 目录 一、大量涌水隧道施工 (1) 1.施工方法 (1) 2.施工工艺 (1) 3.劳动力组织 (4) 4.机械设备配置 (5) 5.质量控制要点 (5) 6.安全措施 (5) 二、大量渗水隧道施工 (6) 1.施工方法 (6) 2.施工工艺 (6) 3.劳动力组织 (8) 4.施工工具配备见下表 (9) 5. 质量控制要点 (9) 6.安全质量措施 (9) 一、大量涌水隧道施工1.施工方法运用新奥法原理,沿隧道开挖轮廓线(含底部)按轴向辐射状布孔(开挖面中心也布孔),进行全断面全封闭深孔注浆固结止水,使隧道周边及开挖面形成一个堵水帷幕(加固区),切断地下水流通路,保持围岩稳定,增强施工安全。 2.施工工艺 (1)施工程序(见施工程序图) (2)超前地质预报对于构造复杂、水量丰富的地层,必须准确预报工作面前方20~25M 范围的工程 地质和水文地质情况,以便为制定施工方案和确定注浆参数提供依据。 ①钻孔方法:利用液压钻孔台车或YQ-100A施钻深孔,在拱顶、起拱线和隧道中下部位各钻φ76mm孔,孔深超出注浆段5m左右。 ②预报内容:预测工作面前方注浆段长度范围的地质构造和岩性、地下水出露位置和水量大小,以及围岩变化情况。 ③预报方法:采用钻眼排碴取样分析,记录钻速、水质水量变化情况以及开挖后的岩面观测素描,综合判断预报前方水文、地质条件。

(3)钻孔作业①封堵墙(止浆墙)施工:首先按照注浆设计施工封堵墙,封堵墙设于开挖面后端,封堵墙厚0.8 ~1.0m,用C20砼灌注一次成型。 ②布孔:由测工站在工作平台上,用红油漆在掌子面上按设计准确画出钻孔位置,标注编号。 ③钻孔: A .钻孔时台车大臂必须顶紧在掌子面上,以防止过大颤动而影响施钻精度。 B .钻机开孔时钻速宜低,钻深20cm后转入正常钻速。 C.第一根钻杆钻完后,凿岩机与钻杆脱离,使用联接套接第二根,依次接杆直至钻到设计深度。 D. 钻孔深度达到设计要求后,凿岩机后退带出钻杆,人工用卡或大扳手卡紧前杆,凿岩机反转,松开连接套卸下钻杆,按同样方法依次拆卸钻杆退出孔外。 E.注浆孔角度参数:仰角、俯角、左偏角、右偏角均控制在最小3°、最大26°内。 ④开孔孔径及深度:注浆孔用φ100 钻头开孔,孔内放置长3~6m的φ86钢管(或橡胶止浆塞管)做孔口管,掏孔清碴时用φ76 钻头。注浆段长度为20m一环。 ⑤钻孔深度控制:台车大臂按设计布孔位置点对正,用简易垂球量角器测钻杆仰角,调整至设计角度,并在钻杆上安装导向指示器,控制钻孔偏角。 ⑥台车钻孔工作参数:凿岩台车钻孔作业的推进压力2.5 ~4.0MPa,回转压力5.0 ~ 6.0MPa,冲击压力19~20MPa。 (4)注浆作业 ①注浆材料:水泥:用425 号以上的普通硅酸盐水泥,质量应符合标准。 水玻璃:用出厂浓度42~45Bé,比重1.42 ~1.45 ,模数2.4 ~2.8 的水玻璃原 拌合水:水质应符合《铁路砼及砌石工程施工规范》中的各项规定。 ②配合比控制:水灰比(W/C)为0.8 ;水玻璃稀释浓度为25~35Bé;双液体积比 (C/S)为1:0.5 ~0.7 。 ③凝胶与凝结时间控制:为满足浆液扩散半径的要求,采用凝结时间为:一般地段3 分钟,富水地段1~2 分钟。 施工控制分以下三种: A .水灰比固定,水玻璃浓度不变,变换双浆比例。当水玻璃溶液所占比例由小到大,凝胶时间则由长到短,初、终凝由慢到快。

水压爆破施工方案

目录 令狐采学 一、编制依据 (2) 二、编制原则 (2) 三、工程概况 (3) 四、工程水文地质 (3) 4.1地形、地貌 (3) 4.2地质构造 (4) 4.3场地水文地质情况 (4) 4.4不良地质、地下障碍物与特殊岩土 (5) 五、施工工艺 (6) 5.1爆破参数 (6) 5.2炮孔布置图 (10) 5.3炮眼内安装沙袋 (10) 5.4炮泥的制作 (10) 5.5工艺原理 (10) 5.6水压爆破施工工艺流程图 (12) 5.7施工要点 (14) 六、施工安全措施 (16) 6.1安全措施 (16) 6.2现场爆炸物品安全管理措施 (16)

一、编制依据 ?杭州市紫之隧道(紫金港路-之江路)工程第Ⅱ标段施工合 同; ?杭州市紫之隧道(紫金港路-之江路)工程第Ⅱ标段施工图 设计; ?设计、施工过程中涉及的有关规范、规程; ?紫之隧道(紫金港路-之江路)工程Ⅰ标《岩土工程勘察报 告》 《公路隧道施工技术规范》JTJ042-94 《爆破安全规程》GB6722-2003 《民用爆炸物品安全管理条例》2006.9 《爆破作业项目管理要求》GA991-2012 《爆破作业单位资质条件和管理要求》GA990-2012 《中华人民共和国安全生产法》 ?国内相关工程的施工经验。 二、编制原则 遵循招标文件、设计文件、施组、质量标准等规定,严格按照有关规定条款进行施工组织、运作,确保工程按照规定要求达标,即质量、安全、工期、文明施工、环境保护、工程成本等的最佳组合;强化内部管理、提高技能素质,依靠科技,精心施工,

合理安排,严格按照项目法管理原则进行操作,实现工程成本与管理的最佳组合。 三、工程概况 紫之隧道(紫金港路—之江路)工程南起之浦路,北至紫金港路,隧道南北端各设一对匝道,线路全长约14.4km,其中隧道全长约13.9km。工程总体规模为双向六车道,为机动车专用车道。 本标段为杭州市紫之隧道(紫金港路—之江路)工程第Ⅱ标段施工,标段涵盖内容为:1#隧道部分区段(西线K1+530~K3+550、东线K1+570~K3+555)、南口匝道(西线K0+000~K0+733.574、东K0+000~K1+105.196)及匝道接线道路(K0+000~K0+495.213),主要内容为:隧道、道路、地下风机房、管理用房、防排水、管沟及路面、给排水(含消防)及附属工程的预埋结构等工程的施工及质量保修。 隧道的断面形式包括两车道、三车道、大跨段和单车道等。设计时速60km/h,匝道设计时速30km/h。 四、工程水文地质 4.1地形、地貌 紫之隧道穿越区属于杭嘉湖平原的西南端,天目山系余脉的低山丘陵地貌,地势呈西高东低之势。隧道沿线植被覆盖率超过

气瓶爆破试验方法

气瓶水压爆破试验方法 GB 15385—94 国家技术监督局1994—12—26批准1995—08—01实施 1 主题内容与适用范围 本标准规定了气瓶的水压爆破对试验装置的基本要求、试验方法和操作要点。本标准适用于公称工作压力为1~30MPa、公称容积为0.4~1 000L的钢质和铝合金气瓶的水压爆破试验。 2 引用标准 GB 9251 气瓶水压试验方法 3 术语 3.1 受试瓶 准备试验或正在试验的气瓶。 3.2 爆破压力 气瓶爆破过程中实际达到的最高压力。 3.3 屈服压力 受试瓶在内压作用下,筒体材料开始沿壁厚全屈服时的压力。 4 容积变形测定方法 本标准采用水压内测法进行水压爆破试验,并测定受试瓶破裂时容积变形。爆破试验时需要测定水压试验下容积残余变形率的,按GB 9251中容积残余变形率的测定方法执行。 5 试验操作人员 试验操作人员必须经过专门培训,熟悉试验装置,掌握试验方法。 6 试验装置 6.1 试验装置示意图(见图1)。 图1 水压爆破试验装置示意图 W—试验用水;J—水压泵;I—受试瓶;R—专用接头;F、Fa、Fo—低压阀;H—量筒;Kc —压力测量仪表(指示水泵出口压力);K—压力测量仪表(读取试验压力用);Kt—精密压力

表(校验其它压力测量仪表),E、Eo、Ea、Et—高压阀(Et试验时关闭);L—量杯;M—安 全防护设施 6.2 装置必须具备有效的手动或自动控制试验压力的设施。 6.3 除试验压力外,不得使受试瓶承受会影响瓶体应力的其它外力。 6.4 装置内部必须清洁。 6.5 试压泵的额定压力应为按式(1)计算值的1.5倍以上。 式中:P b——爆破压力; Do——受试瓶瓶体外径,mm; σb——受试瓶瓶体材料热处理后抗拉强度保证值,N/mm2; S b——受试瓶瓶体名义厚度,mm。 6.6 装置连接处必须具有良好的密封性能。 6.7 装置应能排出其内部及受试瓶内空气。 6.8 装置应能自动记录压力与压入水量的关系,并自动绘制压力—时间曲线。 6.9 装置全部承压管道必须采用金属管,并应测出该管道在受试瓶爆破压力下的压入水量(压入水量应不计管道容积)。 6.10 装置及承压管道必须进行水压试验,合格水压试验压力应不低于P b的1.5倍。 7 检查压力表及称量衡器 7.1 压力表 试验装置上至少安装两只量程相同并能同时正确显示试验压力的压力表,其量程应是受试瓶计算爆破压力P b的1.5~3倍。压力表必须经过校正合格,其精度不低于1.5级。7.2 温度测量仪表 用于测量试验用水温度和环境温度的温度测量仪表,其最小显示值应不大于1℃。7.3 量筒 7.3.1 用于试验装置中的量筒应有适当的容积和直径以免升压时量筒内水位下降过快而影响读数。量筒的最小刻度值不大于5mL(大容积气瓶)或1mL(中、小容积气瓶),刻度值的相对误差不大于±1%。 7.3.2 应保持量筒的垂直度和稳定性。 7.4 量杯 试验中使用的量杯,其量程应为500mL或1 000mL刻度值的相对误差不大于±1%。7.5 称量衡器 最大量程应是该瓶所称重量的1.5~3倍。 8 试验用水 8.1 供试验用的水必须是洁净的淡水,供水时必须稳定、连续。 8.2 试验时的水温不低于5℃。试验时环境温度不得低于5℃。 8.3 受试瓶内的水温与即将压入受试瓶内的水温之差不大于2℃。 9 试验前的准备 9.1 受试瓶必须按有关标准的规定逐只检验合格。 9.2 受试瓶内表面应清洁,拆除可拆附件,清除瓶内的残留物。 9.3 在受试瓶筒体表面划出壁厚分布网格,网格间距宜不小于100mm容积小于100L的受试瓶,网格间距宜小于20mm,网格的识别清晰程度能保持到气瓶爆破后。 9.4 在网格交点处测出各点壁厚,并圈出最小壁厚所在部位。 9.5 测出受试瓶筒体的上、中、下三部位的周长。 9.6 清除瓶中杂质,称出受试瓶的空瓶重量,灌水后静置。用木槌轻击受试瓶瓶体,使附着于内壁的气泡浮出,然后称出空瓶灌水后的重量,算出实际容积。 9.7 试验气瓶时,试验装置和气瓶内应无油脂。

水压爆破新技术教学教材

长堵塞水压爆破新技术 露天、洞室开挖均可采用“长堵塞水压爆破新技术”。所谓长堵塞水压爆破就是指在炮孔内装入用密封塑料水袋进行增长堵塞段长度的爆破作业,该项新技术为铁道建筑研究设计院何广沂教授等人的发明加上日本的长堵塞爆破技术的综合成果。 一、其主要技术经济指标为: 1)洞内掘进是炮眼利用率>95%; 2)300~700元/m 3)洞内爆渣粒径缩小25%,露天浅孔80cm大块率下降45%,露天深孔无需解炮; 4)洞内抛散距离缩短21%,露天岩石沿地松动破碎; 5)粉尘浓度洞内降低42.5%,露天降低70%; 6)爆破振动速度降低21%; 7)露天深孔爆破每个炮眼可减少17%装药量; 8)露天爆破无飞石、无噪音(指城市允许标准以下)。 装药结构如图1、2、3所示

图1 水压爆破炮眼装药结构 水袋水袋炮泥 图2 光面爆破拱部装药结构

水袋 图3 光面爆破边墙装药结构 二、洞室掘进中“水压爆破”与常规爆破在掏槽形式、炮眼布置、炮眼数量与深度、起爆顺序与间隔等钻爆参数完全一样,所不同的是在炮眼底部和堵塞炮泥的下部增加了水袋,露天深孔爆破亦然,详见图1。 图1中:L为炮眼深度,L= L1+ L2 +L3+L4 L1为炮眼底部水袋长,L1=1~2倍单支药卷长度; L2为装药长度,为常规装药长度的80%左右; L3为炮眼中上部的水袋长度; L4为堵塞炮泥长度。 值得注意的是:L3/ L4<1,如果L3过短而L4过长,水的作用不大,;如果L3过长而L4过短,则抑制爆破膨胀气体作用不大而造成冲孔影响爆破效果,因此L3/ L4应该有个最佳比例,一般L3/ L4=3/4~1/1范围内。

水压爆破方案

. 裴岭二号隧道水压爆破工艺隧道概况一裴岭二号隧道位于浙江省衢州市开化县裴源村附近,起始里 米。隧道最大埋深约为1784.0,双线隧道,全长程为 DK243+535.00°,山40165m。隧址位于低山区,最大高差约200m,自然坡度°~50 上植被十分发育,多为灌木及小乔木。左右为吴家村庄,为确保建(构)筑物的安全,洞口小里程300m尽量减少施工对周边建筑及人员的伤把爆破震速控制在设计范围内,害,现场施工推行水压爆破技术。二、水压爆破以位置水压爆破,是将药包置于注满水的被爆容器中的设计上,飞石及噪水作为传爆介质传播爆轰压力使容器破坏,且空气冲击波、声等均可有效控制的爆破方法。、基本原理1炸药爆炸瞬间水传是利用水的不可压缩性质,能量传播损失小。加剧容播冲击波到容器壁使其位移,并产生反射作用形成二次加载,遂使容器均匀解体破碎。此法简便易行,效果良好。器壁的破坏,采用在炮眼中先技术正是针对这一情况,“隧道掘进水压爆破”“注水”后用“炮泥”回填堵塞的新技术,来变革隧道掘进爆破技术使爆炸能量的。它利用在水中传播的爆破应力波对水的不可压缩性,经过水传递到炮眼围岩中几乎无损失,十分有利于岩石破碎。同时,效应有利于岩石进一步破碎,“水楔”水在爆炸气体膨胀作用下产生的.

范文. . 炮眼中有水可以起到雾化降尘作用,大大降低粉尘对环境的污染。、常规爆破与水压爆破对比2 常规爆破法: 水压爆破法:

. 范文. . 水压爆破与常规爆破对比:3. 炮眼中增添了水袋和炮泥3.1利用水的不可压缩特征,无损失传递炸药爆炸能量,利于3.2围岩破碎,

产生的“水楔”作用进一步破碎围岩,还可以防止岩爆炮眼最底部的水袋代替药卷,利用在水中反射波作用不但3.3 爆破作用时间延长,而且水楔作用效果更好,更有利围岩破碎水与炮泥复合堵塞炮眼,有效利用爆破生成的膨胀气体对3.4 围岩产生最后破碎作用。炮眼中有水,爆破产生的水雾对降尘起到极其重要作用,3.4 这对暗挖隧道保障地面上环境不被污染。左右,装药量减水压爆破相对常规爆破装药量可节省20%3.6有炮眼由于采取水袋与炮泥复合堵塞,少相对爆破震动减弱,效控制冲击强度。三、水压爆破施工工艺流程、水压爆破施工工艺路程3.1. 范文. . 钻爆设计→施工准备(炮泥制作、水袋制作)→钻孔台车就位→清孔→施工准备→安装炸药、水袋和炮泥→联网→起爆→出渣→钻爆循环结束。 3.2、水压爆破炮眼装药流程 第一步:炮眼最底部装一袋水袋 第二步:装填一卷半药卷(注意一卷药卷紧挨着炮眼底部水袋,另半卷药卷定个在离炮眼口0.6m)两者用传爆线链接起来。 第三部:装填一袋水袋 第四部:用炮泥堵塞炮眼口

相关主题
文本预览
相关文档 最新文档