当前位置:文档之家› 浅谈遥感图像的几何校正

浅谈遥感图像的几何校正

浅谈遥感图像的几何校正
浅谈遥感图像的几何校正

浅谈遥感图像的几何校正

摘要

遥感是在不直接接触的情况下,对目标物或自然现象远距离感知的一门探测技术。ERDAS IMAGINE是一款遥感图像处理系统软件。遥感图像的几何处理是遥感信息处理过程中的一个重要环节,必须先用ERDAS IMAGINE进行几何精纠正,只有消除了几何变形,才能进一步分析研究,进一步开展图像解译、专题分类等分析研究工作。

关键词:遥感,erdas imagine,几何纠正

1.前言

遥感是在不直接接触的情况下,对目标物或自然现象远距离感知的一门探测技术。具体地讲,是指在高空和外层空间的各种平台上,运用各种传感器获取反应地表特征的各种数据,通过传输,变换和处理,提取有用的信息,实现研究地物空间形状,位置,性质,变化及其与环境的相互关系的一门现代应用技术科学。遥感图像处理硬件系统也从光学处理设备全面转向数字处理系统,内外存容量的迅速扩大,处理速度急速增加,使处理海量遥感数据成为现实,网络的出现将使数据实时传输和实时处理成为现实。遥感图像处理软件系统更是不断翻新,从开始的人机对话操作方式发展到视窗方式,未来将向智能化方向发展。ERDAS IMAGINE是一款遥感图像处理系统软件。ERDAS IMAGINE是美国ERDAS 公司开发的遥感图像处理系统。它以其先进的图像处理技术,友好、灵活的用户界面和操作方式,面向广阔应用领域的产品模块,服务于不同层次用户的模型开发工具以及高度的RS/GIS(遥感图像处理和地理信息系统)集成功能,为遥感及相关应用领域的用户提供了内容丰富而功能强大的图像处理工具,代表了遥感图像处理系统未来的发展趋势。

遥感图像作为空间数据,具有空间地理位置的概念,在应用遥感图像之前,必须将其投影到需要的地理坐标系中。因此,遥感图像的几何处理是遥感信息处理过程中的一个重要环节。

遥感图像在成像时,由于成像投影方式、传感器外方位元素变化、传感介质的不均匀、地球曲率、地形起伏、地球旋转等因素的影响,获得的遥感图像相对于地表目标存在一定的几何变形,使得图像上的几何图形与该物体在所选定的地图投影中的几何图形产生差异,造成形状或位置的失真,这主要表现为位移、旋转、缩放、仿射、弯曲和更高阶的歪曲,且其精度直接影响到后续处理工作的质量。要在这样的遥感图像上进行研究,必须先用ERDAS IMAGINE进行几何精纠正,只有消除了几何变形,才能进一步分析研究,进一步开展图像解译、专题分类等分析研究工作。

2.国内外发展状况

2.1国内发展状况

中国遥感技术起步于20世纪70年代末,20多年来,国家非常重视遥感技术的发展,连续四个五年计划都把遥感技术作为国民经济建设35项关键技术之一。到目前为止,我国已经成功发射了18颗返回式卫星,并成功回收17颗,为资源、环境研究和国民经济建设提供了宝贵的空间图像数据,在我国国防建设中起到了不可替代的作用。我国自行研制和发射了包括太阳和地球同步轨道在内的6颗气象卫星。我国还发射了第一颗海洋卫星,为我国海洋环境和海洋资源的研究提供了及时可靠的数据。2005年10月27日,北京一号小卫星在俄罗斯普列谢斯克卫星发射场成功发射,为国内外遥感应用用户提供了充足和丰富的多广谱和全色遥感影像产品。

时下,我国卫星遥感应用领域不断拓展,已经在农业、林业、国土、水利、城乡建设、环境、测绘、交通、气象、海洋、地球科学研究等方面得到广泛应用。遥感技术在我国国土资源大调查、西气东输、南水北调、三峡工程、三河三湖治理、退耕还林、防沙治沙、交通规划与建设、海岸带监测及海岛测绘、300万平方公里海洋权益维护及区域经济调查管理等重大工程建设和重大任务中发挥了不可替代的作用。

经过几十年的发展,遥感现在已经形成了比较完整的理论体系及技术支持。自从航空航天技术发展以来,遥感技术就随着航空航天摄影技术以及空间运载技术开始了缓慢的发展。作为一种获取信息的手段,遥感技术结合了计算机、电子、通讯、航天等多种学科的知识,以得到一步步的提升。相比较而言,国外一些空间大国的遥感技术的相关研究比国内开展的要早,成果也更为显著。对于遥感图像预处理分析的基本框架以及算法大多是国外学者研究的成果。

2.2国外发展状况

国外最早发射和使用遥感卫星的是美国和前苏联,并且很长一段时间国际商业遥感卫星图像数据市场是美国占据的主要市场。在1986年,法国也发射了SPOT-1遥感卫星,此后日本、印度、欧空局、加拿大等国家和国际集团也相继发射了各自的遥感卫星。进入二十一世纪以后,遥感事业伴随着卫星事业的发展,渐渐开始了各国家争相发展的新兴技术。

就现在而言,国外的卫星获取影像技术比较先进,各国家都在努力完善自己的卫星及获取遥感图像的技术。其中Landsat TM、SPOT也是我国进行应用研究

与生产所经常引用的图像资源,另外,以高分辨率著称的快鸟计划更是推进了遥感图像获取的发展。

此外,随着计算机技术越来越先进,遥感影像处理软件也逐步向易操作化发展。美国RSI公司推出了一款,由专业遥感科学家基于交互数据语言IDL开发的,功能非常强大的一套遥感影像处理软件ENVI。它提供了详细的预处理方法,操作简单,功能丰富,能够被不同层次的遥感使用者所接受。由于其能够提供二次开发和对IDL语言的全面兼容,它更成为遥感平台定制开发的首先工具。但由于它不能提供WEB方式的开发,与目前流行的WEB方式开发趋势很不相符,许多开发型人员也会选择GIS软件。ERDAS IMAGING是美国ERDAS公司开发的遥感图像处理系统,它面向广阔应用领域的产品模块,服务于不同层次用户的模型开发工具以及高度的RS/GIS集成功能,为遥感应用领域的用户提供了功能强大的图像处理工具,并代表了遥感图像处理系统未来的发展趋势。

3.遥感图像的几何校正

遥感图像的几何处理,是遥感信息处理过程中的一个基本环节。它的重要性主要体现在三个方面:

首先为了满足各类专题图的量测和定位要求,原始图像必须进行相应的几何校正;其次当应用不同的传感方式,不同光谱范围以及不同成像时间的各种同一地域复合图像数据来进行计算机自动分类、地物特征的变化监测或其它应用处理时,就需要进行图像的几何配准,以便满足复合原理上的正确性;最后星遥感的快速发展和应用对遥感图像的几何纠正提出了更严格的要求。

遥感图像的几何畸变产生原因有很多,其大致可以分为四类:遥感器的内部畸变,即由遥感器结构引起的畸变;遥感器外部的畸变,即由影像投影方式的几何学引起的畸变;影像投影面的选取法引起的畸变;是由地图投影法的几何学引起的畸变。针对原理不同,在校正过程中分析人员就需要采取不同的处理方式,下面介绍遥感图像处理的具体内容:

遥感图像的几何处理包括两个层次:遥感图像的粗加工处理和几何精校正。

3.1遥感图像的粗加工处理

遥感图像的粗加工处理,也称粗纠正,它仅做系统误差的改正,操作比较容易。主要内容是系统的辐射校正与系统的几何校正。遥感图像系统处理,一般在

遥感卫星地面站完成比较方便有利,可以说这也是建立地面站的主要目的与任务。

遥感卫星地面接收站通过天线跟踪卫星,接收到卫星传送下来的遥感信号,经接收处理,记录在高密度存储介质上,成为原始数据,并送处理站进行系统处理。系统处理不考虑具体的应用目的与对象,只从成像机理出发,依据遥感图像的几何构像方程与辐射传输方程,消除成像过程中的系统性误差以及生成总体质量较好的遥感图像产品。

3.2遥感图像的精加工处理

它是利用地面控制点(ground control point,GCP)对由各种因素引起的遥感影像的几何畸变的校正,几何精校正几何精校正的原理是回避成像的空间几何过程,而直接利用地面控制点数据对遥感影像的几何畸变本身进行数学模拟。精校正中又包括了像素坐标的变化处理和坐标变化后的像素亮度值重采样。

由于一般由提供卫星数据的地面接收站完成,所以用户在应用影像数据前的几何校正只是进行几何精校正。

几何校正的具体步骤如下:

图3-1 几何校正流程图

3.2.1控制点的选取

所选控制点特征:在图像上具有明显的、清晰的定位识别标志,如道路交叉点、河流岔口、建筑边界、农田界线等;地面控制点上的地物不随时间而变化,以保证当两幅不同时段的图像或地图几何校正时,可以同时识别出来;在没有作过地形校正的图像上选控制点时,应在同一地形高度上进行。地面控制点应当均匀地分布在整幅图像内,且要有一定的数量保证。地面控制点的数量、分布和精

度直接影响几何校正的效果。控制点的精度和选取的难易程度与图像的质量、地物的特征及图像的空间分辨率密切相关。

3.2.2基于多项式的遥感图像纠正

多项式纠正回避成像空间的几何过程,直接对图像变形本身进行数学模拟。多项式法对各种类型传感器图像的纠正是适用的。利用地面控制点的图像坐标与其同名点的地面坐标通过平差原理计算多项式中的系数,然后用该多项式对图像进行纠正。

一般多项式纠正变换公式为(以二次项为例):

错误!未找到引用源。(3-1)

式中:x,y为某像素原始图像坐标;

X,Y为同名像点的地面(或地图)坐标。

3.2.3基于共线方程的遥感图像纠正

共线方程纠正是是建立在图像坐标与地面坐标严格数学变换关系的基础上,是对成像空间几何形态的直接描述。该方法纠正过程需要有地面高程信息(DEM),可以改正因地面起伏而引起的投影差。因此当地形起伏较大,且多项式纠正的精度不能满足要求时,要用共线方程进行纠正。

共线方程纠正时需要有数字高程信息,计算量比多项式纠正要大。同时,在动态扫描成像时,由于传感器的外方位元素是随时间变化的,因此外方位元素在扫描过程中的变化只能近似的表达,此时共线方程本身的严密性就存在问题。所以动态扫描图像的共线方程纠正与多项式纠正相比精度不会有太大的提高。

4.总结

本文主要简单地介绍了遥感的发展概况,重点介绍了遥感图像校正中的几何处理及遥感图像处理软件erdas imagine.其中遥感图像的几何处理主要介绍了为何要进行遥感图像的几何纠正以及纠正的步骤,选点原则注意事项与常用的两种遥感图像的几何纠正的方法:基于多项式的遥感图像纠正和基于共线方程的遥感图像纠正。比较了两种方法的适用条件及精度。ERDAS软件几何精纠正在遥感影像处理过程中处于重要地位,其校正精度直接影响其他遥感影像预处理的质量,

同时对影像进行校正,有利于后期影像的解译、分类及提取专题信息。ERDAS IMAGINE提供了几种计算模型,在实际应用时,可以根据应用目的的不同采用不同的几何精纠正方法,一般情况下采用多项式纠正。

参考文献:

[1]孙家炳.遥感原理与应用[M].武汉大学出版社,2009.

[2]张伟,曹广超 .浅析遥感图像的几何校正原理及方法 [A],2007.

[3]曹玲玲,张永梅. 基于多项式的遥感图像快速几何校正 [A],2011 .

[4]宋铁群,郎永刚,耿卫东等.浅谈基于ERDAS IMAGINE软件的几何精纠正方法[B],2008 . [5]陈春叶. 基于ERDAS IMAGINE遥感影像图的几何精纠正 [B],2010.

[6]委纯柱,邢少杰,宋拥军. 遥感图像几何纠正的若干问题分析[J],2003.

[7]党安荣,王小栋,陈晓峰等.《ERDAS IMAGINE遥感影像处理方法》[M].北京:清华大学出版社,2003.

[8]赵英时.遥感应用分析原理与方法[M].北京:科学出版社, 2003.

[9]梅安新.遥感导论[M].北京:高等教育出版社,2001.

[10]李爽,李小娟,孙英君等. 遥感制图中几何纠正精度评价[J],2008.

[11]胡凤伟,胡龙华,马晓艺.利用地面控制点进行遥感影像几何纠正的方法探讨[A],2008. [12]邢建军,王勇.浅谈基于ERDASIMAGINE软件的几何精纠正方法[J].测绘与空间地理信息,2007.

[13]黄世存,章文毅,何国金等.不同矩阵算法遥感图像几何精纠正效果比较[J],2005. [14]牛亚琴,潘洪军.基于C语言遥感图像处理方法的研究与实现[J],2012.

[15]Jalal AMINI and Ali Reze Mohamadi Geometric Correction in Ikonos Images –Case Study: Tehran, Iran [J],2005.

遥感图像的几何校正(配准)

遥感图像的几何校正(配准) 1.实验目的与任务: (1)了解几何校正的原理; (2)学习使用ENVI软件进行几何校正; 2.实验设备与数据: 设备:遥感图像处理系统ENVI 数据:TM数据 3 几何校正的过程: 注意:几何校正一种是影像对影像,一种是影像对地图,下面介绍的是影像对影像的配 准或几何校正。 1.打开参考影像(base)和待校正影像:分别打开,即在display#1,display#2中打开;2.在主菜单上选择map->Registration->select GCPs:image to image 3.出现窗口Image to Image Registration,分别在两边选中DISPLAY 1(左),和DISPLAY 2(右)。BASE图像指参考图像而warp则指待校正影像。选择OK! 4.现在就可以加点了:将两边的影像十字线焦点对准到自己认为是同一地物的地方, 就可以选择ADD POINT添加点了。(PS:看不清出别忘记放大)如果要放弃该点选择 右下脚的delete last point,或者点show point弹出image to image gcp list窗口,从中选择 你要删除的点,也可以进行其他很多操作,自己慢慢研究,呵呵。选好4个点后就可以 预测:把十字叉放在参考影像某个地物,点选predict则待校正影像就会自动跳转到与参 考影像相对应的位置,而后再进行适当的调整并选点。 5.选点结束后,首先把点保存了:ground control points->file->save gcp as ASCII.. 当然你没有选完点也可以保存,下次就直接启用就可以:ground control points->file->restore gcps from ASCII... 6.接下来就是进行校正了:在ground control points.对话框中选择: options->warp file(as image to map) 在出现的imput warp image中选中你要校正的影像,点ok进入registration parameters 对话框: 首先点change proj按钮,选择坐标系 然后更改象素的大小,如果本身就是你所需要大小则不用改了 最后选择重采样方法(resampling),一般都是选择双线性的(bilinear),最后的最后选择保存路径就OK了

遥感图像几何纠正

第三章遥感图像的几何纠正 教学目标 1、使学生了解引起遥感图像几何畸变的原因及其进行遥感图像几何纠正的必要 性; 2、使学生掌握理解进行遥感几何纠正的原理与方法; 3、要求学生通过本章的学习可以熟练使用ENVI进行遥感数字图像的几何纠 正; 教学内容: 1、几何纠正的概念 2、引起几何畸变的原因 3、遥感图像几何纠正的原理与方法 4、在ENVI中进行影像到影像的配准实践 一、遥感图像几何纠正的概念: 由于搭载传感器的平台(如飞机,卫星)的姿态,速度等的不稳定,以及地球曲率,空气折射等的影响,形成的图像常有畸变,几何纠正即消除遥感图像中所包含的几何畸变的过程。通常有两个叫法: 1、图像配准(Registration):同一区域里一幅图像(基准图像)对另一幅图像 的校准,以使两幅图像中的同名像元配准。 2、图像校正(Rectification):借助一组地面控制点,对一幅图像进行地理坐标 的校正。 在应用之前,进行遥感图像几何纠正是很必要的。第一,对遥感原始图像进行几何变形纠正后,才能对图像信息进行各种分析,制作满足两侧和定位要求的各类地球资源及环境的遥感专题图;第二,当应用不同遥感方式、不同光谱范围以及不同成像时间的各种同一区域复合图像数据来进行计算机自动分类、地物特征的变化监测或其他应用处理时,必须进行图像间的几何配准,保证各不同图像间的几何一致性;第三,利用遥感图像进行地形图测图或更新对遥感图像的几何纠正提出了更严格的要求。 几何纠正的类型: 1)把畸变图像往地形图上配 2)把畸变图像往底图上配 3)把畸变图图像相互之间配 二、引起遥感图像几何畸变的原因 1、遥感平台位置和运动状态变化引起的畸变 无论是飞机还是卫星,运动过程中都会由于种种原因产生飞行姿势的变化(如:航高、航速、仰俯、翻滚、偏航等)从而引起图像变形; 2、地形起伏引起的几何畸变 当地形存在起伏时,会产生局部像点的位移,使原本应是地面点的信号被同一位置上某一高点的信号所代替。由于高差的原因,实际像点距像幅中

实验三 遥感图像的几何校正

实验法三遥感图像的几何校正 一实验目的 通过实验操作,掌握遥感图像几何校正的基本方法和步骤,深刻理解遥感图像几何校正的意义。 二实验内容 ERDAS软件中图像预处理模块下的图像几何校正。 几何校正就是将图像数据投影到平面上,使其符合地图投影系统的过程。而将地图投影系统赋予图像数据的过程,称为地理参考(Geo-referencing)。由于所有地图投影系统都遵循一定的地图坐标系统,因此几何校正的过程包含了地理参考过程。 1、图像几何校正的途径 ERDAS图标面板工具条:点击DataPrep图标,→Image Geometric Correction →打开Set Geo-Correction Input File对话框(图1)。 ERDAS图标面板菜单条:Main→Data Preparation→Image Geometric Correction→打开Set Geo-Correction Input File对话框(图1)。 图1 Set Geo-Correction Input File对话框 在Set Geo-Correction Input File对话框(图1)中,需要确定校正图像,有两种选择情况: 其一:首先确定来自视窗(From Viewer),然后选择显示图像视窗。 其二:首先确定来自文件(From Image File),然后选择输入图像。 2、图像几何校正的计算模型(Geometric Correction Model) ERDAS提供的图像几何校正模型有7种,具体功能如下: 表1 几何校正计算模型与功能 模型功能 Affine 图像仿射变换(不做投影变换) Polynomial 多项式变换(同时作投影变换) Reproject 投影变换(转换调用多项式变换) Rubber Sheeting 非线性变换、非均匀变换 Camera 航空影像正射校正 Landsat Lantsat卫星图像正射校正 Spot Spot卫星图像正射校正 其中,多项式变换(Polynomial)在卫星图像校正过程中应用较多,在调用多项式模型时,需要确定多项式的次方数(Order),通常整景图像选择3次方。次方数与所需要的最

ERDAS遥感图像的几何校正

遥感图像的几何校正 实验目的:通过实习操作,掌握遥感图像几何校正的基本方法和步骤,深刻理解遥感图像几何校正的意义。 实验内容:ERDAS软件中图像预处理模块下的图像几何校正。 几何校正就是将图像数据投影到平面上,使其符合地图投影系统的过程。而将地图投影系统赋予图像数据的过程,称为地理参考(Geo-referencing)。由于所有地图投影系统都遵循一定的地图坐标系统,因此几何校正的过程包含了地理参考过程。 1、图像几何校正的途径 ERDAS图标面板工具条:点击DataPrep图标,→Image Geometric Correction →打开Set Geo-Correction Input File对话框(图1)。 ERDAS图标面板菜单条:Main→Data Preparation→Image Geometric Correction→打开Set Geo-Correction Input File对话框(图1)。 图1 Set Geo-Correction Input File对话框 在Set Geo-Correction Input File对话框(图1)中,需要确定校正图像,有两种选择情况: 其一:首先确定来自视窗(FromViewer),然后选择显示图像视窗。 其二:首先确定来自文件(From Image File),然后选择输入图像。 2、图像几何校正的计算模型(Geometric Correction Model) ERDAS提供的图像几何校正模型有7种,具体功能如下:

3、图像校正的具体过程 第一步:显示图像文件(Display Image Files) 首先,在ERDAS图标面板中点击Viewer图表两次,打开两个视窗(Viewer1/Viewer2),并将两个视窗平铺放置,操作如下:ERDAS图表面板菜单条:Session→Title Viewers 然后,在Viewer1中打开需要校正的Lantsat图像:tmatlanta.img 在Viewer2中打开作为地理参考的校正过的SPOT图像:panatlanta.img 第二步:启动几何校正模块(Geometric Correction Tool) Viewer1菜单条:Raster→Geometric Correction →打开Set Geometric Model对话框,如图2

遥感影像图像处理流程

遥感影像图像处理(processing of remote sensing image data)是对遥感图像进行辐射校正和几何纠正、图像整饰、投影变换、镶嵌、特征提取、分类以及各种专题处理等一系列操作,以求达到预期目的的技术。 一.预处理 1.降噪处理 由于传感器的因素,一些获取的遥感图像中,会出现周期性的噪声,我们必须对其进行消除或减弱方可使用。 (1)除周期性噪声和尖锐性噪声 周期性噪声一般重叠在原图像上,成为周期性的干涉图形,具有不同的幅度、频率、和相位。它形成一系列的尖峰或者亮斑,代表在某些空间频率位置最为突出。一般可以用带通或者槽形滤波的方法来消除。

消除尖峰噪声,特别是与扫描方向不平行的,一般用傅立叶变换进行滤波处理的方法比较方便。 (2)除坏线和条带 去除遥感图像中的坏线。遥感图像中通常会出现与扫描方向平行的条带,还有一些与辐射信号无关的条带噪声,一般称为坏线。一般采用傅里叶变换和低通滤波进行消除或减弱。

2.薄云处理 由于天气原因,对于有些遥感图形中出现的薄云可以进行减弱处理。 3.阴影处理 由于太阳高度角的原因,有些图像会出现山体阴影,可以采用比值法对其进行消除。二.几何纠正

通常我们获取的遥感影像一般都是Level2级产品,为使其定位准确,我们在使用遥感图像前,必须对其进行几何精纠正,在地形起伏较大地区,还必须对其进行正射纠正。特殊情况下还须对遥感图像进行大气纠正,此处不做阐述。 1.图像配准 为同一地区的两种数据源能在同一个地理坐标系中进行叠加显示和数学运算,必须先将其中一种数据源的地理坐标配准到另一种数据源的地理坐标上,这个过程叫做配准。 (1)影像对栅格图像的配准 将一幅遥感影像配准到相同地区另一幅影像或栅格地图中,使其在空间位置能重合叠加显示。 (2)影像对矢量图形的配准 将一幅遥感影像配准到相同地区一幅矢量图形中,使其在空间位置上能进行重合叠加显示。2.几何粗纠正

遥感卫星图像处理方法

北京揽宇方圆信息技术有限公司 遥感卫星图像处理方法 随着遥感技术的快速发展,获得了大量的遥感影像数据,如何从这些影像中提取人们感兴趣的对象已成为人们越来越关注的问题。但是传统的方法不能满足人们已有获取手段的需要,另外GIS的快速发展为人们提供了强大的地理数据管理平台,GIS数据库包括了大量空间数据和属性数据,以及未被人们发现的存在于这些数据中的知识。将GIS技术引入遥感图像的分类过程,用来辅助进行遥感图像分类,可进一步提高了图像处理的精度和效率。如何从GIS数据库中挖掘这些数据并加以充分利用是人们最关心的问题。GIS支持下的遥感图像分析特别强调RS和GIS的集成,引进空间数据挖掘和知识发现(SDM&KDD)技术,支持遥感影像的分类,达到较好的结果,专家系统表明了该方法是高效的手段。 遥感图像的边缘特征提取观察一幅图像首先感受到的是图像的总体边缘特征,它是构成图像形状的基本要素,是图像性质的重要表现形式之一,是图像特征的重要组成部分。提取和检测边缘特征是图像特征提取的重要一环,也是解决图像处理中许多复杂问题的一条重要的途径。遥感图像的边缘特征提取是对遥感图像上的明显地物边缘特征进行提取与识别的处理过程。目前解决图像特征检测/定位问题的技术还不是很完善,从图像结构的观点来看,主要是要解决三个问题:①要找出重要的图像灰度特征;②要抑制不必要的细节和噪声;③要保证定位精度图。遥感图像的边缘特征提取的算子很多,最常用的算子如Sobel算子、Log算子、Canny算子等。 1)图像精校正 由于卫星成像时受采样角度、成像高度及卫星姿态等客观因素的影响,造成原始图像非线性变形,必须经过几何精校正,才能满足工作精度要求一般采用几何模型配合常规控制点法对进行几何校正。 在校正时利用地面控制点(GCP),通过坐标转换函数,把各控制点从地理空间投影到图像空间上去。几何校正的精度直接取决于地面控制点选取的精度、分布和数量。因此,地面控制点的选择必须满足一定的条件,即:地面控制点应当均匀地分布在图像内;地面控制点应当在图像上有明显的、精确的定位识别标志,如公路、铁路交叉点、河流叉口、农田界线等,以保证空间配准的精度;地面控制点要有一定的数量保证。地面控制点选好后,再选择不同的校正算子和插值法进行计算,同时,还对地面控制点(GCPS)进行误差分析,使得其精度满足要求为止。最后将校正好的图像与地形图进行对比,考察校正效果。 2)波段组合及融合 对卫星数据的全色及多光谱波段进行融合。包括选取最佳波段,从多种分辨率融合方法中选取最佳方法进行全色波段和多光谱波段融合,使得图像既有高的空间分辨率和纹理特性,又有丰富的光谱信息,从而达到影像地图信息丰富、视觉效果好、质量高的目的。 3)图像镶嵌

遥感图像的几何校正实验报告

实验报告 实验名称:遥感图像的几何校正课程名称:《遥感导论》 教师: 院系:矿业工程学院 班级: 姓名:

遥感图像的几何校正实验报告 一、实验目的 通过实习操作,掌握遥感图像几何校正的基本原理和和方法,理解遥感图像几何校正的意义。 二、实验环境 操作系统:windows 8.1 软件:ENVI 4.3 三、实验内容 ERDAS 软件中图像预处理模块下的图像几何校正 几何校正的必要性: 由于遥感平台位置和运动状态的变化、地形起伏、地球表面曲率、大气折射、地球自转等因素的影响,遥感图像在几何位置上会发生变化,产生诸如行列不均匀,像元大小与地面大小对应不准确,地物形状不规则变化等畸变,称为遥感图像的几何畸变。产生畸变的图像给定量分析及位置配准造成困难,因此在遥感数据接收后需要对图像进行几何校正以使其能够反映出接近真实的地理状况。 几何校正的原理: 遥感影像相对于地图投影坐标系统进行配准校正,即要找到遥感影像与地图投影坐标系统之间的数学函数关系,通过这种函数关系可计算出原遥感影像中每个像元在地图投影坐标系统上的位置从而得到校正后的图像 遥感影像相对于地图投影坐标系统进行配准校正,即要找到遥感影像与地图投影坐标系统之间的数学函数关系,通过这种函数关系可计算出原遥感影像中每个像元在地图投影坐标系统上的位置从而得到校正后的图像。 在本次实验中采用的是Polynomial(多项式变换)的模型,通过在遥感影像和参考图像上分别选取相应的控制点,求出二元二次多项式函数:25243210'2 5243210'y b x b xy b y b x b b y y a x a xy a y a x a a x +++++=+++++=,得到变换后的图像坐标(x ′,y ′)与参考图 像坐标的关系,从而对图像进行几何校正。 实验步骤: 运行ENVI 软件

浅析遥感图像的几何校正原理及方法

浅析遥感图像的几何校正原理及方法 摘要:几何校正,就是清除遥感图像中的几何变形,是遥感影像应用的一项重要的前期处理工作。本文简单分析了几何校正的原理和基本方法,并以ERDAS软件为例,对青海海东地区遥感影像进行了几何校正,从而直观地表述了遥感图像几何校正的完整过程。结果表明,几何校正的精度受多方面因素影响,最主要的是控制点GCP的选取数量和选取位置。本次校正精度小于0.5个像元,符合要求。 关键词:遥感、ERDAS、几何校正、GCP 引言:遥感20世纪60年代发展起来的对地观测综合性技术。狭义遥感指从远距离、高空,以至外层空间的平台上,利用可见光、红外、微波等遥感器, 通过摄影、扫描等各种方式,接收来自地球表层各类地物的电磁波信息,并对这些信息进行加工处理,从而识别地面物质的性质和运动状态的综合技术。遥感已然成为地理数据获取的重要工具。但是遥感技术的成图规律决定了遥感图像不能直接被应用,因为遥感图像在成像时, 由于成像投影方式、传感器外方位元素变化、传感介质的不均匀、地球曲率、地形起伏、地球旋转等因素的影响, 使得遥感图像存在一定的几何变形[2] , 即图像上的像元在图像坐标系中的坐标与其在地图坐标系等参考坐标系统中的坐标之间存在差异, 其主要表现为位移、旋转、缩放、仿射、弯曲和更高阶的歪曲[3] 。而且随着当今遥感技术的飞速发展,人们对遥感数据的需求也多源化,它们可以是来自不同的波段, 不同的传感器, 不同的时间。这些多源数据在使用时, 必须具有较高的空间配准精度。这就需要对原始影像进行高精度的几何校正。因此, 几何校正是遥感影像应用的一项重要的前期处理工作。 ERDAS IMAGINE 是美国ERDAS 公司开发的遥感图像处理系统,它以先进的图像处理技术友好灵活的用户界面和操作方式、面向广阔应用领域的产品模块、服务于不同层次用户的模型开发工具以及高度RS/GIS 集成功能为遥感及相关应用领域的用户提供内容丰富且功能强大的图像处理工具,代表了遥感图像处理系统未来的发展趋势[5]。基于此软件强大的功能性和灵活的操作性,本文采用erdas软件对海东地区影像图进行几何纠正。 2 研究区概况与研究方法 海东地区位于青海省东北部,"海东"以位于青海湖东而得名。地处祁连山支脉大板山南麓和昆仑山系余脉日月山东坡,属于黄土高原向青藏高原过渡镶嵌地带,海拔在1650~2835米之间。境内山峦起伏,沟整纵横,气候属于高原气候,高寒、干旱、日照时间长,太阳辐射强,昼夜温差大。年平均气温6.9℃,年均降水量为323.6 毫米,总蒸发量为1644毫米。本文采用校正过的2004年的海东地区参考影像对2009年对应影像进行校正。 3 几何校正的原理与方法 遥感图像几何校正包括光学校正和数字纠正。本文主要介绍数字纠正。 数字纠正是通过计算机对图像每个像元逐个地解析纠正处理完成的,其包括两方面,一是像元坐标变换,二是像元灰度值重新计算(重采样)。 (三) 数字图像灰度值的重采样 校正前后图像的分辨率变化、像元点位置相对变化引起输出图像阵列中的同名点灰度值变化,如图3所示

《遥感数字图像处理》课后习题详解

遥感数字图像处理 第一部分 1.什么是图像?并说明遥感图像与遥感数字图像的区别。 答:图像(image)是对客观对象的一种相似性的描述或写真。图像包含了这个客观对象的信息。是人们最主要的信息源。 按图像的明暗程度和空间坐标的连续性划分,图像可分为模拟图像和数字图像。模拟图像(又称光学图像)是指空间坐标和明暗程度都连续变化的、计算机无法直接处理的图像,它属于可见图像。数字图像是指被计算机储存,处理和使用的图像,是一种空间坐标和灰度都不连续的、用离散数字表示的图像,它属于不可见图像。 2.怎样获取遥感图像? 答:遥感图像的获取是通过遥感平台搭载的传感器成像来获取的。根据传感器基本构造和成像原理不同。大致可分为摄影成像、扫描成像和雷达成像三类。 m= 3.说明遥感模拟图像数字化的过程。灰度等级一般都取2m(m是正整数),说明8时的灰度情况。 答:遥感模拟图像数字化包括采样和量化两个过程。 ①采样:将空间上连续的图像变换成离散点的操作称为采样。空间采样可以将模拟图像具有的连续灰度(或色彩)信息转换成为每行有N个像元、每列有M个像元的数字图像。 ②量化:遥感模拟图像经离散采样后,可得到有M×N个像元点组合表示的图像,但其灰度(或色彩)仍是连续的,不能用计算机处理。应进一步离散、归并到各个区间,分别用有限个整数来表示,称为量化。 m=时,则得256个灰度级。若一幅遥感数字图像的量化灰度级数g=256级,则灰当8 度级别有256个。用0—255的整数表示。这里0表示黑,255表示白,其他值居中渐变。由于8bit就能表示灰度图像像元的灰度值,因此称8bit量化。彩色图像可采用24bit量化,分别给红,绿,蓝三原色8bit,每个颜色层面数据为0—255级。 4.什么是遥感数字图像处理?它包括那些内容? 答:利用计算机对遥感数字图像进行一系列的操作,以求达到预期结果的技术,称作遥感数字图像处理。 其内容有: ①图像转换。包括模数(A/D)转换和数模(D/A)转换。图像转换的另一种含义是为使图像处理问题简化或有利于图像特征提取等目的而实施的图像变换工作,如二维傅里叶变换、沃尔什-哈达玛变换、哈尔变换、离散余弦变换和小波变换等。 ②数字图像校正。主要包括辐射校正和几何校正两种。 ③数字图像增强。采用一系列技术改善图像的视觉效果,提高图像的清晰度、对比度,突出所需信息的工作称为图像增强。图像增强处理不是以图像保真度为原则,而是设法有选择地突出便于人或机器分析某些感兴趣的信息,抑制一些无用的信息,以提高图像的使用价值。 ④多源信息复合(融合)。 ⑤遥感数字图像计算机解译处理。

浅谈遥感图像的几何校正

浅谈遥感图像的几何校正 摘要 遥感是在不直接接触的情况下,对目标物或自然现象远距离感知的一门探测技术。ERDAS IMAGINE是一款遥感图像处理系统软件。遥感图像的几何处理是遥感信息处理过程中的一个重要环节,必须先用ERDAS IMAGINE进行几何精纠正,只有消除了几何变形,才能进一步分析研究,进一步开展图像解译、专题分类等分析研究工作。 关键词:遥感,erdas imagine,几何纠正

1.前言 遥感是在不直接接触的情况下,对目标物或自然现象远距离感知的一门探测技术。具体地讲,是指在高空和外层空间的各种平台上,运用各种传感器获取反应地表特征的各种数据,通过传输,变换和处理,提取有用的信息,实现研究地物空间形状,位置,性质,变化及其与环境的相互关系的一门现代应用技术科学。遥感图像处理硬件系统也从光学处理设备全面转向数字处理系统,内外存容量的迅速扩大,处理速度急速增加,使处理海量遥感数据成为现实,网络的出现将使数据实时传输和实时处理成为现实。遥感图像处理软件系统更是不断翻新,从开始的人机对话操作方式发展到视窗方式,未来将向智能化方向发展。ERDAS IMAGINE是一款遥感图像处理系统软件。ERDAS IMAGINE是美国ERDAS 公司开发的遥感图像处理系统。它以其先进的图像处理技术,友好、灵活的用户界面和操作方式,面向广阔应用领域的产品模块,服务于不同层次用户的模型开发工具以及高度的RS/GIS(遥感图像处理和地理信息系统)集成功能,为遥感及相关应用领域的用户提供了内容丰富而功能强大的图像处理工具,代表了遥感图像处理系统未来的发展趋势。 遥感图像作为空间数据,具有空间地理位置的概念,在应用遥感图像之前,必须将其投影到需要的地理坐标系中。因此,遥感图像的几何处理是遥感信息处理过程中的一个重要环节。 遥感图像在成像时,由于成像投影方式、传感器外方位元素变化、传感介质的不均匀、地球曲率、地形起伏、地球旋转等因素的影响,获得的遥感图像相对于地表目标存在一定的几何变形,使得图像上的几何图形与该物体在所选定的地图投影中的几何图形产生差异,造成形状或位置的失真,这主要表现为位移、旋转、缩放、仿射、弯曲和更高阶的歪曲,且其精度直接影响到后续处理工作的质量。要在这样的遥感图像上进行研究,必须先用ERDAS IMAGINE进行几何精纠正,只有消除了几何变形,才能进一步分析研究,进一步开展图像解译、专题分类等分析研究工作。 2.国内外发展状况 2.1国内发展状况

实验二遥感图像的几何校正与镶嵌实验报告

实验二遥感图像的几何校正与镶嵌实验报告 实验目的: 通过本实验熟练操作遥感图像处理的专业软件进行基础图像处理,包括图像几何校正、镶嵌等。 实验容: 1、熟悉图像几何校正、镶嵌的基本原理; 2、学习图像几何校正具体操作; 3、学习图像镶嵌正具体操作。 本实验的图像几何校正是通过“像图配准”的方式获取地面控制点的方里网坐标的,并对传统的从纸质地形图上量算坐标的方法进行改进,利用Auto CAD或Photoshop等软件从扫描后的电子地形图上直接量算坐标。 实验步骤: 第一步、熟悉图像几何校正、镶嵌的基本原理 第二步、图像几何校正 运行PCI,选择GCPWorks模块,在Source of GCPs选择User Entered Coordinates(用户输入投影坐标系统),点击Accept后,弹出校正模块: 选择第一项加载需要校正的图像(由实验一方法导出的125-42.pix)->点击

Default->Load & Close->得到下图: 选择第二项,选择Other确定投影系统: 注意输入6度带的中央经度与向东平移500公里(500000米):

点击Earth Model确定地球模型: 点击Accept:

选择第三项采集地面控制点。在采集地面控制点之前,利用Photoshop软件打开扫描后的电子地形图。 分别在遥感图像和地形图中找到一个同名点,如下图(可以用放大遥感图)。 然后在地形图中量算出该点的坐标,精确到米,X坐标为6位(要去掉2位6度带的带号),Y坐标7位(运用测出)。再将坐标输入到GCP编辑窗口中,并点击Accept as GCP接受为一个控制点。

遥感图像的几何校正实验报告

遥感图像的几何校正 一、实验目的 通过实习操作,掌握遥感图像几何校正的基本原理和和方法,理解遥感图像几何校正的意义。 二、实验环境 操作系统:Windows Vista 软件:Erdas Imagine 8.4 三、实验内容 ERDAS软件中图像预处理模块下的图像几何校正。 几何校正的必要性: 由于遥感平台位置和运动状态的变化、地形起伏、地球表面曲率、大气折射、地球自转等因素的影响,遥感图像在几何位置上会发生变化,产生诸如行列不均匀,像元大小与地面大小对应不准确,地物形状不规则变化等畸变,称为遥感图像的几何畸变。产生畸变的图像给定量分析及位置配准造成困难,因此在遥感数据接收后需要对图像进行几何校正以使其能够反映出接近真实的地理状况。 几何校正的原理: 遥感影像相对于地图投影坐标系统进行配准校正,即要找到遥感影像与地图投影坐标系统之间的数学函数关系,通过这种函数关系可计算出原遥感影像中每个像元在地图投影坐标系统上的位置从而得到校正后的图像。 Erdas软件中提供了7中几何校正的模型,具体如下: 表 1 几何校正计算机模型与功能 模型功能 Affine 图像仿射变换(不做投影变换) Polynomial 多项式变换(同时作投影变换) Reproject 投影变换(转换调用多项式变换) Rubber Sheeting 非线性变换、非均匀变换 Camera 航空影像正射校正 Landsat Landsat卫星图像正射校正 Spot Spot卫星图像正射校正

在本次实验中采用的是Polynomial(多项式变换)的模型,通过在遥感影像和参考图像上分别选取相应的控制点,求出二元二次多项式函数: 2 52 43210' 2 52 43210' y b x b xy b y b x b b y y a x a xy a y a x a a x +++++=+++++=, 得到变换后的图像坐标(x ′,y ′)与参考图像坐标的关系,从而对图像进行几何校正。 四、实验步骤 运行Erdas Imagine 软件 第一步:显示图像文件 1) 在Erdas 图标面板中单击Viewer 图标两次,打开两个视窗:Viewer 1和 Viewer 2; 2) 在Viewer 1视窗下打开需要校正的遥感影像wucesourse.img , 在Viewer 2 视窗下打开参考图像wucepoint.img ; 第二步:启动几何校正模块(Set Geometric Model ) 单击Viewer 1视窗菜单栏中的Raster →Geometric Correction →打开Set Geometric Model 对话框(见图1) →选择多项式几何校正模型 Polynomial →OK →打开Geometric Correction Tools 对话框(见图2)和Polynomial Model Properties 对话框(见图3) →在Polynomial Model Properties 对话框中定义多项式次方(Polynomial Order )为2(见图3) →单击Apply →单击Close →打开GCP Tool Reference Setup 对话框(见图4 ) 图1 Set Geometric Model 对话框 图2 Geometric Correction Tools 对话框

遥感图像几何精校正实验报告

遥感图像几何精校正 实验名称:遥感图像的几何精校正。 实验目的:1.了解和熟悉envi软件的几何校正的原理 2.熟悉和掌握envi软件的几何校正的功能和使用方法; 3.对自己的图像先找到投影,再另存一幅图像,去掉投影,在其它软件中旋转一 角度,用原先的图像作为参考对旋转后的图像进行几何校正,使得其比较精确。实验原理:几何校正,主要方法是采用多项式法,机理是通过若干控制点,建立不同图像间的多项式控件变换和像元插值运算,实现遥感图像与实际地理图件间的配准,达 到消减以及消除遥感图像的几何畸变。 多项式几何校正激励实现的两大步: 1. 图像坐标的空间变换: 有几何畸变的遥感图像与没有几何畸变的遥感图像,其对应的像元的坐标是不一 样的,如下图1右边为无几何畸变的图像像元分布图,像元是均匀且不等距的分 布。为了在有几何畸变的图像上获取无几何畸变的像元坐标,需要进行两图像坐 标系统的空间装换。 图1:图像几何校正示意图 在数学方法上,对于不同二维笛卡儿坐标系统间的空间转换,通常采用的是二元 n次多项式,表达式如下: 其中x, y为变换前图像坐标, u, v为变换后图像坐标, aij , bij为多项式系数, n = 1, 2, 3, ?。 二元n次多项式将不同坐标系统下的对应点坐标联系起来, ( x, y )和( u, v )分别应 不同坐标系统中的像元坐标。这是一种多项式数字模拟坐标变换的方法,一旦有 了该多项式,就可以从一个坐标系统推算出另一个坐标系统中的对应点坐标。 如何获取和建立二元n次多项式,即二元n次多项式系数中a和b的求解,是几何 校正成败的关键。数学上有一套完善的计算方法,核心是通过已知若干存在于不 同图像上的同名点坐标,建立求解n次多项式系数的方程组,采用最小二乘法,得出 二元n次多项式系数。 不同的二元n次多项式,反映了几何畸变的遥感图像与无几何畸变的遥感图像间的 像元坐标的对应关系, 其中哪种多项式是最佳的空间变换模拟式,能达到图像间 坐标的完全配准,是需要考虑和分析的。 在二元n次多项式数字模拟中,从提高几何校正精度的角度考虑,需要兼顾的因素

ENVI遥感图像处理方法

ENVI遥感图像处理方法 部门: xxx 时间: xxx 制作人:xxx 整理范文,仅供参考,可下载自行修改

《ENVI遥感图像处理方法》科学出版社2018年6月正式出版上一篇 / 下一篇2018-05-26 15:02:30 / 个人分类:ENVI 查看( 643 > / 评论( 5 > / 评分( 0 / 0 > 从上个世纪六十年代E.L.Pruitt提出“遥感”这个词至今,遥感已经成为人类提供了从多维和宏观角度去认识宇宙世界的新方法与新手段。目前,遥感影像日渐成为一种非常可靠、不可替代的空间数据源。ENVI (The Environment for Visualizing Images>是由遥感领域的科学家采用交互式数据语言IDL(Interactive Data Language>开发的一套功能强大的遥感图像处理软件。ENVI以其强大的图像处理功能,尤其是与ArcGIS一体化集成,使得众多的影像分析师和科学家选择ENVI来处理遥感图像和获得图像中的信息,从而全面提升了影像的价值。ENVI已经广泛应用于科研、环境保护、气象、石油矿产勘探、农业、林业、医学、国防&安全、地球科学、公用设施管理、遥感工程、水利、海洋、测绘勘察和城市与区域规划等众多领域。与此形成鲜明对比的是,目前关于ENVI的中文教程非常少,给广大用户学习软件和应用软件带来诸多不便。 b5E2RGbCAP 针对上述情况,在ESRI中国<北京)有限公司的大力支持下,根据多年遥感应用研究和软件操作经验,历时一年半编著完成本书。全书按照遥感图像处理流程由浅到深逐步引导读者掌握ENVI软件操

作。各个章节相对独立,读者可视个人情况进行选择阅读。全书分为17章,第1、2、3章介绍了ENVI软件的基础知识,可作为ENVI 软件入门,也可作为参考内容;第4、5、6、7、8章介绍了遥感图像处理一般流程,包括图像几何校正、图像融合、图像镶嵌、图像裁剪、图像增强等预处理,图像分类、矢量处理、制图和三维可视化等图像基本处理,这5章又可独立阅读;第9、10、11、12章为专业操作,包括正射校正、面向对象图形特征提取、地形分析、遥感动态监测;第13、14章是光谱分析和高光谱处理方面的内容,包括辐射定标与大气校正、高光谱与光谱分析技术;第15章介绍了ENVI非常灵活的波段运算和波谱运算;第16章介绍了ENVI基本的雷达图像处理功能;第17章介绍了ENVI的二次开发功能。部分章节设有一些完整实例,包括耕地信息提取、林冠状态遥感动态监测、森林开采监测、农业用地变化监测等。书中所有的操作和实例数据都在随书DVD光盘中,可参照书中内容一步步练习。 p1EanqFDPw 全书的编写力求实现内容科学准确、系统完整、通俗易懂,让初学者能快速掌握ENVI软件的操作和应用,同时对专家级用户也具有一定的参考价值。可作为ENVI软件用户的学习指南,对其他从事遥感应用研究的专业人员,以及测绘/遥感/地理信息系统/地理学等相关专业也具有一定的参考价值。全书不仅包括了ENVI主模块的全部功能,还介绍了大气校正模块

遥感讲座——遥感影像预处理

遥感讲座——遥感影像预处理 据预处理是遥感应用的第一步,也是非常重要的一步。目前的技术也非常成熟,大多数的商业化软件都具备这方面的功能。预处理的大致流程在各个行业中有点差异,而且注重点也各有不同。下面是预处理中比较常见的流程。 1、数据预处理一般流程 数据预处理的过程包括几何精校正、配准、图像镶嵌与裁剪、去云及阴影处理和光谱归一化几个环节,具体流程图如图所示。 各个行业应用会有所不同,比如在精细农业方面,在大气校正方面要求会高点,因为它需要反演;在测绘方面,对几何校正的精度要求会很高。 2、数据预处理的各个流程介绍 (一)几何精校正与影像配准 引起影像几何变形一般分为两大类:系统性和非系统性。系统性一般有传感器本身引起的,有规律可循和可预测性,可以用传感器模型来校正;非系统性几何变形是不规律的,它可以是传感器平台本身的高度、姿态等不稳定,也可以是地球曲率及空气折射的变化以及地形的变化等。 在做几何校正前,先要知道几个概念: 地理编码:把图像矫正到一种统一标准的坐标系。 地理参照:借助一组控制点,对一幅图像进行地理坐标的校正。 图像配准:同一区域里一幅图像(基准图像)对另一幅图像校准

影像几何精校正,一般步骤如下, (1)GCP(地面控制点)的选取 这是几何校正中最重要的一步。可以从地形图(DRG)为参考进行控制选点,也可以野外GPS测量获得,或者从校正好的影像中获取。选取得控制点有以下特征: 1、GCP在图像上有明显的、清晰的点位标志,如道路交叉点、河流交叉点等; 2、地面控制点上的地物不随时间而变化。 GCP均匀分布在整幅影像内,且要有一定的数量保证,不同纠正模型对控制点个数的需求不相同。卫星提供的辅助数据可建立严密的物理模型,该模型只需9个控制点即可;对于有理多项式模型,一般每景要求不少于30个控制点,困难地区适当增加点位;几何多项式模型将根据地形情况确定,它要求控制点个数多于上述几种模型,通常每景要求在30-50个左右,尤其对于山区应适当增加控制点。 (2)建立几何校正模型 地面点确定之后,要在图像与图像或地图上分别读出各个控制点在图像上的像元坐标(x,y)及其参考图像或地图上的坐标(X,Y),这叫需要选择一个合理的坐标变换函数式(即数据校正模型),然后用公式计算每个地面控制点的均方根误差(RMS)根据公式计算出每个控制点几何校正的精度,计算出累积的总体均方差误差,也叫残余误差,一般控制在一个像元之内,即RMS<1。 (3)图像重采样 重新定位后的像元在原图像中分布是不均匀的,即输出图像像元点在输入图像中的行列号不是或不全是正数关系。因此需要根据输出图像上的各像元在输入图像中的位置,对原始图像按一定规则重新采样,进行亮度值的插值计算,建立新的图像矩阵。常用的内插方法包括: 1、最邻近法是将最邻近的像元值赋予新像元。该方法的优点是输出图像仍然保持原来的像元值,简单,处理速度快。但这种方法最大可产生半个像元的位置偏移,可能造成输出图像中某些地物的不连贯。 2、双线性内插法是使用邻近4个点的像元值,按照其距内插点的距离赋予不同的权重,进行线性内插。该方法具有平均化的滤波效果,边缘受到平滑作用,而产生一个比较连贯的输出图像,其缺点是破坏了原来的像元值。 3、三次卷积内插法较为复杂,它使用内插点周围的16个像元值,用三次卷积函数进行内插。这种方法对边缘有所增强,并具有均衡化和清晰化的效果,当它仍然破坏了原来的像元值,且计算量大。 一般认为最邻近法有利于保持原始图像中的灰级,但对图像中的几何结构损坏较大。后两种方法虽然对像元值有所近似,但也在很大程度上保留图像原有的几何结构,如道路网、水系、地物边界等。

几何校正操作步骤

几何校正操作步骤 实验目的: 通过实习操作,掌握遥感图像几何校正的基本方法和步骤,深刻理解遥感图像几何校正的意义。 实验内容: ERDAS软件中图像预处理模块下的图像几何校正。几何校正就是将图像数据投影到平面上,使其符合地图投影系统的过程。而将地图投影系统赋予图像数据的过程,称为地里参考(Geo-referencing)。由于所有地图投影系统都遵循一定的地图坐标系统,因此几何校正的过程包含了地理参考过程。 1、图像几何校正的途径 ERDAS图标面板工具条:点击DataPrep图标,→Image Geometric Correction →打开Set Geo-Correction Input File对话框(图2-1)。 ERDAS图标面板菜单条:Main→Data Preparation→Image Geometric Correction→打开Set Geo-Correction Input File对话框(图2-1)。 在Set Geo-Correction Input File对话框(图1)中,需要确定校正图像,有两种选择情况: 其一:首先确定来自视窗(FromViewer),然后选择显示图像视窗。 其二:首先确定来自文件(From Image File),然后选择输入图像。 2、图像几何校正的计算模型(Geometric Correction Model) ERDAS提供的图像几何校正模型有7种,具体功能如下:

3、图像校正的具体过程 第一步:显示图像文件(Display Image Files) 首先,在ERDAS图标面板中点击Viewer图表两次,打开两个视窗(V iewer1/Viewer2),并将两个视窗平铺放置,操作过程如下: ERDAS图表面板菜单条:Session→Title Viewers 然后,在V iewer1中打开需要校正的Lantsat图像:xiamen,img 在Viewer2中打开作为地理参考的校正过的(图象或)矢量图层:xmdis3.shp 第二步:启动几何校正模块(Geometric Correction Tool)Viewer1菜单条:Raster→Geometric Correction →打开Set Geometric Model对话框(2-2) →选择多项式几何校正模型:Polynomial→OK →同时打开Geo Correction Tools对话框(2-3)和Polynomial Model Properties对话框(4)。 在Polynomial Model Properties对话框中,定义多项式模型参数以及投影参数:→定义多项式次方(Polynomial Order)(图2-4):2 →定义投影参数:(PROJECTION):略 →Apply→Close →打开GCP Tool Referense Setup 对话框(2-5)

遥感图像几何精校正、辐射校正

遥感图像几何精校正、辐射校正 实验目的:应用ENVI软件对图像进行几何精校正、辐射校正处理,使得图像更精确。并通过实验了解运用ENVI软件进行几何、辐射校正的过程和方法。 实验原理:引起图像几何变形的一半分为两大类:系统性和非系统性误差。几何校正是利用地面控制点和几何校正数学模型来校正非系统因素产生的误差,同时也将图像投影到平面上,使其符合地图投影系统的过程。 数据来源:在遥感实验室中老师做几何校正的资料数据图。具体信息如图所示: 一、几何校正 实验步骤: 1)打开并显示图像文件 主菜中File—Open Image File将校正后和校正前的文件打开并将它们分别显示在Display 中。 2)启动几何校正模型 选择主菜单M ap—Registration—Select Gcps:Image to image 进入界面如下图: 3)选择校正后的图作为base图形,选择校正前的warp图作为待改正的图点击OK进入采集地面控制点。 4)地面控制点的采集过程

(1)在两个Display中移动方框位置,寻找明显的相同地物特征使两个Zoom中的地物相同。(2)在Ground control Points selection上,单击Add point 将当前的点收集。 (3)用同样的办法继续寻找点,至少四个点。 点的选取如图所示: 5)在Ground Control Points Selection上,点击Show list 按钮可以看到选择的所有控制点。

6)选择校正参数输出结果 (1)在Ground Control Points Selection上选择Opintion—Ware File 选择校正文件

ENVI遥感图像管理组织实验教学教程实验三几何校正(影像,地形图)

实验三 ENVI影像的几何校正 本专题旨在介绍如何在ENVI中对影像进行地理校正,添加地理坐标,以及如何使用ENVI进行影像到影像的几何校正。遥感图像的几何纠正是指消除影像中的几何形变,产生一幅符合某种地图投影或图形表达要求的新影像。 一般常见的几何纠正有从影像到地图的纠正,以及从影像到影像的纠正,后者也称为影像的配准。遥感影像中需要改正的几何形变主要来自相机系统误差、地形起伏、地球曲率以及大气折射等。几何纠正包括两个核心环节:一是像素坐标的变换,即将影像坐标转变为地图或地面坐标;二是对坐标变换后的像素亮度值进行重采样。 本实验将针对不同的数据源和辅助数据,提供以下几种校正方法: Image to Map几何校正:通过地面控制点对遥感图像几何进行平面化的过程,控制点可以是键盘输入、从矢量文件中获取。地形图校正就采取这种方法。Image to image几何校正:以一副已经经过几何校正的栅格影像作为基准图,通过从两幅图像上选择同名点(GCP)来配准另一幅栅格影像,使相同地物出现在校正后的图像相同位置。大多数几何校正都是利用此方法完成的。 Image to image自动图像配准:根据像元灰度值自动寻找两幅图像上的同名点,根据同名点完成两幅图像的配准过程。当同一地区的两幅图像由于各自校正误差的影像,使得图上的相同地物不重叠时,可利用此方法进行调整 1. 地形图的几何校正 (1)打开并显示地形图 从ENVI主菜单中,选择file →open image file,打开3-几何校正\地形图\G-48-34-a.JPG。 (2)定义坐标 从ENVI主菜单栏中,选择Map →Registration →Select GCPs:Image to map。

相关主题
文本预览
相关文档 最新文档