当前位置:文档之家› 第2章 导数与微分总结

第2章 导数与微分总结

第2章 导数与微分总结
第2章 导数与微分总结

1基础总结

1、极限的实质是:动而不达

导数的实质是:一个有规律商的极限。规律就是:0lim x y x

?→??

2、导数的多种变式定义:

00000()()()()

lim

=lim lim x x x x f x f x y f x x f x x x x x ?→?→→-?+?-=??-

要注意细心观察发现,0

()()

lim

x f x x f x x

?→+?-?是描述趋近任意x 时的斜率。而

00

()()

lim

x x f x f x x x →--可以刻画趋近具体x0时的斜率。

3、

若x 没趋近到x0,那么除法得到的值是这段的平均斜率,如果趋近到了x0,得到的就是这点的斜率——导数。 4、可导与连续的关系:

导数的实质是定义在某点的左右极限。既然定义在了某点上,该点自然存在,而且还得等于左右极限。因此,可导一定是连续的。反之,如果连续,不一定可导。不多说。同理,如果不连续,肯定某点要么无定义,要么定义点跳跃跑了,肯定极限有可能存在,但是导数绝不会存在。

同理要注意左右导数的问题。如果存在左或者右导数,那么在左侧该点一定是存在的。如:

(),0f x x x =<

这个函数,在0点就不存在左导数,只存在右导数。为什么嫩?看定义:

0()()()(0)

lim

lim

x x f x x f x f x x f x x

?→?→+?-+?-=??。定义里面需要用到f(0)啊!因此,千万不要以为导数是一种简单的极限,极限是可以在某点无定义的,而导数却是该点必须存在!

由此引发了一些容易误判的血案: 例如:

定义解决时候一定要注意0

00

()()

lim

x x f x f x x x →--中的0()f x 到底是神马。比如求上图

中01

()()

lim x f x f x x x +

→-- ,这个f(x0)千万要等于2/3,而不是1!

由此也可以知道,3

2(),13

f x x x =≤ 这个函数是不存在导数的,

也不存在左导数,只存在右导数。

5、反函数的导数与原函数的关系:

有这样一条有趣的关系:函数的导数=对应的反函数的导数的倒数。

1

1

'()(())'f x f y -=

注意,求反函数时候不要换元。因为换了元虽然对自身来讲函数形式不变,但是与原函数融合运算时候就算是换了一个不是自己反函数的一个函数进行运算。结果显然是错误的。举例子:

求x

y e =的导数。显然反函数(不要换元)是ln x y = 。反函数的导数是1

'x y

= 。反函数导数的倒数是 =x

y e

,因此,()'x x

y e e ==

再如,求arcsin()x 的导数。

解:令函数为arcsin()y x =,则其反函数为sin x y =,导数的倒数为

1

(arcsin )'cos x y =。但是必须消去y

(注意到在定义域内cosy 恒为正,因此舍掉负解

)

6、复合函数求导法则:

只要父函数和子函数随时能有定义,就拆着求就可以了。 7、高阶导数:

如果f(x)在点x 处具有n 阶导数,那么f(x)在点x 的某一邻域内必定具有一切低于n 阶的导数。

()sin ()sin()2n n x x π=+

; ()cos ()cos()2

n n x x π

=+;其余的也记不住,自己慢慢推导。

()()()()n n n u v u v ±=± ;

二项式定理中有:0

()n

n k n k k

n k u v C u v

-=+=∑ ;类似的,乘法的n 阶

导数也有:

()()()

(*)n

n k n k k n k u v C u v

-==∑。这个是要熟练记忆的。

8、隐函数,参数方程的导数,相关变化率

建议隐函数,参数方程的导数,以及求导数的相关变化率时使用dy

dx

形式求解。只有这样才能准确,安全,方便。

举例:求0y

e xy e +-= (隐函数f(x,y)=0)中y 对x 的导数

dy dx

解:两边求导,

()0

y d e xy e d dx dx

+-=

())00

y y y d e xy e de dxy de de dy dxy

dx dx dy dx dx

+-+-→=→=+=,

()0y

y y

dy ydx xdy dy dy y

e e x y dx dx dx dx dx e x

→++=++=→=-+解完以后发现效果还不错。如果直接用什么y ’神马的净是错误,所以不要直接用口算,用dy/dx 方法求解。

复合隐函数如何求导?例如,如何求

x y

de dx

+ ?简单,

()=(1)()x y x y x y de de d x y dy

e dx d x y dx dx

++++=++。怎么样,就是层层剥香蕉的意思。 参数方程同理,设()()

x x t y y t =??=? ,则简单,而且显然有'()'()dy dy dt y t dx dt dx x t ==

,二阶导数有223

'()'()

(

)()''()'()'()''()

'()'()['()]

y t y t d d d y

dt y t x t y t x t x t x t dx

dx dt dx x t -=

==。麻烦吗?根本不要记,连参数方程的公式都不要记,自己慢慢算,算到哪里推导到哪里,简单又方便。 相关变化率问题,是说

,dy dx

dt dt

之间的关系。

dy

dx

这一类(幂指数是1

2

)一

般都是对方程两边先求对数,再求解,这样求解起来应该会简单。 9、微分

微分用dy 表示。dy y ≈?.微分的产生主要就是为了能方便简单的计算给定x ? 后对应的近似的y ? 。实际上,()()y f x x f x ?=+?-,若可以化简成

00()()()y f x x f x k x o x ?=+?-=?+?形式,则称()f x 在该点x0处可微记作

0|x x dy k x ==? ,这部分称为线性部分。()o x ? 是x ? 的高阶无穷小,因此

在计算时可以省去,这样只计算线性部分就特别简单的算出近似的y ?了。

当0x ?→ 时,(())0

()0y k x o x dy k x ?=?+?→=?→ ,经过计算0

lim =...=1x y

dy

?→? ,可见,0dy y x ??→与在 时是等价无穷小,即有y dy ?:

可微与可导的关系:可微和可导是等价的,互为充要条件。

关系如图

课本上的一些重要易错的题1、求1

arccos()

y

x

=的导数

解:2)

dy

x

dx

-

=-===

x

2、试从1

'

dx

dy y

=导出

2

23

''

(')

d x y

dy y

=-

解:2

223

11

()

''1''

''

**

(')'(')

dx

d d d

d x dx y y

dy y y

dy dy dy dx dy y y y

====-=-

3、设f(x)在x=a的某个邻域内有定义,则f(x)在x=a处可导的一个充分条件是:

A 1

lim[()()]

h

h f a f a

h

→+∞

+-存在

B

(2)()

lim

h

f a h f a h

h

+-+存在

C

()(-)

lim

2

h

f a h f a h

h

+-存在

D

()(-)

lim

h

f a f a h

h

-存在

答案:D

4、

sin,0

()

ln(1),0

x x

f x

x x

<

?

=?

+≥

?在0处的单侧导数

'(0)

f

-。

解:注意,不能用

()()

lim

x

f x x f x

x

?→

+?-

?

,应该用

()()

lim

x x

f x f x

x x

-

-

才能算出来。这

个要注意。如果用

()()

lim

x

f x x f x

x

?→

+?-

?

怎么算?

5、

此题主要存在的问题是不知道如何将实际问题转换为数学问题。

2 扩展部分

求x=x0处导数有两种定义:

??

????

?----?+=→→?000000

0)()()()()('lim lim 0

x x x f x f x x x f x x f x f x x x 而x 处的导函数只有一种定义

h

x f h x f x f h )

()()('lim

-+=→

可导与连续的关系:

可导指的是:存在左导数和右导数,且两者相等。而左导数还是右导数的实质是单侧极限问题。而若两侧(导函数的)极限都存在,那么必然该导函数存在极限,即该种极限的导函数即导数存在。故可导的充要条件是存在左右极限且相等。 单侧导数与单侧极限一样,光有一个说明不了导数(极限)存在 可导必然连续,连续未必可导。 因为连续在公式上的表现是lim 0

→?x △y=0

可导在公式上表现是存在

lim 0

→?x △y/△x=f ’(x)

故可导可以推出连续。但连续推不出可导。不可导未定不连续,但不连续一定不可导。(可以用反证法证明)这些不用死记。

某点单侧导数存在,则该点一定要有定义。比如

??

???>≤=1,1,3

2)(23

x x x x x f 在x=1处的右导数就不存在。但是

?

?

?>-≤=1,121,)(2

x x x x x f 在x=1处的右导数就存在。

反函数存在的充要条件是原函数单调。 要注意中自变量是什么。是)('1)('y x f ?=

而不是)

('1

)('x x f ?=一定要注意 Tan ,cot ,sec ,csc ,arctan ,arcsin ,arccos ,arccot 导数都可以自己推倒出来。用的就是反函数的导数公式。

如:

)(11

)(sin 11)cos(1)'sin(1)'arcsin(22舍掉负值x y y y x -=-===

a x a a a x y y a ln 1

ln 1)'(1)'(log =

==

如果哪个忘了,要能够自己推导。

【回忆】牛顿二项式展开∑=-=

+n

k k k n k n n

b a C b a 0)(与莱布尼茨高阶导形式类似。 这一节就是练习给出f(x)求

)()(n x f 。本节的题比较难。主要方法是:

1归纳法。将)('x f ,)(''x f 求出整理归纳出n 阶导数 莱布尼茨公式求uv 乘积的高阶导数

2遇到一些求分数函数的高阶导数的式子,一般就要先化简。最好是想办法化成和的形式,再分别求高阶导数。

3遇到三角函数的高阶导数时,要把三角函数降阶到1阶再求。 一般给出f(x)求)()(n x f 需要综合运用各种方法才能算出来。如先化简,再用归纳法,莱

布尼茨公式等。 还有题是变量替换题。

例:设y=y(x)定义在(-1,1)上且二阶可导,满足方程0)1(2222

=+--y a dx

dy

x dx y d x ,

做变量代换x=sint ,证明0222=+y a dt

y

d

证明:

dx

dy t dt dx dx dy dt dy cos *== dx dy t dt dx dy d t dt dx dy t

d dt

y d sin )

(cos )(cos 22

-==dx

dy t dt dx dx y d t sin cos 22-= dx

dy x dx y d x dx dy t dx y d t --=-=22222

)1(sin sin -1)( 带入可证明结论。

求隐函数对x 导数,要注意对y 求导。例如y

e x =的导数为'1y e

y

*=

最好用

dx dy

方法做,而不是用'y 因为常用的'y 是对x 求导,如果现在对t 求导,会不小心弄混。用dx

dy

可以显见y 对t 还是x 求导,不易出错。当然,如果只是F (x ,y )=0对x 求

导,无中间量,还好,不会乱。

参数方程的导数应用dx dy ,有3个条件才可以:??

?

??≠==??=0

)(')(),()(t t y t x t x ?ψ??③可导②反函数单调连续①

通过证明(需要自己会证明推倒),显而易见这三个条件都要满足。(实际应用中似乎没啥用)。

本节题就是隐函数,参数函数的求导数,要在运算中时刻想着化简,特别是求某点的导数值时,更要是定值就代入,以便于方便后续运算。在运算时,还要记住综合各种方法,如对数求

总结起来就是:

x

x

f

dy?

=)

('

一定要注意有个x0,而不是x,这表示f’(x0)是一个与△x无关的常数。

x

x

f

x

f

x

x

f

y?

-

?

+

=

?)

('

)

(

)

(

也要注意的是x0,而不是x。这个公式常常用来估算和证明。

△y=dy+o(dy)

△x=dx(严格来说,其实就是把△x写成了dx,好像比较统一一样,但△y一定要注意≠dy)具体如图:

dy △y

O(dy

如证明:sin(x)~x,当|x|<<1时。(其实即x0→0)

证明:∵△f(x0)=sin(x0+△x)-sin(x0)≈sin’(x0)△x

∴sin(x0+△x)≈sin(x0)+cos(x0)△x

令x=x0+△x

∴sin(x)≈sin(x0)+cos(x0)(x-x0)(注意:目的就是去掉式子里的△x)

∵|x|<<1

∴sin(x)≈sin(0)+cos(0)(x-0)=x

即当|x|<<1时,sin(x)≈x

证明具体的更简单,如求sin(29)的近似值

∵sin(30-1)-sin(30)≈cos(30)*1°

∴sin(29)≈1/2+(√3/2)*π/180(角度必须转换成弧度!公式是角度=角度*π/180 ,角度=弧度*180/π)

总习题2

设函数f(x)在x=a的某个邻域内有定义,则f(x)在x=a处可导的一个充分条件是?(D)A 存在

B

h

h a

f

h

a

f

h

)

(

)

2

( lim

+ -

+

存在

C

h

h a

f

h a

f

h

2

)

(

)

(

lim

-

-

+

存在

D

h

h a

f

a

f

h

) (

)

( lim

--

存在

我觉得BC 项可以通过改式来推导。例如C

h h a f h a f h 2)

()(lim 0

--+→=)('2*21

))()()()((212)()()()(lim lim lim 0

00a f h a f h a f h a f h a f h h a f a f a f h a f h h h =---+-+=--+-+→→→本来这个公式没什么问题,但是f(a)又没有说存在,就不能随便加个f(a)。

遇到x

e 1,x →0的极限时应该特别小心,因为从表面上看是→∞,但细分析会发现需要讨论0的左右极限。X →0+时,值为+∞,x →0-时,值为0

要特别注意参数方程二阶导数求法:

设参数方程,则

注意:二阶导数分母是3次方

第3章-微分中值定理与导数的应用总结

1基础知识详解 先回顾一下第一章的几个重要定理 1、0 lim ()()x x x f x A f x A α→∞→=?=+ ,这是极限值与函数值(貌似是邻域)之间的关 系 2、=+()o αββαα?: ,这是两个等价无穷小之间的关系 3、零点定理: 条件:闭区间[a,b]上连续、()()0f a f b < (两个端点值异号) 结论:在开区间(a,b)上存在ζ ,使得()0f ζ= 4、介值定理: 条件:闭区间[a,b]上连续、[()][()]f a A B f b =≠= 结论:对于任意min(,)max(,)A B C A B <<,一定在开区间(a,b)上存在ζ,使得 ()f C ζ=。 5、介值定理的推论: 闭区间上的连续函数一定可以取得最大值M 和最小值m 之间的一切值。 第三章 微分中值定理和导数的应用 1、罗尔定理 条件:闭区间[a,b]连续,开区间(a,b)可导,f(a)=f(b) 结论:在开区间(a,b)上存在ζ ,使得'()0f ζ= 2、拉格朗日中值定理 条件:闭区间[a,b]连续,开区间(a,b)可导 结论:在开区间(a,b)上存在ζ ,使得()()'()()f b f a f b a ζ-=- 3、柯西中值定理

条件:闭区间[a,b]连续,开区间(a,b)可导,()0,(,)g x x a b ≠∈ 结论:在开区间(a,b)上存在ζ ,使得 ()()'() ()()'() f b f a f g b g a g ζζ-= - 拉格朗日中值定理是柯西中值定理的特殊情况,当g(x)=x 时,柯西中值定理就变成了拉格朗日中值定理。 4、对罗尔定理,拉格朗日定理的理解。 罗尔定理的结论是导数存在0值,一般命题人出题证明存在0值,一般都用罗尔定理。当然也有用第一章的零点定理的。但是两个定理有明显不同和限制,那就是,零点定理两端点相乘小于0,则存在0值。而罗尔定理是两个端点大小相同,则导数存在0值。如果翻来覆去变形无法弄到两端相等,那么还是别用罗尔定理了,两端相等,证明0值是采用罗尔定理的明显特征。 拉格朗日定理是两个端点相减,所以一般用它来证明一个函数的不等式: 122()()-()1()m x f x f x m x <<; 一般中间都是两个相同函数的减法,因为这样便于 直接应用拉格朗日,而且根据拉格朗日的定义,一般区间就是12[,]x x 。 5、洛必达法则应用注意 正常求极限是不允许使用洛必达法则的,洛必达法则必须应用在正常求不出来的不定式极限中。不定式极限有如下7种: 000,,0*,,0,1,0∞∞∞∞-∞∞∞ 每次调用洛必达方法求解极限都必须遵从上述守则。 6、泰勒公式求极限。 如果极限是0 lim ()x x f x → 那么就在0 x 附近展开。如果极限是 lim ()x f x →∞ ,

第二章 导数与微分习题汇总

第二章 导数与微分 【内容提要】 1.导数的概念 设函数y =f (x )在x 0的某邻域(x 0-δ,x 0 + δ)(δ>0)内有定义,当自变量x 在点x 0处有改变量Δx 时,相应地,函数有改变量00()()y f x x f x ?=+?-.若0→?x 时,极限x y x ??→?0lim 存在,则称函数y =f (x )在x =x 0处可导,称此极限值为f(x)在点x 0 处的导数, 记为 )(0x f '或)(0x y '或0|x x y ='或 0|d d x x x y =或0|d d x x x f = +→?0x 时,改变量比值的极限x y x ??+ →?0 lim 称f(x)在x 0处的右导数,记为)(0x f +'。 -→?0x 时,改变量比值的极限x y x ??- →?0 lim 称f(x)在x 0处的左导数,记为)(0x f -'。 2.导数的意义 导数的几何意义:)(0x f '是曲线y =f (x )在点(x 0,y 0)处切线的斜率,导数的几何意义给我们提供了直观的几何背景,是微分学的几何应用的基础。 导数的物理意义:路程对时间的导数)(0t s '是瞬时速度v (t 0) 。以此类推,速度对时间的导数)(0t v '是瞬时加速度a (t 0)。 3.可导与连续的关系 定理 若函数)(x f y =在点x 0处可导,则函数在点x 0处一定连续。 此定理的逆命题不成立,即连续未必可导。 4.导数的运算 定理1(代数和求导法则)若u (x )和v (x )都在点x 处可导,则 v u v u '±'='±)( 定理2(积的求导法则)若u (x )和v (x )都在点x 处可导,则 v u v u uv '+'=')( 定理3(商的求导法则)若u (x )和v (x )都在点x 处可导,且v (x )≠0,则 2v v u v u v u ' -'= ' ?? ? ??

第2章导数与微分总结

1、极限的实质是:动而不达 导数的实质是:一个有规律商的极限。规律就是: 2、导数的多种变式定义: lim 丄一x) f °)是描述趋近任意 x 时的斜率。而 x 0 3、I 若x 没趋近到x0,那么除法得到的值是这段的平均斜率, 如果趋近到了 x0,得到 的就是这点的斜率一一导数。 4、可导与连续的关系: 1基础总结 lim -= lim x 0 x x 0 f(x X)f(x) x lim x x o f(x ) f (x o ) X o 叫 号严可以刻画趋近具体 x0 时的斜率。 li m o 要注意细心观察发现,

导数的实质是定义在某点的左右极限。 既然定义在了某点上,该点自然存在,而 且还得等于左右极限。因此,可导一定是连续的。反之,如果连续,不一定可导。 不多说。同理,如果不连续,肯定某点要么无定义,要么定义点跳跃跑了,肯定 极限有可能存在,但是导数绝不会存在。 同理要注意左右导数的问题。如果存在左或者右导数,那么在左侧该点一定是存 在的。如: f(x) x,x 0 这个函数,在0点就不存在左导数,只存在右导数。为什么嫩?看定义: 万不要以为导数是一种简单的极限,极限是可以在某点无定义的,而导数却是该 点必须存在! 由此引发了一些容易误判的血案: 例如: A 旦主^謎I C m F 左电鼓 pg 总生戟乞 f ( x) f (x) -中的f(x))至u 底是神马。比如求上图 lim f(x x) f(x) x 0 x lim f(X X)f(0) 。 x 0 定义里面需要用到f(0)啊!因此,千 中 iim f (x )论) x 1 x x 0 ,这个f(x0)千万要等于2/3,而不是1 ! 定义解决时候一定要注意问。 X X o

(完整版)第二章.导数和微分答案解析

第二章 导数与微分 一 导数 (一) 导数的概念(见§2.1) Ⅰ 内容要求 (ⅰ)理解导数的概念及其几何意义,了解函数的可导性与连续性之间的关系。 (ⅱ)了解导数作为函数变化率的实际意义,会用导数表达科学技术中一些量的变化率。 Ⅱ 基本题型 (ⅰ)用导数定义推证简单初等函数的导数公式 1. 用导数定义求证下列导数公式,并记忆下列公式(每题4分) (1)0)(='C (2)21 )1(x x - =' (3)x x 21)(=' (4)x x sin )(cos -=' (5)a a a x x ln )(=' (6)1 )(-='μμμx x (ⅱ)确定简单基本初等函数在某点处的切线方程和法线方程 2.(6分)求x y ln =在)0,1(点处的切线方程及法线方程。 解:x y 1' = ,1)1(' ==k y ,所以 切线方程为1-=x y 法线方程为1+-=x y 3.(6分)求x x y = 在)1,1(点处的切线方程。 解:4 3 x y =,41 ' 43-=x y ,4 3)1(' ==k y 切线方程为1)1(43+-= x y ,即4 143+=x y (ⅲ)科技中一些量变化率的导数表示 4.填空题(每题4分) (1)若物体的温度T 与时间t 的函数关系为)(t T T =,则该物体的温度随时间的变化 速度为 )(' t T (2)若某地区t 时刻的人口数为)(t N ,则该地区人口变化速度为 )(' t N Ⅲ 疑难题型 (ⅰ)分段函数在分段点处的导数计算 5. 讨论下列函数在0=x 处的连续性与可导性 (1)(7分)|sin |x y =

导数、微分及其应用

第二讲导数、微分及其应用 一、理论要求 1.导数与微分导数与微分的概念、几何意义、物理意义 会求导(基本公式、四则、复合、高阶、隐、反、参数方程求导) 会求平面曲线的切线与法线方程 2.微分中值定理理解Roll、Lagrange、Cauchy、Taylor定理 会用定理证明相关问题 3.应用会用导数求单调性与极最值、凹凸性、渐进线问题,能画简图 会计算曲率(半径) 二、题型与解法 A.导数微分的计算基本公式、四则、复合、高阶、隐函数、参数方程求导 1.决定,求 2.决定,求 解:两边微分得x=0时,将x=0代入等式得y=1 3.决定,则 B.曲线切法线问题5.f(x)为周期为5的连续函数,它在x=1可导,在x=0的某邻域内满足 f(1+sinx)-3f(1-sinx)=8x+o(x)。求f(x)在(6,f(6))处的切线方程。 解:需求,等式取x->0的极限有:f(1)=0

C.导数应用问题 6.已知, ,求点的性质。 解:令,故为极小值点。 7.,求单调区间与极值、凹凸区间与拐点、渐进线。 解:定义域 8.求函数的单调性与极值、渐进线。 解:, D.幂级数展开问 10.求 题 解: =

E.不等式的证明 11.设, 证:1)令 2)令 F.中值定理问题 12.设函数具有三阶连续导数,且, ,求证:在(-1,1)上存在一点 证: 其中 将x=1,x=-1代入有 两式相减:

13.,求证: 证: 令 令 (关键:构造函数)三、补充习题(作业) 1. 2.曲线 3. 4.证明x>0时, 证:令

(注:本资料素材和资料部分来自网络,仅供参考。请预览后才下载,期待您的好评与关注!)

高等数学第2章 导数与微分

第二章 导数与微分 教学目的: 1、理解导数和微分的概念与微分的关系和导数的几何意义,会求平面曲线的切线方程和法线方程,了解导数的物理意义,会用导数描述一些物理量,理解函数的可导性与连续性之间的的关系。 2、熟练掌握导数的四则运算法则和复合函数的求导法则,熟练掌握基本初等函数的导数公式,了解微分的四则运算法则和一阶微分形式的不变性,会求函数的微分。 3、 了解高阶导数的概念,会求某些简单函数的n 阶导数。 4、 会求分段函数的导数。 5、 会求隐函数和由参数方程确定的函数的一阶、二阶导数,会求反函数的导数。 教学重点: 1、导数和微分的概念与微分的关系; 2、导数的四则运算法则和复合函数的求导法则; 3、基本初等函数的导数公式; 4、高阶导数; 6、 隐函数和由参数方程确定的函数的导数。 教学难点: 1、复合函数的求导法则; 2、分段函数的导数; 3、反函数的导数 4、隐函数和由参数方程确定的导数。 §2. 1 导数概念 一、引例 1.直线运动的速度 设一质点在坐标轴上作非匀速运动, 时刻t 质点的坐标为s , s 是t 的函数: s =f (t ), 求动点在时刻t 0的速度. 考虑比值 000) ()(t t t f t f t t s s --=--, 这个比值可认为是动点在时间间隔t -t 0内的平均速度. 如果时间间隔选较短, 这个比值在实践 中也可用来说明动点在时刻t 0的速度. 但这样做是不精确的, 更确地应当这样: 令t -t 0→0, 取

比值 0) ()(t t t f t f --的极限, 如果这个极限存在, 设为v , 即 0) ()(lim t t t f t f v t t --=→, 这时就把这个极限值v 称为动点在时刻t 0的速度. 2.切线问题 设有曲线C 及C 上的一点M , 在点M 外另取C 上一点N , 作割线MN . 当点N 沿曲线C 趋于点M 时, 如果割线MN绕点M旋转而趋于极限位置MT , 直线MT就称为曲线C有点M处的切线. 设曲线C 就是函数y =f (x )的图形. 现在要确定曲线在点M (x 0, y 0)(y 0=f (x 0))处的切线, 只要定出切线的斜率就行了. 为此, 在点M 外另取C 上一点N (x , y ), 于是割线MN 的斜率为 0 000) ()(tan x x x f x f x x y y --= --= ?, 其中?为割线MN 的倾角. 当点N 沿曲线C 趋于点M 时, x →x 0. 如果当x → 0时, 上式的极限存 在, 设为k , 即 00) ()(lim 0x x x f x f k x x --=→ 存在, 则此极限k 是割线斜率的极限, 也就是切线的斜率. 这里k =tan α, 其中α是切线MT 的 倾角. 于是, 通过点M (x 0, f (x 0))且以k 为斜率的直线MT 便是曲线C 在点M 处的切线. 二、导数的定义 1. 函数在一点处的导数与导函数 从上面所讨论的两个问题看出, 非匀速直线运动的速度和切线的斜率都归结为如下的极限: 00) ()(lim 0x x x f x f x x --→. 令?x =x -x 0, 则?y =f (x 0+?x )-f (x 0)= f (x )-f (x 0), x →x 0相当于?x →0, 于是0 0) ()(lim 0 x x x f x f x x --→ 成为 x y x ??→?0lim 或x x f x x f x ?-?+→?)()(lim 000. 定义 设函数y =f (x )在点x 0的某个邻域内有定义, 当自变量x 在x 0处取得增量?x (点x 0+?x 仍在该邻域内)时, 相应地函数y 取得增量?y =f (x 0+?x )-f (x 0); 如果?y 与?x 之比当?x →0时的极限存在, 则称函数y =f (x )在点x 0处可导, 并称这个极限为函数y =f (x )在点x 0处的导数, 记为0|x x y =', 即 x x f x x f x y x f x x ?-?+=??='→?→?)()(lim lim )(00000,

微积分知识点归纳

知识点归纳 1. 求极限 2.1函数极限的性质P35 唯一性、局部有界性、保号性 P34 A x f x x =→)(lim 0 的充分必要条件是 :A x f x f x f x f x x x x == +==-+-→→)()0()()0(lim lim 0 000 2.2 利用无穷小的性质P37: 定理1有限个无穷小的代数和仍是无穷小。 0)sin 2(30 lim =+→x x x 定理2有界函数与无穷小的乘积是无穷小。 0)1 sin (20 lim =→x x x 定理3无穷大的倒数是无穷小。反之,无穷小的倒数是无穷大。 例如:lim ∞→x 12132335-++-x x x x ∞= , lim ∞→x 131 23523+--+x x x x 0= 2.3利用极限运算法则P41 2.4利用复合函数的极限运算法则P45 2.4利用极限存在准则与两个重要极限P47 夹逼准则与单调有界准则,

lim 0→x x x tan 1=,lim 0→x x x arctan 1=,lim 0→x x x arcsin 1=, lim )(∞→x ?)())(11(x x ??+e =,lim 0 )(→x ?) (1 ))(1(x x ??+e = 2.6利用等价无穷小P55 当0→x 时, x x ~sin ,x x ~tan , x x ~arcsin ,x x ~arctan ,x x ~)1ln(+, x e x ~,221 ~cos 1x x -,x x αα++1~)1(,≠α0 为常数 2.7利用连续函数的算术运算性质及初等函数的连续性P64 如何求幂指函数)()(x v x u 的极限?P66 )(ln )()()(x u x v x v e x u =,)(ln )()(lim )(lim x u x v x v a x a x e x u →=→ 2.8洛必达法则P120 lim a x →)() (x g x f )() (lim x g x f a x ''=→ 基本未定式:00,∞∞ , 其它未定式 ∞?0,∞-∞,00,∞1,0∞(后三个皆为幂指函数) 2. 求导数的方法 2.1导数的定义P77: lim 00|)(→?==='='x x x dx dy x f y x x f x x f x y x ?-?+ =??→?) ()(000lim h x f h x f h ) ()(000lim -+=→

高数第二章导数与微分知识点与习题

高数第二章导数与微分知识点总结 第一节 导数 1.基本概念 (1)定义 0000000000 ()()()()()|(|)'()lim lim lim x x x x x x x f x x f x f x f x dy df x y f x dx dx x x x x ==?→?→→+?--?====??-或 注:可导必连续,连续不一定可导. 注:分段函数分界点处的导数一定要用导数的定义求. (2)左、右导数 0'00000 0()()()()()lim lim x x x f x x f x f x f x f x x x x - --?→→+?--==?-. 0 '00000 0()()()()()lim lim x x x f x x f x f x f x f x x x x + ++?→→+?--==?-. 0'()f x 存在''00()()f x f x -+?=. (3)导数的几何应用 曲线()y f x =在点00(,())x f x 处的切线方程:000()'()()y f x f x x x -=-. 法线方程:0001 ()()'() y f x x x f x -=- -. 2.基本公式 (1)'0C = (2)' 1 ()a a x ax -= (3)()'ln x x a a a =(特例()'x x e e =)(4)1 (log )'(0,1)ln a x a a x a = >≠

(5)(sin )'cos x x = (6)(cos )'sin x x =- (7)2(tan )'sec x x = (8)2 (cot )'csc x x =- (9)(sec )'sec tan x x x = (10)(csc )'csc cot x x x =- (11)2 1(arcsin )'1x x = - (12)2 1(arccos )'1x x =- - (13)21(arctan )'1x x = + (14)2 1 (arccot )'1x x =-+ (15222 2 1[ln()]'x x a x a + += + 3.函数的求导法则 (1)四则运算的求导法则 ()'''u v u v ±=± ()'''uv u v uv =+ 2 '' ()'u u v uv v v -= (2)复合函数求导法则--链式法则 设(),()y f u u x ?==,则(())y f x ?=的导数为:[(())]''(())'()f x f x x ???=. 例5 求函数2 1 sin x y e =的导数. (3)反函数的求导法则 设()y f x =的反函数为()x g y =,两者均可导,且'()0f x ≠,则 11 '()'()'(()) g y f x f g y = =. (4)隐函数求导 设函数()y f x =由方程(,)0F x y =所确定,求'y 的方法有两种:直接求导法和公式法' ''x y F y F =-. (5)对数求导法:适用于若干因子连乘及幂指函数 4.高阶导数

2第二章 导数与微分答案

第二章 导数与微分答案 第一节 导数概念 1.填空题. (1) ()'f 0= 0; (2) (2, 4) (3) 1 . (4) =a 2 ,=b -1 . 2.选择题. (1)B ; (2)B ; (3) C ; (4)D ; (5) B ; (6)B 3.解 令)(t v 表示在t 时刻的瞬时速度,由速度与位移的关系知 ()().5)21(lim 2 ) 22(lim 22lim )2()2(22222' =++=-+-+=--==→→→t t t t t s t s s v t t t 4.设()? x 在x a =处连续,()()()f x x a x =-?, 求()'f a ;若)(||)(x a x x g ?-=,()x g 在x a =处可导吗? 解(1)因为()? x 在x a =处连续, 故)()(lim a x a x ??=→,所以 ()()()).()(lim 0 )(lim lim )('a x a x x a x a x a f x f a f a x a x a x ???==---=--=→→→ (2)类似于上面推导知 ()()()),(0 )(lim lim )(' a a x x a x a x a g x g a g a x a x ??=---=--=++ →→+ ()()()).(0)(lim lim )(' a a x x a x a x a g x g a g a x a x ??-=----=--=--→→- 可见当()0=a ?时,()0)(' ==a a g ?;当()0≠a ?时,())(' ' a g a g -+≠, 故这时()x g 在x a =处不可导。 5.求曲线y x =-43在点()12,-处的切线方程和法线方程. 解 根据导数的几何意义知道,所求切线的斜率为 ,4|4|131'1=====x x x y k 从而所求切线方程为 ),1(4)2(-=--x y 即 64-=x y .

导数与微分练习题答案

高等数学练习题 第二章 导数与微分 第一节 导数概念 一.填空题 1.若)(0x f '存在,则x x f x x f x ?-?-→?) ()(lim 000 = )(0x f '- 2. 若)(0x f '存在,h h x f h x f h ) ()(lim 000 --+→= )(20x f ' . 000 (3)() lim x f x x f x x ?→+?-?=03()f x '. 3.设20-=')(x f , 则=--→)()2(lim )000 x f x x f x x 4 1 4.已知物体的运动规律为2 t t s +=(米),则物体在2=t 秒时的瞬时速度为5(米/秒) 5.曲线x y cos =上点( 3π,2 1 )处的切线方程为03 123=- -+π y x ,法线方程为 03 22332=-+ -π y x 6.用箭头?或?表示在一点处函数极限存在、连续、可导、可微之间的关系, 可微 ? 可导 <≠ ? | 连续 <≠ ? 极限存在。 二、选择题 1.设0)0(=f ,且)0(f '存在,则x x f x ) (lim 0→= [ B ] (A ))(x f ' ( B) )0(f ' (C) )0(f (D) 2 1 )0(f 2. 设)(x f 在x 处可导,a ,b 为常数,则x x b x f x a x f x ??--?+→?) ()(lim 0 = [ B ] (A ))(x f ' ( B) )()(x f b a '+ (C) )()(x f b a '- (D) 2 b a +)(x f ' 3. 函数在点0x 处连续是在该点0x 处可导的条件 [ B ] (A )充分但不是必要 (B )必要但不是充分 (C )充分必要 (D )即非充分也非必要 4.设曲线22 -+=x x y 在点M 处的切线斜率为3,则点M 的坐标为 [ B ] (A )(0,1) ( B) (1, 0) (C) ( 0,0) (D) (1,1)

导数与微分重点知识归纳

导数的概念 例:设一质点沿x轴运动时,其位置x是时间t的函数,,求质点在t0的瞬时速 度? 我们知道时间从t0有增量△t时,质点的位置有增量 这就是质点在时间段△t的位移。因此,在此段时间内质点的平均速度为: 若质点是匀速运动的则这就是在t0的瞬时速度,若质点是非匀速直线运动,则这还不是质点在t0时的瞬时速度。 我们认为当时间段△t无限地接近于0时,此平均速度会无限地接近于质点t0时的瞬时速度, 即:质点在t0时的瞬时速度= 为此就产生了导数的定义,如下 导数的定义 设函数在点x0的某一邻域内有定义,当自变量x在x0处有增量△x(x+△x也在该邻域内)时,相应地 函数有增量 , 若△y与△x之比当△x→0时极限存在,则称这个极限值为在x0处的导数。 记为:还可记为:, 函数在点x0处存在导数简称函数在点x0处可导,否则不可导。 若函数在区间(a,b)内每一点都可导,就称函数在区间(a,b)内可导。这时函数 对于区 间(a,b)内的每一个确定的x值,都对应着一个确定的导数,这就构成一个新的函数, 我们就称这个函数为原来函数的导函数。 注:导数也就是差商的极限左、右导数 前面我们有了左、右极限的概念,导数是差商的极限,因此我们可以给出左、右导数的

概念。 若极限存在,我们就称它为函数在x=x0处的左导数。 若极限存在,我们就称它为函数在x=x0处的右导数。 注:函数在x0处的左右导数存在且相等是函数在x0处的可导的充分必要条件 函数的和差求导法则 法则:两个可导函数的和(差)的导数等于这两个函数的导数的和(差). 用公式可写为:。其中u、v为可导函数。 常数与函数的积的求导法则 法则:在求一个常数与一个可导函数的乘积的导数时,常数因子可以提到求导记号外面去。用公式可写成: 函数的积的求导法则 法则:两个可导函数乘积的导数等于第一个因子的导数乘第二个因子,加上第一个因子乘第二个因子的导数。用公式可写成: 函数的商的求导法则 法则:两个可导函数之商的导数等于分子的导数与分母导数乘积减去分母导数与分子导数的乘积,在除以分母导数的平方。用公式可写成: 复合函数的求导法则 例题:求=? 解答:由于,故这个解答正确吗? 这个解答是错误的,正确的解答应该如下: 我们发生错误的原因是是对自变量x求导,而不是对2x求导。 下面我们给出复合函数的求导法则

高等数学考研大总结之四导数与微分

第四章 导数与微分 第一讲 导数 一,导数的定义: 1函数在某一点0x 处的导数:设()x f y = 在某个()δ,0x U 有定义,如果极限 ()()0 lim 00→??-?+x x x f x x f (其中()() x x f x x f ?-?+00称为函数()x f 在(0x ,0x +x ?)上的平均变化率(或差商)称此极限值为函数()x f 在0x 处的变化率)存在则称函数()x f 在0x 点可导.并称该极限值为()x f 在0x 点的导数记为()0/ x f ,若记()() 00,x f x f y x x x -=?-=?则()0/ x f =()()0 00lim x x x x x f x f →--=0lim →???x x y 解析:⑴导数的实质是两个无穷小的比。 即:函数相对于自变量变化快慢的程度,其绝对值 越大,则函数在该点附近变化的速度越快。 ⑵导数就是平均变化率(或差商)的极限,常用记法: ()0/ x f ,0/x x y =,0x x dx dy =。 ⑶函数()x f 在某一点0x 处的导数是研究函数()x f 在点0x 处函数的性质。 ⑷导数定义给出了求函数()x f 在点0x 处的导数的具体方法,即:①对于点0x 处的自变量增量x ?,求出函数的增量(差分)y ?=()()00x f x x f -?+②求函数增量y ?与自变量 增量x ?之比x y ??③求极限0 lim →???x x y 若存在,则极限值就是函数()x f 在点0x 处的导数,若极 限不存在,则称函数()x f 在0x 处不可导。 ⑸在求极限的过程中, 0x 是常数, x ?是变量, 求出的极限值一般依赖于0x ⑹导数是由极限定义的但两者仍有不同,我们称当极限值为∞时通常叫做极限不存在,而导数则不同,因其具有实在的几何意义,故当在某点处左,右导数存在且为同一个广义实数值时我们称函数在某点可导。实质是给导数的定义做了一个推广。 ⑺注意: 若函数()x f 在点0x 处无定义,则函数在0x 点处必无导数,但若函数在点0 x 处有定义,则函数在点0x 处未必可导。 2 单侧导数:设函数()x f 在某个(]00,x x δ-(或[)δ+00,x x )有定义,并且极限

(完整版)第二章导数与微分(答案)

x 第二章导数与微分 (一) f X 0 X f X 0 I x 0 X 3 .函数f x 在点x 0连续,是f x 在点x 0可导的(A ) 5. 若函数f x 在点a 连续,则f x 在点a ( D ) C . a 6. f x x 2 在点X 2处的导数是(D ) A . 1 B . 0 C . -1 D .不存在 7.曲线y 2x 3 5x 2 4x 5在点2, 1处切线斜率等于(A ) A . 8 B . 12 C . -6 D . 6 8.设y e f x 且fx 二阶可导,则y ( D ) A . e f x B f X r e f f X £ £ f X 丄 2 x C . e f x f x D . e f x 9.若 f x ax e , x 0 在x 0处可导,则a , b 的值应为 b sin2x, (A ) A .左导数存在; B .右导数存在; C .左右导数都存在 1 .设函数y f x ,当自变量x 由x 0改变到 X o x 时,相应函数的改变量 f x 0 x B . f x 0 x C . f x 0 X f X 0 f X 。 x 2 .设f x 在x o 处可,则lim f X 0 B . X o C . f X 0 D . 2 f X 0 A .必要不充分条件 B . 充分不必要条件 C .充分必要条件 既不充分也不必要条件 4.设函数y f u 是可导的,且u x 2 ,则 d y ( C ) x 2 B . xf x 2 C . 2 2 2xf x D . x f x D .有定义

10?若函数f x 在点X o 处有导数,而函数 g x 在点X o 处没有导数,则 F x f x g x , G x f x g x 在 x 0 处(A ) A ?一定都没有导数 B ?—定都有导数 C .恰有一个有导数 D ?至少一个有导数 11.函数fx 与g x 在x 0处都没有导数,则Fx g x 在 x o 处(D ) 13 . y arctg 1 ,贝U y x A .一定都没有导数 B . 一定都有导数 C .至少一个有导数 D .至多一个有导数 12.已知F x f g x ,在 X X 。处可导,则(A ) g x 都必须可导 B . f x 必须可导 C . g x 必须可导 D . x 都不一定可导

第二章导数与微分 高等数学同济大学第六版

第二章 导数与微分 数学中研究导数、微分及其应用的部分称为微分学,研究不定积分、定积分及其应用的部分称为积分学. 微分学与积分学统称为微积分学. 微积分学是高等数学最基本、最重要的组成部分,是现代数学许多分支的基础,是人类认识客观世界、探索宇宙奥秘乃至人类自身的典型数学模型之一. 恩格斯(1820-1895)曾指出:“在一切理论成就中,未必再有什么像17世纪下半叶微积分的发明那样被看作人类精神的最高胜利了”. 微积分的发展历史曲折跌宕,撼人心灵,是培养人们正确世界观、科学方法论和对人们进行文化熏陶的极好素材(本部分内容详见光盘). 积分的雏形可追溯到古希腊和我国魏晋时期,但微分概念直至16世纪才应运萌生. 本章及下一章将介绍一元函数微分学及其应用的内容. 第一节 导数概念 从15世纪初文艺复兴时期起,欧洲的工业、农业、航海事业与商贾贸易得到大规模的发展,形成了一个新的经济时代. 而十六世纪的欧洲,正处在资本主义萌芽时期,生产力得到了很大的发展. 生产实践的发展对自然科学提出了新的课题,迫切要求力学、天文学等基础科学的发展,而这些学科都是深刻依赖于数学的,因而也推动了数学的发展. 在各类学科对数学提出的种种要求中,下列三类问题导致了微分学的产生: (1) 求变速运动的瞬时速度; (2) 求曲线上一点处的切线; (3) 求最大值和最小值. 这三类实际问题的现实原型在数学上都可归结为函数相对于自变量变化而变化的快慢程度,即所谓函数的变化率问题. 牛顿从第一个问题出发,莱布尼茨从第二个问题出发,分别给出了导数的概念. 本节主要内容 1 引例变速直线运动的瞬时速度和平面曲线的切线 2 导数的定义 3 左右导数 4 用导数计算导数 5 导数的几何意义 6 函数的可导与连续的关系 讲解提纲: 一、 引例: 引例1:变速直线运动的瞬时速度0 00 ()()lim t t f t f t v t t →-=-;

导数与微分知识点

第二章 导数与微分 一、导数 1.导数的定义: 由“变速直线运动的瞬时速度”、“平面曲线的切线斜率”引出 设函数()x f y =在点0x 的某领域内有定义,自变量x 在0x 处有增量x ?,相应地函数增量()()00x f x x f y -?+=?。如果极限 ()()x x f x x f x y x x ?-?+=??→?→?0000lim lim 存在,则称此极限值为函数()x f 在0x 处的导数(也称微商),记作()0x f ',或0 x x y =' , 0x x dx dy =,()0 x x dx x df =等,并称函数()x f y =在点0x 处可导。如果上面的极限不存在, 则称函数()x f y =在点0x 处不可导。 注:函数()x f 在0x 处的导数,就是导函数f ’(x)在点在0x 处的函数值,即()0x f '=f ’(x)|x=x0。 多数情况下用求导法则,有时用定义求导更方便。如题中函有f(x),而不是具体的方程时。 2、单侧导数 右导数:()()()()() x x f x x f x x x f x f x f x x x ?-?+=--='++ →?→+000000lim lim 0 左导数:()()()()()x x f x x f x x x f x f x f x x x ?-?+=--='-- →?→-000000lim lim 0 则有 ()x f 在点0x 处可导()x f ?在点0x 处左、右导数皆存在且相等。 3、导数的几何意义 如果函数()x f y =在点0x 处导数()0x f '存在,则在几何上()0x f '表示曲线 ()x f y =在点()()00,x f x 处的切线的斜率,即:()0x f '=K=tan a 。 切线方程:()()()000x x x f x f y -'=- 法线方程:()() ()()()01 0000≠'-'- =-x f x x x f x f y 注:切线与法线垂直,切线的斜率与法线的斜率乘积为负1,即:K 切 * K 法 = -1。 设物体作直线运动时路程S 与时间t 的函数关系为()t f S =,如果()0t f '存在,则

导数与微分总结

arccos求导 1基础总结 1、极限的实质是:动而不达 导数的实质是:一个有规律商的极限。规律就是: 2、导数的多种变式定义: 要注意细心观察发现,是描述趋近任意x时的斜率。而可以刻画趋近具体x0时的斜率。 3、 若x没趋近到x0,那么除法得到的值是这段的平均斜率,如果趋近到了x0,得到的就是这点的斜率----导数。 4、可导与连续的关系: 导数的实质是定义在某点的左右极限。既然定义在了某点上,该点自然存在,而且还得等于左右极限。因此,可导一定是连续的。反之,如果连续,不一定可导。不多说。同理,如果不连续,肯定某点要么无定义,要么定义点跳跃跑了,肯定极限有可能存在,但是导数绝不会存在。 同理要注意左右导数的问题。如果存在左或者右导数,那么在左侧该点一定是存在的。如: 这个函数,在0点就不存在左导数,只存在右导数。为什么嫩?看定义: 。定义里面需要用到f(0)啊!因此,千万不要以为导数是一种简单的极限,极限是可以在某点无定义的,而导数却是该点必须存在! 由此引发了一些容易误判的血案: 例如: 定义解决时候一定要注意中的到底是神马。比如求上图中,这个f(x0)千万要等于2/3,而不是1! 由此也可以知道,这个函数是不存在导数的,也不存在左导数,只存在右导数。

5、反函数的导数与原函数的关系: 有这样一条有趣的关系:函数的导数=对应的反函数的导数的倒数。 注意,求反函数时候不要换元。因为换了元虽然对自身来讲函数形式不变,但是与原函数融合运算时候就算是换了一个不是自己反函数的一个函数进行运算。结果显然是错误的。举例子: 求的导数。显然反函数(不要换元)是。反函数的导数是。反函数导数的倒数是,因此, 再如,求的导数。 解:令函数为,则其反函数为,导数的倒数为。但是必须消去。因此变形得 (注意到在定义域内cosy恒为正,因此舍掉负解) 6、复合函数求导法则: 只要父函数和子函数随时能有定义,就拆着求就可以了。 7、高阶导数: 如果f(x)在点x处具有n阶导数,那么f(x)在点x的某一邻域内必定具有一切低于n阶的导数。 ; ;其余的也记不住,自己慢慢推导。 ; 二项式定理中有:;类似的,乘法的n阶导数也有: 。这个是要熟练记忆的。 8、隐函数,参数方程的导数,相关变化率 建议隐函数,参数方程的导数,以及求导数的相关变化率时使用形式求解。只有这样才能准确,安全,方便。 举例:求(隐函数f(x,y)=0)中y对x的导数 解:两边求导,,解完以后发现效果还不错。如果直接用什么y’神马的净是错误,所以不要直接用口算,用dy/dx方法求解。

微积分知识点小结

第一章 函数 一、本章提要 基本概念 函数,定义域,单调性,奇偶性,有界性,周期性,分段函数,反函数,复合函数,基本初等函数,初等函数 第二章 极限与连续 一、本章提要 1.基本概念 函数的极限,左极限,右极限,数列的极限,无穷小量,无穷大量,等价无穷小,在 一点连续,连续函数,间断点,第一类间断点(可去间断点,跳跃间断点),第二类间断点. 2.基本公式 (1) 1sin lim =→口 口口, (2) e ) 11(lim 0 =+ →口 口口 (口代表同一变量). 3.基本方法 ⑴ 利用函数的连续性求极限; ⑵ 利用四则运算法则求极限; ⑶ 利用两个重要极限求极限; ⑷ 利用无穷小替换定理求极限; ⑸ 利用分子、分母消去共同的非零公因子求 0形式的极限; ⑹ 利用分子,分母同除以自变量的最高次幂求∞ ∞形式的极限; ⑺ 利用连续函数的函数符号与极限符号可交换次序的特性求极限; ⑻ 利用“无穷小与有界函数之积仍为无穷小量”求极限. 4.定理 左右极限与极限的关系,单调有界原理,夹逼准则,极限的惟一性,极限的保号性, 极限的四则运算法则,极限与无穷小的关系,无穷小的运算性质,无穷小的替换定理,无穷小与无穷大的关系,初等函数的连续性,闭区间上连续函数的性质. 第三章 导数与微分 一、本章提要 1. 基本概念

瞬时速度,切线,导数,变化率,加速度,高阶导数,线性主部,微分. 2.基本公式 基本导数表,求导法则,微分公式,微分法则,微分近似公式. 3.基本方法 ⑴利用导数定义求导数; ⑵利用导数公式与求导法则求导数; ⑶利用复合函数求导法则求导数; ⑷隐含数微分法; ⑸参数方程微分法; ⑹对数求导法; ⑺利用微分运算法则求微分或导数. 第四章微分学的应用 一、本章提要 1. 基本概念 未定型,极值点,驻点,尖点,可能极值点,极值,最值,曲率,上凹,下凹,拐点,渐近线,水平渐近线,铅直渐近线. 2.基本方法 ⑴用洛必达法则求未定型的极限; ⑵函数单调性的判定; ⑶单调区间的求法; ⑷可能极值点的求法与极大值(或极小值)的求法; ⑸连续函数在闭区间上的最大值及最小值的求法; ⑹求实际问题的最大(或最小)值的方法; ⑺曲线的凹向及拐点的求法; ⑻曲线的渐近线的求法; ⑼一元函数图像的描绘方法. 3. 定理 柯西中值定理,拉格朗日中值定理,罗尔中值定理, 洛必达法则,函数单调性的判定定理,极值的必要条件,极值的第一充分条件,极值的第二充分条件,曲线凹向的判别法则. 第五章不定积分 一、本章提要 1. 基本概念 原函数,不定积分. 2.基本公式

第2章 导数与微分总结

1基础总结 1、极限的实质是:动而不达 导数的实质是:一个有规律商的极限。规律就是:0lim x y x ?→?? 2、导数的多种变式定义: 00000()()()() lim =lim lim x x x x f x f x y f x x f x x x x x ?→?→→-?+?-=??- 要注意细心观察发现,0 ()() lim x f x x f x x ?→+?-?是描述趋近任意x 时的斜率。而 00 ()() lim x x f x f x x x →--可以刻画趋近具体x0时的斜率。 3、 若x 没趋近到x0,那么除法得到的值是这段的平均斜率,如果趋近到了x0,得到的就是这点的斜率——导数。 4、可导与连续的关系:

导数的实质是定义在某点的左右极限。既然定义在了某点上,该点自然存在,而且还得等于左右极限。因此,可导一定是连续的。反之,如果连续,不一定可导。不多说。同理,如果不连续,肯定某点要么无定义,要么定义点跳跃跑了,肯定极限有可能存在,但是导数绝不会存在。 同理要注意左右导数的问题。如果存在左或者右导数,那么在左侧该点一定是存在的。如: (),0f x x x =< 这个函数,在0点就不存在左导数,只存在右导数。为什么嫩?看定义: 0()()()(0) lim lim x x f x x f x f x x f x x ?→?→+?-+?-=??。定义里面需要用到f(0)啊!因此,千万不要以为导数是一种简单的极限,极限是可以在某点无定义的,而导数却是该点必须存在! 由此引发了一些容易误判的血案: 例如: 定义解决时候一定要注意0 00 ()() lim x x f x f x x x →--中的0()f x 到底是神马。比如求上图 中01 ()() lim x f x f x x x + →-- ,这个f(x0)千万要等于2/3,而不是1!

导数与微分单元归纳

学科:数学 教学内容:导数与微分单元达纲检测 【知识结构】 【内容提要】 1.本章主要内容是导数与微分的概念,求导数与求微分的方法,以及导数的应用. 2.导数的概念. 函数y=f(x)的导数f ′(x),就是当△x →0时,函数的增量△y 与自变量△x 的比x y ??的极限,即 x x f x x f x y x f x x ?-?+=??=→?→?) ()(lim lim )('00 函数y=f(x)在点0x 处的导数的几何意义,就是曲线y=f(x)在点))(,(00x f x P 处的切线的斜率. 3.函数的微分

函数y=f(x)的微分,即dy=f ′(x)dx . 微分和导数的关系:微分是由导数来定义的,导数也可用函数的微分与自变量的微分的商来表示,即dx dy x f = )('. 函数值的增量△y 也可以用y 的微分近似表示,即△y ≈dy 或△y ≈f ′(x)dx 。 4.求导数的方法 (1)常用的导数公式 c ′=0(c 为常数); )()'(1 Q m mx x m m ∈=-; (sinx)′=cosx ; (cosx)′=-sinx ; x x e e =)'(, a a a x x ln )'(=; x x 1)'(ln = , e x a x a log 1)'(log =。 (2)两个函数四则运算的导数: (u ±v)′=u ′±v ′; (uv)′=u ′v+uv ′ )0(' ''2 ≠-= ?? ? ??v v uv v u v u 。 (3)复合函数的导数 设y=f(u),)(x u ?=, 则)(')(''''x u f u y y x u x ??=?=. 5.导数的应用

相关主题
文本预览
相关文档 最新文档