当前位置:文档之家› 核反应堆类型简介

核反应堆类型简介

核反应堆类型简介
核反应堆类型简介

核反应堆类型简介

核反应堆(Nuclear Reactor),又称原子反应堆或反应堆,是装配了核燃料以实现大规模可控制裂变链式反应的装置,是一种启动、控制并维持核裂变或核聚变链式反应的装置。在反应堆之中,核变的速率可以得到精确的控制,其能量能够以较慢的速度向外释放,供人们利用。核反应堆,是一种启动、控制并维持核裂变或核聚变链式反应的装置。相对于核武爆炸瞬间所发生的失控链式反应,在反应堆之中,核变的速率可以得到精确的控制,其能量能够以较慢的速度向外释放,供人们利用。

核反应堆分类有:

按时间分可以分为四代:

第一代核电站是早期的原型堆电站,即1950年至1960年前期开发的轻水堆核电站,如美国的希平港压水堆、德累斯顿沸水堆以及英国的镁诺克斯石墨气冷堆等。

第二代核电站是1960年后期到1990年前期在第一代核电站基础上开发建设的大型商用核电站,如、加拿大坎度堆、苏联的压水堆等。目前世界上的大多数核电站都属于第二代核电站。

第三代是指先进的轻水堆核电站,即1990年后期到2010年开始运行的核电站。第三代核电站采用标准化、最佳化设计和安全性更高的非能动安全系统,如先进的沸水堆、系统80+、AP600、欧洲压水堆等。

第四代是待开发的核电站,其目标是到2030年达到实用化的

程度,主要特征是经济性高(与天燃气火力发电站相当)、安全性好、废物产生量小,并能防止核扩散。

按用途分:动力核反应堆;研究核反应堆;生产核反应堆(快滋生反应器)。

按反应堆慢化剂和冷却剂分:

轻水堆(压水反应堆、沸水反应堆):轻水型反应堆使用相对分子质量为18的轻水作为慢化剂和冷却剂;

重水堆:重水堆可按结构分为压力容器式和压力管式两类。两者都使用重水做慢化剂,但前者只能用重水做冷却剂,后者却可用重水、轻水、气体等物质做冷却剂;

石墨气冷堆;石墨液冷堆。

按反应堆中中子的速度分:热中子堆;快中子堆。

核反应堆有许多用途,最重要的用途是产生热能,用以代替其他燃料,产生蒸汽发电或驱动航空母舰等设施运转。

按用途分:将中子束用于实验或利用中子束的核反应,包括研究堆、材料实验等;生产放射性同位素的核反应堆;生产核裂变物质的核反应堆,称为生产堆;提供取暖、海水淡化、化工等用的热量的核反应堆,比如多目的堆;为发电而发生热量的核反应,称为发电堆;用于推进船舶、飞机、火箭等到的核反应堆,称为推进堆。

如此多的反应堆种类,意味着很多的人才空缺,让我感觉到核电事业亟待人才的加入,我决心努力学习,将来为我国核电事业作出一番贡献。

第四代核反应堆系统简介

第四代核反应堆系统简介 绪言 第四代核反应堆系统(Gen IV)是当前正在被研究的一组理论上的核反应堆,其概念最先是在1999年6月召开的美国核学会年会上提出的。美国、法国、日本、英国等核电发达国家在2000年组建了Gen-IV国际论坛(GIF),并完成制定Gen IV研发目标计划。预期在2030年之前,这些设计方案一般不可能投入商业运行。核工业界普遍认同将,目前世界上在运行中的反应堆为第二代或第三代反应堆系统,以区别已于不久前退役的第一代反应堆系统。在八项技术指标上,第四代核能系统国际论坛已开始正式研究这些反应堆类型。这项计划主要目标是改善核能安全,加强防止核扩散问题,减少核燃料浪费和自然资源的利用,并降低建造和运行这些核电站的成本。并在2030年左右,向商业市场提供能够很好解决核能经济性、安全性、废物处理和防止核扩散问题的第四代核反应堆。 图1 从第一代到第四代核能系统的时间跨越 第一代核反应堆产生于上个世纪70 年代前,其主要目的是生产用于军事目的的铀;第二代核反应堆出现于70 年代,是目前大部分核电站使用的堆型,其目的是降低对石油国家的能源供应依赖;第三代核反应堆是在1979 年美国长岛和1986 年乌克兰切尔诺贝利核电站事故后出现的,主要是增加了安全性,但它并不能很好地解决核废料问题;第四代核反应堆则可以同时很好地解决安全和废料问题。对于第四代核能系统标准且可靠的经济评价,一个完整的核能模式显得十分重要。对于采用新型核能系统的第四代核电站的经济评估,人们需要采用新的评价手段,因为它们的特性大大不同于目前的第二代和第三代核电站。目前的经济模式不适合于比较不同的核技术或核电站,而是用于比较核能和化石能源。 第四代核反应堆的堆型 最初,人们设想过多种反应堆类型。但是经过筛选后,重点选定了几个技术上很有前途且最有可能符合Gen IV的初衷目标的反应堆。它们为几个热中子核反应堆和三种快中子反应

西安交大核反应堆热工分析复习详细

第一部分 名词解释 第二章 堆的热源及其分布 1、衰变热:对反应堆而言,衰变热是裂变产物和中子俘获产物的放射性衰变所产生的热量。 第三章 堆的传热过程 2、积分热导率:把u κ对温度t 的积分()dt t u ?κ作为一个整体看待,称之为积分热导率。 3、燃料元件的导热:指依靠热传导把燃料元件中由于核裂变产生的热量从温度较高的燃料芯块内部传递到温度较低的包壳外表面的这样一个过程。 4、换热过程:指燃料元件包壳外表面与冷却剂之间直接接触时的热交换,即热量由包壳的外表面传递给冷却剂的过程。 5、自然对流:指由流体内部密度梯度所引起的流体的运动,而密度梯度通常是由于流体本身的温度场所引起的。 6、大容积沸腾:指由浸没在(具有自由表面)(原来静止的)大容积液体内的受热面所产生的沸腾。 7、流动沸腾:也称为对流沸腾,通常是指流体流经加热通道时产生的沸腾。 8、沸腾曲线:壁面过热度(s w sat t t t -=?)和热流密度q 的关系曲线通常称为沸腾曲线。 9、ONB 点:即沸腾起始点,大容积沸腾中开始产生气泡的点。 10、CHF 点:即临界热流密度或烧毁热流密度,是热流密度上升达到最大的点。Critical heat flux 11、DNB 点:即偏离核态沸腾规律点,是在烧毁点附件表现为q 上升缓慢的核态沸腾的转折点H 。Departure from nuclear boiling 12、沸腾临界:特点是由于沸腾机理的变化引起的换热系数的陡增,导致受热面的温度骤升。达到沸腾临界时的热流密度称为临界热流密度。 13、快速烧毁:由于受热面上逸出的气泡数量太多,以至阻碍了液体的补充,于是在加热面上形成一个蒸汽隔热层,从而使传热性能恶化,加热面的温度骤升; 14、慢速烧毁:高含汽量下,当冷却剂的流型为环状流时,如果由于沸腾而产生过分强烈的汽化,液体层就会被破坏,从而导致沸腾临界。 15、过渡沸腾:是加热表面上任意位置随机存在的一种不稳定膜态沸腾和不稳定核态沸腾的结合,是一种中间传热方式,壁面温度高到不能维持稳定的核态沸腾,而又低得不足以维持稳定的膜态沸腾,传热率随温度而变化,其大小取决于该位置每种沸腾型式存在的时间份额。 16、膜态沸腾:指加热面上形成稳定的蒸汽膜层,q 随着t ?增加而增大。对流动沸腾来说,膜态沸腾又分为反环状流和弥散流。 17、“长大”:多发生在低于350°C 的环境下,它会使燃料芯块变形,表面粗糙化,强度降低,以至破坏。 18、“肿胀”:大于400℃时,由裂变气体氪和氙在晶格中形成小气泡引起的,随着燃耗的增加,气泡的压力增加,结果就是得金属铀块肿胀起来。肿胀是指材料因受辐照而发生体积增大的现象。 19、弥散体燃料:是用机械方法把燃料弥散在热导率高、高温稳定性好的基体金属中制成的材料。 20、输热过程:指当冷却剂流过堆芯时,将堆内裂变过程中所释放的热量带出堆外的过程。 21、易裂变核素:可以由任何能量的中子引起裂变的核素,如铀-235、铀-233、钚-239,只有铀-235是天然存在的,占0.714%;可裂变核素:能在快中子的轰击下引起裂变的核素,

反应堆材料辐照损伤概述

反应堆材料辐照损伤概述 【摘要】随着能源问题日益严峻,发展核电成为人类缓解能源紧缺问题的重要手段之一。当今核电站反应堆的技术已经比较成熟,但仍存在很多难以解决的技术问题。反应堆材料的辐照损伤问题直接关系到反应堆的安全性和经济性。本文对反应堆燃料芯块、包壳、压力容器的辐照损伤机理进行了概述,并提出一些减小辐照效应的措施。 【关键字】辐照损伤燃料芯块包壳压力容器材料 一、引言 随着能源问题日益严峻,发展核电成为人类缓解能源紧缺问题的重要手段之一。当今核电站反应堆的技术已经比较成熟,但仍存在很多难以解决的技术问题。其中,反应堆材料的辐照损伤问题尤为重要。材料的辐照损伤问题与反应堆的安全性和经济性有密切的关系。甚至直接关系到未来反应堆能否安全稳定运行。 关于反应堆的材料辐照损伤问题,主要包括三个方面:燃料芯块的辐照损伤,包壳的辐照损伤,压力容器的辐照损伤。深入认识和了解这三方面的问题,并讨论有关缓解措施具有极大地研究价值。 二、水冷堆燃料芯块的辐照损伤 1.燃料芯块的结构与辐照损伤 水冷堆燃料芯块为实心圆柱体,由低富集度UO2粉末经混合、压制、烧结、磨削等工序制成。为了减小轴向膨胀和PCI(芯块-包壳相互作用),芯块两端做成浅碟形并倒角。芯块制造工艺必须稳定,以保证成品芯块的化学成分、密度、尺寸、热稳定性及显微组织等满足要求。 燃料芯块中的铀在辐照过程中会发生肿胀,造成尺寸的不稳定性和导热性能的下降。随着燃耗的增加,铀的力学性能和物理性能将发生变化,铀将变得更硬、更脆,热导率减小,燃料包壳的腐蚀作用也在加剧。对燃料芯块辐照损伤的认识和研究,一方面有助于了解在役燃料元件的运行状态和使用寿命,及时地发现并解决问题;另一方面根据辐照特性,可以采取适当的措施增强燃料元件的性能,进一步提高核电的经济效益。 2.辐照条件下燃料芯块微观结构的演化 燃料芯块在辐照过程中,辐射与物质相互作用的方式可以分为原子过程和电子过程两大类。原子过程主要产生位移效应,位移效应的主要产物是间隙-空位对。而电子过程主要产生电离效应,其主要产物是电子-离子对。 燃料芯块在辐照过程中,将产生能量很高的裂变碎片,造成严重的辐照损伤,并伴有大量的原子重新分布,尤其是裂变产物中的氙和氪,产额高,又不溶于固体,在辐照缺陷的协同作用下形成气泡,造成肿胀。另外,固体裂变产物具有很强侵蚀作用,将使芯块发生应力腐蚀而开裂。 3.燃料芯块辐照损伤机理和宏观性能变化 (1)辐照肿胀 辐照会引起体膨胀,称辐照肿胀。燃料芯块中所使用的重要金属铀,其单晶体会显示出特殊的辐照生长现象。在辐照过程中,铀的晶体线度发生异常变化。引起燃料辐照肿胀的根本原因是裂变产物的积累。发生肿胀一方面是由于铀原子的固体裂变产物以金属、氧化物、盐类等形态与燃料相形成固溶体或作为夹杂物存在于燃料相中,裂变产物的总体积超过了裂变前裂变原子所占的体积(一般在2-3%),另一方面是由于在金属中形成了大量的裂变气泡

核反应堆热工分析课设

目录 一、设计任务 (1) 二、课程设计要求 (2) 三、计算过程 (2) 四、程序设计框图 (8) 五、代码说明书 (9) 六、热工设计准则和出错矫正 (10) 七、重要的核心程序代码 (11) 八、计算结果及分析 (17)

一、设计任务 某压水反应堆的冷却剂及慢化剂都是水,用二氧化铀作燃料,用Zr-4作包壳材料。燃料组件无盒壁,燃料元件为棒状,正方形排列。已知下列参数:系统压力 15.8MPa 堆芯输出功率 1820MW 冷却剂总流量 32100t/h 反应堆进口温度287℃ 堆芯高度 3.66m 燃料组件数 121 燃料组件形式17×17 每个组件燃料棒数 265 燃料包壳直径 9.5mm 燃料包壳内径 8.36mm 燃料包壳厚度 0.57mm 燃料芯块直径 8.19mm 燃料棒间距(栅距) 12.6mm 芯块密度 95% 理论密度旁流系数 5% 燃料元件发热占总发热的份额 97.4% 径向核热管因子 1.35 轴向核热管因子 1.528 局部峰核热管因子 1.11 交混因子 0.95 热流量工程热点因子 1.03 焓升工程热管因子 1.085 堆芯入口局部阻力系数 0.75 堆芯出口局部阻力系数 1.0 堆芯定位隔架局部阻力系数 1.05

若将堆芯自上而下划分为5个控制体,则其轴向归一化功率分布如下 表:堆芯轴向归一化功率分布(轴向等分5个控制体) 通过计算,得出 1. 堆芯出口温度; 2. 燃料棒表面平均热流及最大热流密度,平均线功率,最大线功率; 3. 热管的焓,包壳表面温度,芯块中心温度随轴向的分布; 4. 包壳表面最高温度,芯块中心最高温度; 5. DNBR在轴向上的变化; 6. 计算堆芯压降; 二、课程设计要求 1.设计时间为两周; 2.独立编制程序计算; 3.迭代误差为0.1%; 4.计算机绘图; 5.设计报告写作认真,条理清楚,页面整洁; 6.设计报告中要附源程序。 三、计算过程 目前,压水核反应堆的稳态热工设计准则有: (1)燃料元件芯块内最高温度应低于其相应燃耗下的熔化温度。 目前,压水堆大多采用UO2作为燃料。二氧化铀的熔点约为2805 ±15℃,经辐照后,其熔点会有所降低。燃耗每增加104兆瓦·日/吨铀,其熔点下降32℃。在通常所达到的燃耗深度下,熔点将降至2650℃左右。在稳态热工设计中,一般将燃料元件中心最高温度限制在2200~2450℃之间。 (2)燃料元件外表面不允许发生沸腾临界。

核反应堆工程

2008年上海交通大学研究生入学考试课程《核反应 堆工程》 考试大纲 1.该课程考试内容包括核反应堆物理和核反应堆热工两部分 2.主要参考书目: 核反应堆物理: 谢仲生主编,《核反应堆物理分析(上册)》,原 子能出版社,1994。 谢仲生、张少泓,《核反应堆物理理论与计算方 法》,西安交通大学出版社,2000。 核反应堆热工: 于平安等编著,《核反应堆热工分析》,原子能出 版社,1986。 于平安等编著,《核反应堆热工分析》,上海交通 大学出版社,2001。

核反应堆物理基础 1.核反应堆的核物理基础 1.中子与原子核的相互作用 相互作用的机理、中子吸收和中子散射 2.中子截面和核反应率 截面、自由程、中子通量密度、核反应率的概念 宏观截面的计算,各类型截面随中子能量的变化规律 3.共振现象与多普勒效应 4.核裂变过程 裂变能的释放、反应堆功率和中子通量密度之间的关系、裂变中子、裂变产物 5.链式裂变反应 临界条件、四因子模型 2.中子慢化与慢化能谱 1.中子的弹性散射过程 弹性散射动力学、慢化剂的选择 2.无限均匀介质的慢化能谱 慢化方程、含氢无吸收介质的慢化谱 3.热中子堆的近似能谱 3.中子扩散理论 1.单能中子扩散方程 斐克定律、单能中子扩散方程 2.非增殖介质扩散方程的解 4.均匀反应堆的临界理论 1.均匀裸堆的单群临界理论 均匀裸堆的单群扩散方程、单群临界条件及临界时的中子通量密度分布 2.双区反应堆的单群临界理论 双区反应堆的单群扩散方程、临界条件及临界时的中子通量密度分布 3.双群扩散方程 5.非均匀反应堆 1.栅格的非均匀效应 6.反应性随时间的变化 1.核燃料中铀-235的消耗、钚-239的积累 2.氙-135中毒 平衡氙中毒、最大氙中毒、功率瞬变过程中的氙中毒、氙震荡 3.钐-149中毒 4.燃耗深度与堆芯寿期 5.核燃料的转换与增殖 7.温度效应与反应性控制 1.反应性温度效应 反应性温度效应及其成因、堆芯内各种成分的反应性温度系数、温度反馈对反应堆安全的意义 2.反应性控制的任务 剩余反应性、控制棒价值、停堆深度

辐射防护与核电站安全(标准版)

Safety is the goal, prevention is the means, and achieving or realizing the goal of safety is the basic connotation of safety prevention. (安全管理) 单位:___________________ 姓名:___________________ 日期:___________________ 辐射防护与核电站安全(标准版)

辐射防护与核电站安全(标准版)导语:做好准备和保护,以应付攻击或者避免受害,从而使被保护对象处于没有危险、不受侵害、不出现事故的安全状态。显而易见,安全是目的,防范是手段,通过防范的手段达到或实现安全的目的,就是安全防范的基本内涵。 辐射存在于整个宇宙空间。辐射防护是研究保护人类和其他生物种群免受或少受辐射危害的应用性学科。辐射分为电离辐射和非电离辐射两类。α射线、β射线、γ射线、X射线、质子和中子等属于电离辐射,而红外线、紫外线、微波和激光则属于非电离辐射。在核能领域,人们主要关心的是电离辐射可能产生的健康影响及其防护。通常将电离辐射简称为辐射或辐射照射。 人类有史以来一直受着天然电离辐射源的照射,包括宇宙射线、地球放射性核素产生的辐射等。事实上,辐射无处不在,食物、房屋、天空大地、山水草木乃至人们体内都存在着辐射照射。人类所受到的集体辐射剂量主要来自天然本底辐射(约76.58%)和医疗(约20%),核电站产生的辐射剂量非常小(约0.25%)。在世界范围内,天然本底辐射每年对个人的平均辐射剂量约为2.4毫希,有些地区的天然本底辐射水平要比这个平均值高得多。 核能应用领域的辐射照射来源于核能产生装置(如核电站)在运

核反应堆热工分析课程设计报告书详细过程版本

华扶#力*孑 课程设计报告 (20 13 一2014年度第二学期) 名称:核反应堆热工分析课程设计 题目:利用单通道模型进行反应堆稳态热工设计 院系:核科学与工程学院______________________ 班级:实践核1101班______________________ 学号:06 _________________________ 学生姓名:M _____________________ 指导教师:王胜飞__________________ 设计周数:Ul _______________________ 成绩:_____________________ 日期:2014 年6月19日

一、课程设计的目的与要求 反应堆热工设计的任务就是要设计一个既安全可靠又经济的堆芯输热系统。对于反应堆热工设讣,尤其是对动力堆,最基本的要求是安全。要求在整个寿期内能够长期稳泄运行,并能适应启动、功率调和停堆等功率变化,要保证在一般事故工况下堆芯不会遭到破坏,甚至在最严重的工况下,也要保证堆芯的放射性物质不扩散到周围环境中去。 在进行反应堆热工设计之前,首先要了解并确左的前提为: (1)根据所设计堆的用途和特殊要求(如尺寸、重量等的限制)选左堆型,确怎所用的核燃料、冷却剂、慢化剂和结构材料等的种类; (2)反应堆的热功率、堆芯功率分布不均匀系数和水铀比允许的变化范用: (3)燃料元件的形状、它在堆芯内的分布方式以及栅距允许变化的范H: <4)二回路对一回路冷却剂热工参数的要求: (5)冷却剂流过堆芯的流程以及堆芯进口处冷却剂流量的分配情况。 在设计反应堆冷却系统时,为了保证反应堆运行安全可靠,针对不同的堆型,预先规立了热工设计必须遵守的要求,这些要求通常就称为堆的热工设计准则。目前压水动力堆设计中所规左的稳态热工设计准则,一般有以下几点:< 1)燃料元件芯块内最高应低于英他相应燃耗下的熔化温度; (2)燃料元件外表而不允许发生沸腾临界: (3)必须保证正常运行工况下燃料元件和堆内构件得到充分冷却;在事故工况下能提供足够的冷却剂以排除堆芯余热: <4)在稳态额泄工况和可预计的瞬态运行工况中,不发生流动不稳左性。 在热工设计中,通常是通过平均通道(平均管)可以估算堆芯的总功率,而热通道(热管)则是堆芯中轴向功率最高的通道,通过它确定堆芯功率的上限,热点是堆芯中温度最高的点,代表堆芯热量密度最大的点,通过这个点来确?DNBR?J 热工课程设计主要是为了培养学生综合运用反应堆热工分析课程和英它先修课程的理论和实际知识,树立正确的设计思想,培养分析和解决实际问题的能力。通过本课程设计,达到以下目的: 1、深入理解压水堆热工设讣准则: 2、深入理解单通道模型的基本概念、基本原理。包括了平均通道(平均管)、热通道(热管)、热点等在反应堆设计中的应用; 3、掌握堆芯焰场的计算并求岀体现在反应堆安全性的主要参数:烧毁比DNBR,最小烧毁比MDNBR, 燃料元件中心温度及其最高温度,包壳表面温度及英最髙温度等; 4、求出体现反应堆先进性的主要参数:堆芯流量功率比,堆芯功率密度,燃料元件平均热流密度(热通量),最大热流密度,冷却剂平均流速,冷却剂出口温度等: 5、掌握压降的计算: 6、掌握单相及沸腾时的传热计算。 7、理解单通道模型的编程方法。 课程设计要求: 1.设计时间为一周;

反应堆材料实验报告

中国科学技术大学 核科学技术学院 反应堆材料实验课程 实验报告 实验名称:铁碳合金金相组织观察及硬度测试学生姓名: 学号: 专业班级: 指导老师:李远杰

一.实验目的 1.掌握金相样品的制备流程,可独立完成金相样品的制备; 2.了解淬火和回火热处理过程,并掌握RAFM钢回火态和淬火态的判断方法; 3.理解热处理对金属材料结构和性能的影响; 4.观察经淬火和回火的样品的表面晶格结构,并比较两者的不同。二.实验原理(主要阐述实验中相关过程的基本原理,如预磨和抛光的原理,腐蚀剂的选择,金相的判断,热处理原理,硬度测试原理等) 1.热处理原理 ⑴淬火:将钢加热到临界温度Ac3(亚共析钢)或Ac1(过共析钢)以上某一温度,保温一段时间,使之全部或部分奥氏体化,然后以大于临界冷却速度的冷速快冷到马氏体以下(或马氏体附近等温)进行马氏体(或贝氏体)转变的热处理工艺。 ⑵回火:将淬火钢加热到奥氏体转变温度以下,保温1到2小时后冷却的工艺。回火往往是与淬火相伴,并且是热处理的最后一道工序。经过回火,钢的组织趋于稳定,淬火钢的脆性降低,韧性与塑性提高,消除或者减少淬火应力,稳定钢的形状与尺寸,防止淬火零件变形和开裂,高温回火还可以改善切削加工性能。 ⑶过冷奥氏体等温转变曲线(C曲线)

图1 过冷奥氏体等温转变曲线(C曲线) 过冷奥氏体(指加热保温后形成的奥氏体冷却到临界点Ar1以下时,尚未转变的奥氏体)等温转变动力学曲线是表示不同温度下过冷奥氏体转变量与转变时间关系的曲线。由于通常不需要了解某时刻转变量的多少,而比较注重转变的开始和结束时间,因此常常将这种曲线绘制成温度—时间曲线,简称C曲线。C曲线是过冷奥氏体转变的动力学图。从图中可以看出过冷奥氏体转变的组织和性能可以分为3个区:珠光体(由铁素体和渗碳体相间而成的片状或粒状混合物)型转变区(A1-550℃)、贝氏体(由铁素体和渗碳体组成的机械混合物,但不是层片状)型转变区(在240-550℃之间,其中又以350℃左右为界为上、下贝氏体两个转变区) 、马氏体(马氏体是碳在体心立方α-Fe 中的过饱和固溶体)型转变区(Ms-Mf) 。 2.预磨和抛光 预磨是指通关过表面预处理清除部件上的污物,消除严重氧化、

五种反应堆

吴锴:请您先介绍一下世界上已出现的几种潜艇反应堆的工作原理? 张金麟:美国从1948年开始对三种热交换型式的反应堆,即压水堆、气冷堆和液态金属冷却反应堆进行研究。最初美国考虑将反应堆装在Φ5.5×92米的潜艇壳内,其排水量在2 000吨左右,对反应堆的技术要求是:高浓缩铀的堆芯,用热中子或接近热能的中子;在铀燃料一定时,反应堆结构材料吸收中子要少,堆芯功率密度高、结构要紧凑。 根据此技术要求,美国首先发展了压水堆和液态金属冷却堆。接着苏联也发展了这两种反应堆。这两种堆都经过陆上模式堆的考核试验后才将同型堆安装在它们的早期核潜艇上。 作为舰船核动力,曾经产生过五种反应堆的方案设想,构成五种不同的舰船推进装置型式,它们分别是: 压水反应堆由压水堆、一回路系统和设备、二回路系统和设备及推进轴系组成。反应堆和一回路均在高压下运行。所以作为反应堆的载热剂和慢化剂的水在约300℃时亦不会沸腾,故此类型反应堆称为压水堆。 载热剂在反应堆中被加热送到蒸汽发生器,将其热经传热管传给蒸汽发生器二次侧水(二回路一侧的水)并使其变成饱和蒸汽,从蒸汽发生器流出的载热剂经由主泵又被回送到反应堆再加热,形成一回路循环。饱和蒸汽送至主推进蒸汽轮机作功,从汽轮机排出的乏汽在冷凝器中冷凝后经给水泵再送至蒸汽发生器,形成二回路。主推进蒸汽轮机经减速齿轮带动螺旋桨推进艇航行。 反应堆和一回路因具有放射性,所以需要布置在屏蔽内。蒸汽发生器产生的蒸汽由于被传热管壁与一回路隔开,因此二回路系统和设备同常规蒸汽动力装置一样没有放射性,所以不需屏蔽。 液态金属反应堆由反应堆、一回路、中间回路、二回路和推进轴系所组成。 液态金属堆用石墨和铍作慢化剂,用中能中子维持链式反应,其优点是燃料的消耗比热中子反应堆低。早期的载热剂采用熔融的金属如钠、钾、铋、铅及其合金。 在一回路中用熔融金属钠循环载热,运行压力只有5~7大气压,就可获得较高的温度,装置效率较高。一回路主泵采用电磁泵,由于没有转动部件,故可靠性高。 中间回路采用钠、钾作载热剂。一回路向中间回路传热是通过中间热交换器,中间回路将反应堆的热量再通过蒸汽发生器传给二回路,在蒸汽发生器中产生过热蒸汽(由饱和蒸汽进一步加热而得)。 液态金属堆的缺点是核燃料的初装量相对较多。金属钠吸收中子蜕变为钠-21,半衰期约为15小时,并生成发射高能γ的钠同位素,所以一回路的设备和管道都要屏蔽。为防止液态的金属钠在管道和设备内凝结,反应堆停堆后还需保温和加热。此外,金属钠具有强烈的腐蚀性,与水会发生剧烈反应,可能会引起爆炸和火灾。 气冷反应堆气冷堆是用气体作为载热剂的反应堆,一般使用的载热剂有He、N2、CO2。因为这几种气体制取很容易,且化学性质稳定。其中He的载热效率较高,它不吸收中子,无感生放射性,不与结构材料发生化学反应,传热性能良好。此外,它还有较高的转换比和较深的燃耗。 气冷堆推进装置的循环系统有两种形式:单回路循环系统和双回路循环系统。在单回路循环系统中,封闭的He回路作为一回路,蒸汽回路作为二回路。 比如,一个功率为24.3MW的船用单回路He冷却反应堆燃气轮机推进装置,它是由一个He冷却高温反应堆和一台双轴燃气轮机组成。高压燃气轮机作为压气机的

核反应堆热工分析课程设计报告书详细过程版本

课程设计报告 ( 20 13 -- 2014 年度第二学期) 名称:核反应堆热工分析课程设计 题目:利用单通道模型进行反应堆稳态热工设计院系:核科学与工程学院 班级:实践核1101班 学号:1111440306 学生:佳 指导教师:王胜飞 设计周数:1周 成绩:

日期:2014 年 6 月19 日

一、课程设计的目的与要求 反应堆热工设计的任务就是要设计一个既安全可靠又经济的堆芯输热系统。对于反应堆热工设计,尤其是对动力堆,最基本的要安全。要求在整个寿期能够长期稳定运行,并能适应启动、功率调节和停堆等功率变化,要保证在一般事故工况下堆芯不会遭到破坏,甚至在最严重的工况下,也要保证堆芯的放射性物质不扩散到周围环境中去。 在进行反应堆热工设计之前,首先要了解并确定的前提为: (1)根据所设计堆的用途和特殊要求(如尺寸、重量等的限制)选定堆型,确定所用的核燃料、冷却剂、慢化剂和结构材料等的种类; (2)反应堆的热功率、堆芯功率分布不均匀系数和水铀比允许的变化围; (3)燃料元件的形状、它在堆芯的分布方式以及栅距允许变化的围; (4)二回路对一回路冷却剂热工参数的要求; (5)冷却剂流过堆芯的流程以及堆芯进口处冷却剂流量的分配情况。 在设计反应堆冷却系统时,为了保证反应堆运行安全可靠,针对不同的堆型,预先规定了热工设计必须遵守的要求,这些要求通常就称为堆的热工设计准则。目前压水动力堆设计中所规定的稳态热工设计准则,一般有以下几点: (1)燃料元件芯块最高应低于其他相应燃耗下的熔化温度; (2)燃料元件外表面不允许发生沸腾临界; (3)必须保证正常运行工况下燃料元件和堆构件得到充分冷却;在事故工况下能提供足够的冷却剂以排除堆芯余热; (4)在稳态额定工况和可预计的瞬态运行工况中,不发生流动不稳定性。 在热工设计中,通常是通过平均通道(平均管)可以估算堆芯的总功率,而热通道(热管)则是堆芯中轴向功率最高的通道,通过它确定堆芯功率的上限,热点是堆芯中温度最高的点,代表堆芯热量密度最大的点,通过这个点来确定DNBR。 热工课程设计主要是为了培养学生综合运用反应堆热工分析课程和其它先修课程的理论和实际知识,树立正确的设计思想,培养分析和解决实际问题的能力。通过本课程设计,达到以下目的: 1、深入理解压水堆热工设计准则; 2、深入理解单通道模型的基本概念、基本原理。包括了平均通道(平均管)、热通道(热管)、热点等在反应堆设计中的应用; 3、掌握堆芯焓场的计算并求出体现在反应堆安全性的主要参数:烧毁比DNBR,最小烧毁比MDNBR,燃料元件中心温度及其最高温度,包壳表面温度及其最高温度等; 4、求出体现反应堆先进性的主要参数:堆芯流量功率比,堆芯功率密度,燃料元件平均热流密度(热通量),最大热流密度,冷却剂平均流速,冷却剂出口温度等; 5、掌握压降的计算;

核反应堆类型简介

核反应堆类型简介 核反应堆(Nuclear Reactor),又称原子反应堆或反应堆,是装配了核燃料以实现大规模可控制裂变链式反应的装置,是一种启动、控制并维持核裂变或核聚变链式反应的装置。在反应堆之中,核变的速率可以得到精确的控制,其能量能够以较慢的速度向外释放,供人们利用。核反应堆,是一种启动、控制并维持核裂变或核聚变链式反应的装置。相对于核武爆炸瞬间所发生的失控链式反应,在反应堆之中,核变的速率可以得到精确的控制,其能量能够以较慢的速度向外释放,供人们利用。 核反应堆分类有: 按时间分可以分为四代: 第一代核电站是早期的原型堆电站,即1950年至1960年前期开发的轻水堆核电站,如美国的希平港压水堆、德累斯顿沸水堆以及英国的镁诺克斯石墨气冷堆等。 第二代核电站是1960年后期到1990年前期在第一代核电站基础上开发建设的大型商用核电站,如、加拿大坎度堆、苏联的压水堆等。目前世界上的大多数核电站都属于第二代核电站。 第三代是指先进的轻水堆核电站,即1990年后期到2010年开始运行的核电站。第三代核电站采用标准化、最佳化设计和安全性更高的非能动安全系统,如先进的沸水堆、系统80+、AP600、欧洲压水堆等。 第四代是待开发的核电站,其目标是到2030年达到实用化的

程度,主要特征是经济性高(与天燃气火力发电站相当)、安全性好、废物产生量小,并能防止核扩散。 按用途分:动力核反应堆;研究核反应堆;生产核反应堆(快滋生反应器)。 按反应堆慢化剂和冷却剂分: 轻水堆(压水反应堆、沸水反应堆):轻水型反应堆使用相对分子质量为18的轻水作为慢化剂和冷却剂; 重水堆:重水堆可按结构分为压力容器式和压力管式两类。两者都使用重水做慢化剂,但前者只能用重水做冷却剂,后者却可用重水、轻水、气体等物质做冷却剂; 石墨气冷堆;石墨液冷堆。 按反应堆中中子的速度分:热中子堆;快中子堆。 核反应堆有许多用途,最重要的用途是产生热能,用以代替其他燃料,产生蒸汽发电或驱动航空母舰等设施运转。 按用途分:将中子束用于实验或利用中子束的核反应,包括研究堆、材料实验等;生产放射性同位素的核反应堆;生产核裂变物质的核反应堆,称为生产堆;提供取暖、海水淡化、化工等用的热量的核反应堆,比如多目的堆;为发电而发生热量的核反应,称为发电堆;用于推进船舶、飞机、火箭等到的核反应堆,称为推进堆。 如此多的反应堆种类,意味着很多的人才空缺,让我感觉到核电事业亟待人才的加入,我决心努力学习,将来为我国核电事业作出一番贡献。

反应堆安全

安全的总目标:核安全的最终安全目标为:在核电厂里建立并维持一套有效的防护措施,以保证工作人员,社会及环境免遭放射性危害。辅助目标:1·辐射防护目标2·技术安全目标设计基准事故(DBA):要求安全设施达到最极端设计参量的事故称为核设施的设计基准事故(DB A)超设计基准:对于有些更严重的事故,这时专设安全设施已不能有效制止事故的发展,这些事故称之为超设计基准事故(BDBA)纵深防御原则分为5个层次:第1层次防御的目的是防止偏离正常运行和系统故障第2层次防御目的是检测和纠正偏离正常运行的情况,以防预计运行事件升级为事故工况设置第3层次防御是基于以下假定:尽管极少可能,某些预计运行事件或始发事件的升级仍有可能未被前一层次的防御所制止,可能发展为更严重的事件。第4层防御的目的是应付可能已超出设计基准的严重事故,并保证放射性后果保持在合理可行尽量低的水平第5层次即最后层次的防御目的是减轻事故工况下可能的放射性物质释放后果。三道屏障:第一道屏障是燃料元件包壳第二道屏障是将反应堆冷却剂全部包容在内的一回路压力边界第三道屏障是安全壳,即反应堆厂房。单一故障准则:满足单一故障准则的设备组合,在其任何部位发生单一随机故障时,仍能保持所赋予的功能。核安全许可证制度几个阶段:1核电厂的选址地点2核电厂的建造3核电厂的调试4核电厂的运行5核电厂的退役安全分析报告包括如下内容:1厂址及其环境的描述2建厂的目的,反应堆设计,运行和实验所遵循的基本原则(包括所用的法规,标准和规范),设计基准内部和外部始发事件,以及为保护厂区人员和公众安全为目的的安全系统性能的描述;3核电厂系统的描述,包括目的,接口,仪表,检查维护和所有运行工况以及事故工况下的性能4设计,采购,建筑,调试和运行方面的质量保证大纲的描述5对预计安排在反应堆内进行的,对安全具有重要影响的任何形式的实验的安全问题的检查6相类似核电厂的运行经验的回顾7假设始发事件及其后果的安全分析条件,包括足够的资料和计算,以便有条件进行独立评价8核电厂的支持安全技术条件,包括安全限制和安全系统整定值,安全运行的限制条件,设备检测要求,组织和管理上的要求。确保反应堆安全的4种安全性要素:1自然的安全性2非能动的安全性3能动的安全性4后备的安全性反应堆安全设施的三大安全功能:1有效地控制反应性2确保堆芯冷却3包容反射性产物根据反应堆运行工况的不同,可把反应性控制分为3种类型:1紧急停堆控制2功率控制3补偿控制控制棒按其作用不同可分为:补偿棒,调节棒,安全棒(停堆棒)核电厂运行工况分为4类:工况Ⅰ-正常运行和运行瞬变工况Ⅱ-中等频率事件,或称预期运行事件;工况Ⅲ-稀有事故;工况Ⅳ-极限事故(这类事故的发生频率约为10-6-10-4次/(堆·年)安全分析报告分析的典型始发事故安全分析报告的典型始发事故:1二回路系统排热增加2二回路系统排热减少3反应堆冷却剂系统流量减少4反应性和功率分布异常5反应堆冷却剂装量增加6反应堆冷却剂装量减少7系统或设备的放射性释放8未能紧急停堆的预期瞬变最终验收准则:1包壳最高温度不得超过1204℃2包壳的局部最大氧化量不超过反应前包壳总厚度的17%,以防止过量氧化的氢脆导致包壳机械强度不足而破裂3包壳氧化产氢量不得超过假设所有锆均与水反应所释氢总量的1%,以限制安全壳内氢爆的危险4堆芯必须保持可冷却的几何形状5必须能保证事故后排出衰变热的长期冷却能力。反应性引入事故是指向堆内突然引入一个意外的反应性,导致反应堆功率急剧上升而发生的事故。反应性引入机理:1控制棒失控提升2控制棒弹出3硼失控稀释失流事故概念:核电厂反应堆是借助于主冷却剂泵唧送冷却剂实现强迫循环来冷却的。如果反应堆功率运行时,主泵因动力电源故障或机械故障被迫停转,使冷却剂流量下降,冷却剂流量与堆功率失配,导致堆芯燃料包壳温度迅速上升,这种现象称为失流事故。失流事故包括:流量部分丧失流量完全丧失主泵卡轴和主泵断轴4种,其中后两种属于极限事故。 流量瞬变:取一长度为L,流量横截面为Ai的控制体,则控制体内流体 的压降关系为: 这个公式的物理意义是,任何一段流道流体压降等于该流道的惯性压降,加速压降,摩擦压降和重力压降之和再减去泵所提供的压头。热阱丧失事故定义:热阱丧失事故是由于二回路或三回路故障造成堆芯入口处一回路冷却剂温度过高引起堆芯冷却能力不足的事故。热阱丧失事故的始发事件主要可以归结为两方面:1部分或全部给水中断2汽轮机跳闸,同时旁路阀门未打开。冷却剂丧失事故是指反应堆主回路压力边界产生破口或发生破裂,一部分或大部分冷却剂泄露的事故。大破口失水事故是指反应堆主冷却剂系统冷管段或热管段出现大孔直至双端剪切断裂并同时失去厂外电源的事故。未紧急停堆的预期瞬态(ATWS)是指没有紧急停堆或机组跳闸的预期瞬态,在这些瞬态中,虽然一回路或二回路参数超过了保护定值,但控制棒组件未插入堆芯。ATWS的事故发生概率等于紧急停堆发生故障的概率和未紧急停堆时由明显后果的事故瞬态频率的乘积。可能导致比较严重后果的始发事件有:失去主给水,汽轮机停机,失去交流电源,失去凝汽器真空,控制棒组意外抽出和稳压器卸压阀意外开启等。其中以主给水丧失引发的ATWS 最具代表性。蒸汽爆炸:蒸汽爆炸是一种声波压力脉冲,由快速传热引起。在压水堆发生严重事故时,当熔化的堆芯物质与水接触时就可能发生这种快速传热。烟羽应急计划区以反应堆为中心7-10km为半径。在此区域内需要依据实际情况作好实际防护措施的准备。在该区域还要考虑在3-5km半径的区域内,作好人员撤离的准备。 食入应急计划区以反应堆为中心,30-50km为半径。在此区域内,应加强辐射监测,并作好食物和饮水控制的准备。风险的定义:风险R(损害/单位时间)=P(事件/单位时间)*C (损害/事件)整个故障树分析工作大致可以分为以下5步:1选择合理的顶事件和系统的分析边界和定义范围,并确定成功与失败的准则;2建造故障树,这是FTA的核心部分之一。通过对已收集的技术资料,在设计,运行管理人员的帮助下,建造故障树;3对故障树进行简化或者模块化;4定性分析。求出故障树的全部最下割集,当割集的数量太多时,可以通过程序进行概率截断或割集阶数截断;5定量分析。这一阶段的任务是很多的,它包括计算顶事件发生概率即系统的点无效度和区间无效度,此外还要进行重要度分析和灵敏度分析。 在核电厂事故释放下,核电厂附近居民可能受到的主要辐射途径有以下4个方面:1放射性烟云的外照射2烟云地面沉积放射性的外照射3吸入空气中的放射性的内照射4通过食物链造成内照射辐射防护工作的基本原则:1辐射事业的正当化原则:除非对社会确有贡献,否则任何涉及辐射照射的活动都是不合适的;2防护水平的合理最优化原则:辐射剂量必须同时考虑经济和社会因素,做到合理可行尽量低;3个人所受到剂量的限制原则:个人所受的最高剂量当量不得超过规定限值,并留有一定的余地。个人剂量当量限值推荐值如下:职业工作人员的剂量当量在5年内平均每年不超过20mSv,其中剂量当量最高的一年不得超过50mSv。 p gH z z g A W e A W iAi A A A dt dW A L p - - - - - - - - - - - - + + - + = ? ρ ρ ρ ρ ρ ρ ρ ρ ) ( 2 2 ] ) ( ) [( 1 2 2 1 2 2 2 2

《核反应堆热工分析》复习资料大全

第一章绪论(简答) 1. 核反应堆分类: 按中子能谱分快中子堆、热中子堆 按冷却剂分轻水堆(压水堆,沸水堆)、重水堆、气冷堆、钠冷堆 按用途分研究试验堆:研究中子特性、生产堆: 生产易裂变材料、动力堆:发电舰船推进动力2.各种反应堆的基本特征: 3.压水堆优缺点: 4.沸水堆与压水堆相比有两个优点:第一是省掉了一个回路,因而不再需要昂贵的蒸汽发生器。第二是工作压力可以降低。为了获得与压水堆同样的蒸汽温度,沸水堆只需加压到约72个大气压,比压水堆低了一倍。 5.沸水堆的优缺点: 6.重水堆优缺点:优点: ●中子利用率高(主要由于D吸收中子截面远低于H) ●废料中含235U极低,废料易处理 ●可将238U 转换成易裂变材料 238U + n →239Pu 239Pu + n →A+B+n+Q(占能量一半)

缺点: ●重水初装量大,价格昂贵 ●燃耗线(8000~10000兆瓦日/T(铀)为压水堆1/3) ●为减少一回路泄漏(因补D2O昂贵)对一回路设备要求高 7.高温气冷堆的优缺点:优点: ●高温,高效率(750~850℃,热效率40%) ●高转换比,高热耗值(由于堆芯中没有金属结构材料只有核燃料和石墨,而石墨吸收中子截面小。转换比0.85,燃耗10万兆瓦日/T(铀)) ●安全性高(反应堆负温度系数大,堆芯热容量大,温度上升缓慢,采取安全措施裕量大) ●环境污染小(采用氦气作冷却剂,一回路放射性剂量较低,由于热孝率高排出废热少)●有综合利用的广阔前景(如果进一步提高氦气温度~900℃时可直接推动气轮机;~1000℃时可直接推动气轮机热热效率大于50%;~1000-1200℃时可直接用于炼铁、化工及煤的气化) ●高温氦气技术可为将来发展气冷堆和聚变堆创造条件 8.钠冷快堆的优缺点:优点: ●充分利用铀资源 239Pu + n →A+B+2.6个n 238U + 1.6个n →1.6个239Pu (消耗一个中子使1.6个238U 转换成239Pu )●堆芯无慢化材料、结构材料,冷却剂用量少 ●液态金属钠沸点为895℃堆出口温度可高于560 ℃ 缺点: ●快中子裂变截面小,需用高浓铀(达~33%) ●对冷却剂要求苛刻,既要传热好又不能慢化中子,Na是首选材料,Na是活泼金属,遇水会发生剧烈化学反应,因此需要加隔水回路 9.各种堆型的特点、典型运行参数 第二章堆芯材料选择和热物性(简答) 1.固体核燃料的5点性能要求:教材14页 2.常见的核燃料:金属铀和铀合金、陶瓷燃料、弥散体燃料 3.选择包壳材料,必须综合考虑的7个因素:包壳材料的选择 ?中子吸收截面要小 ?热导率要大 ?材料相容性要好

核反应堆工程---复习参考题-资料讲解

核反应堆工程复习参考题 1、压水堆与沸水堆的主要区别是什么? 沸水堆采用一个回路,压水堆有两个回路;沸水堆由于堆芯顶部要安装汽水分离器等设备,故控制棒需从堆芯底部向上插入,控制棒为十字形控制棒,压水堆为棒束型控制棒,从堆芯顶部进入堆芯;沸水堆具有较低的运行压力(约为70个大气压),冷却水在堆内以汽液形式存在,压水堆一回路压力通常达150个大气压,冷却水不产生沸腾。 2、简要叙述一种常用堆型的基本工作原理? 沸水堆(Boiling Water Reactor)字面上来看就是采用沸腾的水来冷却核燃料的一种反应堆,其工作原理为:冷却水从反应堆底部流进堆芯,对燃料棒进行冷却,带走裂变产生的热能,冷却水温度升高并逐渐气化,最终形成蒸汽和水的混合物,经过汽水分离器和蒸汽干燥器,利用分离出的蒸汽推动汽轮进行发电。 压水堆(Pressurized Water Reactor)字面上看就是采用高压水来冷却核燃料的一种反应堆,其工作原理为:主泵将120~160个大气压的一回路冷却水送入堆芯,把核燃料放出的热能带出堆芯,而后进入蒸汽发生器,通过传热管把热量传给二回路水,使其沸腾并产生蒸汽;一回路冷却水温度下降,进入堆芯,完成一回路水循环;二回路产生的高压蒸汽推动汽轮机发电,再经过冷凝器和预热器进入蒸汽发生器,完成二回路水循环。 3、重水堆的燃料富集度为什么可以比压水堆的低,哪种堆型对燃料的燃尽性更 好? 因为卸料燃耗较浅,用重水(D2O,D为氘)作慢化剂,其热中子吸收截面约

为轻水(H2O)的1/700,慢化中子能力不如后者,需要更多的碰撞次数,可直接利用天然铀作核燃料。 4、快中子堆和热中子堆相比有哪些优缺点? 优:快中子堆没有慢化剂,所以体积小,功率密度高。 缺:快中子堆必须有较高的核燃料富集度,初装量也大。快中子堆燃料元件加工及乏燃料后处理要求高,快中子辐照通量率大,对材料要求苛刻。平均寿命比热中子堆短,控制困难。 5、压水堆堆芯中水主要起什么作用? 作冷却剂和慢化剂。 6、气冷堆与压水堆相比有何优缺点? 优:能在不高的压力下得到较高的出口温度,可提高电站二回路蒸汽温度,从而提高热效率。 缺:镁合金包壳不能承受高温,限制了二氧化碳气体出口温度,限制了反应堆热工性能的进一步提高。 7、什么是原子核的结合能及比结合能,如何计算? 结合能:是将若干个核子结合成原子核放出的能量或将原子核的核子全部分散开来所需的能量,ΔE=ΔmC2 定义:是原子核的结合能与该原子核的核子数之比(ΔE/A) 8、什么是核反应截面,分哪几类,其物理意义是什么? 如果某种物质受到中子的作用,则发生特定核反应的概率取决于中子的数目和速度,以及该物质中核的数目和性质。“截面”是中子与核相互作用概率的一种量度

核电站环境影响与安全

核电站环境影响与安全 摘要根据国家能源发展的中长期规划,我国未来十年将有大批核电建成投产。介绍核电运行的基本原理,分析历史上的重大核泄漏事故的原因及危害,讨论核电站的辐射等因素对周围环境与人员的影响,以及为保证核电站的安全所采取的部分保障措施。 关键词核电站;核事故;核安全;核辐射 核能是一种经济的能源。来自欧盟的报告显示,欧洲通过比较各种燃料循环的外部成本得出的结论是:燃煤和燃油发电,相关的外部成本5美分左右,天然气约1美分,核电的平均成本在0.35美分左右。我国第一座自己研究、设计和建造的核电站是秦山核电站,该电站于1984年破土动工,1991年12月15日并网发电,从那时起走到今年,我国投入运行的核电装机只有908万千瓦,即未来十年的核电装机量将比现阶段总量大的多。 核电站大体可分为相对独立的两部分:一部分是利用核能生产蒸汽的核岛,包括反应堆装置和一回路系统;另一部分是利用蒸汽发电的常规岛,包括汽轮发电机系统。核电站用的燃料是铀,铀是一种很重的金属。用铀制成的核燃料在一种叫“反应堆”的设备内发生裂变而产生大量热能,再用处于高压力下的水把热能带出,在蒸汽发生器通过热交换使二回路内产生蒸汽,蒸汽推动气轮机带着发电机一起旋转,电就源源不断地产生出来,并通过电网送到四面八方。这就是世界上最普及的压水反应堆核电站的工作原理。 从第一座反应堆运行至今出现过三哩岛核事故和切尔诺贝利核事故两次重大核事故。1986年4月26日,前苏联切尔诺贝利核电站研究人员在做一次安全实验时,切断了反应堆所有的安全措施,却又要启动反应堆,这个实验方案严重违反了安全规程,制订的计划又极不认真,极不负责。这个试验造成第四号反应堆大厅起火,并发生化学爆炸,反应堆厂房顶盖被炸掀,放射性物质随着蒸汽和烟云进入大气,造成了对周围环境的严重污染。事故当时有2人被炸死,1人死于心脏病,救火中有29人受辐射损伤,其中28人因患急性放射性病致死。事故后周围30公里范围内撤离了21万居民。这是一次严重的责任事故,而且前苏联开发的这种石墨水冷堆具有较大的缺陷,它有一段正温度系数的正反馈工作区。在该工作区时温度增加后核反应会加剧而不是减慢,这在反应堆的设计上是不能允许的。另外,切尔诺贝利核电站没有绝大多数核电站具有的安全壳,这也使该事故危害加大。 三哩岛和切尔诺贝利核电站事故,促使有核电站运行的所有国家重新仔细检查了核电站的基本安全特性。通过经验教训分析反馈,促进了更先进的反应堆的研究与开发工作,以提高核反应堆的安全性和可靠性。这两次事故也促进了正在运行的核电站安全可靠性的提高。核电其实是一种安全性能好的能源,采取了各种安全措施,并且正确的选择核反应堆的堆型,就可以做到核电站发生事故的机率为4×10-6/堆·年,即100个核电站运行2500年,才有可能发生一次堆芯熔化的事故。而且随着时代的发展和科技的进步,人们还可以进一步地减小这一机率。即

相关主题
文本预览
相关文档 最新文档