当前位置:文档之家› 抗老化测试报告TEST REPORT

抗老化测试报告TEST REPORT

抗老化测试报告TEST REPORT
抗老化测试报告TEST REPORT

TEST REPORT

NO:DECAI20170710

Date:AUG 10,2017

Page:1of 3 CUSTOMER NAME: DECAI PLASTIC TECHNOLOGY CO;LTD.DONGGUAN ADDRESS: NO.75.LIANYAN STREET YANWU VILLAGE DALINGSHAN

TOWN DONGGUAN CITY CHINA

The following sample(s) was/were submitted and identified on behalf of the client as: Sample Name : UV MATERIAL

Ref.No. : 20170701

Sample Information : RESISTANCE TO UV

Date of Receipt : Aug 01,2017

Testing Start Date : Aug 01,2017

Testing End Date : Aug 09,2017

Test result(s) : For further details,please refer to the following page(s) Signed for

DECAI Standards Technical

Center

TEST REPORT

NO: DECAI20170710

Date: AUG 06,2017

Page: 2of 3

Note: Pass:Meet the requirements;

Fail:Does not meet the requirements;

/:Not Apply to the judgment.

Original Sample Photo:

TEST REPORT

NO. : DECAI20170710

Date : AUG 06,2017

Page : 3 of 3

Test Item: light Ageing Test-UV Exposure

Sample Description:Plastic sheet

Test Method:Provided by client

Test Condition:

Exposure cycle:

Lamp type:UVA-340

4h UV at 60℃ BPT,0.63W/(㎡·nm)@340nm

4h condensation at 50℃BPT

Exposure duration:96h

**********End of report**********

热响应测试报告

石家庄地源测试项目岩土热响应研究测试报告 天津大学环境学院 2010年11月21日

石家庄地源测试项目 岩土热响应研究测试报告 测试人员: 编制人: 审核人: 测试单位:天津大学环境学院 报告时间: 2010年11月21日 目录 一、项目概况......................................................... 二、地埋管换热器钻孔记录............................................. 钻孔设备.............................................. 钻孔记录.............................................. 三、测试目的与设备................................................... 四、测试原理与方法................................................... 岩土初始温度测试...................................... 地埋管换热器换热能力测试.............................. 五、测试结果与分析................................................... 测试现场布置......................................... 测试时间............................................. 夏季工况测试......................................... 冬季工况测试......................................... 稳定热流测试.........................................

温度传感器热响应时间测试方法

泰索温度测控工程技术中心 文件名称温度传感器热响应测试方法文件编号TS-QMSS-TW-026 制定部门中心实验室 生效日 期 2012.11.15 版本号A/0 工位或工序名称测试室 使用的工具、仪器、 设备或材料试验装置、干式炉、精密温度仪表、计时器、传感器 作 业 方 法 试验装置 示图注释: 2-固定托架;3-摆动气缸;4-旋转臂;5-直行气缸; 6-传感器夹持器;7-干式炉;11-导向堵头; 12-计时启动(位置)开关;26-被测传感器;27-温度显示仪表。1.温度传感器时间常数定义 温度传感器的时间常数是指被测介质温度从某一温度t0跃变到另一温度t x时,传感器测量端温度由起始温度t0上升到阶跃温度幅度值t n的63.2%所需的时间。热响应时间用τ表示。 2.测试和试验步骤 2.1将自控温管式电炉温度事先恒定在(建议:热电阻推荐300℃;热电偶推荐600℃)预定温度,待测样品安装在检定炉夹具上置于室温下等温30分钟以上(若传感器提前两小时放置在实验室,便不需要等温过程)。 2.2连接传感器与精密温度仪表测量线路,在将传感器置于温场前,接通电源,观察精密温度仪表显示的室温t s(t s=t0)并记录。 2.3提前计算以下有关数据 2.3.1阶跃温度(幅度)值:对于热电阻t n=300-t s;对于热电偶t n=600-t s。 2.3.2记时掐表温度值t'=63.2%t n+ t s,对应时间为热响应时间τ。 2.4试验操作 2.4.1以上准备就绪,将温度显示仪表上限报警值设为:6 3.2%t n+ t s作为计时终止信号,以便自动的控制计时器工作。 2.4.2接通气源,按动摆动气缸电磁阀按钮,旋转臂摆动旋转至干式炉炉口上方(保持同一轴线),大约5秒后直行气缸电磁阀动作,将温度传感器垂直插入干式炉(深度大约180mm)。此时,计时开关已经打开并开始计时。 2.4.3注意观察精密温度仪表显示温度值迅速变化,待温度显示值达到报警值6 3.2%t n+ t s瞬间,报警常闭接点断开,此刻计时器当前示值即为实际时间常数τ。 2.4.4重复以上步骤,对逐个不同规格型号及编号的温度传感器进行试验,准确记录下对应数据,填写试验报告。 作业标准1.按不同类型传感器设置和恒定炉子试验温度。 2.按规定对被测样品在实验室进行等温和正确连接测量电路。 3.正确记录精密温度仪表显示的室温和计算试验所需数据。 4.严格按操作步骤进行试验作业,保持装炉和记时操作动作协调一致。 5.准确记录数据和填写试验报告。 备注温度传感器热响应测试驱动装置请参见该实验装置的详细说明书。

土壤热响应测试

土壤热响应测试 土壤热响应测试的主要目的是了解岩土体的基本物理性质,在此基础上,掌握岩土体的换热能力,为地源热泵系统设计人员结合建筑结构、负荷特点等设计系统优化方案提供基础数据,以保障系统长期运行的高效与节能。 如果物性参数不准确,则设计的系统可能不能满足负荷需要,也可能规模过大,从而大大增加初投资。国外学者Kavanaugh的研究结果表明,当地下岩土的导热系数或导温系数发生10%的偏差,则设计的地下埋管长度偏差为4.5%~5.8%。 目前土壤的导热特性主要有三种获得方式:利用简化模型数值计算、利用经验估算、做土壤热特性测试。单纯的按照简化模型计算往往误差过大;经验的估计值在方案分析阶段有一定的参考价值,但一直以来设计人员只能在某种土壤或岩石导热系数范围内保守取用较低值,导致设计钻孔的数量比实际需要的多,从而增加了项目投资成本;只有在地源热泵规划施工场所现场进行土壤热特性测试才能够获得完整和准确的土壤数据。 土壤热响应测试装备包括构件: 1. 试压、保压后的成井 2. 岩土热物性测试仪及其配套软件,由IGSHPA (国际地源热泵协会)推荐,美国原装进口 3. 数据采集仪:土壤导热能力测试数据采集记录仪HOBO FlexSmart Logger;目前采用HOBOware Pro version2.3.1,由美国Onset Computer Corporation 开发提供 4. 模拟量输入输出模块 5. 进出水温度、流量、电流、电压传感器 6. 电脑及其显示设备 7. 信号、电源连接线 8. 稳定的单相交流电源 现场测试装备总图

土壤热响应测试原理 如图所示,由于泵的作用,流体由A口进入,传感器采集信号。流体通过泵后,由电加热器加热,加热的流体温度信号由传感器采集,然后流体从B口流出,输入到埋置于深层岩土中的PE管内,导管内加热的流体与深层岩上进行热交换后,又从A口返回到仪器内,形成封闭的循环。将在一定时间内连续采集到的功率、温度等参数作为测量数据,再由线热源理论公式求出岩土的平均导热系数,继而对地埋管进行换热计算,达到检测目的。 数据输出通过专用程序软件来实现,将采集到的数据以特殊的格式存储在控制柜中的电脑里,也可转移到其他计算机中;根据所收集数据通过专业数据分析软件进行数据分析。 测试具体步骤 第一步,保证在整个试验过程中都必须有足够的电来供应,将实验平台与控制柜通电; 第二步,将适配器(测试设备的一种部件)安装在地下换热器上; 第三步,将准备好的绝缘软管与试验设备连接起来,将软管保温,避免受外界环境影响(如太阳下直射等因素),有必要用帐篷进行遮盖,以免影响试验效果。 第四步,通过注水管向试验系统中注水,保证系统运行的注水压力。 第五步,在将试验系统中的空气排尽后启动循环泵,当流速稳定趋于恒定后,开启电加热器,正式开始测试实验,进行数据采集。在数据采集过程中,必须保证电源的稳定,使数据能够连续不间断采集。采集数据包括:孔径、孔深、大地初始温度、连续测试时间的地下温度等。 第六步,数据采集时间:分别于08-3-3下午16时至08-3-4下午15时,共计23小时的时间连续对试验孔进行现场数据采集,在测试过程中每隔1.5分钟进行一次数据采集。开启电加热前后分别记录地下环路中水与土壤换热的数据情况。 如下图所示,为地下换热器内进出水温度随加热时间变化全过程曲线:曲线最后慢慢趋于稳定,可作为分析计算依据。

中和反应反应热的测定实验报告

《中和反应反应热的测定》实验报告 班级姓名组别 [基础知识] 中和反应:酸和碱生成盐和水的反应。(放热反应)实质是酸电离产生的H + 和碱电离产生的 OH -结合生成难电离的H 2O 。强酸和强碱反应的离子方程式多数为H ++OH -=H 2O 中和热:在稀溶液中,强酸和强碱发生中和反应,生成1mol 液态水时的反应热,叫中和热。 任何中和反应的中和热都相同。但是不同的中和反应,其反应热可能不同。 有弱酸弱碱参加的中和反应,生成1mol 液态水时的放出的热量小于57.3kJ,因为弱酸弱碱电 离时吸收热量。 一、实验目的 测定强酸与强碱反应的反应热。(热效应) 二、实验用品 大烧杯(500mL)、小烧杯(100mL)、温度计、量筒(50mL)两个、泡沫塑料或纸条、泡沫塑料板或纸条、泡沫塑料板或硬纸板(中心有两个小孔)、环形玻璃搅拌棒。 0.50mol/L 盐酸、0.55mol/LNaOH 溶液。 三、实验原理 1、0.50mol ·L -1盐酸和0.55mol ·L -1NaOH 溶液的密度都约为1g ·cm -3,所以50mL0.50mol ·L -1 盐酸的质量m 1=50g ,50mL0.55mol ·L -1NaOH 溶液的质量m 2=50g 。 2、中和后生成的溶液的比热容c=4.18J ·(g ·℃)-1,由此可以计算出0.50mol ·L -1盐酸与0.55mol ·L -1NaOH 溶液发生中和反应时放出的热量为(m 1+m 2)·c ·(t 2-t 1)=0.418(t 2-t 1)kJ 又因50mL0.50mol ·L -1盐酸中含有0.025molHCl ,0.025molHCl 与0.025molNaOH 发生中和反应,生成0.025molH 2O ,放出的热量是0.418(t 2-t 1)kJ ,所以生成1molH 2O 时放出的热量即中和热为△H=-025 .0) (418.012t t kJ/mol

岩土热响应测试报告(DOC)

XX省XX市学院片区地源热泵工程岩土热响应测试报告 XX省XX大学地源热泵研究所 二〇一四年五月

岩土热响应测试报告 一、工程概况 该项目为XX省XX市学院片区(XX市学院、新华苑)地源热泵工程,位于XX省省XX市市。本工程拟采用节能环保的土壤源热泵系统,作为空调系统的冷、热源。我所对该工程地埋管场地进行了深层岩土层热物性测试。本次试验进行了1个孔的测试。报告时间:5月10日~5月11日。 二、测试概要 1、测试目的 地埋管换热系统设计是地埋管地源热泵空调系统设计的重点,设计出现偏差可能导致系统运行效率降低甚至无法正常运行。拟通过地下岩土热物性测试并利用专业软件分析,获得地埋管区域基本的地质资料、岩土的热物性参数及测算的每延米地埋管换热孔的换热量,为地热换热器设计、换热孔钻凿施工工艺等提供必要的基本依据。 2、测试设备 本工程采用XX省建筑大学地源热泵研究所自主研制开发的型号为FZL-C(Ⅲ)型岩土热物性测试仪,如图1所示。该仪器已获得国家发明

专利(ZL 2008 1 0238160.4)。并已广泛应用于北京奥林匹克公园、网球场馆、济南奥体中心等一大批地源热泵工程中的岩土层热物性测试。见附件3。 3、测试依据 《地源热泵系统工程技术规范》GB50366-2005 ( 2009年版)。 测试原理见附件2。 图1 FZL-C(Ⅲ)型岩土热物性测试仪 三、测试结果与分析 1、测试孔基本参数 表1 为测试孔的基本参数。 表1 测试孔基本参数 项目测试孔项目测试孔 钻孔深度(m)100 钻孔直径(mm)150

埋管形式双U型埋管材质PE管 埋管内径(mm)26 埋管外径(mm)32 钻孔回填材料细沙主要地质结构粘土与玄武岩 2、测试结果 测试结果见表2。循环水平均温度测试结果与计算结果对比见图2。测试数据见附件1。 初始温度:16.2℃; 导热系数:1.66W/m℃; 容积比热容:2.1×106J/m3℃。 3、结果分析 钻孔结果表明:该地埋管区域地质构造以粘土为主。具体地质构造见表2。测试结果表明:埋管区域的平均综合导热系数为1.66W/m℃,数值中等;平均容积比热为2.1×106J/m3℃,数值较大;岩土体平均初始温度16.2℃,数值偏低,有利于夏季向地下放热。

热响应测试报告

岩土热响应研究测试报告 天津大学环境学院 2010年11月21日

岩土热响应研究测试报告 测试人员: 编制人: 审核人: 测试单位:天津大学环境学院 报告时间: 2010年11月21日 目录 一、项目概况 (2) 二、地埋管换热器钻孔记录 (2) 2.1钻孔设备 (2) 2.2钻孔记录 (3) 三、测试目的与设备 (4) 四、测试原理与方法 (4) 4.1岩土初始温度测试 (4) 4.2地埋管换热器换热能力测试 (5) 五、测试结果与分析 (6) 5.1 测试现场布置 (6) 5.2 测试时间 (6) 5.3 夏季工况测试 (6) 5.4 冬季工况测试 (8) 5.5 稳定热流测试 (10) 5.6 测试结果 (12) 5.7 结果分析 (12)

一、项目概况 建设单位:河北省电力研究院 建设地点:石家庄 建筑规模:建筑面积3.6万平方米 工程名称:地源热泵系统地埋管换热器岩土热响应试验工程 工程总体工作量:根据本工程特点和场地范围内的岩土层物理、力学性质,地源热泵地埋管换热器地热响应埋管测试采用双U竖直埋管形式,GB50366-2005《地源热泵系统工程技术规范》(2009年版)中,对地源热泵系统的前期勘察测试工作做了补充规定:3000~5000m2宜进行测试,5000m2以上应进行测试,10000m2以上测试孔数量不应少于2个。本工程根据实际状况,在场区内测试钻孔2个,具体位置由建设单位会同设计院现场确定,实际测试孔参数如下:1)A孔:双U管 DN32,孔径298mm,钻孔深度为自然地面以下92.5米,采用膨润土、细沙与原浆混合比例为1:3:3作回填材料回填。 2) B孔:双U管DN32,孔径300mm,钻孔深度为自然地面以下92.8米,采用原浆与细砂混合物回填材料回填。 工作量范围: 1)地埋管换热器钻孔施工; 2)地埋管换热器埋管施工; 3)实验测试; 4)撰写测试报告,提供设计院图纸设计所需的测试报告等资料。 二、地埋管换热器钻孔记录 2.1钻孔设备 地埋管换热器钻孔设备采用TB50型反循环打井机械设备(5吨型打井设备),主机使用电机功率7.5kW,大泵功率7.5~13kW,泥浆泵功率7.5kW,排泥浆泵功率为3kW,钻孔设备实物如图1所示。 图1 钻孔设备实物图

岩土热响应测试在实际工程设计中的重要性-2

岩土热响应测试在实际工程设计中的重要性 (浙江建筑科学设计研究院有限公司 浙江建科建筑节能科技有限公司浙江杭州310006) 摘要:鉴于地下岩土的复杂性和多样性, 在确定地下岩土热物性时宜尽量采用现场测试的方法。现场热响应测试是实施地源热泵工程的关键环节,介绍了测试方法的原理, 结合实际工程,获得了现场土壤原始温度、导热系数以及单U和双U管每延米孔深的放热参考值,测试数据为工程数据提供了依据。 关键词:热物性测试地源热泵地埋管换热量每延米换热量 一、前言 利用浅层地热能进行供暖、制冷,具有广阔的市场前景。设计地源热泵系统时,应准确测量地下土壤热物性参数,以便进行地埋管换热器设计。当地下土壤的热导率或热扩散率发生10%的偏差时,地下埋管设计长度偏差为4.5%-5.8%,将导致钻孔总深度的变化。由于钻孔的成本较高,因此必须准确的测量土壤的热物性参数。现场土壤热物性的测试,在初始地下温度场趋于基本一致的前提下,通过向地下输入恒定的热量,得到地下温度的热响应,通过温度的变化规律,来确定岩土的热物性。 二、现场热物性测试 热响应试验的系统组成示意图(图1),主要包括恒热流加热器、流量传感器、循环水泵数据采集系统等部分。基本测试过程如下:首先,将热响应试验测试仪的水路循环部分与待测埋地换热器相连接,形成一个闭式环路;然后,通过启动管道循环水泵,以驱动环路流体开始循环。待系统进出口温差为相近时,记录系统水温作为测试地点附近的岩土原始温度。并开始启动一定功率的电加热器来加热环路中的流体。随着埋地换热器进口水温的不断升高,其热量通过管壁与岩土之间的传热过程逐渐释放到地下岩土中,同时使岩土温度也逐渐开始升高,最终管内流体温度和岩土温度会维持在一种动态的热平衡状态。热平衡时间应该大于48小时整,在个流体加热循环过程中,通过计算机采集系统记录进/出温度、流量和加热功率等参数。

中和反应反应热的测定实验报告

中和反应反应热的测定 实验报告 Company number【1089WT-1898YT-1W8CB-9UUT-92108】

《中和反应反应热的测定》实验报告 班级姓名组别 [基础知识] 中和反应:酸和碱生成盐和水的反应。(放热反应)实质是酸电离产生的H+和碱电离产生的 OH-结合生成难电离的H 2O。强酸和强碱反应的离子方程式多数为H++OH-=H 2 O 中和热:在稀溶液中,强酸和强碱发生中和反应,生成1mol液态水时的反应热,叫中和热。 任何中和反应的中和热都相同。但是不同的中和反应,其反应热可能不同。 有弱酸弱碱参加的中和反应,生成1mol液态水时的放出的热量小于57.3kJ,因为弱酸弱碱电离时吸收热量。 一、实验目的 测定强酸与强碱反应的反应热。(热效应) 二、实验用品 大烧杯(500mL)、小烧杯(100mL)、温度计、量筒(50mL)两个、泡沫塑料或纸条、泡沫塑料板或纸条、泡沫塑料板或硬纸板(中心有两个小孔)、环形玻璃搅拌棒。 0.50mol/L盐酸、0.55mol/LNaOH溶液。 三、实验原理 1、0.50mol·L-1盐酸和0.55mol·L-1NaOH溶液的密度都约为1g·cm-3,所以 50mL0.50mol·L-1盐酸的质量m 1=50g,50mL0.55mol·L-1NaOH溶液的质量m 2 =50g。 2、中和后生成的溶液的比热容c=4.18J·(g·℃)-1,由此可以计算出0.50mol·L-1盐酸与 0.55mol·L-1NaOH溶液发生中和反应时放出的热量为(m 1+m 2 )·c·(t 2 -t 1 )=0.418(t 2 -t 1 )kJ 又因50mL0.50mol·L-1盐酸中含有0.025molHCl,0.025molHCl与0.025molNaOH发生中和反

地源热泵空调工程热响应测试报告

地源热泵空调工程 岩土层热响应测试报告 2009年月日

目录 一、测试项目概况 (1) 二、热响应实验目的 (1) 三、热响应实验依据 (1) 3.1测试原理 (1) 3.2测试平台 (1) 四、热响应实验工程概况 (2) 4.1测试井定位 (2) 4.2测试井参数 (2) 4.3测试实验台搭建 (2) 4.4测试平台误差控制 (2) 4.5测试过程 (3) 五、数据整理与分析.............................................................. . (3) 5.1岩土层结构与传热分析 (3) 5.2测试数据整理 (4) 5.2.1土壤平均原始温度 (4) 5.2.2模拟实验数据 (4) 5.3测试数据分析 (7) 5.3.1岩土层导热系数 (7) 5.3.2埋管换热器热阻计算 (8) 5.3.3单孔换热量计算 (9) 六、测试结果与建议 (11) 6.1钻孔深度与钻孔难易程度 (11) 6.2测试数据整理与分析 (11)

一、测试项目概况 本工程位于*市:为把该项目打造为节能示范项目,拟采用目前国际先进、节能高效、绿色环保的空调系统—土壤热泵系统作为建筑空调的冷热源,实现节能减排。 二、热响应实验目的 土壤源热泵系统的设计,主要就是土壤型热交换器的设计。由于土壤源热泵设计的特殊性,需要为后期进行地下换热器系统设计提供比较准确的数据依据,因此在设计前期必须对该工程所在地做土壤的热响应测试实验。本测试实验的主要目的是通过实际测试孔勘查地质情况,并通过测试获取该处的岩土热物性,特别是导热系数,从而获得土壤换热器的冬夏取放热量,为项目决策和设计提供参考。 三、热响应实验依据 3.1测试原理 土壤型热交换器的设计,最主要就是确定地层土壤的平均导热系数,平均导热系数包含了土壤(岩石)、回填料以及塑料管壁等导热的综合情况。根据线热源理论,在恒定热流密度时,线热源温度与时间有待定的函数关系,模拟测试中我们设定固定电加热量,模拟恒热流密度工况,记录测试中埋管进出水温度。由模拟值与测试值对比可计算出土壤平均导热系数,再根据地源热泵规范的热阻计算方法计算热阻,从而计算出埋管换热量指标。 3.2测试平台 该测试平台运行方式如下:将仪器的水路循环部分与所要测试换热孔内的 HDPE管路相连接,形成闭式环路,通过仪器内的微型循环水泵驱动环路内的液体不断循环,同时仪器内的加热器不断加热环路中的液体,加热器所产生的热量就不断通过换热孔内的换热管释放到地下。在闭式环路内的液体循环的过程中,将进/出仪器的温度、流量和加热器的加热功率进行采集记录,来进行分析计算土壤的热物性参数。

热响应试验

热响应试验 摘要:本文综述了地埋管地热换热器热响应试验技术的发展和现状,介绍了美国相关的标准和技术要求。对我国现存的两种热响应试验方法,即“恒热流法”和“恒温法”,进行了评价,指出:对于大中型的地埋管换热器项目,应当现场测试岩土体的热物性,并按规范的要求进行地埋管换热器的设计计算。 关键词:地源热泵地埋管换热器热响应试验现场热物性测试 地埋管地源热泵技术由于其节能和环保的优势正在我国得到迅速推广应用,而应用这一新技术的障碍之一是它的初投资较传统的供热空调系统偏高,其中地埋管换热器的投资通常可占整个空调系统初投资的1/3~1/2,而钻孔的成本又是地埋管换热器总投资的主要组成部分。因此,恰当地设计地埋管换热器对于推广地源热泵技术,特别是对于大中型的项目,有着特别重要的意义。 1 热响应试验 地下岩土体的导热系数是设计地源热泵系统地热换热器的重要参数[1]。然而地下地质结构构成复杂,即使同一种岩石或地质成分,其热物性参数相差也比较大。如果物性参数不准确,则设计的埋管系统有可能不能满足负荷需要;也可能规模过大,从而大大增加初投资。 由于地埋管的深度可达80~150m,穿透不同的地层,在现有的计算模型中通常要求在该深度范围内岩土体的平均热物性值,所以通过现场试验确定地下岩土的平均导热系数是国际上通行的做法。这种试验也被称作地热换热器的“热响应试验”。美国的俄克拉荷马州立大学(OSU)在开发应用现场测试岩土热物性技术方面进行了持续不懈的努力,在1976年就已经奠定了该技术的理论基础[2]。在1995年首先在瑞典[3]和美国[4]几乎同时把该技术应用于工程实际。具体做法是在将要埋设地热换热器的现场钻孔,在钻孔中埋设U 型管并按设计要求回填;在回路中充满水并与测量装置联结,在地下温度场基本恢复后对循环回路以恒定的功率加热(或冷却),让水在回路中循环流动,并测量回路中水的温度随时间的变化。一种典型的热响应试验装置的示意图如图1所示。 确定地下岩土的导热系数需要求解传热反问题,通常采用的数学模型是线热源模型[5,6],或数值分析模型[7,8]。根据测得的数据,可以采用参数估计方法计算得到钻孔周围岩土的平均热物性参数。现在世界各国大体上都采用这一方法做热响应试验,国际地源热泵协会(IGSHPA)的标准[10]和美国采暖制冷与空调工程师学会(ASHRAE)手册[11]都推荐这一方法。国际能源机构(IEA)起草的关于热响应试验的指导文件中同样采用恒热流方法[12]。我国最早的有关地源热泵系统现场热物性测试的报道是2000年山东建筑工程学院的项目[13]以及后续的以于明志为主完成的工作[14~16]。近年来在我国可以见到更多

动响应测试实验报告

动响应测试分析固有频率变化及刚度退化原因分析 邓星宇,林宏磊,陆海翔,汤足熠,范黎,李琛 摘要:本次实验主要针对于试验室提供的L型钢筋梁动响应的测试。实验中采用了D-600-5电动振动实验台为钢筋梁提供振动加速度,利用PS-1502A变压器为ODC1200-01激光测震系统供电。实验中利用金属梁遮挡光幕的面积来获得信号的输出,进而完成进一步固有频率等动响应参数的测定。在测试方面,实验采用了NI数据采集系统、计算机数据采集系统,主要辅以labview编程,将信号最终转换为频率——时间的变换关系,进而确定梁的固有频率。整个实验过程并非一帆风顺,在试样的选择和金属梁挠度初始标定、labview软件调试时,实验遇到了很大的困难,在何顶顶等多位老师的帮助下最终找到了解决的办法。随后的实验过程较为顺利,我们顺利拿到了频率时间变化曲线,完成了金属梁固有频率的测定,并分析了梁刚度退化原因等相关问题。 关键词:L型金属梁,动响应测试,labview编程,固有频率,刚度退化 引言 随着科学技术的成熟与发展,土木工程结构为各领域所广泛需求。土木工程结构通常具有较长的服役期,在长时间的服役期间,多样性的建筑结构由于自身材料的老化、温度效应与外部环境侵蚀、人为使用以及自然灾害等诸多影响,内外部损伤的形成是无法避免的。内外部损伤的逐步累积,导致结构存在着危险漏洞,进而引发突发性的重大安全事故,直接威胁到国家经济正常运作与人身财产安全。因此,土木工程的损伤检测变得越发重要,对损伤检测技术更深入的研究与运用成为对建筑结构健康维护的主流趋势。而基于固有频率的结构损伤检测是比较常见的一种方式。 结构固有频率容易测量且与测量位置无关,频率测量对周围噪声的敏感度也较低,相对振型和阻尼的测量误差小,故基于频率的损伤检测起步较早,应用也较为广泛。众所周知,当结构发生损伤时,结构的固有频率也随之变化,损伤后结构固有频率暗含损伤信息,将损伤前后的频率进行对比,从而识别结构损伤,识别方法将直接影响损伤检测结果的精度或正确性。一般通过有限元建立未损伤结构模型,通过对已建成后的实际结构来修正有限元模型,使其能真实反映实际结构;结构发生损伤后,根据实测频率来修改有限元模型,将未损伤有限元模型和修改后的有限元模型进行比较,从而检测出结构的损伤位置和程度。但是对于大型或复杂结构,进行实际测量存在困难,测点有限,且测量数据受噪声干扰严重及测量数据严重不足,这就使得建立的未损伤有限元模型与实际损伤前结构存在差别,将直接影响损伤检测的精确性。这都将增加结构损伤检测难度。这些不足之处限制了该方法在结构损伤检测中的应用。 用结构的振动测量信号进行结构损伤检测是目前国内外研究的热点.基本思路是首先探测出结构振动响应或结构动态特性的变化,然后利用结构的固有特性如特征方程、振型的正交性等建立结构动态特性变化与结构参数变化的关系,进而判定结构损伤的位置和程度,该实验测试了在随机谱激励下构建的动响应,由激光测振系统测得试样的振幅,基于labview进行数据处理,分析构件在外荷载下的固有频率的变化情况。该实验的方法具有普遍意义,通过该实验可以加深对于labview编程的理解,以及为类似振动实验提供了借鉴。 实验设备和材料 PS-1502A变压器ODC1200-01激光测震系统 D-600-5电动振动实验台试样梁 NI数据采集系统计算机数据采集系统木工钳 l型钢筋梁 1 实验原理

石家庄岩土热响应试验报告

石家庄文化园 岩土热响应试验报告 河北省地矿局第三水文工程地质大队河北省地热资源开发研究所 2011年11月

目录 1、概况 (2) 2、主要规范、标准 (2) 3、试验目的 (2) 4、试验原理 (3) 5、成孔及地层情况 (4) 6、试验内容及结果分析 (6) 7、结论 (11)

1、概况 测试时间:2011年8-9月、11月 测试地点:位于石家庄 测试对象:针对3个试验孔进行岩土热响应试验。试验孔及埋管参数见下表: 1#孔2#孔3#孔 钻孔深度120m116m104m 孔径150mm110mm110mm 下管深度120m116m104m 埋管形式双U型单U型单U型 管材 De32 HDPE100 De32 HDPE100 De32 HDPE100 回填材料岩粉岩粉岩粉试验内容:土壤原始温度测试和夏季排热工况测试。 2、主要规范、标准 规范、标准名称编号《地源热泵系统工程技术规范》GB50366-2005(2009年版)《埋地聚乙烯给水管道工程技术规程》CJJ101-2004 《室外给水设计规范》GB50013-2006 《岩土工程勘察规范》GB50021-2001(2009年局部修订)《给水排水管道工程施工及验收规范》GB50268-2008 《供水水文地质钻探与凿井操作规程》CJJ13-87 3、试验目的 (1)通过钻凿试验孔,记录试验孔的成孔情况,确定换热孔的钻进难度和适宜的钻井工具; (2)通过地层编录和物探测井两种方法获得项目所在地的地质资料,绘制项目场区钻孔测井曲线图;

(3)通过进行热响应试验获得当地岩土体的热物性参数、换热孔的延米换热量等参数; (4)根据现场钻凿试验孔的过程和热响应试验结果,确定该项目土壤换热器适宜的设计深度。 4、试验原理 土壤换热器测试土壤原始温度时,将仪器的水路循环部分与所要测试换热孔内的HDPE管路相连接,形成闭式环路,通过仪器内的微型循环水泵驱动环路内的液体不断循环,这时仪器内的加热器不开启。当数据采集系统采集到的供、回水温度达到稳定状态时,所得的温度即为地下土壤的平均温度。 土壤换热器测试简单模拟地源热泵空调系统夏季制冷的运行模式时,将仪器的水路循环部分与所要测试换热孔内的HDPE管路相连接,形成闭式环路,通过仪器内的微型循环水泵驱动环路内的液体不断循环,同时仪器内的加热器不断加热环路中的液体。该闭式环路内的液体不断循环,加热器所产生的热量就不断通过换热孔内的换热管释放到地下。在闭式环路内的液体循环的过程中,将供、回仪器的温度、流量和加热器的加热功率进行采集记录,来进行分析计算土壤的热物性参数。原理如下图: 图1测试原理图

xx项目热响应实验报告

**太阳能联合供暖项目勘查 土壤热物性响应测试 报 告 书 测试单位:山东**能源科技有限公司 二〇一六年一月

地埋管换热性能热物性测试报告 批准 : 审核 : 编制:: 委托单位 工程名称 地埋管换热性能热物性测试 项目地点 测试 项目 见报告正文 仪器 岩土热响应测试仪器tk-2/3 依据 见报告正文 委托日期 2015.12.28 测试日期 2015.01.06-01.0 8 报告日期 2016.01.08 测试结论: 1地下温度场未扰动原始地下平均温度为14.8℃ 2地下综合导热性能及热响应状况如下表岩土热物性参数模拟夏季 编号 斜率 岩土导 热系数 岩土比热容 单井换热量夏 实验供水温度 实验回水温度 延米换热w/m 最后10H 温度上升 模拟时间 TK1 # 夏季 1.508 2.176 1.39MJ /? 4.0kw 27.4℃ 24℃ 40.7w/m 0.4℃ 16.01.06-01.08 3被测试井参数 实验井 TK1模拟夏季 形 式 单U 型 垂直井深(m) 97 垂直管全长(m) 184 回填材料 水泥砂浆回填 安装方法 机械自重下管 井口直径(㎜) 155 交联聚乙烯管 外径(㎜) 25 内径(㎜) 20 交联聚乙烯管 连接管 供水管段(m) 0.5 回水管段(m) 0.5 连接管全长(m) 1 保温材料 20㎜厚橡塑保温材料 4建议设计计算参数:通过专业软件分析,单井换热用单U 管径dn25垂直90-110m ,放热工况高温侧供水37℃回水32℃换热量按73.56w/m ,吸热工况低温侧供水3℃回水8℃换热量按34.73 w/m 。 (本页以下无正文)

相关主题
文本预览
相关文档 最新文档