当前位置:文档之家› 铸造工艺大赛-上冠说明书

铸造工艺大赛-上冠说明书

铸造工艺大赛-上冠说明书
铸造工艺大赛-上冠说明书

“永冠杯”第三届中国大学生铸造工艺设计大赛

参赛作品

铸件名称:D—上冠

自编代码:[单击此处键入自编代码]

方案编号:[单击此处键入方案编号]

目录

摘要 (3)

1 零件结构及其技术条件的审查 (3)

1.1铸件结构的工艺性分析 (3)

1.2技术条件的审查 (5)

2 型砂,造型、造芯方法的选择 (5)

2.1型砂 (5)

2.2涂料 (5)

2.3造型方法 (6)

2.4造芯方案 (6)

3 浇注位置的确定 (6)

3.1浇注位置选择示意 (6)

3.2浇注位置方案比较 (7)

4 分型面的确定 (8)

4.1分型面选择方安示意 (8)

4.2分型面选取的方案比较 (9)

5 铸造工艺参数的确定 (10)

5.1铸造收缩率 (10)

5.2机械加工余量 (10)

5.3铸件尺寸公差 (11)

5.4起模斜度的确定 (11)

5.5最小铸出孔和槽的尺寸 (12)

6 砂芯的设计 (12)

6.1芯头的设计 (13)

6.2压环,积砂槽的设计 (14)

7 冒口的设计 (14)

7.1铸件各部分模数的计算 (14)

7.2外冷铁的计算 (16)

7.3冒口尺寸的确定 (17)

7.3.1顶圆柱形明冒口与校核 (17)

7.3.2顶腰圆形明冒口与校核 (19)

20

7.3.3顶环形明冒口与校核 (19)

8 浇注系统的设计 (21)

8.1浇注系统的类型 (21)

8.2确定内浇道在铸件上的位置,数量和金属液引入方向 (21)

8.3包孔直径的选择 (22)

8.4计算浇注时间并核算金属夜上升速度 (22)

8.5浇注系统各组元截面积的计算 (23)

8.6浇口窝的设计 (23)

8.7浇口杯的设计 (24)

9砂箱设计 (24)

9.1砂箱壁的结构形式和尺寸 (24)

9.2砂箱外壁加强肋的布置形式和尺寸 (25)

9.3砂箱箱带的布置形式和尺寸 (26)

9.4砂箱吊运部分的结构和尺寸 (27)

10模底板设计 (29)

11芯盒的设计 (30)

11.1砂芯的修改 (30)

11.2芯骨的设计 (31)

11.3通气孔的设计 (32)

11.4芯盒的设计 (32)

11.5砂芯制作的步骤 (33)

12铸件凝固过程的模拟及分析 (33)

12.1铸件的凝固过程示意图 (34)

12.2铸件凝固完全后缩孔、缩松的分布 (35)

12.3铸件凝固过程的分析 (36)

13工艺调整方案 (37)

14关键环节质量控制 (37)

参考文献 (37)

20

摘要

本作品主要对ZG06C r13Ni4M o材质的上冠铸件进行了工艺设计。主要包括铸件结构的工艺分析及其技术条件的审查,型砂、涂料、造型、造芯方案和浇注位置的确定,分型面和铸造工艺参数的选取,砂芯、浇注系统的设计,冒口的选取与放置,模具、芯盒和模底板的设计、铸件的模拟结果分析等内容。

1 零件结构及其技术条件的审查

1.1 铸件结构的工艺性分析

生产铸件不仅需要采用先进合理的铸造工艺和设备,而且还要使零件结构本身符合铸造生产要求,易于保证铸件品质,简化铸造工艺过程。本次设计零件的零件图如图1.1,三维Proe造型如图1.2。

图1.1 上冠零件图

20

图1.2 零件三维图

对零件图纸分析可知上冠铸件最大径上尺寸为1510mm,高度尺寸622.8mm,质量为1950Kg,材质要求ZG06Cr13Ni4Mo低碳马氏体不锈钢,化学成分如下表1.1。

表1.1 ZG06Cr13Ni4Mo化学成分表(质量分数%)

根据零件图的技术要求结合铸造工艺可知设计的铸件应满足以下要求:

(1)铸件应有合适的壁厚

每一种铸造合金的铸件,都有其合适的壁厚范围,如果选择得当,即可保证铸件的力学性能要求,又可方便铸造生产;同时还能节约金属,减轻铸件质量。为了避免浇不到、冷隔等缺陷,铸件壁不应太薄,由零件图可知铸件最大壁厚为170mm,最小壁厚为25mm,查《铸造工程师手册》表6-6知最大轮廓尺寸在1250mm~2000mm之间的不锈钢铸件的最小壁厚为20mm~25mm,因此上冠铸件壁厚满足最小壁厚的要求。

(2)铸件结构不应造成严重的收缩阻碍

注意壁厚过度和圆角,两壁交接若成直角易形成热节,铸件收缩时阻力较大,在此处经常出现热裂。铸件薄厚壁相接拐弯,等厚度的壁与壁的各种交接,都应

20

采用逐渐过渡和转变的形式,使用较大的圆角相连接,避免因应力集中导致出现裂纹缺陷。由零件图可知,铸件中成直角相接的两壁薄厚壁相接都用圆角过度,且圆角半径均满足设计要求。

1.2 技术条件的审查

按照设计要求,上冠铸件应作正回火处理;铸件材料及机械性能应符合

JB/T10264-2001的要求;粗加工后按GB7233-87标准作超声波探伤检查,达Ⅱ级要求;过流面加工后按GB/T9444-1988进行磁粉探伤达Ⅱ级要求;同炉浇注试验棒,回厂做化学成分和机械性能复核试验;过流面用样板检查。

由于上冠过流面需要数控加工,对铸件尺寸精度要求较高,这部分的力学性能、铸件质量和铸件精度需要首要保证,因此在确定浇注位置时,必须保证过流面型线不被破坏。

2 型砂,造型、造芯方法的选择

2.1 型砂

铸件本身为低碳不锈钢,对型砂性能要求较高。在综合考虑表面质量,尺寸精度,生产实践和经济性等因素决定:面砂采用呋喃树脂铬铁矿砂、背砂采用水玻璃石英砂、而芯砂也采用呋喃树脂铬铁矿砂。造型用面砂、芯砂必须全用新砂,不得选用回用砂。新砂选用擦洗砂,SiO

含量不低于

2

98%,角形系数不大于1.2,树脂选用无氮呋喃树脂,加入量为型砂的1.0%,固化剂选用对甲苯磺酸类固化剂加入量为树脂的45%,型砂背砂可选用部分回用砂。

呋喃树脂铬铁矿砂常温强度高,树脂加入量少,耗砂量少;高温强度高,型砂耐热性好;树脂粘度小便于混砂;树脂稳定性好,可存放1~2年;树脂砂硬透性好;硬化性能好,在较低温度下可固化;生产的铸件具有毛坯尺寸精度高,铸件表面粗糙度低,铸造缺陷少等优点。

2.2 涂料

铸件材质为ZG06Cr13Ni4Mo,浇注温度较高,且对表面质量要求较高,须在接触金属液的部位全部刷涂涂料。根据有关资料结合生产实践,涂料的耐火骨料选用锆英粉、载体选用醇。施涂方法采用喷涂或刷涂,涂层厚

20

度0.75~1.0之间。锆英粉的耐火度很高,树脂不宜过烧,能有效的防止铸件表面粘砂,气孔、脉纹等缺陷。

2.3 造型方法

上冠铸件体积和质量都较大,属于中大型铸钢件,结合树脂砂流动性好,硬化时间短,硬化方法简单,不需捣固机紧实,模样强度高,表面稳定性好,铸件尺寸精度较高等铸造生产实践;经本组人员分析确定造型方法选用手工造型,且型砂应现混现用,不能一次性混制过多的型砂。

2.4 造芯方案

根据上冠铸件的结构特征,其内部空腔部分需用砂芯形成。造芯材料选用耐火度高的锆英砂。为适应手工造型方法,造芯也选用手工造芯,芯盒采用垂直对开式木质芯盒,芯盒由左右两片组成,左右芯盒设有定位,夹紧装置。芯盒的分盒面垂直于填砂面,而砂芯支撑面与支撑面为同一平面。该种方法大大的减少了造芯的难度,由于芯盒周围的挡板可以拆下,不仅可以造出形状更加复杂的砂芯而且砂芯起模更加方便,可以去掉砂芯的拔模斜度,使铸件的尺寸更加精确,更大程度的满足了生产实践的需求。

3 浇注位置的确定

3.1浇注位置选择示意

方案一:砂型呈水平放置,铸件以中心轴线呈水平状态放置,采用水平分型,在分型面上设置内浇口进行浇注。浇注位置如图3.1所示

图3.1 浇注位置方案一

20

方案二:砂型呈水平放置,铸件在型内竖直放置,铸件小端在下大端在上,整体位于下型,采用水平分型,在分型面上设置内浇道进行浇注。

浇注位置如图3.2所示

图3.2 浇注位置方案二

方案三:砂型呈水平放置,铸件在型内竖直放置,铸件大端在下小端在上,整体位于上型,采用水平分型,在分型面上设置内浇道进行浇注。

浇注位置如图3.3所示

图3.3 浇注位置方案三

3.2浇注位置方案比较

方案一铸件水平放置,内部空腔可采用水平砂芯形成,而外部凹陷部分需要用外部砂芯形成。由于砂芯尺寸较大且水平放置,不利于排出砂芯中的气体,容易形成气孔缺陷。该方案分型面要经过中心轴线,将铸件分为上下半型,在合箱时容易产生偏差,很难保证铸件重要加工面的尺寸

20

精度和上冠过流面的完整性。而且,铸件热节部位处在侧面,不利于冒口的安放,严重影响铸件的质量

方案二铸件在型内竖直放置,整体位于同一半型,能够保证铸件同心和重要加工面的完整性。形成内腔的砂芯呈垂直放置,不仅便于砂芯的安放与固定,而且有利于排出砂芯中的气体。上冠过流面作为铸件的重要加工部位处于铸型底部,避免了由于钢液中渣粒和气体的上浮引起的夹渣、气孔等铸造缺陷,同时在上部钢液的压力作用下凝固,使其组织更加致密,获得更好的金属质量。铸件热节部位全部朝上,有利于铸件的顺序凝固,便于冒口的安放,获得较好的补缩效果,很好的保证了铸件的整体质量。

方案三铸件在型内竖直放置,整体位于上半型,能够保证铸件同心和重要加工面的完整性。形成内腔的砂芯呈垂直放置,不仅便于砂芯的安放与固定,而且有利于排出砂芯中的气体,凹陷部位朝下放置,是吊砂转变为砂台,保证了砂型的强度。但是铸件的重要加工面朝上放置,容易形成夹渣、凹陷、集中缩孔等铸造缺陷,致密性难于保证,严重影响铸件重要加工面的质量。而且铸件热节部位朝下放置,不利于冒口的安放和补缩。

终上所述:浇注位置方案二较为合适,将其确定为浇注位置的最终方案。

4 分型面的确定

4.1分型面选择方安示意

方案一:铸件在铸型内呈竖直放置,分型面选在铸件内腔最大水平面处,采用中注式浇注系统,内浇道开设在分型面上。

分型位置如图4.1所示

图4.1 分型面方案一

20

方案二:铸件在铸型内呈竖直放置,分型面选在铸件最顶部外轮廓,铸件整体位于下型,采用顶注式浇注系统,内浇道开设在分型面上。

分型位置如图4.2所示

图4.2 分型面方案二

4.2分型面选取的方案比较

方案一:分型面选在铸件内腔最大水平面处,将铸件从中间分为上下半型,不容易起模,容易在分型面处形成毛边,破坏了重要加工面的完整性。而且由于上冠是转轮上部件,需绕轴旋转,必须保证同轴。然而该方案上下半型在合箱时用以产生错箱偏差,很难保证上下两部分同轴,且由于合箱不严,在垂直分型面方面总会保持一定“厚度”误差,很难保证尺寸精度。

方案二:分型面选在铸件最顶部外轮廓,铸件整体位于下型,起模容易,保证了重要加工面的完整性与尺寸精度。大部分型腔位于下型有利于型腔尺寸的检验,方便下芯与喷刷涂料。采用顶注式浇注系统,内浇道开设在分型面上,容易保证足够的压头,得到组织致密的铸件,避免浇不足,冷隔等缺陷,且铸件热节区位于分型面部位,便于冒口的设置。

综上所述:方案二的分型面选取比较合理,将其确定为最终的分型方案。

20

20 5 铸造工艺参数的确定

5.1 铸造收缩率 铸造收缩率又称铸件线收缩率,用模样与铸件的长度差除以模样长度的百分比表示: ε=[(L1?L2)L1

]×100% 式中,ε—铸造收缩率;L 1—模样长度,L 2—铸件长度。

上冠铸件可视为简单厚实件,材料为含铬高合金钢,收缩方式为自由收缩。由《铸造工程师手册》表6-24查得该铸件的自由收缩率为1.3%~1.7%,但是联系实际,工厂一般所用的缩尺型号,从而确定铸造收缩率为2%。

5.2 机械加工余量

由前面可知,上冠铸件为单件生产,铸型为干砂型,其最大轮廓尺寸为φ1510mm ,由《铸造工程师手册》表6-37查得铸件机械加工余量等级为

13?15J 可取为14J ,再根据表6-38查得该公等级所对应的机械加工余量为17mm ~

23mm ,其中小值为双侧加工时的加工余量,大值为单侧加工时的加工余量。

由于上冠为旋转体零件,圆周面可视为双面加工,所以加工余量取17mm 。根据生产经验,砂型铸造的铸件其顶面(相对于浇注位置)的机械加工余量等级应比底侧面的加工余量大一些,所以顶面的机械加工余量可取为

20mm 。上冠铸件孔的最大直径为500mm ,高为613mm ,机械加工余量等级为14

J ,根据表6-38查得该公等级所对应的机械加工余量为13mm ~18mm ,由于孔可看为双面加工,故加工余量取13mm 。根据上冠铸件的浇注位置可知,铸件的底面组织较为致密,不容易出现铸造缺,可取小的机械加工余量,为了减少加工余量数值种类,方便机械加工,底面可以使用与孔相同的加工余量,故底面的加工余量取为13mm 。

5.3 铸件尺寸公差

上冠零件的最大轮廓尺寸为φ1510,铸型为干砂型,由《铸造工程师手册》表6-28查得该铸件的尺寸公差等级为13~15,与机械加工余量的选取相适应,取尺寸公差等级为CT14

5.4 起模斜度的确定

为了方便起模,再模样和砂芯的出模方向留有一定的斜度,以免损坏砂型或砂芯。这个斜度称为起模斜度。起模斜度应在铸件上没有结构斜度的垂直于分型面的表面上使用,其大小以模样的起模高度表面粗糙度以及造型方法而定。

由于上冠铸件的外圆周面下半部分可近似为倒圆锥形,在起模方向上本身就已经有足够的斜度无需另加起模斜度。由于制芯所用的芯盒采用垂直对开式木质芯盒,芯盒由左右两片组成,砂芯无需设置起模斜度。因此该铸件只需在外圆周面上部①面和顶部凹槽处内表面②面、③面处设置起模

斜度。外圆周面上部高度为147mm,

凹槽处内表面高度分别为55mm和95mm,有《铸造工程师手册》表6-41查得三个面上的起模斜度分别为0°40′、0°55′、0°55′。又由于砂型造型时,凹槽处内表面的起模斜度值允许按表6-41增加50%,因此确定凹槽处内表面的起模斜度为1°30′。

图5.1起模斜度

20

5.5 最小铸出孔和槽的尺寸

机械零件上往往有很多孔、槽和台阶,一般应尽可能在铸造时铸出。这样既可节约金属,减少机械加工的工作量、降低成本,又可使铸件壁厚比较均匀,减少形成缩孔、缩松等铸造缺陷的倾向。但是,当铸件上的孔,槽尺寸太小,而铸件的壁厚又较厚和金属压力较高时,反而会使铸件产生粘砂,造成清理和机械加工困难。有些孔,槽尺寸要求很精确,或者铸造工艺非常复杂都不便于铸出。因此在确定零件上的孔和槽是否铸出时,必须既考虑到铸出这些孔和槽的可能性,又要考虑到铸出这些孔和槽的必要性和经济性。

经过铸件结构分析,只有上冠顶部有一个凹槽。根据《铸造工程师手册》表6-45可知,铸钢件上不穿透的槽铸出的条件是:h≤d1,d1≥(1+20%)d 各部分尺寸如图5.2所示:

图5.2 最小铸出槽

铸件上凹槽的尺寸为h=130mm,d=215mm,d=93mm代入上述公式满足最小铸出槽的条件。

6 砂芯的设计

根据上冠铸件的结构特征,为了便于造型,保证铸件内部空腔的完整性和尺寸精度,内部空腔需用砂芯来形成,砂芯的外形如图6.1所示:

20

图6.1 砂芯形状

6.1 芯头的设计

砂芯在砂型中的位置一般用芯头固定,对于垂直芯头为了保证其轴线垂直、牢固地固定在砂型上,必须有足够的芯头尺寸,对于细高的直立式砂芯,常将下芯头尺寸加大。

分析铸件结构可得到砂芯的实际计算高度为:H=645.32mm

砂芯的上端直径为:D

1

=274mm;下端直径为:D=164mm

由《铸造工程师手册》表6-56查得垂直下芯头的高度为:h=45~65mm取h=60mm。

再查表6-56可得垂直上芯头的高度为h1=65mm

由表6-57查得上、下芯头的斜度分别为α

1

=11,α=5

由表6-58查得垂直芯头与芯座的间隙为s=2mm

由于该砂芯的上部截面积大而下部截面积小,且砂芯高度较大,如果下部芯头尺寸太小,就不能起到很好的固定作用。为了使砂芯在砂型中比较

稳固,采用扩大下芯头直径的办法来满足工艺要求,见图6.2,可取D

2

=(1.5~2)D。

取D

2

=1.5D=1.5×164=246mm由于铸件底面最大直径为242.28mm,如

果D

2大于该值则不利于起模,如果去掉芯头两边的间隙,可取D

2

=240mm。

20

图6.2 加大下芯头示意图

6.2 压环,积砂槽的设计

在湿型大批量机器造型生产中,为了加速下芯、合芯及保证铸件质量,在芯头的模样上常常做出压环、防压环和集砂槽。

由于上冠铸件的铸造方法为手工造型,且铸型为干型所以无需设置压环与积砂槽。

但是由于砂芯上部芯头留有芯头间隙,在浇注过程中砂芯可能会在金属液的浮力下上浮,造成误差。为了防止这一现象的出现,可以在上芯头顶面放一个环形的石棉绳,来实现砂芯垂直方向的固定。石棉绳的直径可取为4mm。

7 冒口的设计

上冠所用的材质为超低碳马氏体不锈钢,收缩率较大,合金由液态转变为固态时,体积要显著地缩小,往往会在凝固后的铸件内那些模数较大的部位产生缩孔和缩松。为了得到组织致密的铸件,就必须在补缩通道上设置冒口,用以补偿铸件成型过程中可能产生收缩所需的金属液,防止缩孔、缩松的产生,并起到排气和集渣的作用。

7.1 铸件各部分模数的计算

根据铸造工艺手册查得模数的计算公式如下:M=V

A

式中V为铸件体积cm3、A

铸件传热表面积cm2

20

20

铸件图如图7.1,根据图计算如下:

图7.1 模数计算图

M1=ab ()=308×203()=9.2cm M2=T 2=1002

=5cm M3=T 2=872

=4.35cm M4=R =D 2=1132

=5.7cm 式中,M 1—铸件中间部分的模数;a —杆的横断面长度;b —杆的高度;c —非散热面长度;M 2—圆角根部模数,式中的T 为该部的最大厚度;M 3—板末端的模数,式中的T 为该部的最大厚度;M 4—看成“

L ”形,形成圆角部分的模数;D —形成热节圆的直径,R 为半径。

从各部分模数可以看出M 3M 2M 1之间有很理想的模数梯度,只是M 4>M 3,为了形成补缩的模数梯度,必须要降低M 4的模数,而降低的手段只能是设置外冷铁,以控制顺序凝固,保证铸件致密。

7.2 外冷铁的计算

M4处所需外冷铁重量可按下式计算:

G=7.4V M0?Mr

M0

(7.1)

式中,G—外冷铁重量;V—欲放置外冷铁处的铸件体积;M0—放置外冷铁处铸件的原始模数;M r—放置外冷铁处假象减少后的模数。

M r的确定,总的原则应使M r

Mr=M3

1.25

=

4.35

1.25

=3.48cm

V=138×110×1460×3.14=69.6dm3代入(7.1)式得到所需冷铁重量为:

有气隙式冷铁所需设置冷铁的表面积为

A=V0?(M0?Mr)

2M0Mr

=

69600?(4.35?3.48)

2×3.48×4.35

=2000

由计算得出,在轮缘外圈表面积(6691cm2)上需设置冷铁的表面积为2000cm2,采用10块尺寸为132mm(高)×160mm(宽)×80mm(厚)的冷铁,外形随铸件表面形状。

与铸件接触的冷铁总面积为:10×13.2cm×16cm=2080cm2满足表面积的条件。

冷铁的总质量为:10×(1.32dm×1.6dm×0.8dm×7.8kg/dm3)=113.5kg 满足冷铁的质量要求。

取冷铁的厚度为70mm,冷铁厚度δ>1.5M r,根据《铸造手册第五卷》第418页热平衡计算式(3-140),冷铁厚度也满足要求。

综上可得采用的冷铁尺寸满足所需的各项计算要求,从而确定冷铁数量10个均匀分布外圆周面,尺寸为132mm(高)×160mm(宽)×80mm(厚),位置如图7.2所示

20

20 图7.2 冷铁位置

7.3 冒口尺寸的确定

7.3.1顶圆柱形明冒口与校核

(1)顶圆柱形明冒口尺寸确定

由铸件各部分模数可知,需在模数最大处及铸件中间部分顶部设置冒口,进行补缩,冒口种类为顶圆柱形明冒口。首先确定铸钢件冒口的有效补缩距离从而确定冒口的数量,冒口的补缩距离=冒口作用区长度+末端区长度。该部分铸件为环形件可等效为杆状件,长约为2100mm 宽度为318mm ,厚度为213mm ,宽厚比约为1.5:1,由《铸造工程师手册》图6-154和图6-155分别查得冒口作用区长度约为230mm ,末端区长度约为320mm 。由于该铸件为环形件无铸件的末端区,因此由冒口作用区长度和冒口直径决定冒口数量,经计算初步确定冒口数量为3个。

冒口的模数:M r =fM c (对于顶明冒口,取

f=1.2)将M c =9.2cm 代入上式得

M R =fM c =1.2×9.2=11.04cm

查《铸造工程师手册》表6-135得

冒口底部直径为d=560mm

冒口高度为h=840mm

图7.3 圆柱形明冒口冒口的体积为V R =251L

(2)冒口补缩能力的校核

用模数法计算出来的冒口尺寸,只能说明冒口晚于铸件凝固,冒口下没有缩孔,而不能说明冒口是否能够足以补缩铸件,所以必须用铸件所需补给量来验算冒口尺寸。冒口必须提供足够的金属液,以补偿铸件及冒口在凝固完毕前的体积收缩和因型壁移动而扩大的容积,使得缩孔不至于延伸到铸件内。为此应满足下列条件:

ζ(V件+V回)+V扩≤V回η

式中:

V件,V回,V扩—铸件体积,冒口体积和因型壁移动而扩大的体积,V扩值对于舂砂紧实的干近似为零。

ζ—金属从浇注完到凝固完毕的体积收缩率。

η—冒口的补缩效率。

经计算V件=114.3L

合金钢的体积收缩率对于不同的钢种(化学成分)有不同的数值,对于这种ZG06Cr13Ni4Mo马氏体不锈钢可按下面公式计算:

ζ=ζ

0+ζ

r

+ΣK

i

ω

i

碳及其它合金元素对凝固收缩率的影响均能查《铸造工艺学》表4-3

得到,代入上式进行计算,求得ζ=6%。

圆柱形明冒口的补缩效率可查《铸造工艺学》表4-5得到η=1.4%则

ζ(V件+V回)+V扩=6×(1143+753)=5203.8L≤V回η=753×14=10542L

说明冒口有足够的金属液补缩铸件。

由于该冒口的底面直径较大,高度较高,在铸件上不易设置,消耗金属量较大,铸件的工艺出品率较低。查资料了解到这样生产出来的上冠铸件,经超声波探伤后,常有一些夹渣性质的缺陷产生,其原因与冒口的浮渣作用不良由很大的作用。

为了克服这些缺点,采用腰圆形冒口来代替分散冒口的工艺设计方案,即可使操作简单,又可提高冒口的利用率和铸件的工艺出品率。优点是有利于渣等渣物顺利的上浮到冒口内。

20

7.3.2顶腰圆形明冒口与校核

(1)冒口尺寸

由方案一可知所补缩铸件的长度约为2100mm,铸件冒口作用区长度为230mm,末端区长度为320mm ,由于该铸件为环形件无铸件的末端区,因此由冒口作用区长度和冒口直径决定冒口数量,经计算初步确定冒口数量为2个。

冒口的模数:M

R =fM

c

(对于顶明冒口,取f=1.2)将M

c

=9.2cm代入上式

得:

M

R =fM

c

=1.2×9.2=11.04cm

由《铸造工程师手册》表6-137查得

冒口底部宽度为:a=440mm

冒口底部最大长度为:b=880mm

冒口高度为:h=660mm

冒口体积为:V

R

=262L图7.5 腰圆形冒口示意图

(2)冒口补缩能力的校核

步骤同方案一,但是腰圆柱形明冒口的补缩效率可查《铸造工艺学》表4-5得到η=1.4% 则

ζ(V件+V回)+V扩=6×(1143+524)=997.8L≤V回η=524×14=7336L

说明冒口有足够的金属液补缩铸件。

采用腰圆柱形明冒口铸件工艺出品率仍然较低,仍然会出现一些夹渣性质的缺陷,为了提高工艺出品率和冒口的利用率改为环形明冒口,而且采用环形冒口补缩均匀,克服了圆柱形冒口和腰圆形冒口的偏析问题。7.3.3顶环形明冒口与校核

(1)冒口尺寸

根据铸件的最大模数M

1

来设计环形冒口的尺寸,环形冒口的模数为

Mr=S

L

20

泵盖铸造工艺设计说明书

课程设计说明书 泵盖铸造工艺设计 院系:机械工程学院 专业:材料成型及控制工程 班级: 姓名: 学号: 指导老师: 时间:

目录 1.铸造工艺分析 (1) 1.1零件介绍 (1) 1.2零件生产方式选择 (1) 1.3技术要求分析 (1) 1.4 合金铸造性能分析 (2) 2.确定铸造工艺方案 (2) 2.1确定铸造方法 (2) 2.2确定浇注位置和分型面 (2) 2.3确定型内铸件数目 (3) 2.4不铸出孔及槽的确定 (3) 2.5机械加工余量和铸造圆角的确定 (3) 2.6起模斜度和分型负数的确定 (5) 2.7砂芯的确定 (7) 2.8铸造收缩率的确定 (7) 2.9冒口的确定 (7) 2.10浇注系统的确定 (8) 3.芯盒的设计 (9) 3.1芯盒材质和分盒方式的确定 (9) 4.总结 (9) 参考资料 (10)

1.铸造工艺分析 零件简介: 1.1零件介绍: 零件名称:泵盖 零件材料:HT200 1.2零件生产方式选择: 大批量生产,零件图如下:

1.3技术要求分析 按照国家标准,对于HT200,其抗拉强度应达到200Mpa。铸件在使用时工作条件较好,但此铸件需起隔爆作用,按照技术要求,需在粗加工后进行时效处理及相应的热处理工艺。另外,铸件清砂后,焖火铲除毛刺喷砂后喷G04-6铁红过氯乙烯底漆。除此外无特殊技术要求。 注:其中φ21H7内孔为重要加工面,不允许存在气孔、夹砂等铸造缺陷。 1.4 合金铸造性能分析 灰铸铁具有良好的铸造性能: (1)流动性。灰铸铁的熔点较低,结晶温度范围较小,在适宜的浇注温度下,具有良好的流动性,容易填充形状复杂的薄壁铸件,且不易产生气孔、浇不足、冷隔等缺陷。 (2)收缩性。灰铸铁的浇注温度较低,凝固中发生共析石墨化转变,使其线收缩小,产生的铸造应力也较小,所以铸件出现翘曲变形和开裂的倾向以及形成缩孔、缩松的倾向都较小。 (3)灰铁充型能力好,强度较高,耐磨、耐热性好,减振性良好,铸造性较好,但需人工时效。 2.确定铸造工艺方案 2.1确定铸造方法 铸件材质为HT200,,其轮廓尺寸25×φ110,属中小件,联结结构合理,符合灰铸铁铸造要求,可以进行铸造工艺设计。采用湿砂型机器造型大批量生产。 采用湿砂型机器脱箱造型,热芯盒水玻璃砂射芯机制芯。 2.2确定浇注位置和分型面 浇注位置选择原则: (1)重要加工面应朝下或呈直立状态; (2)铸件的大平面应朝下; (3)应有利于铸件的补缩; (4)应保证铸件有良好的金属液导入位置,保证铸件能充满; (5)应尽量少用或不用砂芯; (6)应使合型、浇注和补缩位置一致。

(工艺技术)第章铸造工艺设计基础

第1章铸造工艺设计基础 § 1-1零件结构的铸造工艺性分析 § 1-2铸造工艺方案的确定 § 1-3铸造工艺参数的确定 § 1-4砂芯设计 铸造生产周期较长,工艺复杂繁多。为了保证铸件质量,铸造工作者应根据铸件特点,技术条件和生产批量等制订正确的工艺方案,编制合理的铸造工艺流程,在确保铸件质量的 前提下,尽可能地降低生产成本和改善生产劳动条件。本章主要介绍铸造工艺设计的基础知 识,使学生掌握设计方法,学会查阅资料,培养分析问题和解决问题的能力。 § 1-1零件结构的铸造工艺性分析 铸造工艺性,是指零件结构既有利于铸造工艺过程的顺利进行,又有利于保证铸件质量。 还可定义为:铸造零件的结构除了应符合机器设备本身的使用性能和机械加工的要求外,还应符合铸造工艺的要求。这种对铸造工艺过程来说的铸件结构的合理性称为铸件的铸造工艺性。 另定义:铸造工艺性是指零件的结构应符合铸造生产的要求,易于保证铸件品质,简化 铸造工艺过程和降低成本。 铸造工艺性不好,不仅给铸造生产带来麻烦,不便于操作,还会造成铸件缺陷。因此,为了简化铸造工艺,确保铸件质量,要求铸件必须具有合理的结构。 一、铸件质量对铸件结构的要求 1 .铸件应有合理的壁厚 某些铸件缺陷的产生,往往是由于铸件结构设计不合理而造成的。采用合理的铸件结构,可防止许多缺陷。 每一种铸造合金,都有一个合适的壁厚范围,选择得当,既可保证铸件性能(机械性能)要求,又便于铸造生产。在确定铸件壁厚时一般应综合考虑以下三个方面:保证铸件达到所需要的强度和刚度;尽可能节约金属;铸造时没有多大困难。 (1 )壁厚应不小于最小壁厚 在一定的铸造条件下,铸造合金能充满铸型的最小壁厚称为该铸造合金的最小壁厚。为了避免铸件的浇不足和冷隔等缺陷,应使铸件的设计壁厚不小于最小壁厚。各种铸造工艺条件下,铸件最小允许壁厚见表7-1?表7-5 表1-1砂型铸造时铸件最小允许壁厚(单位:mm) 合金种类铸件最大轮廓尺寸为下列值时/ mm

铸造生产的工艺流程

铸造生产的工艺流程 铸造生产是一个复杂的多工序组合的工艺过程,它包括以下主要工序: 1)生产工艺准备,根据要生产的零件图、生产批量和交货期限,制定生产工艺方案和工艺文件,绘制铸造工艺图; 2)生产准备,包括准备熔化用材料、造型制芯用材料和模样、芯盒、砂箱等工艺装备; 3)造型与制芯; 4)熔化与浇注; 5)落砂清理与铸件检验等主要工序。 成形原理 铸造生产是将金属加热熔化,使其具有流动性,然后浇入到具有一定形状的铸型型腔中,在重力或外力(压力、离心力、电磁力等)的作用下充满型腔,冷却并凝固成铸件(或零件)的一种金属成形方法。

图1 铸造成形过程 铸件一般作为毛坯经切削加工成为零件。但也有许多铸件无需切削加工就能满足零件的设计精度和表面粗糙度要求,直接作为零件使用。 型砂的性能及组成 1、型砂的性能 型砂(含芯砂)的主要性能要求有强度、透气性、耐火度、退让性、流动性、紧实率和溃散性等。 2、型砂的组成 型砂由原砂、粘接剂和附加物组成。铸造用原砂要求含泥量少、颗粒均匀、形状为圆形和多角形的海砂、河砂或山砂等。铸造用粘接剂有粘土(普通粘土和膨润土)、水玻璃砂、树脂、合脂油和植物油等,分别称为粘土砂,水玻璃砂、树脂砂、合脂油砂和植物油砂等。为了进一步提高型(芯)砂的某些性能,往往要在型(芯)砂中加入一些附加物,如煤粉、锯末、纸浆等。型砂结构,如图2所示。 图2 型砂结构示意图 工艺特点 铸造是生产零件毛坯的主要方法之一,尤其对于有些脆性金属或合金材料(如各种铸铁件、有色合金铸件等)的零件毛坯,铸造几乎是唯一的加工方法。与其它加工方法相比,铸造工艺具有以下特点: 1)铸件可以不受金属材料、尺寸大小和重量的限制。铸件材料可以是各种铸铁、铸钢、铝合金、铜合金、镁合金、钛合金、锌合金和各种特殊合金材料;铸件可以小至几克,大到数百吨;铸件壁厚可以从0.5毫米到1米左右;铸件长度可以从几毫米到十几米。 2)铸造可以生产各种形状复杂的毛坯,特别适用于生产具有复杂内腔的零件毛坯,如各种箱体、缸体、叶片、叶轮等。 3)铸件的形状和大小可以与零件很接近,既节约金属材料,又省切削加工工时。4)铸件一般使用的原材料来源广、铸件成本低。 5)铸造工艺灵活,生产率高,既可以手工生产,也可以机械化生产。 铸件的手工造型

铸造工艺实训说明书

铸造实训报告 实训内容:熔模精密铸造 实训地点:材控大学生创新实验室指导老师:王华 姓名:马晓辉 班级:材控093班 学号:0914054131

1. 工艺实训的内容及目的 熔模精密铸造是在古代蜡模铸造的基础上发展起来的,作为文明古国,中国是使用这一技术 较早的国家之一,远在公元前数百年,我国古代劳动人民就创造了这种失蜡铸造技术,用来铸造带有各种精细花纹和文字的钟鼎及器皿等制品,如春秋时的曾侯乙墓尊盘等。 现代熔模铸造方法在工业生产中得到实际应用是在二十世纪四十年代,航空工业的发展推动了熔模铸造的应用,而熔模铸造的不断改进和完善,也为航空工业和其他各行业进一步发展创造了有利的条件。本实训旨在通过工艺品熔模铸造,使学生切实进行铸造产品从零件工艺性分析、模具制作、铸型制备、工艺设计、浇注、清理等生产全过程训练,真正达到提高本专业学生工程实践动手能力的目的。 2 工艺品制作工艺方案的设计与选择 2.1 工艺品选择及工艺性分析 熔模铸造具有铸件尺寸精度及表面光洁度较高,浇注金属类型范围广,生产批量无限制等优点。工艺品可自己选择,在实验教师指导下完成工艺性分析。 2.2 工艺品制作工艺方案的选择 工艺品原型(举例): 图2.1 工艺品原型图 2.3 工艺品制作工艺方案设计 工艺品制作的工艺流程为:将设计好的作品(工艺品原型),以硅胶加硅油按适当比例,用油漆刷均匀分层涂刷在工艺品上,使工艺品平均刷满硅胶。硅胶和硅油必须有适当的比例,才能有良好的韧性与耐用性。如果急欲完成硅胶模,加了过量的硅油或硬化剂,虽可大大地缩短硅胶凝固成型时间,却会造成硅胶延展性不够。在取工艺品蜡模时,极易拉断蜡模,从而无法做出完整精细的作品,所以一定要小心取蜡模;同时,硅胶模易脆化、使用次数不多,所以也要耐心等待硅胶模自然成型后再小心脱模。要确保硅胶模有良好的韧性和延展性的关键是:必须分层次地将调好的硅胶油很平均地刷在粗细不一的工艺品表面。虽作品粗细不一,但均须使硅胶模均匀成型,一层干了之后,再刷第二层、第三层,直至达到均匀涂层的硅胶模,才是一个适于创作的、耐用的好模。工艺品原型我们称之为阳模;而利用硅胶涂布其上成型的,称之为阴模(内部空心)。选择适当分界线,利用美工刀将硅胶模局部划开,将工艺品原型取出来,再将硅胶模分界线对好用硅胶修复,形成空心模。此时将达到适当熔点的蜡,适量地倒入硅胶模中,灌满模型,而后静止等待使蜡自然冷却成型。所

铸造工艺学设计说明书

铸造工艺设计说明书 零件名称:联轴器 指导老师:范宏训 设计人:邱满元 学号:T833-1-34

目录 1零件概述 (1) 1.1零件信息 (1) 1.2技术要求 (2) 2铸造工艺方案拟定 (2) 2.1 分型面选择 (3) 2.2浇注位置选择 (4) 3铸造主要参数 (4) 4 浇注系统设计计算 (4) 5 冒口设计 (5) 6砂芯设计 (6) 7模板 (7) 8 参考文献 (9) 9总结 (9)

1零件概述 1.1零件信息 名称:联轴器材料:球墨铸铁 外形尺寸:φ120X80 体积: 298.4cm2 质量: 2.16kg 生产批量:大批量生产零件二位图如下图所示 零件三维图如图1.1所示 图1.1 联轴器三维图

1.2技术要求 (1)铸件加工后,加工面不得有任何的铸造缺陷,非加工表面不得有明显 的夹渣、凹陷、砂眼和裂纹;。 (2)该零件配合方式为过盈配合; (3)保证该件受力较大的工作部分的力学性能。 2铸造工艺方案拟定 1 、铸造工艺图如图所示,分型面、加工余量、拔模斜度如图所示 对于单个零件,其冒口及浇注系统初步定为如下图所示,浇注位置和冒 口正好选在热节最大的地方 冒口 浇注系统

选择分型面的理由:1、保证铸件大部分位于下箱,温度分布较为合理,冒口 位置设计较为方便,便于补缩; 2、有要求的加工面都位于下型腔,其质量得到保证 3、铸件主要工艺参数的选择 加工余量——根据零件服役条件及加工部位精度要求,该零件主要工作面及尺寸有配合要求的部位是零件中间的连接孔,取加工余量3mm ,其他部位无; 收缩率——球墨铸铁,查表得收缩率为0.8%-1.2%,取ε=1.0% 拔模斜度——便于铸件从型腔中取出,取各处拔模斜度为1° 铸件质量——在增加铸件拔模斜度等工艺参数后计算的铸件体积为 298.4cm2,质量为2.16kg 4 浇注系统设计计算 铁液经球化,孕育处理后,温度下降,易氧化。因此要求浇注系统能大流量输送铁液,又有一定的挡渣能力。故薄壁小型球墨铸铁常用的封闭式浇注方式,它充型速度较快,又有挡渣能力,充型平稳。 用奥赞公式如公式4.1可计算阻流截面积: p L g H ut A 31.0G =∑ Gl 为浇注重量,该铸件质量Gc ≈2.16kg 出品率 %75~60=η,估算Gl=Gc/η≈2.5kg u 浇注系统流量损耗因素,查表得干型中小铸型阻力5.0≈u t 浇注时间 ,由 t=s √Gl 取=t 3s p H 为平均静压力头高度。 该方案可近似认为是中间浇注式,Hp ≈Ho-C/8。 式中C 为零件高度C ≈80cm ,0H 取140mm 得p H =130mm 。 故最小面积: 21335.031.0.5x82411.9cm A g ==???∑

铸造工艺

铸造种类很多,按造型方法习惯上分为:①普通砂型铸造,包括湿砂型、干砂型和化学硬化砂型3类。②特种铸造,按造型材料又可分为以天然矿产砂石为主要造型材料的特种铸造(如熔模铸造、泥型铸造、铸造车间壳型铸造、负压铸造、实型铸造、陶瓷型铸造等)和以金属为主要铸型材料的特种铸造(如金属型铸造、压力铸造、连续铸造、低压铸造、离心铸造等)两类。铸造工艺通常包括:①铸型(使液态金属成为固态铸件的容器)准备,铸型按所用材料可分为砂型、金属型、陶瓷型、泥型、石墨型等,按使用次数可分为一次性型、半永久型和永久型,铸型准备的优劣是影响铸件质量的主要因素;②铸造金属的熔化与浇注,铸造金属(铸造合金)主要有铸铁、铸钢和铸造有色合金;③铸件处理和检验,铸件处理包括清除型芯和铸件表面异物、切除浇冒口、铲磨毛刺和披缝等凸出物以及热处理、整形、防锈处理和粗加工等。 铸造工艺可分为三个基本部分,即铸造金属准备、铸型准备和铸件处理。铸造金属是指铸造生产中用于浇注铸件的金属材料,它是以一种金属元素为主要成分,并加入其他金属或非金属元素而组成的合金,习惯上称为铸造合金,主要有铸铁、铸钢和铸造有色合金。铝合金铸造工艺性能,通常理解为在充满铸型、结晶和冷却过程中表现最为突出的那些性能的综合。流动性、收缩性、气密性、铸造应力、吸气性(任何铝铸件均存在这些问题)。铝合金这些特性取决于合金的成分,但也与铸造因素、合金加热温度、铸型的复杂程度、浇冒口系统、浇口形状等有关。 (1)流动性 流动性是指合金液体充填铸型的能力。流动性的大小决定合金能否铸造复杂的铸件。在铝合金中共晶合金《共晶铝硅合金 (ZL102 、 YL102 、 ZL108 、 YL108 和 ZL109)》的流动性最好。 影响流动性的因素很多,主要是成分、温度以及合金液体中存在金属氧化物、金属化合物及其他污染物的固相颗粒,但外在的根本因素为浇注温度及浇注压力(俗称浇注压头)的高低。 实际生产中,在合金已确定的情况下,除了强化熔炼工艺(精炼与除渣)外,还必须改善铸型工艺性(砂模透气性、金属型模具排气及温度),并在不影响铸件质量的前提下提高浇注温度,保证合金的流动性。(这个度要靠经验来掌控,也是一个铸造技师,一辈子要研究的事) (2)收缩性 收缩性是铸造铝合金的主要特征之一。一般讲,合金从液体浇注到凝固,直至冷到室温,共分为三个阶段,分别为液态收缩、凝固收缩和固态收缩。合金的收缩性对铸件质量有决定性的影响,它影响着铸件的缩孔大小、应力的产生、裂纹的形成及尺寸的变化。通常铸件收缩又分为体收缩和线收缩,在实际生产中一般应用线收缩来衡量合金的收缩性。 铝合金收缩大小,通常以百分数来表示,称为收缩率。 ①体收缩 体收缩包括液体收缩与凝固收缩。 铸造合金液从浇注到凝固,在最后凝固的地方会出现宏观或显微收缩,这种因收缩引起的宏观缩孔肉眼可见,并分为集中缩孔和分散性缩孔。集中缩孔的孔径大而集中,并分布在铸件顶部或截面厚大的热节处。分散性缩孔形貌分散而细小,大部分分布在铸件轴心和热节部位。显微缩孔肉眼难以看到,显微缩孔大部分分布在晶界下或树枝晶的枝晶间。 缩孔和疏松是铸件的主要缺陷之一,产生的原因是液态收缩大于固态收缩。生产中发现,(我喜欢这句话,一看就是实际生产中中总结的)铸造铝合金凝固范围越小,越易形成集中缩孔,凝固范围越宽,越易形成分散性缩孔,因此,在设计中必须使铸造铝合金符合顺序凝固原则,即铸件在液态到凝固期间的体收缩应得到合金液的补充,是(使)缩孔和疏松集中在铸件外部冒口中。对易产生分散疏松的铝合金铸件,冒口设置数量比集中缩孔要多,并在易产生疏松处设置冷铁,加大局部冷却速度,使其同时或快速凝固。

铸造工艺设计实例

轴承座铸造工艺设计说明书 一、工艺分析 1、审阅零件图 仔细审阅零件图,熟悉零件图,而且提供的零件图必须清晰无误,有完整的尺寸和各种标记。仔细样。注意零件图的结构是否符合铸造工艺性,有两个方面:(1)审查零件结构是否符合铸造工艺 (2 )在既定的零件结构条件下,考虑铸造过程中可能出现的主要缺陷,在工艺设计中采取措施避 零件名称:轴承座 零件材料:HT150 生产批量:大批量生产 2、零件技术要求 铸件重要的工作表面,在铸造是不允许有气孔、砂眼、渣孔等缺陷。 3、选材的合理性 铸件所选材料是否合理,一般可以结合零件的使用要求、车间设备情况、技术状况和经济成本等, 用铸造合金(如铸钢、灰铸铁、球墨铸铁、可锻铸铁、蠕墨铸铁、铸造铝合金、铸造铜合金等)的 牌号、性能、工艺特点、价格和应用等,进行综合分析,判断所选的合金是否合理。 4、审查铸件结构工艺性 铸件壁厚不小于最小壁厚5-6又在临界壁厚20-25以下。 二、工艺方案的确定

1、铸造方法的确定 铸造方法包括:造型方法、造芯方法、铸造方法及铸型种类的选择 (1)造型方法、造芯方法的选择 根据手工造型和机器造型的特点,选择手工造型 (2)铸造方法的选择 根据零件的各参数,对照表格中的项目比较,选择砂型铸造。 (3)铸型种类的选择 根据铸型的特点和应用情况选用自硬砂。 2、浇注位置的确定 根据浇注位置选择的4条主要规则,选择铸件最大截面,即底面处。 3、分型面的选择 本铸件采用两箱造型,根据分型面的选择原则,分型面取最大截面,即底面。 三、工艺参数查询 1、加工余量的确定 根据造型方法、材料类型进行查询。查得加工余量等级为11~13, 取加工余量等级为12。

铸造工艺设计说明书

目录 一、工艺分析 (1) 1、审阅零件图 (1) 2、零件的技术要求 (1) 3、零件的技术要求 (1) 4、确定毛坯的具体生产方法 (1) 5、审查铸件的结构工艺性 (1) 二、工艺方案的确定 (1) 1、铸造方法的选择 (1) 2、造型、造芯方法的选择 (2) 3、浇注位置的确定 (2) 4、确定毛坯的具体生产方法 (2) 5、砂箱中铸件数目的确定 (2) 三、砂芯设计 (2) 1、水平砂芯设计 (3) 2、凹槽处采用自带型芯 (3) 四、工艺参数的确定 (3) 1. 加工余量 (3) 2.起模斜度 (4) 3. 铸造圆角 (4) 4. 铸造收缩率 (4) 5. 最小铸出孔 (4) 6、机械加工余量的选取 (4) 五、浇注系统设计 (4) 六、冒口及冷铁设计 (5) 七、铸造工艺图和铸件图 (6) 八、小结 (7) 九、参考文献 (8)

一、工艺分析 1、审阅零件图 查看零件图的具体尺寸与图纸绘制是否正确。 零件名称: 套筒座 工艺方法:铸造 零件材料:HT250 零件重量:3.1955kg 毛坯重量:4.3303kg 生产批量: 100件/年,为小批量生产 2、零件的技术要求 零件在铸造方面的技术要求:未铸造圆角半径:R=2~3 mm;时效处理。 3、选材的合理性 套筒座选用的材料是HT250,为灰铸铁。灰铸铁铸件的壁厚不应太薄,边角处应适当加厚,防止出现白口组织使该处既硬又难于加工。此零件用于支承,只要求能够承受抗压即可,选择材料HT250可以满足要求。 4、确定毛坯的具体生产方法 根据以上信息可知,由于零件属中型零件小批量生产,形状比较简单、壁厚比较均匀,且该材料为灰铸铁,所以确定毛坯的生产方法为砂型铸造,采用砂型铸造具有生产周期短,灵活性大、成本低的优点。 5、审查铸件的结构工艺性 铸件轮廓尺寸为162x134x133mm,查表得砂型铸造的最小壁厚为6mm,套筒座的壁厚符合其要求。在套筒座中最小壁厚为6mm,最大铸造壁厚为15mm。 二、工艺方案的确定 1、铸造方法的选择 由于套筒座的年产量为100件,属小批量生产,且零件结构简单,所以确定毛坯的生产方法为砂型铸造,由于铸件的高度为133mm,浇注位置上没有较大的壁厚、材料为HT250不需要冷铁。所以砂型种类为湿型。 2、造型、造芯方法的选择 选择造型方法为手工造型,造芯方法为手工刮板造芯。

铸造工艺设计说明书

铸造工艺设计说明书 课程设计:机械工艺课程设计 设计题目:底座铸造工艺设计 班级:机自1103 设计人: 学号: 指导教师:张锁梅、贾志新

前言 学生通过设计能获得综合运用过去所学过的全部课程进行机械制造工艺及结构设计的基本能力,为以后做好毕业设计、走上工作岗位进行一次综合训练和准备。它要求学生全面地综合运用本课程及有关选修课程的理论和实践知识,进行零件加工工艺规程的设计和机床夹具的设计。其目的是: (1)培养学生综合运用机械制造工程原理课程及专业课程的理论知识,结合金工实习、生产实习中学到的实践知识,独立地分析和解决机械加工工艺问题,初步具备设计中等复杂程度零件工艺规程的能力。 (2)培养学生能根据被加工零件的技术要求,运用夹具设计的基本原理和方法,学会拟订夹具设计方案,完成夹具结构设计,进一步提高结构设计能力。 (3)培养学生熟悉并运用有关手册、图表、规范等有关技术资料的能力。 (4)进一步培养学生识图、制图、运算和编写技术文件的基本技能。 (5)培养学生独立思考和独立工作的能力,为毕业后走向社会从事相关技术工作打下良好的基础。

目录 一、工艺审核 (1) 1.数量与材料 (1) 2.图样 (1) 3.零件的结构性 (1) 二、成形工艺设计 (1) 1.确定工艺方案 (1) (1)浇注位置的选择 (2) (2)分型面的选择 (2) 2.确定铸造工艺参数 (4) (1)机械加工余量和铸出孔 (4) (2)浇注位置的选择 (5) (3)拔模斜度 (5) (4)铸造收缩率 (6) 3.砂芯设计 (6) 4.浇注系统的设计 (6) 5. 冷铁的设置 (6) 三、心得体会 (7)

框架铸造工艺说明书

“永冠杯”第二届中国大学生铸造工艺设计大赛 参赛作品 铸件名称:F件--框架 自编代码: 方案编号:

目录 摘要 (Ⅲ) 1 零件简介 (1) 1.1 零件介绍 (1) 1.2生产方式的选择 (3) 2 铸造工艺设计 (4) 2.1 工艺方案的选择 (4) 2.1.1分型面的选择 (4) 2.1.2浇注位置的选择 (4) 2.2 铸造工艺参数的确定 (6) 2.2.1 最小铸出孔 (6) 2.2.2加工余量与铸造圆角 (6) 2.2.3 铸造缩尺 (7) 2.2.4 铸造斜度与分型负数 (7) 2.2.5 浇冒口的切割余量 (9) 2.2.6 铸件在砂型中的冷却时间 (9) 2.2.7砂芯设计 (9) 3 浇注系统设计 (10) 3.1 浇注系统的选择原则 (10)

3.2浇注系统的尺寸确定 (10) 4 冒口的尺寸计算…………………………………………………………13. 4.1铸件冒口补缩设计原理 (13) 4.1.1基本条件 (13) 4.1.2选择冒口位置的原则 (13) 4.1.3补缩压力 (14) 4.2铝合金框架冒口设计方法 (14) 4.2.1 冒口有效补缩距离的确定 (14) 5 冷铁设计 (17) 6 砂箱设计 (17) 7 工艺模拟 (17) 7.1软件简介 (18) 7.2工艺模拟 (18) 参考文献 (20) 附图 (21)

框架零件的铸造工艺设计 摘要 本文主要介绍了该铝合金框架零件的结构特点,并通过工艺分析选择了恰当的砂型铸造生产方式进行小批量铸造生产。通过计算机铸造工艺模拟,验证了铸造工艺参数的合理性与铸造工艺方案的可行性。 关键字:铝合金框架砂型铸造铸造工艺工艺模拟

铸造工艺大赛-上冠说明书

“永冠杯”第三届中国大学生铸造工艺设计大赛 参赛作品 铸件名称:D—上冠 自编代码:[单击此处键入自编代码] 方案编号:[单击此处键入方案编号]

目录 摘要 (3) 1 零件结构及其技术条件的审查 (3) 1.1铸件结构的工艺性分析 (3) 1.2技术条件的审查 (5) 2 型砂,造型、造芯方法的选择 (5) 2.1型砂 (5) 2.2涂料 (5) 2.3造型方法 (6) 2.4造芯方案 (6) 3 浇注位置的确定 (6) 3.1浇注位置选择示意 (6) 3.2浇注位置方案比较 (7) 4 分型面的确定 (8) 4.1分型面选择方安示意 (8) 4.2分型面选取的方案比较 (9) 5 铸造工艺参数的确定 (10) 5.1铸造收缩率 (10) 5.2机械加工余量 (10) 5.3铸件尺寸公差 (11) 5.4起模斜度的确定 (11) 5.5最小铸出孔和槽的尺寸 (12) 6 砂芯的设计 (12) 6.1芯头的设计 (13) 6.2压环,积砂槽的设计 (14) 7 冒口的设计 (14) 7.1铸件各部分模数的计算 (14) 7.2外冷铁的计算 (16) 7.3冒口尺寸的确定 (17) 7.3.1顶圆柱形明冒口与校核 (17) 7.3.2顶腰圆形明冒口与校核 (19) 1

7.3.3顶环形明冒口与校核 (19) 8 浇注系统的设计 (21) 8.1浇注系统的类型 (21) 8.2确定内浇道在铸件上的位置,数量和金属液引入方向 (21) 8.3包孔直径的选择 (22) 8.4计算浇注时间并核算金属夜上升速度 (22) 8.5浇注系统各组元截面积的计算 (23) 8.6浇口窝的设计 (23) 8.7浇口杯的设计 (24) 9砂箱设计 (24) 9.1砂箱壁的结构形式和尺寸 (24) 9.2砂箱外壁加强肋的布置形式和尺寸 (25) 9.3砂箱箱带的布置形式和尺寸 (26) 9.4砂箱吊运部分的结构和尺寸 (27) 10模底板设计 (29) 11芯盒的设计 (30) 11.1砂芯的修改 (30) 11.2芯骨的设计 (30) 11.3通气孔的设计 (31) 11.4芯盒的设计 (31) 11.5砂芯制作的步骤 (32) 12铸件凝固过程的模拟及分析 (33) 12.1铸件的凝固过程示意图 (34) 12.2铸件凝固完全后缩孔、缩松的分布 (34) 12.3铸件凝固过程的分析 (35) 13工艺调整方案 (36) 14关键环节质量控制 (36) 参考文献 (36) 2

带轮铸造工艺设计说明书

带轮铸造工艺设计说明书、工艺分析 1、审阅零件图仔细审阅零件图,熟悉零件图,而且提供的零件图必须清晰无误,有完整的尺寸和各种标记。仔细审查图样。注意零件图的结构是否符合铸造工艺性,有两个方面:(1)审查零件结构是否符合铸造工艺的要求。 (2 )在既定的零件结构条件下,考虑铸造过程中可能出现的主要缺陷,在工艺设计中采取措施避免。 零件名称:带轮 零件材料:HT150 生产批量:大批量生产 2、零件技术要求铸件重要的工作表面,在铸造是不允许有气孔、砂眼、渣孔等缺陷。 3、选材的合理性铸件所选材料是否合理,一般可以结合零件的使用要求、车间设备情况、技术状况和经济成本等,参考常 用铸造合金(如铸钢、灰铸铁、球墨铸铁、可锻铸铁、蠕墨铸铁、铸造铝合金、铸造铜合金等)的种类、 牌号、性能、工艺特点、价格和应用等,进行综合分析,判断所选的合金是否合理。 4、审查铸件结构工艺性铸件壁厚不小于最小壁厚5-6 又在临界壁厚20-25 以下。 、工艺方案的确定 1、铸造方法的确定 铸造方法包括:造型方法、造芯方法、铸造方法及铸型种类的选择 (1)造型方法、造芯方法的选择根据手工造型和机器造型的特点,选择手工造型(2)铸造方法的选择根据零件的各参数,对照表格中的项目比较,选择砂型铸造。 3)铸型种类的选择 根据铸型的特点和应用情况选用自硬砂。 2、浇注位置的确定 根据浇注位置选择的4 条主要规则,选择铸件最大截面,即底面处。

3、分型面的选择 本铸件采用两箱造型,根据分型面的选择原则,分型面取最大截面,即底面 三、工艺参数查询 1、加工余量的确定根据造型方法、材料类型进行查询。查得加工余量等级为 11~13,取加工余量等级为12。 根据零件基本尺寸、加工余量等级进行查询。查得铸件尺寸公差数值为10 根据零件尺寸公差、公差等级进行查询。查得机械加工余量为5.5 。 2、起模斜度的确定 根据所属的表面类型查得测量面高140,起模角度为0度25分(0.42 °) 3、铸造圆角的确定根据铸造方法和材料,查得最小铸造圆角半径为3。 4、铸造收缩率的确定根据铸件种类查得:阻碍收缩率为0.8~1.0 ,自由收缩率为0.9~1.1 。 5、最小铸造孔的选择根据孔的深度、铸件孔的壁厚查得最小铸孔的直径是80mm. 四、浇注系统设计 (一)、浇注位置的确定根据内浇道的位置选择底注式,(二)、浇注系统类型选择 根据各浇注系统的特点及铸件的大小选用封闭式浇注系统 三)、浇注系统尺寸的确定

铸造工艺设计说明书(1)

材料成型过程控制 院系:材料科学与工程学院 专业:材料成型与控制工程 姓名: 学号: 指导老师: 日期:2012.9.19至2012.10.15

目录 一、铸造工艺分析 (1) 二、砂芯设计 (3) 三、冒口设计 (5) 四、浇注系统的设计及计算 (7) 五、沙箱铸件数量的确定 (10) 六、参考数目、资料 (11)

图1所示的事U型座,主要用于拆卸主轴上的皮带轮。 材料为ZG25(主要元素含量:W C%=0.22~0.32%,W Mn%=0.5~0.8%,W Si%=0.2~0.45%)。 技术要求:①未标示的铸造圆角半径R=3~5。②未标铸造倾斜度按工厂规格H59~21。③铸件应仔细地清理去掉毛刺及不平处。 图1

一、铸造工艺分析 1.确定铸型种类和造型、制芯方法 此铸件是铸钢件,铸件最大三维尺寸270x110x220 mm,为中小型铸件,铸件结构简单,仅有两个加工面,其他非加工面表面光洁度要求不高,采用温型普通机器造型,砂芯外形简单,采用热芯盒射芯机制芯。 2.确定浇注位置和分型面 方案1:将铸件放置于下箱,分型面选取如图2所示,采用顶注式浇注,此方案浇注系统简单,不用翻箱操作;但是浇注时金属液对型腔冲刷力大,难以下芯,不便设置冒口进行补缩。容易产生夹砂、结疤类缺陷,补缩困难会形成缩孔、缩松结晶等缺陷。 方案2:将铸件放于上箱,分型面选取如图3所示,采用底注式浇注,此方案浇注系统相对复杂,下芯方便,可以将冒口设计在顶部,补缩效果好。 综合以上两种方案考虑,选择方案2较为合理。 图2 图3 铸件全部位于上箱,下表面为分型面 上 下 上 下

昆明理工大学-扁叉铸造工艺设计说明书

扁叉铸造工艺设计说明书 一、工艺分析 1、审阅零件图 查看零件图的具体尺寸与图纸绘制是否正确。 零件名称: 扁叉 工艺方法:铸造 零件材料:HT150 零件重量:0.4066kg 毛坯重量:0.6720kg 生产批量: 100件/年,为小批量生产 2、零件的技术要求 零件在铸造方面的技术要求:铸造圆角半径不得超过1mm;在铸造时不允许有气孔、砂眼、缩孔、缩松和夹杂等缺陷;铸件应进行时效处理;铸件应进行清理,保证表面平整;零件加工完后所有棱边应去除毛刺;不加工表面先涂以防锈漆,再涂以绿色油漆。 3、选材的合理性 扁叉选用的材料是HT150,为灰铸铁。灰铸铁铸件的壁厚不应太薄,边角处应适当加厚,防止出现白口组织使该处既硬又难于加工。此零件用于支承,只要求能够承受抗压即可,又是中等静载,选择材料HT150可以满足要求。 4、确定毛坯的具体生产方法 根据以上信息可知,由于零件属小批量生产,形状比较简单、壁厚比较均匀,且该材料为灰铸铁,所以确定毛坯的生产方法为砂型铸造。 5、审查铸件的结构工艺性 铸件轮廓尺寸为159*59.5*24,查表得砂型铸造的最小壁厚为6mm,扁叉的壁厚符合其要求。铸件质量为0.6720kg,材料为HT150,查表得砂型铸造铸件的临界壁厚为

18mm。壁厚越大,圆角尺寸也相应增大。 二、工艺方案的确定 1、铸造方法的选择 由于扁叉的年产量为100件,属小批量生产,且零件结构简单,所以确定毛坯的生产方法为砂型铸造,砂型种类为湿型。 2、造型、造芯方法的选择 选择造型方法为手工造型,造芯方法为手工刮板造芯。 3、浇注位置的确定 根据计算机辅助铸造工艺设计中关于浇注位置的确定原则(浇注位置应选在铸件最大截面处,应使合箱位置、浇注位置和位置相一政),所以确定浇注位置为铸件中间对称的最大截面--此截面为最大截面、上下对称、且便于充型和起模。 4、分型面的确定 根据计算机辅助铸造工艺设计中关于分型面的确定原则(分型面应选在铸件最大截面处;分型面应尽量选用平面),所以确定分型面为铸件中间对称的最大截面--以便于起模、下芯和检验;分模面与分型面一致。 5、砂箱中铸件数目的确定 扁叉的重量为0.6720 kg,"铸件质量"选择≤5kg,对应的"砂箱尺寸"为"≤ 400mm","最小吃砂量"分别为"a=20mm,b=30mm,c=40mm,d或e=30mm,f=30mm,g=20mm"。铸件本身的尺寸为159*59.5*24mm,因此在"400mm"的砂箱中只能放置二个铸件(如图所示)(注:砂箱尺寸=(A+B)/2, A、B分别为砂箱内框长宽及宽度)。

锻造工艺的设计说明书

阶梯轴锻造工艺 设计说明书 题目:阶梯轴锻造工艺设计 专业:机械设计制造及其自动化班级:机设1301 学生:亮学号: 7 指导教师:浩舸 完成日期: 机械工程学院 2016年9月

目录 1.引言 (1) 2.设计方法与步骤 (2) 2.1绘制锻件图 (3) 2.2 确定变形工艺 (3) 2.2.1镦粗 (3) 2.2.2冲孔 (4) 2.2.3扩孔 (4) 2.2.4修整锻件 (4) 2.3 计算坯料质量和尺寸 (4) 2.4选定设备及规 (5) 2.5确定锻造温度及规 (5) 2.6确定冷却方法及规 (5) 3.工艺流程卡 (6) 4.结论 (8) 5.致 (8) 6.参考文献 (8)

1. 引言 锻造的目的是使坯料成形及控制其部组织性能达到所需的几何形状,尺寸以及品质的锻件。轴是现代工业大量使用的零件,本文讨论阶梯轴的自由锻生产。 2. 设计方法与步骤 2.1绘制锻件图 锻件图是根据零件图的基本图样,结合锻造工艺特点考虑余块、锻件余量和锻造公差等因素绘制而成。 阶梯轴材料为40Cr,生产批量小,采取自由锻锻造轴坯。 轴上的键槽等部分,采用自由锻方法很难成形这些部位,因此考虑到技术上的可行性和经济性,决定不锻出,并采用附加余块简化锻件外形,以利于锻造。锻造出轴坯后可以进一步进行切削加工,最后成形。 根据零件图的尺寸规格,对照表所列中零件的高度和直径围,可以查出齿环锻件加工余量和公差。由L=203,Φ=46,对照《金属成形工艺设计》中表3-3中所列的零件总长为0∽315mm、最大直径0∽50mm,可查得锻造精度为F级的锻件余量及公差为7±2mm。,然后按查得的公差数值,可绘阶梯轴的锻件图。阶梯轴锻件图见图1。 图1 阶梯轴锻件图 2.2确定变形工艺

拨叉铸造工艺设计说明书

拨叉铸造工艺设计说明书 一、工艺分析 1、审阅零件图 查看零件图的具体尺寸与图纸绘制是否正确。 零件名称: 拨叉 工艺方法:铸造 零件材料:HT200 零件重量:2.5kg 毛坯重量:2.85kg 生产批量: 100件/年,为小批量生产 2、零件的技术要求 零件在铸造方面的技术要求:未注圆角为R5-R10; 倒顿锐边; 铸件应进行时效处理; 在铸造时不允许有气孔、砂眼、缩孔、缩松和夹杂等缺陷。 3、选材的合理性 拨叉选用的材料是HT200,为灰铸铁。灰铸铁铸件的壁厚不应太薄,边角处应适当加厚,防止出现白口组织使该处既硬又难于加工。此零件用于支承,只要求能够承受抗压即可,又是中等静载,选择材料HT200可以满足要求。 4、确定毛坯的具体生产方法 根据以上信息可知,由于零件属小批量生产,形状比较简单、壁厚比较均匀,且该材料为灰铸铁,所以确定毛坯的生产方法为砂型铸造。 5、审查铸件的结构工艺性 铸件轮廓尺寸为325*140*130,查表得砂型铸造的最小壁厚为6mm。铸件质量为2.85kg,材料为HT200,查表得砂型铸造铸件的临界壁厚为18mm。壁厚越大,圆角尺寸也相应增大。

二、工艺方案的确定 点击软件中铸造工艺设计→铸造工艺方案的确定→点击最右边的下拉菜单可查询如下内容。 1、铸造方法的选择 由于拨叉的年产量为100件,属小批量生产,且零件结构简单,所以毛坯的生产方法选择砂型铸造,砂型种类选择湿型。 2、造型、造芯方法的选择 选择造型方法为手工造型,造芯方法为手工刮板造芯。 3、浇注位置的确定 拨叉是小型零件,且结构简单,确定浇注位置为其上表面,此位置便于充型、起模和下芯。 4、分型面的确定 拨叉表面结构简单,确定分型面为其上表面,以便于起模、下芯和检验。 5、砂箱中铸件数目的确定 选择"铸件质量"小于5 kg,点击查询,对应的"砂箱尺寸"为"≤400mm","最小吃砂量"分别为"a=20mm,b=30mm,c=40mm,d或e=30mm,f=30mm,g=20mm"。铸件本身的尺寸为325*140*130mm,因此在"400mm"的砂箱中只能放置二个铸件(如图所示)(注:砂箱尺寸=(A+B)/2, A、B分别为砂箱内框长宽及宽度)。

《铸造工艺》课程设计说明书

目录 1绪言················································2铸造工艺设计··············· 2.1铸件结构的铸造工艺性·········2. 2铸造工艺方案的确定·················2.3参数的选择工艺 2. 4砂芯设计 2. 5浇注系统设计············· 3铸造的工艺装备设计······ 3. 1模样设计······· 3. 2模底板的设计·······················3. 3模样在模底板上的装配············4结束语······· 参考文献

1绪言 我本次课程设计的任务是对灰铸铁支承座进行铸造工艺及工装设计。 灰铸铁具有良好的铸造性能良好的减振性、良好的耐磨性能良好的切削加工性能、低的缺口敏感性。灰铸铁的抗拉强度、塑性和韧性远低于钢,力学性能较差,但抗压强度与钢相当。 铸造是指将液态合金注入铸型中使其冷却、凝固,并进行后处理,最终成为金属制品的一种生产方法。铸件的生产过程,也就是从零件图开始,一直到铸件成品检验合格入库为止,要经过很多道工序,铸件的生产过程称为铸造生产工艺过程。 本次设计采用砂型铸造,其最大优点就是生产成本低,为机械制造行业中广泛应用的毛坯生产工艺方法。在砂型铸造的过程中,考虑到铸件的结构,生产条件以及加工批量等因素,要对铸件工艺的设计作全面分析,为避免铸件的缺陷,我们要根据标准选择合理的工艺设计方法。 由于每个铸件的生产任务和要求不同,生产条件不同,因此铸造工艺及工装设计的内容也不同。一般情况下,铸造工艺设计包括以下几种技术文件:铸造工艺图,铸造工艺卡,铸型装配图,铸件图,模样图,‘芯盒图,砂箱图,模板图。 铸造工艺及工装设计的过程如下: (1)对零件图纸进行审查和进行铸造工艺性分析 (2)选择铸造方法,确定铸造工艺方法 (3)绘制铸造工艺图 (4)绘制铸件图 (5)绘制铸型装配图 (6)绘制各种铸造工艺装配图 工装图要以铸造工艺图为主要设计依据。 2铸造工艺设计 2. 1铸件结构的铸造工艺性 生产铸件,不仅需要采用先进的合理的铸造工艺和设备,而且还要使零件结构本身符合铸造生产的要求,易于保证铸件品质,简化铸造工艺过程和降低成本。这种对于铸造工艺过程来说的铸件结构的合理性,称为铸件的“铸造工艺性’,它和铸造合金的种类,产量的多少,铸造方法和生产条件等有密切的关系。 2. 1 .1审查铸件结构 (一)铸件应有合适的壁厚 避免浇不到、冷隔等缺陷,铸件不应太薄。本次设计的铸件材料为HT200,最大尺寸为194 X 155mm。

(工艺技术)铸造工艺性之粘土型砂的性能

铸造工艺性之粘土型砂的性能 工艺性能:与各铸造工序的操作相关的砂型性能。影响:生产率、劳动强度、同时影响铸件质量、流动性、可塑性、粘膜型、保存性、吸湿性、溃散性、复用性。 工作性能;直接影响铸件质量的型砂性能成为工作性能。如湿强度、干强度、高温强度、热湿拉强度、透气性、发气性、耐火度、退让性、导热性等。 粘土砂的性能,主要取决于粘土和原砂的材料的性质及砂、土、水的配合比例在很大程度还受混制工艺、紧实度、温度等影响。 1.湿强度 在外力作用下,型砂达到破坏时,单位面积上所承受的力称为强度。型砂在湿态势的强度为湿强度。影响:起模、翻转、合型、搬运过程中造成塌箱。而在浇注时,则可能承受不住金属液的冲刷,冲坏铸型表面,使铸件产生砂眼,甚至炮火。 湿强度包括湿压、湿拉、湿剪强度。 湿强度主要取决于粘土的质量和加入量,含水量、原砂的颗粒组成、混砂质量、紧实程度。 (1)原砂在粘土加入量足够的情况下,砂粒越细、越不均匀,则型砂质点间的接触面积越大,湿强度越高。 (2)粘土和水分水分适当时,随着粘土量的增加,型砂的湿强度增高。湿强度最大值在水/水+粘土=20%z左右时出现。 (3)混砂时间为了保证粘土砂获得一定的强度,混砂时间要充分,

钠基膨润土由于吸水时间长,因此比钙基膨润土和普通粘土混 砂时间长。 (4)紧实度随着紧实度的提高砂型质点紧密排列,相互接触面积增大,粘土的粘结性能更好的发挥,提高湿强度。 湿强度度对惰性粉末非常敏感,惰性粉末增加,湿强度增加, 但是湿拉强度和湿剪强度会降低,砂型发脆,起模时容易损坏 型腔。 2.干强度 干强度对于干型、表面干型和干芯在运输、合型及浇注初期有着实际意义通常测定抗弯、抗压、抗拉和抗剪等干强度。砂型烘干后,自由水和吸附水逸失,质点相互靠近,质点间附着力增加,砂型湿强度比干强度有显著增加。 砂粒大小对型砂干强度影响不显著。影响干强度主要是粘土和水分。 在相同的粘土加入量的情况下,一般膨润土砂的干强度高于普通粘土砂。但在实际生产中由于膨润土的用量和水分均较低,并且膨润土砂在100-200℃脱水量集中,如果不采取严格的烘干制度将会导致砂型和砂芯开裂,因而实际强度反而回比普通粘土砂低。 增加紧实度,能提高粘土砂的干强度。 3.热湿拉强度 型砂式样在高温急热的条件下,因水分向内迁移,在表面层下数毫米处形成高湿度凝聚层,此层砂的的抗拉强度称为热湿拉强度。

铸造工艺说明书

1 铸造工艺设计 1.1 铸造工艺方案的确定 1.1.1浇注位置的确定 铸件的浇注位置是指浇筑时铸件在铸型中所处的位置。浇注位置是根据铸件的结构特点、尺寸、重量、技术要求、铸造合金特性、铸造方法以及生产车间的条件决定的。个人收集整理勿做商业用途 正确的浇注位置应能保证获得健全的铸件,并使造型、制芯和清理方便。 该铸件浇注位置应在铸件边缘,内浇道应在分型面上。 1.1.2 分型面的确定 铸造分型面是指铸型组元间的接合面。合理地选择分型面,对简化铸造工艺、提高生产率、降低成本、提高铸件质量等都有直接关系。分型面的选择应尽量与浇注位置一致,尽量使两者协调起来,使铸造工艺简便,并易于保证铸件质量。个人收集整理勿做商业用途 1.应使铸件全部或大部置于同一半型内; 2.应尽量减少分型面的数目; 3.分型面应尽量选用平面; 4.便于下芯、合箱和检查型腔尺寸; 5.不使砂箱过高; 6.受力件的分型面的选择不应削弱铸件的结构强度; 7.注意减轻铸件清理和机械加工量。 该铸件的分型面的选择如图1-1所示 图1-1 铸件的分型面 1.2 工艺参数 1.2.1 机械加工余量 GB/T6414-1999《铸件尺寸公差与机械加工余量》中规定,要求的机械加工余量适用于整个毛坯铸件,且该值应根据最终机械加工成品铸件的最大轮廓尺寸和相应的尺寸范围选取。个人收集整理勿做商业用途 要求的机械加工余量等级有10级,称之为A、B、C、D、E、F、G、H、J和

K级共10个等级。 查表,可知灰铸铁加工余量等级E~G级,可知,加工余量为3.0mm。 1.2.2 铸件线收缩率与模样放大率 铸件线收缩率又称为铸件收缩率或铸造收缩率,是指铸件从线收缩开始温度(从液相中析出枝晶搭成的骨架开始具有固态性质时的温度)冷却到室温时的相对线收缩量,以模样与铸件的长度差除以模样长度的百分比表示:个人收集整理勿做商业用途 式中1L:模样长度; L:铸件长度。 2 铸件的线收缩率ε是考虑了各种影响因素之后的铸件的实际收缩率,它不仅与铸造金属的收缩率和线收缩起始温度有关,而且还与铸件的结构、铸型种类、浇冒口系统结构、砂型和砂芯的退让性等因素有关。个人收集整理勿做商业用途综合考虑:可选灰铸铁线收缩率1.0%。 1.2.3 起模斜度 当铸件本身没有足够的结构斜度,应在铸件设计或铸造工艺实际是给出铸件的起模斜度,以保证铸件的起模。起模斜度可采取增加铸件壁厚的方式来形成。在铸件上加起模斜度,原则上不应超出铸件的壁厚公差要求。个人收集整理勿做商业用途 α。 根据零件要求,起模斜度? =2 1.2.4 最小铸出孔槽 机械零件上往往有很多孔、槽和台阶,一般应尽可能在铸造时铸出。这样既可节约金属、减少机械加工量、降低成本,又可使铸件壁厚比较均匀,减少形成缩孔、缩松等铸造缺陷的倾向。但是当铸件上的孔、槽尺寸太小,而铸件的壁厚又较厚和金属压力较高时,反而会使铸件产生粘砂,造成清理和机械加工困难。有的孔、槽必须采用复杂而难度较大的工艺措施才能铸出,而实现这些措施还不如用机械加工的方法制出更为方便和经济。有时由于孔距要求很精确,铸出的孔如有偏心,就很难保证加工精度。因此在确定零件上的孔和槽是否铸出时,必须既考虑到铸出这些孔和槽的可能性,又要考虑到铸出这些孔和槽的必要性和经济

相关主题
文本预览
相关文档 最新文档