当前位置:文档之家› 语音放大电路设计报告

语音放大电路设计报告

语音放大电路设计报告
语音放大电路设计报告

附件1:

学号:24

课程设计

题目语音放大电路的设计

学院

专业通信工程

班级通信GJ1101

姓名董沛

指导教师许建霞

2013 年 1 月 6 日

语音放大电路的设计

1 绪论

1.1 课题背景及目的

在日常生活和工作中,经常会遇到这样一些问题:如在检修各种机器设备时,常常需要能依据故障设备的异常声响来寻找故障,这种异常声响的频谱覆盖面往往很广,需要高亮度的声音以传达消息,例如校园广播,大型会议等,而仅仅凭人们自己的喉咙是无法实现的,因而要用到信号放大器。声音信号频率低,在放大的过程中极易受到外界的干扰,又如:在打时,有时往往因声音太大或干扰太大而难以听清对方讲的话,于是需要一种既能放大语音信号又能降低外来噪声的仪器……诸如以上原因,具有类似功能的实用电路实际上就是一个能识别不同频率围的小信号放大系统。所以本课题要求采用集成运算放大器完成语音放大电路。有利于培养我的技开发能力和创新精神,并有一定的实用意义。

2实验目的

通过实验培养市场素质,工艺素质,自主学习能力,分析问题解决问题的能力及团队精神;通过实验总结回顾所学的模拟电子技术基础理论和基础实验,掌握低频小信号放大电路和功放电路的设计方法。

3设计原理

3.1 已知条件

语音放大器是一个典型的多级放大器,其框图如上图所示,前置级主要完

成对小信号的放大,一般要求输入阻抗高,输出阻抗低,频带要求要宽,噪声要小。有源滤波器主要实现对输入信号高低音的调整。功率放大级主要决定了输出

功率的大小,非线性失真系数等指标,要求效率高,失真尽可能小,输出功率高。 因为max o P =5w,所以此时的输出电压L o R P V o max ==4.5V ,要使输入为10mV 的信号放大为4.5V 的输出,所需要的总放大倍数为

=

=i

v V V A 0

450

3.2性能指标

1)前置放大器

(1)输入信号Uid ≦10m V; (2)输入阻抗Ri=100K Ω; (3)共模抑制比KCMR ≧60dB 。 2)有源带通滤波器

带通频率围300Hz~3KHz 。 3)功率放大器 ① 最大不失真输出功率Pomax ≥5W; ② 负载阻抗RL =4Ω; ③ 电源电压+5V,+12V, 4)输出功率连续可调

① 直流输出电压≤50mV(输出开路时); ② 静态电源电流≤100mA(输出短路时)。

3.3 要求

1)选取单元电路及元件

根据设计要求和已知条件,确定前置放大电路、有源带通滤波电路、功率放大电路的方案,计算和选取单元电路的元件参数。 2)置放大电路的组装与调试

测量置放大电路的差模电压增益AUd 、共模电压增益AUc 、共模抑制比KCMR 、带宽BW?1、输入电压Ri?等各项技术指标,并与设计要求值行比较。 3)源带通滤波电路的组装与调试 测

量有源带通滤波电路的差模电压增益AUd、带通BW1,并与设计要求进行比较。

4)功率放大电路的组装与调试

测量功率放大电路的最大不失真输出功率Po,max、电源供给功率P??DC、输出效率η、直流输出电压、静态电源电流等技术指标。

5)整体电路的联调与试听

6)应用Multisim软件对电路进行仿真分析

3.4原理与参考电路

3.4.1前置放大电路

由于信号源提供的信号非常微弱,故一般在音调放大级前加一级前置放大级

在测量用的放大电路中,一般传感器送来的直流或低频信号,经放大后多用单端方式传输。典型情况下,信号的最大幅度可能仅有若干毫伏,共模噪声可能高达几伏。放大器输入漂移和噪声等因素对于总的精度至关重要,放大器本身的共模抑制特性也是同等重要的问题。因此前置放大电路应该是一个高输入阻抗、高共模抑制比、低漂移的小信号放大电路。在设计前置小信号放大电路时,可参考运算放大器应用的相关设计;

不同方案比较:

缺陷与不足:由于电路过于简单,不能对电路的整体增益进行合理的调节,而且反馈电路中没有电容,不能控制由于电路温度升高而引起的温度飘逸,误差较大;而且在电路中无串联电容使得电压稳定性不好,而且进入滤波电路的直流分量过大,引起噪声过大

3.4.2 有源滤波电路

有源滤波电路是用有源器件与RC 网络组成的滤波电路。

有源滤波电路的种类有低通(LPF )、高通(HPF )、带通(BPF )、带阻(BEF )滤波器,本实验着重讨论典型的二阶有源滤波器。

11U1LM 24AD

R1160k ohm

R2

1k oh 5V VCC C1

1u C21u R31k ohm

R4

1k ohm

15VDD 11U1LM 24AD

C301uF

C401uF

R7160k ohm

5V

VCC 15VDD R81k oh XSC1

XF 5010kO hm Ke R55010kO hm Ke R6

不同方案比较:

缺陷不足:电路基本符合要求,但是反馈电路中没有电容,不能控制温度漂移,R5与R6应该换成滑动变阻器,便于调节电路中的电流

3.4.3功率放大电路

功率放大的主要作用是向负载提供功率,要求输出功率尽可能大,转换功率尽可能高。非线性失真尽可能小。

U1TDA2030

C1

1u C220uF

C3

30pF

R120hm

R21k oh 12VCC

2V

VDD R410oh C40.1u XF XS C1

R58o hm

5020hm Ke = R3

不同方案比较:

比较:该电路基本符合要求,但是Multisim10中没有TD2003这个元件,不便于进行仿真,故我们利用TDA2030重新设计了一个电路,经测试,基本符合要求

3.5 单元电路中的线路连接

为了避免各级运算器之间的相互干扰,且过滤掉放大过程中的纹波,各级之间用100μf的电容进行连接。

4核心原件参数特点

4.1 LM324运放集成电路

LM324采用14脚双列直插塑料封装。它部包含四组形式完全相同的运算放大器如图5.8(a)所示,除电源共用外,四组运放相互独立。每一组运算放大器可用图5.8(b)所示的符号来表示,它有5个引出脚,其中“U i+”、“U i-”为两个信号输入端,“U+”、“U-”为正、负电源端,“U o”为输出端。两个信号输入端中,U i-为反相输入端,表示运放输出端U o的信号与该输入端的相位相反;U i+为同相输入端,表示运放输出端U o的信号与该输入端的相位相同。由于电源管脚是众所周知的,因此,为了简化,通常可以把电源端省略不画,把五脚符号画成只有两个输入端、一个输出端的三端符号。

图 5.8 集成运放符号及LM324管脚

由于LM324四运放电路具有电源电压围宽,静态功耗小,可采用单、双电源方式使用,价格低廉等优点,因此被广泛应用在各种电路中。

注:集成运算放大器LM324的管脚图及基本参数见附录B

4.2 TDA2003集成功率放大器

我们在本次设计中依然采用常用的TDA2003集成功率放大器,TDA2003是TDA2002的改进型,其输出功率更大,电路特点及设的各保护电路与TDA2002相同。它适用于收音机及其它设备中作音频放大。

U - U U i - + -

+ - LM324 + - 1 2 3 + -

4 5 6 7 U +

U -

8 9 10

11 12 13 14

(a) (b)

参数名称符号参数值单位备注

峰值电源电压Vcc 40 V

直流电源电压Vcc 28 V

工作电源电压Vcc 18 V 50ms

输出峰值电流(重复)Io 3.5 A

输出峰值电流(非重复)Io 4.5 A

功率Po 20 W

工作环境温度Topz –30~75 ?C Ta=9?C 贮存温度. 结晶Tstg,T –40~150 ?C

引脚功能定义:TDA2003为5脚单引直插式,其引脚功能如下:1——同向输入2——反向输入3——地4——输出5——输入Vcc

集成功率放大器TDA2003的引脚图

5 Multisim10.0 仿真结果5.1前置放大电路

5.2有源滤波电路

11U1A

LM 324AD

R1160k ohm

R2

1k ohm

15V

VCC C1

0.1uF

C20.1uF R35.1k ohm

R4

5.1k ohm

15V

VDD 11U1B LM 324AD

C30.01uF

C40.01uF

R7160k ohm

15V

VCC 15V

VDD R81k ohm XSC1

XFG 50%10kO hm Key = R550%

10kO hm Key = R6

5.3功率放大电路

6 调试电路及调试测量

6.1前置放大电路的调试:静态调试:调零和消除自激振荡。

动态调试:①在两输入端加差模输入电压Uid,测量输出电压Uod1,观测于记录输出电压与输入电压的波形,算出差模电压增益Aud1。

②在两输入端加共模输入电压Uic,测量输出电压Uoc1,算出共模电压增益Auc1。

6.2有源带通滤波器的调试:静态调试:调零和消除自激振荡

动态调试:调节输入信号的频率,使输出电压达到不失真的最大值。记录此时的电压值和频率。不断改变输入信号的频率,(变大和变小),当电压的幅

度为最大值的0.707倍时,分别记录此时的频率,即为上限截止频率和下限截止频率。由此计算通频带。

6.3功率放大电路的调试:

静态调试:将输入端对地短路,观察输出有无振荡,如果有振荡,采取消振措施以消除振荡。

测量最大输出功率Pomax:在输出信号不失真的条件下,对功率参数进行测试。输入f=1kHz的正弦输入信号,并逐渐加大输入电压的幅值直至输出电压Uo 的波形出现临界削波时,测量此时Rl两端的输出电压的最大值Uomax或有效值Uo,则Pomax=Uomax2/(2*RL)=Uo2/RL。

6.4系统联调:

经过以上对各级电路的局部调试后,可扩大到整个系统的联调。

①令输入信号Ui=0,(前置级对输入短路),测量输出的直流输出电压。

②输入f=1kHz的正弦信号,改变Ui的幅值,用示波器观察输出电压Uo波形变

化的情况,记录输出电压Uo最大不失真幅度所对应的输入电压Ui的变化围。

③输入Ui为一定值的正弦信号(在Uo不失真围取值),改变输入信号的频率,

观察Uo的幅值变化情况,记录Uo下降到0.707Uo之的频率变化围。

④计算总的电压增益 Au3=Uo/Ui3。

6.5电路测量:

分别测量所要求的数据:

(1)前置放大器的电压放大倍数Au=100

(2)测量带通滤波器的通频带BW=300Hz-3000Hz

6.6效果测试

系统级联后,分别在输入端输入语音信号和音乐信号,观测效果。

6.7实验中遇到的问题及解决办法

(1)问题:前级放大器焊接完成后在示波器中没有信号输出

分析:电路中可能有虚焊短接情况

解决:用万用表仔细检查电路,逐个焊点进行测试,找出虚焊点并将其焊牢。(2)问题:下限截频过低(170Hz)

分析:高通滤波器中电过大

解决:调节滑动变阻器

6.8元件清单:

7 设计感想和体会:

通过这次课程设计,让我深刻地体会到了在电子设计过程中应该十分细心,而且应该有全局观。我在设计时因为没有考虑到后面的电路,只看眼前,不顾后面。结果

搞的后面布线布得一团糟。俗话说:“磨刀不误砍材工。”这句话应该是我以后在做设计时应

该牢记的。首先,应该对电路的布局有一个整体的考虑,做到元件的布置合理,避免出现短

路,断路等情况,而且应尽量使元件均匀地分布在整个电路板上,注意对称。其次,在焊接

过程要谨慎,避免出现接点之间的粘连和虚焊等情况。最后,要认真检查电路,在确认准确

无误后接通电源进行调试。

在调试过程中,会遇到许多麻烦。我发现电位器的调节作用有问题,原来是

接线接反了。还有,应该接在同一个点的线没有接在一起,但是这样还是不行,

经过仔细检查后发现,问题是两排接地线没有连在一起。但是,结果还是没有想

象中的那么完美。

在进行实物焊接前,应该对元器件进行检查,在确认无损坏的情况下再进行

焊接。语音放大器的最大缺点是噪音太大,可以多增加几级滤波电路来滤除纹波,

还可以通过改进元器件的性能还减少噪音。相信通过这些改进,可以在一定程度

上提高语音放大电路的性能。

参考文献

[1] 有卿.新颖集成电路制作精选[M].:人民邮电,2005:55-57.

[2] 童诗白,华成英.模拟电子技术基础[M].:高等教育,2001:32-33.

[3] 何希才.传感器及其应用电路[M].:电子工业,2001: 110-111.

[4] 素行.模拟电子技术简明教材[M].:高等教育,1998: 181-188.

[5] 方大千.实用电子控制电路[M].:国防工业,2002:48-49.

[6] 建民.传感器技术[M].:清华大学,2005: 98-100.

[7] 吴显鼎.集成电子电子线路设计手冊[M].:科技,2003:88-90.

语音放大器的设计(全面)

电子电工教学基地 实 验 报 告 实验课程:模拟电路实验及仿真实验名称:语音放大电路的设计设计人员: 完成日期: 2012年6月27日

0、引言在电子电路中,输入信号常常受各种因素的影响而含有一些不必要的成份(即干扰),或者输入信号是不同频率信号混合在一起的信号,对前者应设法将不必要的成份衰减到足够小,而后者应设法将需要的信号提取出来。而且随着社会的发展,在我们的日常生活中也经常会出现一系列的问题:如在检修各种机器设备的时候,我们要根据故障设备的异常声来寻找故障,这种异常的声响的频谱覆盖面往往很广;同时另外的一种情况我们在打电话的时候,有时往往因声音或干扰太大而难以听清对方的声音,这时我们就需要一种既能放大语音信号又能降低外来噪声的仪器。而且语音放大电路目前的运用很广泛:适用于很多的家用电器上面的运用。例如:便携式收音机、对讲机等很多方面的运用。为了达到这样的一个目的,我们就要考虑到设计一个能识别300~3000HZ频率范围内的小信号放大系统,我们可以用设计一个集成运算放大器组成的语音放大电路。 一、设计目的及要求 【设计目的】1.通过实验培养学生的市场素质,工艺素质,自主学习的能力,分析问题解决问题的能力以及团队精神。 2.通过实验总结回顾所学的模拟电子技术基础理论和基础实验,掌握低频小信号放大电路和功放电路的设计方法。 【设计要求】 1)选取单元电路及元件 根据设计要求和已知条件,确定前置放大电路、有源带通滤波电路、功率放大电路的方案,计算和选取单元电路的原件参数。 2)前置放大电路的组装与调试 测量前置放大电路的差模电压增益AU、共模电压增益AUc、共模抑制比KCMR、带宽BW、输入电压Ri等各项技术指标,并与设计要求值进行比较。 3)有源带通滤波器电路的组装与调试 测量有缘带通滤波器电路的差模电压增益AUd、带通BW,并与设计要求进行比较。4)功率放大电路的组装与调试 测量功率放大电路的最大不失真输出功率Po,max、电源供给功率PDC、输出效率η、直流输出电压、静态电源电流等技术指标。 5)整体电路的联调与试听 6)应用Multisim软件对电路进行仿真分析

晶体管共射极单管放大电路实验报告

晶体管共射极单管放大 电路实验报告 Document number:NOCG-YUNOO-BUYTT-UU986-1986UT

实验二 晶体管共射极单管放大器 一、实验目的 1.学会放大器静态工作点的调式方法和测量方法。 2.掌握放大器电压放大倍数的测试方法及放大器参数对放大倍数的影 响。 3.熟悉常用电子仪器及模拟电路实验设备的使用。 二、实验原理 图2—1为电阻分压式工作点稳定单管放大器实验电路图。偏置电阻R B1、R B2组成分压电路,并在发射极中接有电阻R E ,以稳定放大器的静态工作点。当在放大器的输入端加入输入信号后,在放大器的输出端便可得到一个与输入信号相位相反、幅值被放大了的输出信号,从而实现了电压放大。 三、实验设备 1、信号发生器 2、双踪示波器 3、交流毫伏表 4、模拟电路实验箱 5、万用表 四、实验内容 1.测量静态工作点 实验电路如图2—1所示,它的静态工作点估算方法为: U B ≈ 2 11B B CC B R R U R +?

图2—1 共射极单管放大器实验电路图 I E = E BE B R U U -≈Ic U CE = U C C -I C (R C +R E ) 实验中测量放大器的静态工作点,应在输入信号为零的情况下进行。 1)没通电前,将放大器输入端与地端短接,接好电源线(注意12V 电源位置)。 2)检查接线无误后,接通电源。 3)用万用表的直流10V 挡测量U E = 2V 左右,如果偏差太大可调节静态工作点(电位器RP )。然后测量U B 、U C ,记入表2—1中。 表2—1 测 量 值 计 算 值 U B (V ) U E (V ) U C (V ) R B2(K Ω) U BE (V ) U CE (V ) I C (mA ) 2 60 2 B2所有测量结果记入表2—1中。 5)根据实验结果可用:I C ≈I E = E E R U 或I C =C C CC R U U -

音频功率放大器实验报告

一、实验目的 1)了解音频功率放大器的电路组成,多级放大器级联的特点与性能; 2)学会通过综合运用所学知识,设计符合要求的电路,分析并解决设计过程中遇到的问题,掌握设计的基本过程与分析方法; 3)学会使用Multisim、Pspice等软件对电路进行仿真测试,学会Altium Designer使用进行PCB制版,最后焊接做成实物,学会对实际功放的测试调试方法,达到理想的效果。 4)培养设计开发过程中分析处理问题的能力、团队合作的能力。 二、实验要求 1)设计要求 设计并制作一个音频功率放大电路(电路形式不限),负载为扬声器,阻抗8Ω。要求直流稳压电源供电,多级电压、功率放大,所设计的电路满足以下基本指标: (1)频带宽度50Hz~20kHz,输出波形基本不失真; (2)电路输出功率大于8W; (3)输入阻抗:≥10kΩ; (4)放大倍数:≥40dB; (5)具有音调控制功能:低音100Hz处有±12dB的调节范围,高音10kHz 处有±12dB的调节范围; (6)所设计的电路具有一定的抗干扰能力; (7)具有合适频响宽度、保真度要好、动态特性好。 发挥部分: (1)增加电路输出短路保护功能; (2)尽量提高放大器效率; (3)尽量降低放大器电源电压; (4)采用交流220V,50Hz电源供电。 2)实物要求 正确理解有关要求,完成系统设计,具体要求如下: (1)画出电路原理图; (2)确定元器件及元件参数; (3)进行电路模拟仿真; (4)SCH文件生成与打印输出;

(5)PCB文件生成与打印输出; (6)PCB版图制作与焊接; (7)电路调试及参数测量。 三、实验内容与原理 音频功率放大器是一种应用广泛、实用性强的电子音响设备,它主要应用于对弱音频信号的放大以及音频信号的传输增强和处理。按其构成可分为前置放大级、音调控制级和功率放大级三部分,如图1所示。 v 图1 音频功率放大器的组成框图 1)前置放大级 音频功率放大器的作用是将声音源输入的信号进行放大,然后输出驱动扬声器。声音源的种类有多种,如传声器(话筒)、电唱机、录音机(放音磁头)、CD 唱机及线路传输等,这些声音源的输出信号的电压差别很大,从零点几毫伏到几百毫伏。一般功率放大器的输入灵敏度是一定的,这些不同的声音源信号如果直接输入到功率放大器中的话,对于输入过低的信号,功率放大器输出功率不足,不能充分发挥功放的作用;假如输入信号的幅值过大,功率放大器的输出信号将严重过载失真,这样将失去了音频放大的意义。所以一个实用的音频功率放大系统必须设置前置放大器,以便使放大器适应不同的输入信号,或放大,或衰减,或进行阻抗变换,使其与功率放大器的输入灵敏度相匹配。另外在各种声音源中,除了信号的幅度差别外,它们的频率特性有的也不同,如电唱机输出信号和磁带放音的输出信号频率特性曲线呈上翘形,即低音被衰减,高音被提升。对于这样的输入信号,在进行功率放大器之前,需要进行频率补偿,使其频率特性曲线恢复到接近平坦的状态,即加入频率均衡网络放大器。 对于话筒和线路输入信号,一般只需将输入信号进行放大和衰减,不需要进行频率均衡。前置放大器的主要功能一是使话筒的输出阻抗与前置放大器的输入阻抗相匹配;二是使前置放大器的输出电压幅度与功率放大器的输入灵敏度相匹配。由于话筒输出信号非常微弱,一般只有100μV~几毫伏,所以前置放大器输入级的噪声对整个放大器的信噪比影响很大。前置放大器的输入级首先采用低噪声电路,对于由晶体管组成的分立元件组成的前置放大器,首先要选择低噪声的晶体管,另外还要设置合适的静态工作点。由于场效应管的噪声系数一般比晶体管小,而且它几乎与静态工作点无关,在要求高输入阻抗的前置放大器的情况下,

反馈放大电路设计实验报告模版

深圳大学实验报告课程名称:模拟电路 实验名称:负反馈放大电路设计 学院:信息工程学院 专业:信息工程班级: 组号:指导教师:田明 报告人:学号: 实验地点 N102 实验时间: 实验报告提交时间: 教务处制

一.实验名称: 负反馈放大电路设计 二.实验目的: 加深对负反馈放大电路原理的理解. 学习集成运算反馈放大电路、晶体管反馈放大电路的设计方法. 掌握集成运算反馈放大电路、多级晶体管反馈放大电路的安装调试及测试方法. 三.实验仪器: 双踪示波器一台/组 信号发生器一台/组 直流稳压电源一台/组 万用表一台/组 四.实验容: 设计一个多级晶体管负反馈放大电路或集成运算负反馈放大电路,性能要求如下: 闭环电压放大倍:30---120 输入信号频率围:1KHZ-------10KHZ. 电压输出幅度≥1.5V 输出电阻≤3KΩ 五.实验步骤: 1.选择负反馈放大电路的类型,一般有晶体管负反馈放大电路、集 成运算负反馈放大电路.

为满足上述放大倍数的要求,晶体管负反馈放大电路最少需要二级放大,其连接形式有直接耦合和阻容耦合,阻容耦合可以消除放大器各级静态工作点之间的影响,本设计采用两者相结合的方式;对于各级放大器,其组态有多种多样,有共发射极,共基极和共集电极。本设计可以采用共发射极-共基极-共集电极放大电路。对于负反馈形式,有电压串联、电压并联、电流串联、电流并联。本设计采用电压并联负反馈形式。 2.设计电路,画出电路图. 下面是电源输入电路,通过并联两个电容的滤波电路形式,以效消除干扰,保证电路稳定工作,否则容易产生自激振荡。 整体原理图如下: 从上图可以看出来,整个电路由三级放大和一路负反馈回路构成,第一级电路是NPN管构成的共发射极电路,通过直接耦合的方式输出给

音频功率放大电路实验报告分析

实验报告 课程名称: 电路与模拟电子技术实验 指导老师: 成绩:__________________ 实验名称: 音频功率放大电路 实验类型: 研究探索型实验 同组学生姓名:__________ 一、实验目的和要求 1、理解音频功率放大电路的工作原理。 2、学习手工焊接和电路布局组装方法。 3、提高电子电路的综合调试能力。 4、通过myDAQ 来分析理论数据和实际数据之间的关系。 二、实验内容和原理(必填) 音频功率放大电路,也即音响系统放大器,用于对音频信号的处理和放大。按其构成可分为前置放大级、音调控制级和功率放大级三部分。 作为音响系统中的放大设备,它接受的信号源有多种形式,通常有话筒输出、唱机输出、录音输出和调谐器输出。它们的输出信号差异很大,因此,音频功放电路中设置前置放大级以适应不同信号源的输入。 为了满足听众对频响的要求和弥补设置了音调控制放大器,希望能对高音、低音部分的频率特性进行调节扬声器系统的频率响应不足,。 为了充分地推动扬声器,通常音响系统中的功率放大器能输出数十瓦以上功率,而高级音响系统的功放最大输出功率可达几百瓦以上。 扩音机的整机电路如下图所示,按其构成,可分为前置放大级,音调控制级和功率放大级三部分。 装 订 线

前置放大电路: 前置放大级输入阻抗较高,输出阻抗较低。前置放大级的性能对整个音频功放电路的影响很大,为了减小噪声,前置级通常要选用低噪声的运放。 由A1组成的前置放大电路是一个电压串联负反馈同相输入比例放大器。 理想闭环电压放大倍数为:23 1R R A vf + = 输入电阻:1R R if = 输出电阻:0of =R 功率放大级: 对于功率放大级,除了输出功率应满足技术指标外,还要求电路的效率高、非线性失真小、输出与音箱负载相匹配,否则将会影响放音效果。 集成功率放大器通常有OTL 和OCL 两种电路结构形式。OTL 功放的优点是只需单电源供电,缺点是输出要通过大电容与负载耦合,因此低频响应较差;OCL 功放的优点是输出与负载可直接耦合,频响特性较好,但需要用双电源供电。(实验室提供本功能模块) 本实验电路的功率放大级由集成功率器件TDA2030A 连成OCL 电路输出形式。 TDA2030A 功率集成电路具有转换速率高,失真小,输出功率大,外围电路简单等特点,采用5脚塑料封装结构。其中1脚为同相输入端;2脚为反相输入端;3脚为负电源;4脚为输出端; 5脚为正电源。 功放级电路中,电容C15、C16用作电源滤波。D1和D2为防止输出端的瞬时过电压损坏芯片的保护二极管。R11、C10为输出端校正网络以补偿感性负载,其作用是把扬声器的电感性负载补偿接近纯电阻性,避免自激和过电压。 图中通过R10、R9、C9引入了深度交直流电压串联负反馈。由于接入C9,直流反馈系数F ′=1。对于交流信号而言,

模电音频功率放大器课程设计

课程设计报告 学生姓名:张浩学学号:201130903013 7 学 院:电气工程学院 班 级: 电自1116(实验111) 题 目: 模电音频功率放大电路设计 指导教师:张光烈职称: 2013 年 7月 4 日

1、设计题目:音频功率放大电路 2、设计任务目的与要求: 要求:设计并制作用晶体管和集成运算放大器组成的音频功率放大电路,负载为扬声器,阻抗8。 指标:频带宽50HZ~20kHZ,输出波形基本不失真;电路输出功率大于8W;输入灵敏度为100mV,输入阻抗不低于47KΩ。 模电这门课程主要讲了二极管,三极管,几种放大电路,信号运算与处理电路,正弦信号产生电路,直流稳压电源。功率放大器的作用是给音响放大器的负载RL(扬声器)提供一定的输出频率。当负载一定时,希望输出的功率尽可能大,输出的信号的非线性失真尽可能小,效率尽可能高。功率放大器的常见电路形式有OTL电路和OCL电路。有用继承运算放大器和晶体管组成的功率放大器,也有专集成电路功率放大器。本实验设计的是一个OTL功率放大器,该放大器采用复合管无输出耦合电容,并采用单电源供电。主要涉及了放大器的偏置电路克服交越失真,复合管的基本组合提高电路功率,交直流反馈电路,对称电路,并用multism软件对OTL 功率放大器进行仿真实现。根据电路图和给定的原件参数,使用multism 软件模拟电路,并对其进行静态分析,动态分析,显示波形图,计算数据等操作。 3、整体电路设计: ⑴方案比较: ①利用运放芯片 LM1875和各元器件组成音频功率放大电路,有保护电路,电源分别接+30v和-30v并且电源功率至少要50w,输出功率30w。 ②利用运放芯片TDA2030和各元器件组成音频功率放大电路,有保护电路,电源只需接+19v,另一端接地,负载是阻抗为8Ω的扬声器,输出功率大于8w。 通过比较,方案①的输出功率有30w,但其输入要求比较苛刻,添加了实验难度。而方案②的要求不高,并能满足设计要求,所以选取方案②来进行设计。 ⑵整体电路框图:

晶体管共射极单管放大电路实验报告

实验二晶体管共射极单管放大器 一、实验目得 1.学会放大器静态工作点得调式方法与测量方法。 2.掌握放大器电压放大倍数得测试方法及放大器参数对放大倍数得影响。 3.熟悉常用电子仪器及模拟电路实验设备得使用。 二、实验原理 图2—1为电阻分压式工作点稳定单管放大器实验电路图。偏置电阻R B1、R B2组成分压电路,并在发射极中接有电阻R E,以稳定放大器得静 态工作点。当在放大器得输入端加入输入信号后,在放大器得输出端便可 得到一个与输入信号相位相反、幅值被放大了得输出信号,从而实现了电 压放大。 三、实验设备 1、信号发生器 2、双踪示波器 3、交流毫伏表 4、模拟电路实验箱 5、万用表 四、实验内容 1.测量静态工作点 实验电路如图2—1所示,它得静态工作点估算方法为: UB≈

图2—1共射极单管放大器实验电路图 I E=≈Ic U CE=UCC-I C(RC+RE) 实验中测量放大器得静态工作点,应在输入信号为零得情况下进行。 1)没通电前,将放大器输入端与地端短接,接好电源线(注意12V电源位置)。 2)检查接线无误后,接通电源。 3)用万用表得直流10V挡测量UE =2V左右,如果偏差太大可调节静态工作点(电位器RP)。然后测量U B、U C,记入表2—1中。 表2—1 测量值计算值UB(V) UE(V) UC(V)R B2(KΩ)U BE(V) UCE(V) I C(mA) 2、6 2 7、2 60 0、6 5、2 2 B2 量结果记入表2—1中。 5)根据实验结果可用:I C≈I E=或I C= UBE=U B-U E U CE=U C-UE 计算出放大器得静态工作点。 2.测量电压放大倍数

实验报告放大器的增益测量

放大器的增益测量 放大器并不属于传输线与天线,但由于外场测天线方向图时,信号发射天线处要加串放大器来抵消电缆的损耗,这里也不妨测试一下。 一. 实验目的 了解放大器的增益频响与测试方法。 二.实验准备 PNA3621及其全套附件,待测放大器一只,20dB衰减器2只。 仪器开机时所显示的主菜单第一项应为《频域》,若为《时域》,则按〖↓〗键使光标移到《时域》下,然后按〖→〗键选择想要的《频域》。 ? 扫频方案设置: ????1.选最小频距, 按〖↓〗键使光标移到《频域》旁边的数值下,按〖→〗在两种最小频距间作出选择(0.1MHz或0.025MHz,通常选0.1 MHz,有特殊要求时才用0.025MHz); 2.BF=40MHz,

按〖↓〗键, 使光标移到《BF》下面, 可按〖→〗〖←〗键对始频进行改动到所需数值为止, 仪器最低频与型号有关; 3.⊿F =148MHz, 按〖↓〗键, 使光标移到《⊿F》下面, 按〖→〗〖←〗键可对频距进行改动, 时域中⊿F不受控; 4.EF =3000MHz。 按〖↓〗键, 使光标移到《EF》下面, 按〖→〗〖←〗键可改变终止频率, 改EF时, 点数N随着变动, 点数N最小为1, 最大为81; EF = BF+(N - 1)⊿F。 三.测试方法 ? 1. 注意事项 注意放大器的最大输出问题, 由于本机输入端口灵敏度较高, 而内部又无程控衰减器,承受功率小于1mW, 测增益时必需外接衰减器以抵消放大器的增益。本机增益只有一档为30dB, 测试时请串入40dB以上的衰减器, 以避免仪器饱和甚至烧毁取样桥, 其衰减器值在40dB以上即可, 不必很准, 因为在校直通时已校进去了。 ?? 2. 测增益 ?? ?仪器按测插损连接,在仪器输入与输出口上各接一根短电缆。输出电缆末端接2个20dB衰减器,再用一个双阴与输入电缆连接起来; 在主菜单下将光标移到《测:A B》下,按〖→〗或〖←〗键, 使A下为《增益》,B下空白; ????按〖↓〗键使光标移到《校:直通》下, 再按〖执行〗键; ??? 画面转为方格坐标, 示值为0dB, 取下双阴,串入待测放大器(见上图),然后记下或打印下测试曲线; 将一个衰减器放在放大器输入端,一个放在输出端,记下或打印测试曲线,即可得到30dB以内的增益频响曲线; 将两个衰减器全部接在放大器后面,记下或打印下测试曲线; 比较三次测试结果,假如差别不大,说明该放大器输出功率较大,线性好。假如差别较大,说明该放大器输出功率较小,只适用于弱信号的放大; 假如增益超过30dB, 而不超过50dB, 则可直接在放大器前(或后)再串入一

语音放大电路设计

内容摘要 本文介绍了一种语音放大电路,它由前置放大器、带通滤波器和功率放大器组成,能对300——3000Hz的语音信号进行放大,降低外来噪声。并用Multisim 进行仿真实验,以期达到所要求的效果。 关键字:前置放大器带通滤波器功率放大器

目录 一、设计目的 (1) 二、设计题目及分析 (1) 三、概要设计 (1) 四、详细设计 (1) 五、测试分析 (6) 六、附录 (7)

一、设计目的 在电子电路中,输入语音信号往往混杂着噪声和其他不同频率成分的干扰,因此我们设计该电路,使其尽可能减小噪声,滤除300——3000Hz以为的频率成分,同时,尽可能地放大有用信号,从而得到清晰的语音信号,并将它通过扬声器输出。 二、设计题目及分析 此语音放大器由三部分组成,原理框图如图2-1。 图2-1 语音放大器原理框图 其中,各级要求如下。 ①前置放大器的输入信号≤5mV,输入阻抗为10KΩ,可用元件741运算放大器。 ②带通滤波器3dB带通范围:300——3000Hz。 ③功率放大器输出功率Po≥0.5W,输出阻抗Ro=4Ω,输出功率连续可调,可用元件 LM386功率放大器。 ④电源电压为±12V。 三、概要设计 (1)假设带通滤波器通带增益为0dB,且功率放大器采用LM386的20倍接法,若要提供足够的功率(扬声器8Ω,输出功率≥0.5W),则可设功率放大器的输入信号有效值为100mV,此时8Ω的扬声器获得功率为0.5W,故在此前置放大器级,假设输入信号为5mV,至少需要对其放大30倍。在此前置放大器放大倍数选为50倍,若采用运算放大器的反向组态,则反馈电阻采用500KΩ的电阻,此时输入阻抗为10KΩ。(2)带通滤波器可由低通滤波器和高通滤波器串联组成。其中,低通滤波器截止频率为3KHz,高通滤波器截止频率为300Hz。为了确保通带增益为0dB,此处高通滤波器和低通滤波器均采用有源滤波器,由于运放数量的限制,此电路中仅使用二阶滤波器,相对于一阶滤波器,它能较快的收敛,滤波器设计可由Filter Solution软件辅助完成。 (3)该功率放大器可直接采用20倍放大的接法,为了能够达到输出功率连续可调,可在信号输入端与地之间接入可调电阻,输出阻抗可在电路正常工作后,能够输出不失真的情况下,通过在输出端串接电阻使输出阻抗Ro=4Ω。 四、详细设计 (1)前置放大器 前置放大器亦为小信号放大器。语音信号属于低频信号,多采用单端方式传输,其中混有噪声和其他频率分量,在此级应尽量一致低频分量和噪声等,放大有用信号。故在信号输入放大器前,接入一隔直电阻,去掉直流成分,由3中分析,放大器采用741的反相组态,放大倍数为50倍,反馈电阻为500KΩ,输入阻抗10KΩ。具体电路如图4-1所示。

实验四 两级放大电路实验报告

实验四 两级放大电路 一、实验目的 l 、掌握如何合理设置静态工作点。 2、学会放大器频率特性测试方法。 3、了解放大器的失真及消除方法。 二、实验原理 1、对于二极放大电路,习惯上规定第一级是从信号源到第二个晶体管BG2的基极,第二级是从第二个晶体管的基极到负载,这样两极放大器的电压总增益Av 为: 2V 1V 1 i 1 O 2i 2O 1i 2O ,i 2O S 2O V A A V V V V V V V V V V A ?=?==== 式中电压均为有效值,且2i 1O V V =,由此可见,两级放大器电压总增益是单级电压增益的乘积,由结论可推广到多级放大器。 当忽略信号源内阻R S 和偏流电阻R b 的影响,放大器的中频电压增益为: 1be 2 be 1C 1be 1L 11i 1O S 1O 1V r r //R 1 r R V V V V A β-='β-=== 2 be L 2C 2 2be 2L 21O 2O 1i 2O 2V r R //R r R V V V V A β-='β-=== 2 be L 2C 2 1be 2be 1C 12V 1V V r R //R r r //R A A A β?β=?= 必须要注意的是A V1、A V2都是考虑了下一级输入电阻(或负载)的影响,所以第一级的输出电压即为第二级的输入电压,而不是第一级的开路输出电压,当第一级增益已计入下级输入电阻的影响后,在计算第二级增益时,就不必再考虑前级的输出阻抗,否则计算就重复了。 2、在两极放大器中β和I E 的提高,必须全面考虑,是前后级相互影响的关系。 3、对两级电路参数相同的放大器其单级通频带相同,而总的通频带将变窄。 ) dB (A log 20G 式中G G G V u o 2u o 1u uo =+= 三、实验仪器 l 、双踪示波器。 2、数字万用表。 3、信号发生器。 4、毫伏表 5、分立元件放大电路模块 四、实验内容 1、实验电路见图4-1

音频放大器 实验报告

音响放大器的设计 一、 设计任务 1) 功能要求:具有话筒扩音、音调控制、音量控制,卡拉OK 伴唱 2) 已知条件:集成功率放大器LM386 1个,10K 欧姆高阻话筒一个(咪头,要加上拉电阻),输出电压为5mV ,集成运放LM324一只, +VCC = +9V ,8Ω/2W 负载电阻RL 1只,8Ω/4W 扬声器1只,MP3一台(连接输入线一条) 3) 主要技术指标:额定功率 Po ≥0.3W(γ <3%); 4) 负载阻抗 RL=8Ω; 5) 截止频率fL=50Hz ,fH=20kHz ; 6) 音调控制特性 1kHz 处增益为0dB ,125Hz 和8kHz 处有±12dB 的调节范围,A VL=A VH ≥20dB ; 7) 话放级输入灵敏度 5mV ; 8) 输入阻抗 Ri>>10K Ω。 二、 实验器材 实验所需元件、示波器、万用表、覆铜板、函数发生器、热转印机、钻孔机、环保腐蚀液、变压器、MP3、喇叭等等 三、 功能模块组成和增益分配 图 1功能模块组成 话筒输入 5mv 话音放大器(4.7倍)音频输入 100mv 混合前置放大(3倍)音调控制器(0.8倍)功率放大器(30倍)扬声器+9V 电源

四、功能模块设计 (一)工作电源(+9V) 电源模块由实验室稳压试验箱经过J1、J2接入电路模块,S1为电源开关,W1是7809稳压芯片,期中C3、C4为电源输入的滤波电容,C5、C6为电源输出的滤波电容,D1为发光二极管做上电指示用,P2为4个短接到地上的排针接口,作为测试用的接口。 图2稳压模块 (二)话筒输入和话音放大器 由于话筒的输出信号一般只有5mV左右,输出阻抗高。所以话音放大器用来不失真地放大声音信号,输入阻抗需远大于话筒的输出阻抗,且符合阻抗匹配。第一级设计成增益为: A V1=1+R2/R4=47K/10K=4.7, R2 =75KΩ; R4=10KΩ,放大后输出电压为V o1按设计要求应该达到24mv,原理图如下: 图3话音放大器

音频功率放大电路课程设计报告

, 课程设计 课程名称_模拟电子技术课程设计 题目名称音频功率放大电路 $ 学生学院 专业班级 学号 学生姓名__ 指导教师 : 2010 年 6 月 20 日

— 音频功率放大电路课程设计报告 一、设计题目 题目:音频功率放大电路 二、设计任务和要求 ` 1)设计任务 设计并制作一个音频功率放大电路(电路形式不限),负载为扬声器,阻抗8Ω。 2)设计要求 频带宽50H Z ~20kH Z ,输出波形基本不失真;电路输出功率大于8W; 输入灵敏度为100mV,输入阻抗不低于47KΩ。 三、原理电路设计 功率放大电路: % 功率放大电路通常作为多级放大电路的输出级。功率放大器的常见电路形式有OTL电路和OCL电路。在很多电子设备中,要求放大电路的输出级能够带动某种负载,例如驱动仪表,使指针偏转;驱动扬声器,使之发声;或驱动自动控制系统中的执行机构等。也就是把输入的模拟信号经被放大后,去推动一个实际的负载工作,所以要求放大电路有足够大的输出功率,这样的放大电路统称为功率放大电路。而音频功率放大器的作用就是给音响放大器的负载RL(扬声器)提供一定的输出功率。当负载一定时,希望输出的功率尽可能大,输出的信号的非线形失真尽可能地小,效率尽可能的高。随着半导体工艺,技术的不断发展,输出功率几十瓦以上的集成放大器已经得到了广泛的应用。功率VMOS管的出现,也给功率放大器的发展带来了新的生机。总之,功率放大器的主要任务是向负载提供较大的信号功率,故功率放大器应具有以下几个主要特点: 1. 输出功率要足够大 工作在大信号状态下,输出电压和输出电流都很大.要求在允许的失真条件下,

语音放大电路设计精编版

语音放大电路设计精编 版 MQS system office room 【MQS16H-TTMS2A-MQSS8Q8-MQSH16898】

一、语音放大电路的设计 通常语音信号非常微弱,需要经过放大、滤波、功率放大后驱动扬声器。 要求: (1)采用集成运算放大器LM324和集成功放LM386N-4设计一个语音放大电路; 假设语音信号的为一正弦波信号,峰峰值为5mV,频率范围为100Hz~1KHz,电路总体原理图如下所示; 具体 设计 方案 可以 参照 以下 电路: 图4 语音放大电路 前置放大电路: 采用同相比例放大器,放大倍数为: A V=1+100KΩ 10KΩ =11

带通滤波电路为: 带通滤波器A1的放大倍数计算: A vf1=1+ 27KΩ 100KΩ =1.27 A vf2=1+ 27KΩ 100KΩ =1.27 则带通滤波器的放大倍数为: A V=A vf1?A vf2 =1.272=1.6129 采用低通和高通二阶有源巴特沃斯滤波器器串联连接,按照设计要求低通滤波器截止频率为1KHz,高通滤波器截止频率大于100Hz: f high= 1 2πRC = 1 2π15K?0.1μ =106Hz f low= 1 2πRC = 1 2π15K?0.01μ =1061Hz 功率放大电路: 是一个三级放大电路:第一级为差分放大电路;第二级为共射放大电路;第三级为准互补输出级功放电路。 外接元件最少的用法: 静态时输出电容上电压为V CC2 ?,最大不失真输出电压的峰-峰值为电压V CC,最大输出 P=(CC √2 ) 2 R L = V CC2 R L = (1)仔细分析以上电路,弄清电路构成,指出前置放大器的增益为多少dB?通带滤波器的增益为多少dB? 前级放大器的增益为21dB,带通滤波器的增益为 (2)参照以上电路,焊接电路并进行调试。 a、将输入信号的峰峰值固定在5mV,分别在频率为100Hz和1KHz的条件下测 试前置放大的输出和通带滤波器的输出电压值,计算其增益,将计算结果同上面分析的理论值进行比较。 经过实际测量,前级放大器的实际增益约为20dB,带通滤波器的增益约为 0dB。 b、能过改变10K殴的可调电阻,得到不同的输出,在波形不失真的条件下,测 试集成功放LM386在如图接法时的增益; 调节电位器,可得功放的实际增益约为25dB。 c、将与LM386的工作电源引脚即6引脚相连的10uF电容断开,观察对波形的 影响,其作用是什么?

负反馈放大电路实验报告

实验二 由分立元件构成的负反馈放大电路 一、实验目的 1.了解N 沟道结型场效应管的特性和工作原理; 2.熟悉两级放大电路的设计和调试方法; 3.理解负反馈对放大电路性能的影响。 二、实验任务 设计和实现一个由N 沟道结型场效应管和NPN 型晶体管组成的两级负反馈放大电路。结型场效应管的型号是2N5486,晶体管的型号是9011。 三、实验内容 1. 基本要求:利用两级放大电路构成电压并联负反馈放大电路。 (1)静态和动态参数要求 1)放大电路的静态电流I DQ 和I CQ 均约为2mA ;结型场效应管的管压降U GDQ < - 4V ,晶体管的管压降U CEQ = 2~3V ; 2)开环时,两级放大电路的输入电阻要大于90kΩ,以反馈电阻作为负载时的电压放大倍数的数值 ≥ 120; 3)闭环电压放大倍数为10s o sf -≈=U U A u 。 (2)参考电路 1)电压并联负反馈放大电路方框图如图1所示,R 模拟信号源的内阻;R f 为反馈电阻,取值为100 kΩ。 图1 电压并联负反馈放大电路方框图 2)两级放大电路的参考电路如图2所示。图中R g3选择910kΩ,R g1、R g2应大于100kΩ;C 1~C 3容量为10μF ,C e 容量为47μF 。考虑到引入电压负反馈后反馈网络的负载效应,应在放大电路的输入端和输出端分别并联反馈电阻R f ,见图2,理由详见“五 附录-2”。 图2 两级放大电路 实验时也可以采用其它电路形式构成两级放大电路。 3.3k ?

(3)实验方法与步骤 1)两级放大电路的调试 a. 电路图:(具体参数已标明) ? b. 静态工作点的调试 实验方法: 用数字万用表进行测量相应的静态工作点,基本的直流电路原理。 第一级电路:调整电阻参数, 4.2s R k ≈Ω,使得静态工作点满足:I DQ 约为2mA ,U GDQ < - 4V 。记录并计算电路参数及静态工作点的相关数据(I DQ ,U GSQ ,U A ,U S 、U GDQ )。 实验中,静态工作点调整,实际4s R k =Ω 第二级电路:通过调节R b2,240b R k ≈Ω,使得静态工作点满足:I CQ 约为2mA ,U CEQ = 2~3V 。记录电路参数及静态工作点的相关数据(I CQ ,U CEQ )。 实验中,静态工作点调整,实际241b R k =Ω c. 动态参数的调试 输入正弦信号U s ,幅度为10mV ,频率为10kHz ,测量并记录电路的电压放大倍数 s o11U U A u =、s o U U A u =、输入电阻R i 和输出电阻R o 。 o1U s U o U 1u A

语音放大器设计实验报告

模拟电子技术课程设计 语 音 放 大 器 姓名:伍慧兰 学号:2015550828 班级:15通信工程1班 指导老师:罗光明 目录 一、设计目的 (2) 二、知识点和设计内容 (2) 三、设计方案 (3) 四、实验原理与参考电路 (4) (一)实验原理图如图1-2 (4) (二)实验原理 (5) 1) 前置放大器 (5) 2) 有源带通滤波器 (5) 3) 功率放大器 (6)

五、实验的主要元器件 (7) (一)元器件清单 (7) (二)部分器件的使用介绍 (8) 1) LM324芯片 (8) 2) TDA2030引脚图与应用电路参数 (12) 六、实验步骤 (13) (一)电路仿真实验 (13) (二)硬件实物实验 (19) 1) 前置放大器的焊接与调试 (19) 2) 有源带通滤波器 (20) 七、实验中的问题提出与解决方法 (24) 八、注意事项 (25) 九、实验感想 (26) 参考资料 (27) 语音放大器设计 一、设计目的 1、了解语音识别知识; 2、掌握集成运算放大器的工作原理及其应用; 3、掌握低频小信号放大电路、带通滤波器和功放电路的设计方法; 4、培养应用现代工具对模拟电子系统进行仿真测试、制作调试、故障检查及分析的能力; 5、培养市场素质、工艺素质、自主学习能力、分析问题解决问题的能力以及团队精神; 6、培养文献查阅与综述和撰写课程设计报告的能力。 二、知识点和设计内容 本实验的知识点为分立元件放大器或集成运放、有源滤波器、集

成功率放大器;涉及电子电路各个模块之间的联合调试技术。 三、设计方案 语音放大器设计的基本设计思路 分析可知本语音放大器应包括输入电路、前置放大器、有源带通滤波器、功率放大器、扬声器等几部分组成,如图1-1所示。 前置放大器可采用集成运算放大器,有源带通滤波器可采用LPF 和HPF 串联构成,功率放大电路选用集成功放。 设计的性能指标 通常语音信号非常微弱,需要经过放大、滤波、功率放大后才能驱动扬声器发声。假设语音信号为峰峰值不大于10mV 频率范围100Hz~3kHz 的正弦波,要求驱动8Ω1W 的扬声器。具体性能指标如下: 1、前置放大器:输入信号Uid ≤10mV ;输入阻抗Ri ≥100k Ω 2、有源带通滤波器:通带100Hz~3kHz ;增益Au=1 3、功放:最大不失真输出功率Pomax ≥1W ;负载阻抗R L =8Ω 4、输出功率连续可调;直流输出电压≤50mV ;静态电源电流≤100mA 输入 电路 前置 放大 带通 滤波 功率 放大 图1-1 语音放大电路原理框图

单级共射放大电路实验报告精编版

单级共射放大电路实验报告 一、实验目的 1.熟悉常用电子仪器的使用方法。 2.掌握放大器静态工作点的调试方法及对放大器电路性能的影响。 3.掌握放大器动态性能参数的测试方法。 4.进一步掌握单级放大电路的工作原理。 二、实验仪器 1.示波器 2.信号发生器 3.数字万用表 4.交流毫伏表 5.直流稳压源 三、预习要求 1.复习基本共发射极放大电路的工作原理,并进一步熟悉示波器的 正确使用方法。 2.根据实验电路图和元器件参数,估算电路的静态工作点及电路的 电压放大倍数。 3.估算电路的最大不失真输出电压幅值。 4.根据实验内容设计实验数据记录表格。 四、实验原理及测量方法 实验测试电路如下图所示:

1.电路参数变化对静态工作点的影响: 放大器的基本任务是不失真地放大信号,实现输入变化量对输出变化量的控制作用,要使放大器正常工作,除要保证放大电路正常工作的电压外,还要有合适的静态工作点。放大器的静态工作点是指放大器输入端短路时,流过电路直流电流IBQ、ICQ及管子C、E极之间的直流电压UCEQ 和B、E极的直流电压UBEQ。图5-2-1中的射极电阻BE1、RE2是用来稳定放大器的静态工作点。其工作原理如下。 ○1用RB和RB2的分压作用固定基极电压UB。 由图5-2-1可各,当RB、RB2选择适当,满足I2远大于IB时,则有 UB=RB2·VCC/(RB+RB2) 式中,RB、RB2和VCC都是固定不随温度变化的,所以基极电位基本上是一定值。 ○2通过IE的负反馈作用,限制IC的改变,使工作点保持稳定。具体稳定过程如下: T↑→IC↑→IE↑→UE↑→UBE↓→IB↓→IC↓ 2.静态工作点的理论计算: 图5-2-1电路的静态工作点可由以下几个关系式确定

音频功放实验报告

音频功放 一、.设计方案: 音频功率放大器要求: 输入信号为50mv ,50~15KHz 的音频信号,负载为8Ω扬声器的情况下,输出Pom ≥5W 。 本方案分两级设计,第一级采用集成运算放大器构成的比例放大器做为激励,主要完成对小信号的放大。要求放大倍数大,输出阻抗低,频带宽度宽,噪音低。第二级采用双电源的OCL 电路做为功放输出级,功率放大器决定了整机的输出功率、非线性失真系数等指标,要求效率高、失真尽可能小、输出功率大。 二、.各部分电路分析: 1.电源部分: . 由于设计要求om P 为5W ,根据L CES CC om R U V P 2)(2 -=(其中R L 为8 Ω,CES U 一般取3V 以上),所以有: L om CES CC R P U V ?+≥2 即CC V V 12≥ 本方案选用了±15V 的CC V 电压。 为了得到稳定的±15V 电源,电源部分将由三部分组成:

(1) 变压器部分:由于需得到±15V 的稳定电压,所以输入稳压电路的电压需略高于±15V 。本方案采用±17.5V 输出的变压器。 (2) 整流部分:采用单相桥式整流电路,可选用四个1N4007二极管或桥堆,最大整流电流1A 即可。 (3) 稳压部分:为得到稳定的±15V 电源,稳压部分采用7815与7915的集成三端稳压芯片,输入端并接一个4700μF 电解电容,以改善纹波与抑制输入的过电压;输入端和输出端各并接一个0.1μF 瓷片电容,以改善负载的瞬态响应。值得注意的是,输入端的4700μF 电解电容的耐压值必须满足 V V U 2525.17max ≈?≥ 实验证明刚好25V 的耐压会由于变压器输出的瞬间电压过高而报废。所以本方案选用50V 耐压的电容。 (4) 滤波部分:采用常用的电容滤波,取值1000μF 。此1000μF 只要高于15V 就可以。由于稳压芯片输出可能略高于15V ,所以本方案采用25V 耐压的电容。 2.功放部分: 电路图如图: 由两部分构成,前级采用集成运算放大器构成的比例放大电路,对输入的信号进行电压放大,输出级采用OCL 互补输出结构的功率放大电路,对经过前级放大的信号进行功率放大。 晶体管1Q ~4Q 组成复合式晶体管互补对称电路。1Q 、2Q 为相同类型的NPN 管,组成复合式的NPN 管;3Q 、4Q 为不同类型的晶体管,组成复合式的PNP 管,用于多级放大。

专设—语音控制放大器及原理图

目录 1、课程设计目的 (1) 2、课程设计内容和要求 (1) 2.1、设计内容 (1) 2.2、设计要求 (1) 3、设计方案 (2) 3.1、设计思路 (2) 3.2、工作原理及硬件框图 (3) 3.3、硬件电路原理图 (6) 4、课程设计总结 (7) 5、参考文献 (8)

1、设计目的: ①掌握电子电路的一般设计方法和设计流程; ②学习使用PROTEL软件绘制电路原理图及印刷板图; 2、设计内容和要求(包括原始数据、技术参数、条件、设计要求等):2.1、设计内容 在电子电路中,输入信号常常受各种因素的影响而含有一些不必要的成份(即干扰),或者输入信号是不同频率信号混合在一起的信号,对前者应设法将不必要的成份衰减到足够小,而后者应设法将需要的信号提取出来。而且随着社会的发展,在我们的日常生活中也经常会出现一系列的问题:如在检修各种机器设备的时候,我们要根据故障设备的异常声来寻找故障,这种异常的声响的频谱覆盖面往往很广;同时另外的一种情况我们在打电话的时候,有时往往因声音或干扰太大而难以听清对方的声音,这时我们就需要一种既能放大语音信号又能降低外来噪声的仪器。而且语音放大电路目前的运用很广泛:适用于很多的家用电器上面的运用。例如:便携式收音机、对讲机等很多方面的运用。为了达到这样的一个目的,我们就要考虑到设计一个能识别300~3000HZ频率范围内的小信号放大系统,我们可以用设计一个集成运算放大器组成的语音放大电路。 2.2、设计要求 查阅语音识别的相关资料,掌握低频小信号放大电路和功放电路的设计方法,设计一个由集成运算放大器组成的语音放大电路。 电路要求: (1)前置放大器 输入信号:Uid <=10mv, 输入阻抗:Ri>=10k. (2)有源带通滤波器 带通频率范围:300~3000Hz (3)功率放大器 最大不失真输出功率:Pom>=5w 负载阻抗:RL==4. 根据设计要求和已知条件进行下面的分析,并计算和选取单电路的元件数:

负反馈放大电路实验报告

实验二由分立元件构成的负反馈放大电路 一、实验目的 1?了解N沟道结型场效应管的特性和工作原理; 2?熟悉两级放大电路的设计和调试方法; 3?理解负反馈对放大电路性能的影响。 二、实验任务 设计和实现一个由N沟道结型场效应管和NPN型晶体管组成的两级负反馈放大电路。结型场效应管的型号是2N5486,晶体管的型号是9011。 三、实验内容 1.基本要求:利用两级放大电路构成电压并联负反馈放大电路。 (1)静态和动态参数要求 1)放大电路的静态电流I DQ和I CQ均约为2mA结型场效应管的管压降U G DQ< - 4V ,晶体管的管压降U C EQ= 2?3V; 2)开环时,两级放大电路的输入电阻要大于90k Q,以反馈电阻作为负载时的电压放大倍数的数值 >120 ; 3)闭环电压放大倍数为A usf二U°,.U s、-10。 (2)参考电路 1)电压并联负反馈放大电路方框图如图1所示,R模拟信号源的内阻;R为反馈电阻, 取值为100 k Q o Rt 图1电压并联负反馈放大电路方框图 2)两级放大电路的参考电路如图2所示。图中%选择910k Q, R1、R2应大于100k Q; G?G容量为10疔,C e容量为47犷。考虑到引入电压负反馈后反馈网络的负载效应,应在放大电路的输入端和输出端分别并联反馈电阻R,见图2,理由详见五附录一2”。 i㈡ R T 井肘成大电谿 图2两级放大电路 实验时也可以采用其它电路形式构成两级放大电路。

(3)实验方法与步骤 1)两级放大电路的调试 a. 电路图:(具体参数已标明) b. 静态工作点的调试 实验方法: 用数字万用表进行测量相应的静态工作点,基本的直流电路原理。 第一级电路:调整电阻参数, R^^4.2kQ ,使得静态工作点满足:I D 哟为2mA U G DQ < -4V 。记录并计算电路参数及静态工作点的相关数据( I DQ , U G SQ LA ,U S 、U G D Q 。 实验中,静态工作点调整,实际 -4k '1 第二级电路:通过调节 氐,&2 : 40^ 1 ,使得静态工作点满足:I CQ 约为2mA U C EQ = 2? 3V 。记录电路参数及静态工作点的相关数据( | CQ L C EQ )。 实验中,静态工作点调整,实际 R b ^41k 11 c. 动态参数的调试 输入正弦信号 U S ,幅度为 10mV 频率为10kHz ,测量并记录电路的电压放大倍数 A1 =U °1 -U s 、A =U o.. U s 、输入电阻R 和输出电阻R °o XSC1 Rf1 100k| ?

相关主题
文本预览
相关文档 最新文档