当前位置:文档之家› 中考数学压轴题专项训练:四边形的综合(含答案)

中考数学压轴题专项训练:四边形的综合(含答案)

中考数学压轴题专项训练:四边形的综合(含答案)
中考数学压轴题专项训练:四边形的综合(含答案)

2020年数学中考压轴题专项训练:四边形的综合

1.如图,四边形ABCD是直角梯形,AD∥BC,AB⊥AD,且AB=AD+BC,E是DC的中点,连结BE并延长交AD的延长线于G.

(1)求证:DG=BC;

(2)F是AB边上的动点,当F点在什么位置时,FD∥BG;说明理由.

(3)在(2)的条件下,连结AE交FD于H,FH与HD长度关系如何?说明理由.

(1)证明:∵AD∥BC,

∴∠DGE=∠CBE,∠GDE=∠BCE,

∵E是DC的中点,即DE=CE,

∴△DEG≌△CEB(AAS),

∴DG=BC.

(2)解:当F运动到AF=AD时,FD∥BG.

理由:由(1)知DG=BC,

∵AB=AD+BC,AF=AD,

∴BF=BC=DG,

∴AB=AG,

∵∠BAG=90°,

∴∠AFD=∠ABG=45°,

∴FD∥BG.

(3)解:结论:FH=HD.

理由:由(1)知GE=BG,又由(2)知△ABG为等腰直角三角形,所以AE⊥BG,

∵FD∥BG,

∴AE⊥FD,

∵△AFD为等腰直角三角形,

∴FH=HD.

2.如图,在矩形ABCD中,过BD的中点O作EF⊥BD,分别与AB、CD交于点E、F.连接DE、BF.

(1)求证:四边形BEDF是菱形;

(2)若M是AD中点,联结OM与DE交于点N,AD=OM=4,则ON的长是多少?

(1)证明:∵四边形ABCD是矩形,

∴AB∥CD,

∴∠DFO=∠BEO,

∵∠DOF=∠EOB,OD=OB,

∴△DOF≌△BOE(AAS),

∴DF=BE,

∴四边形BEDF是平行四边形,

∵EF⊥BD,

∴四边形BEDF是菱形.

(2)解:∵DM=AM,DO=OB,

∴OM∥AB,AB=2OM=8,

∴DN=EN,ON=BE,设DE=EB=x,

在Rt△ADE中,则有x2=42+(8﹣x)2,

解得x=5,

∴ON=.

3.(1)如图1,四边形EFGH中,FE=EH,∠EFG+∠EHG=180°,点A,B分别在边FG,GH 上,且∠AEB=∠FEH,求证:AB=AF+BH.

(2)如图2,四边形EFGH中,FE=EH,点M在边EH上,连接FM,EN平分∠FEH交FM 于点N,∠ENM=α,∠FGH=180°﹣2α,连接GN,HN.

①找出图中与NH相等的线段,并加以证明;

②求∠NGH的度数(用含α的式子表示).

(1)证明:如图1中,延长BH到M,使得HM=FA,连接EM.

∵∠F+∠EHG=180°,∠EHG+∠EHM=180°,

∴∠F=∠EHM,

∵AE=HE,FA=HM,

∴△EFA≌△EHM(SAS),

∴EA=EM,∠FEA=∠HEM,

∵∠EAB=∠FEH,

∴∠FEA+∠BEH=∠HEM+∠BEH=∠BEM=∠FEH,∴∠AEB=∠BEM,

∵BE=BE,EA=EM,

∴△AEB≌△MEB(SAS),

∴AB=BM,

∵BM=BH+HM=BH+AF,

∴AB=AF+BH.

(2)解:①如图2中,结论:NH=FN.

理由:∵NE平分∠FEH,

∴∠FEN=∠HEN,

∵EF=EH,EN=EN,

∴△ENF≌△ENH(SAS),

∴NH=FN.

②∵△ENF≌△ENH,

∴∠ENF=∠ENH,

∵∠ENM=α,

∴∠ENF=∠ENH=180°﹣α,

∴∠MNH=180°﹣α﹣α=180°﹣2α,

∵∠FGH=180°﹣2α,

∴∠MNH=∠FGH,

∵∠MNH+∠FNH=180°,

∴∠FGH+∠FNH=180°,

∴F,G,H,N四点共圆,

∵NH=NF,

∴=,

∴∠NGH=∠NGF=∠FGH=90°﹣α.

4.如图,已知△ABC中,∠ACB=90°,AC=4,BC=3,点M、N分别是边AC、AB上的动点,连接MN,将△AMN沿MN所在直线翻折,翻折后点A的对应点为A′.

(1)如图1,若点A′恰好落在边AB上,且AN=AC,求AM的长;

(2)如图2,若点A′恰好落在边BC上,且A′N∥AC.

①试判断四边形AMA′N的形状并说明理由;

②求AM、MN的长;

(3)如图3,设线段NM、BC的延长线交于点P,当且时,求CP的长.解:(1)如图1中,

在Rt△ABC中,∵∠C=90°,AC=4,BC=3,∴AB===5,

∵∠A=∠A,∠ANM=∠C=90°,

∴△ANM∽△ACB,

∴=,

∴=,

∴AM=.

(2)①如图2中,

∵NA′∥AC,

∴∠AMN=∠NMA′,

由翻折可知:MA=MA′,∠AMN=∠NMA′,

∴∠MNA′=∠A′MN,

∴A′N=A′M,

∴AM=A′N,∵AM∥A′N,

∴四边形AMA′N是平行四边形,

∵MA=MA′,

∴四边形AMA′N是菱形.

②连接AA′交MN于O.设AM=MA′=x,

∵MA′∥AB,

∴=,

∴=,

解得x=,

∴AM=,

∴CM=,

∴CA′===,

∴AA′===,

∵四边形AMA′N是菱形,

∴AA′⊥MN,OM=ON,OA=OA′=,

∴OM===,∴MN=2OM=.

(3)如图3中,作NH⊥BC于H.

∵NH∥AC,

∴==

∴==

∴NH=,BH=,

∴CH=BC﹣BH=3﹣=,

∴AM=AC=,

∴CM=AC﹣AM=4﹣=,

∵CM∥NH,

∴=,

∴=,

∴PC=1.

5.如图,四边形ABCD为平行四边形,AD=1,AB=3,∠DAB=60°,点E为边CD上一动点,过点C作AE的垂线交AE的延长线于点F.

(1)求∠D的度数;

(2)若点E为CD的中点,求EF的值;

(3)当点E在线段CD上运动时,是否存在最大值?若存在,求出该最大值;若不存在,请说明理由.

解:(1)如图1中,

∵四边形ABCD是平行四边形,

∴AB∥CB,

∠ADC+∠DAB=180°,

∵∠DAB=60°,

∴∠ADC=120°.

(2)如图1中,作AH⊥CD交CD的延长线于H.

在Rt△ADH中,∵∠H=90°,∠ADH=60°,AD=2,

∴AH=AD?sin60°=,DH=AD?cos60°=,

∵DE=EC=,

∴EH=DH+DE=2,

∴AE===,

∵CF⊥AF,

∴∠F=∠H=90°,

∵∠AEH=∠CEF,

∴△AEH∽△CEF,

∴=,

∴=,

∴EF=.

(3)如图2中,作△AFC的外接圆⊙O,作AH⊥CD交CD的郯城县于H,作OK⊥CD于K,

交⊙O于M,作FP∥CD交AD的延长线于P,作MN∥CD交AD的延长线于M,作NQ⊥CD于Q.

∵DE∥PF,

∴=,

∵AD是定值,

∴PA定值最大时,定值最大,

观察图象可知,当点F与点M重合时,PA定值最大,最大值=AN的长,

由(2)可知,AH=,CH=,∠H=90°,

∴AC===,

∴OM=AC=,

∵OK∥AH,AO=OC,

∴KH=KC,

∴OK==,

∴MK=NQ=﹣,

在Rt△NDQ中,DN===﹣,

∴AN=AD+DN=+,

∴的最大值==+.

6.如图,在边长为2的正方形ABCD中,点P是射线BC上一动点(点P不与点B重合),连接AP、DP,点E是线段AP上一点,且∠ADE=∠APD,连接BE.

(1)求证:AD2=AE?AP;

(2)求证BE⊥AP;

(3)直接写出的最小值.

(1)证明:∵∠DAE=∠PAD,∠ADE=∠APD,

∴△ADE∽△APD,

∴=,

∴AD2=AE?AP

(2)证明:∵四边形ABCD是正方形,

∴AD=AB,∠ABC=90°,

∴AB2=AE?AP,

∴=,

∵∠BAE=∠PAB,

∴△ABE∽△APB,

∴∠AEB=∠ABP=90°,

∴BE⊥AP.

(3)∵△ADE∽△APD,

∴=,

∴=,

∵AD=2,

∴DE最小时,的值最小,

如图,作△ABE的外接圆⊙O,连接OD,OE,易知OE=1,OD=,

∴DE≥OD﹣OE=﹣1,

∴DE的最小值为﹣1,

∴的最小值=.

7.在正方形ABCD中,点E是BC边上一点,连接AE.

(1)如图1,点F为AE的中点,连接CF.已知tan∠FBE=,BF=5,求CF的长;

(2)如图2,过点E作AE的垂线交CD于点G,交AB的延长线于点H,点O为对角线AC 的中点,连接GO并延长交AB于点M,求证:AM+BH=BE.

解:(1)Rt△ABE中,BF为中线,BF=5,

∴AE=10,FE=5,

作FP⊥BC于点P,

Rt△BFP中,,

∴BP=3,FP=4,

在等腰三角形△BFE中,BE=2BP=6,

由勾股定理求得,

∴CP=8﹣3=5,

∴;

(2)∵∠ACD=∠BAC=45°,AO=CO,∠AOM=∠COG,

∴证明△AMO≌△CGO(ASA),

∴AM=GC,

过G作GP垂直AB于点P,得矩形BCGP,

∴CG=PB,

∵AB=PG,∠AEB=∠H,∠ABE=∠GPH,

∴△ABE≌△GPH(ASA),

∴BE=PH=PB+BH=CG+BH=AM+BH.

8.阅读理解:如图1,若一个四边形的两条对角线互相垂直,则称这个四边形为垂美四边形.

(1)概念理解:如图2,在四边形ABCD中,AB=AD,CB=CD,问四边形ABCD是垂美四边形吗?请说明理由;

(2)性质探究:如图1,试在垂美四边形ABCD中探究AB2,CD2,AD2,BC2之间的关系,并说明理由;

(3)解决问题:如图3,分别以Rt△ABC的直角边AC和斜边AB为边向外作正方形ACFG 和正方形ABDE,连结CE、BG、GE、CE交BG于点N,交AB于点M.已知AC=,AB=2,求GE的长.

解:(1)如图2,四边形ABCD是垂美四边形;

理由如下:

连接AC、BD交于点E,

∵AB=AD,

∴点A在线段BD的垂直平分线上,

∵CB=CD,

∴点C在线段BD的垂直平分线上,

∴直线AC是线段BD的垂直平分线,

∴AC⊥BD,即四边形ABCD是垂美四边形;

(2)猜想结论:AB2+CD2=AD2+BC2,

证明:如图1,在四边形ABCD中,

∵AC⊥BD,

∴∠AOD=∠AOB=∠BOC=∠COD=90°,

由勾股定理得:AB2+CD2=AO2+BO2+OD2+OC2AD2+BC2=AO2+BO2+OD2+OC2

∴AB2+CD2=AD2+BC2,

(3)如图3,连接CG,BE,

∵∠CAG=∠BAE=90°,

∴∠CAG+∠BAC=∠BAE+∠BAC,即∠GAB=∠CAE,

在△GAB和△CAE中,

FMNG图 3EDCAB

∴△GAB≌△CAE(SSS),

∴∠ABG=∠AEC,

∵∠AEC+∠AME=90°,

∴∠ABG+∠BMN=90°,

∴∠BNC=90°,即BG⊥CE,

∴四边形CGEB是垂美四边形,

由(2)得:EG2+BC2=CG2+BE2

∵,AB=2,

∴BC=1,,,

∴EG2=CG2+BE2﹣BC2=6+8﹣2=13,

∴.

9.已知:如图,长方形ABCD中,∠A=∠B=∠B=∠D=90°,AB=CD=4米,AD=BC=8米,点M是BC边的中点,点P从点A出发,以1米/秒的速度沿AB方向运动再过点B沿BM方向运动,到点M停止运动,点O以同样的速度同时从点D出发沿着DA方向运动,到点A停止运动,设点P运动的时间为x秒.

(1)当x=2秒时,线段AQ的长是 6 米;

(2)当点P在线段AB上运动时,图中阴影部分的面积发生改变吗?请你作出判断并说明理由.

(3)在点P,Q的运动过程中,是否存在某一时刻,使得BP=DQ?若存在,求出点P 的运动时间x的值;若不存在,请说明理由.

解:(1)∵四边形ABCD是矩形,

∴AD=BC=8,

∵DQ=2,

∴AQ=AD﹣DQ=8﹣2=6,

故答案为6.

(2)结论:阴影部分的面积不会发生改变.

理由:连结AM,作MH⊥AD于H.则四边形ABMH是矩形,MH=AB=4.

∵S

阴=S

△APM

+S

△AQM

=×x×4+(8﹣x)×4=16,

∴阴影面积不变;

(3)当点P在线段AB上时,BP=4﹣x,DQ=x.∵BP=DQ,

∴4﹣x=x,

∴x=3.

当点P在线段BM上时,BP=x﹣4,DQ=x.

∵BP=DQ,

∴x﹣4=x,

∴x=6.

所以当x=3或6时,BP=DQ.

10.A,B,C,D是长方形纸片的四个顶点,点E、F、H分别是边AB、BC、AD上的三点,连结EF、FH.

(1)将长方形纸片ABCD按图①所示的方式折叠,FE、FH为折痕,点B、C、D折叠后的对应点分别为B'、C'、D',点B'在FC'上,则∠EFH的度数为90°;

(2)将长方形纸片ABCD按图②所示的方式折叠,FE、FH为折痕,点B、C、D折叠后的对应点分别为B'、C'、D',若∠B'FC'=18°,求∠EFH的度数;

(3)将长方形纸片ABCD按图③所示的方式折叠,FE、FH为折痕,点B、C、D折叠后的对应点分别为B'、C'、D',若∠EFH=m°,求∠B'FC'的度数为180°﹣2m°.

解:(1)∵沿EF,FH折叠,

∴∠BFE=∠B'FE,∠CFH=∠C'FH,

∵点B′在FC′上,

∴∠EFH=(∠BFB'+∠CFC')=×180°=90°,

故答案为:90°;

(2)∵沿EF,FH折叠,

∴可设∠BFE=∠B'FE=x,∠C'FH=∠CFH=y,

∵2x+18°+2y=180°,

∴x+y=81°,

∴∠EFH=x+18°+y=99°;

(3)∵沿EF,FH折叠,

∴可设∠BFE=∠B'FE=x,∠C'FH=∠CFH=y,

∴∠EFH=180°﹣∠BFE﹣∠CFH=180°﹣(x+y),

即x+y=180°﹣m°,

又∵∠EFH=∠EFB'﹣∠B'FC'+∠C'FH=x﹣∠B'FC'+y,

∴∠B'FC'=(x+y)﹣∠EFH=180°﹣m°﹣m°=180°﹣2m°,

故答案为:180°﹣2m°.

11.勾股定理是数学史上非常重要的一个定理.早在2000多年以前,人们就开始对它进行研究,至今已有几百种证明方法.在欧几里得编的《原本》中证明勾股定理的方法如下,请同学们仔细阅读并解答相关问题:

如图,分别以Rt△ABC的三边为边长,向外作正方形ABDE、BCFG、ACHI.

(1)连接BI、CE,求证:△ABI≌△AEC;

(2)过点B作AC的垂线,交AC于点M,交IH于点N.

①试说明四边形AMNI与正方形ABDE的面积相等;

②请直接写出图中与正方形BCFG的面积相等的四边形.

(3)由第(2)题可得:

正方形ABDE的面积+正方形BCFG的面积=正方形ACHI的面积,即在Rt△ABC中,AB2+BC2=AC2.

(1)证明:∵四边形ABDE、四边形ACHI是正方形,

∴AB=AE,AC=AI,∠BAE=∠CAI=90°,

∴∠EAC=∠BAI,

在△ABI和△AEC中,,

∴△ABI≌△AEC(SAS);

(2)①证明:∵BM⊥AC,AI⊥AC,

∴BM∥AI,

∴四边形AMNI的面积=2△ABI的面积,

同理:正方形ABDE的面积=2△AEC的面积,

又∵△ABI≌△AEC,

∴四边形AMNI与正方形ABDE的面积相等.

②解:四边形CMNH与正方形BCFG的面积相等,理由如下:

∵Rt△ABC中,AB2+BC2=AC2,

∴正方形ABDE的面积+正方形BCFG的面积=正方形ACHI的面积,

由①得:四边形AMNI与正方形ABDE的面积相等,

∴四边形CMNH与正方形BCFG的面积相等;

(3)解:由(2)得:正方形ABDE的面积+正方形BCFG的面积=正方形ACHI的面积;

即在Rt△ABC中,AB2+BC2=AC2;

故答案为:正方形ACHI,AC2.

12.在长方形纸片ABCD中,点E是边CD上的一点,将△AED沿AE所在的直线折叠,使点D 落在点F处.

(1)如图1,若点F落在对角线AC上,且∠BAC=54°,则∠DAE的度数为18 °.(2)如图2,若点F落在边BC上,且AB=6,AD=10,求CE的长.

(3)如图3,若点E是CD的中点,AF的沿长线交BC于点G,且AB=6,AD=10,求CG 的长.

解:(1)∵四边形ABCD是矩形,

∴∠BAD=90°,

∵∠BAC=54°,

∴∠DAC=90°﹣54°=36°,

由折叠的性质得:∠DAE=∠FAE,

∴∠DAE=∠DAC=18°;

故答案为:18;

(2)∵四边形ABCD是矩形,

∴∠B=∠C=90°,BC=AD=10,CD=AB=6,

由折叠的性质得:AF=AD=10,EF=ED,

∴BF===8,

∴CF=BC﹣BF=10﹣8=2,

设CE=x,则EF=ED=6﹣x,

在Rt△CEF中,由勾股定理得:22+x2=(6﹣x)2,

解得:x=,

即CE的长为;

(3)连接EG,如图3所示:

∵点E是CD的中点,

∴DE=CE,

由折叠的性质得:AF=AD=10,∠AFE=∠D=90°,FE=DE,∴∠EFG=90°=∠C,

在Rt△CEG和△FEG中,,

∴Rt△CEG≌△FEG(HL),

∴CG=FG,

设CG=FG=y,

则AG=AF+FG=10+y,BG=BC﹣CG=10﹣y,

在Rt△ABG中,由勾股定理得:62+(10﹣y)2=(10+y)2,解得:y=,

即CG的长为.

初中数学四边形综合题

D F E B A 四边形综合题 1、如图,梯形ABCD 中,AD ∥BC ,90A ∠=?,BC=2, 15ABD ∠=?,60C ∠=?. (1) 求∠BDC 的度数; (2) 求AB 的长. 2、如图,在直角梯形ABCD 中,AB ∥DC ,AB ⊥BC ,∠A =60°,AB =2CD ,E 、F 分别为AB 、AD 的中点,联结EF 、EC 、BF 、CF . (1)四边形AECD 的形状是 ; (2)若CD =2,求CF 的长. 3、如图,在ABC △中,AB BC =,D、E、F分别是BC 、AC 、AB 边上的中点. (1) 求证:四边形BDEF 是菱形; (2) 若12AB =cm ,求菱形BDEF 的周长.

4、已知:如图,在△ABC 中,∠ACB =90°,点E 为AB 的中点, 过点E 作ED ⊥BC 于D ,F 在DE 的延长线上,且AF =CE ,若 AB =6,AC =2,求四边形ACEF 的面积. 5、如图,在Y ABCD 中,过点B 作BE ∥AC ,在BG 上取点E ,联结DE 交AC 的延长线于点F . (1)求证:DF =EF ; (2)如果AD =2,∠ADC =60°,AC ⊥DC 于点C ,AC =2CF ,求BE 的长. F E D C B A F D C B A E G

6、如图,在直角梯形ABCD 中,AD ∥BC ,∠ABC =90°,AD =DC ,联结AC ,过点D 作DE ⊥AC 于点F ,交BC 于点G ,交AB 的延长线于点E ,若AE =AC . ⑴求∠EAC 的度数 ⑵若AD =2,求AB 的长. 7、如图,在□ABCD 中,AB =5,AD =10,cos B =3 5 ,过BC 的中点E 作EF ⊥AB ,垂足为点F ,连结DF ,求DF 的长. 8、如图,在□ABCD 中,E 是对角线AC 的中点,EF ⊥AD 于F ,∠B=60°,AB=4,∠ACB=45°, F G D C B A E F E D C B A A

中考数学压轴题解题方法大全及技巧

专业资料整理分享 中考数学压轴题解题技巧 湖北竹溪城关中学明道银 解中考数学压轴题秘诀(一) 数学综合题关键是第24题和25题,我们不妨把它分为函数型综合题和几何型综合题。 (一)函数型综合题:是先给定直角坐标系和几何图形,求(已知)函数的解析式(即在求解前已知函数的类型),然后进行图形的研究,求点的坐标或研究图形的某些性质。初中已知函数有:①一次函数(包括正比例函数)和常值函数,它们所对应的图像是直线;②反比例函数,它所对应的图像是双曲线; ③二次函数,它所对应的图像是抛物线。求已知函数的解析式主要方法是待定系数法,关键是求点的坐标,而求点的坐标基本方法是几何法(图形法)和代数法(解析法)。此类题基本在第24题,满分12分,基本分2-3小题来呈现。 (二)几何型综合题:是先给定几何图形,根据已知条件进行计算,然后有动点(或动线段)运动,对应产生线段、面积等的变化,求对应的(未知)函数的解析式(即在没有求出之前不知道函数解析式的形式是什么)和求函数的定义域,最后根据所求的函数关系进行探索研究,一般有:在什么条件下图形是等腰三角形、直角三角形、四边形是菱形、梯形等或探索两个三角形满足什么条件相似等或探究线段之间的位置关系等或探索面积之间满足一定关系求x的值等和直线(圆)与圆的相切时求自变量的值等。求未知函数解析式的关键是

列出包含自变量和因变量之间的等量关系(即列出含有x、y的方程),变形写成y=f(x)的形式。一般有直接法(直接列出含有x和y的方程)和复合法(列出含有x和y和第三个变量的方程,然后求出第三个变量和x之间的函数关系式,代入消去第三个变量,得到y=f(x)的形式),当然还有参数法,这个已超出初中数学教学要求。找等量关系的途径在初中主要有利用勾股定理、平行线截得比例线段、三角形相似、面积相等方法。求定义域主要是寻找图形的特殊位置(极限位置)和根据解析式求解。而最后的探索问题千变万化,但少不了对图形的分析和研究,用几何和代数的方法求出x的值。几何型综合题基本在第25题做为压轴题出现,满分14分,一般分三小题呈现。 在解数学综合题时我们要做到:数形结合记心头,大题小作来转化,潜在条件不能忘,化动为静多画图,分类讨论要严密,方程函数是工具,计算推理要严谨,创新品质得提高。 解中考数学压轴题秘诀(二) 具有选拔功能的中考压轴题是为考察考生综合运用知识的能力而设计的题目,其特点是知识点多,覆盖面广,条件隐蔽,关系复杂,思路难觅,解法灵活。解数学压轴题,一要树立必胜的信心,二要具备扎实的基础知识和熟练的基本技能,三要掌握常用的解题策略。现介绍几种常用的解题策略,供初三同学参考。 1、以坐标系为桥梁,运用数形结合思想:

(新)中考数学--选择题压轴题(含答案)

题型一选择题压轴题 类型一选择几何压轴题 1?如图,四边形ABCD是平行四边形,ZBCD=I20o , AB = 2, BC = 4,点E是直线BC上的点,点F是直线CD上的点,连接AF, AE, EF,点M, N分别是AF, EF 的中点,连接MW则MN的最小值为() 2.如图,四边形ABCD是菱形,对角线AC与BD交于点0, AB = 4, AC = 2√TT,若直线1满足:①点A到直线1的距离为2;②直线1与一条对角线平行;③直线1与菱形ABCD的边有交点,则符合题意的直线1的条数为() 3?如图,在四边形ABCD 中,AD/7BC, AB=CD, AD = 2, BC = 6, BD = 5.若点P 在四边形ABCD的边上,则使得APBD的面积为3的点P的个数为() -√3 (第2(第3

4?如图,点M是矩形ABCD的边BC, CD上的动点,过点B作BN丄AM于点P,交

矩形ABCD 的边于点N,连接DP.若AB=4, AD = 3,则DP 的长的最小值为( ) A. √T3-2 5?如图,等腰直角三角形ABC 的一个锐角顶点A 是。()上的一个动点,ZACB= 90° ,腰AC 、斜边AB 分别交Oo 于点E, D,分别过点D, E 作OO 的切线,两线 交于点F,且点F 恰好是腰BC 上的点,连接O C, ()D, OE.若Θ0的半径为2,则 OC 的长的最大值为( ) 6.如图,在矩形ABCD 中,点E 是AB 的中点,点F 在AD 边上,点M, N 分别是 CD, BC 边上的动点?若AB=AF 二2, AD 二3,则四边形EFMN 周长的最小值是( ) 7.如图,OP 的半径为1,且点P 的坐标为(3, 2),点C 是OP 上的一个动点, 点A, B 是X 轴上的两点,且OA=OB, AC 丄BC,则AB 的最小值为( ) √TT √T3 C. √5+l +√13 √2+2√5 ÷√5 √2+1 O B (第5 (第6 (第7(第8

初三中考数学专题复习特殊平行四边形综合练习题含答案

初三中考数学专题复习特殊平行四边形综合练 习题含答案 集团标准化工作小组 [Q8QX9QT-X8QQB8Q8-NQ8QJ8-M8QMN]

1. 若平行四边形对角线的平方和等于它一边平方的四倍,则该平行四边形一定为() A.矩形.B.菱形.C.矩形和菱形.D.正方形.2. 如图,在Rt△ABC中,CD是斜边AB上的中线,若AB=8,则CD的长是() A.6 B.5 C.4 D.3 3. 将一张矩形纸对折再对折(如图),然后沿着图中的虚线剪下,得到①、 ②两部分,将①展开后得到的平面图形是() A.矩形 B.三角形 C.正方形 D.菱形 4. 菱形ABCD中,若:2:1 A B ∠∠=,CAD ∠的平分线AE与边CD间的关系是() A.相等 B.互相平分但不垂直 C.互相垂直但不平分 D.垂直平分5. 矩形ABCD的长为5,宽为3,点E 、F将AC三等分,则△BEF的面积为(). A.355 .. 232 B C D.5 6. 一个矩形和一个平行四边形的边分别相等,若矩形面积为这个平行四边形的面积的2倍,则平行四边形的锐角的度数为(). A.15° B.30° C.45° D.60°

7. 正方形一边上任一点到这个正方形两条对角线的距离之和等于对角线长的 (). A.1 3 B.1 2 C.1 4 D.2倍 8. E为正方形ABCD的BC延长线上一点,且CE=AC,AE交CD于F,则∠ACE=(). A.° B.125° C.135° D.150° 9. 在ABCD中,AB=3,BC=4,当ABCD的面积最大时,下列结论正确的有() ①AC=5 ②∠A+∠C=180 °③AC⊥BD④AC=BD A.①②③ B.①②④ C.②③④ D.①③④ 10. 如图,正方形ABCD的面积为4,△ABE是等边三角形,点E在正方形ABCD 内,在对角线AC上有一点P,使PD+PE的和最小,则这个最小值为() A.2 B.3 C.2 3 11. 正方形ABCD中,M为AD上一点,ME⊥BD于E,MF⊥AC于F,若ME+MF= 8cm,则AC=_____. 12. 若矩形两邻边之比为3:4,周长为28cm,则它的边长为_____________. 13. 在矩形ABCD中,AB=2BC,E是AB上一点,且CE=AB,连结DE,则 ∠ADE=_________ 14. 如图,在菱形ABCD中,对角线AC=6,BD=8,则菱形的高为_______. D C A

中考数学四边形经典证明题含答案

1.如图,正方形ABCD 和正方形A ′OB ′C ′是全等图形,则当正方形A?′OB ′C ′绕正方形 ABCD 的中心O 顺时针旋转的过程中. (1)四边形OECF 的面积如何变化. (2)若正方形ABCD 的面积是4,求四边形OECF 的面积. 解:在梯形ABCD 中由题设易得到: △ABD 是等腰三角形,且∠ABD=∠CBD=∠ADB=30°. 过点D 作DE ⊥BC ,则DE=1 2BD=23,BE=6 .过点A 作AF ⊥BD 于F ,则AB=AD=4. 故S 梯形ABCD =12+43. 2.如图,ABCD 中,O 是对角线AC 的中点,EF ⊥AC 交CD 于E ,交AB 于F ,问四边形AFCE 是菱形吗?请说明理由. 解:四边形AFCE 是菱形. ∵四边形ABCD 是平行四边形. ∴OA=OC ,CE ∥AF . ∴∠ECO=∠FAO ,∠AFO=∠CEO . ∴△EOC ≌△FOA ,∴CE=AF . 而CE ∥AF ,∴四边形AFCE 是平行四边形. 又∵EF 是垂直平分线,∴ AE=CE .∴四边形AFCE 是菱形. 3.如图,在△ABC 中,∠B=∠C ,D 是BC 的中点,DE ⊥AB ,DF ⊥AC ,?垂足分别为E 、F .求证:(1)△BDE ≌CDF .(2)△ABC 是直角三角形时,四边形AEDF 是正方形.

19.证明:(1),90D BC BD CD DE AB DF AC BED CFD B C 是的中点 △BDE ≌△CDF . (2)由∠A=90°,DE ⊥AB ,DF ⊥AC 知: AEDF BED CFE DE DF 四边形是矩形 矩形AEDF 是正方形.4.如图,ABCD 中,E 、F 为对角线AC 上两点,且AE=CF ,问:四边形EBFD 是平行四边形吗?为什么? 解:四边形EBFD 是平行四边形.在 ABCD 中,连结BD 交AC 于点O , 则OB=OD ,OA=OC .又∵AE=CF ,∴OE=OF . ∴四边形EBFD 是平行四边形.5.如图,矩形纸片ABCD 中,AB =3 cm ,BC =4 cm .现将A ,C 重合,使纸片 折叠压平,设折痕为EF ,试求AF 的长和重叠部分△AEF 的面积. 【提示】把AF 取作△AEF 的底,AF 边上的高等于AB =3. 由折叠过程知,EF 经过矩形的对称中心,FD =BE ,AE =CE =AF .由此可以在△ABE 中使用勾股定理求AE ,即求得AF 的长. 【答案】如图,连结AC ,交EF 于点O , 由折叠过程可知,OA =OC , ∴O 点为矩形的对称中心.E 、F 关于O 点对称,B 、D 也关于O 点对称. ∴BE =FD ,EC =AF ,

中考数学压轴题十大类型经典题目75665

中考数学压轴题十大类型 目录 第一讲中考压轴题十大类型之动点问题 1 第二讲中考压轴题十大类型之函数类问题7 第三讲中考压轴题十大类型之面积问题13 第四讲中考压轴题十大类型之三角形存在性问题19 第五讲中考压轴题十大类型之四边形存在性问题25 第六讲中考压轴题十大类型之线段之间的关系31 第七讲中考压轴题十大类型之定值问题38 第八讲中考压轴题十大类型之几何三大变换问题44 第九讲中考压轴题十大类型之实践操作、问题探究50 第十讲中考压轴题十大类型之圆56 第十一讲中考压轴题综合训练一62 第十二讲中考压轴题综合训练二68

第一讲 中考压轴题十大类型之动点问题 一、知识提要 基本方法: ______________________________________________________; ______________________________________________________; ______________________________________________________. 二、精讲精练 1. (2011吉林)如图,梯形ABCD 中,AD ∥BC ,∠BAD =90°,CE ⊥AD 于点E , AD =8cm ,BC =4cm ,AB =5cm .从初始时刻开始,动点P ,Q 分别从点A ,B 同时出发,运动速度均为1cm/s ,动点P 沿A -B -C -E 方向运动,到点E 停止;动点Q 沿B -C -E -D 方向运动,到点D 停止,设运动时间为x s ,△P AQ 的面积为y cm 2,(这里规定:线段是面积为0的三角形)解答下列问题: (1) 当x =2s 时,y =_____ cm 2;当x =9 2 s 时,y =_______ cm 2. (2)当5 ≤ x ≤ 14时,求y 与x 之间的函数关系式. (3)当动点P 在线段BC 上运动时,求出15 4 y S 梯形ABCD 时x 的值. (4)直接写出在整个..运动过程中,使PQ 与四边形ABCE 的对角线平行的所有x 的值.

中考数学压轴题(选择填空)

中考数学压轴题解题技巧 数学综压轴题是为考察考生综合运用知识的能力而设计的,集中体现知识的综合性和方法的综合性,多数为函数型综合题和几何型综合题。 函数型综合题:是给定直角坐标系和几何图形,先求函数的解析式,再进行图形的研究,求点的坐标或研究图形的某些性质。求已知函数的解析式主要方法是待定系数法,关键是求点的坐标,而求点的坐标基本方法是几何法(图形法)和代数法(解析法)。 几何型综合题:是先给定几何图形,根据已知条件进行计算,然后有动点(或动线段)运动,对应产生线段、面积等的变化,求对应的(未知)函数的解析式,求函数的自变量的取值范围,最后根据所求的函数关系进行探索研究。一般有:在什么条件下图形是等腰三角形、直角三角形,四边形是平行四边形、菱形、梯形等,或探索两个三角形满足什么条件相似等,或探究线段之间的数量、位置关系等,或探索面积之间满足一定关系时求x的值等,或直线(圆)与圆的相切时求自变量的值等。求未知函数解析式的关键是列出包含自变量和因变量之间的等量关系(即列出含有x、y的方程),变形写成y=f(x)的形式。找等量关系的途径在初中主要有利用勾股定理、平行线截得比例线段、三角形相似、面积相等方法。求函数的自变量的取值范围主要是寻找图形的特殊位置(极端位置)和根据解析式求解。而最后的探索问题千变万化,但少不了对图形的分析和研究,用几何和代数的方法求出x的值。 解中考压轴题技能:中考压轴题大多是以坐标系为桥梁,运用数形结合思想,通过建立点与数即坐标之间的对应关系,一方面可用代数方法研究几何图形的性质,另一方面又可借助几何直观,得到某些代数问题的解答。关键是掌握几种常用的数学思想方法。 一是运用函数与方程思想。以直线或抛物线知识为载体,列(解)方程或方程组求其解析式、研究其性质。 二是运用分类讨论的思想。对问题的条件或结论的多变性进行考察和探究。 三是运用转化的数学的思想。由已知向未知,由复杂向简单的转换。中考压轴题它是对考生综合能力的一个全面考察,所涉及的知识面广,所使用的数学思想方法也较全面。因此,可把压轴题分离为相对独立而又单一的知识或方法组块去思考和探究。 解中考压轴题技能技巧: 一是对自身数学学习状况做一个完整的全面的认识。根据自己的情况考试的时候重心定位准确,防止“捡芝麻丢西瓜”。所以,在心中一定要给压轴题或几个“难点”一个时间上的限制,如果超过你设置的上限,必须要停止,回头认真检查前面的题,尽量要保证选择、填空万无一失,前面的解答题尽可能的检查一遍。

初二数学平行四边形专题练习题含答案

图1 A B C D 初二数学平行四边形专题练习 1.如果边长分别为4cm和5cm的矩形与一个正方形的面积相等,那么这个正方 形的边长为______cm. 2.(08贵阳市)如图1,正方形ABCD的边长为4cm,则图中阴影部分的面积为 cm2. 3.若四边形ABCD是平行四边形,请补充条件 (写一个即可),使四边形ABCD是菱形. 4.在平行四边形ABCD中,已知对角线AC和BD相交于点O,△ABO的周长为17, AB=6,那么对角线AC+BD= 5.以正方形ABCD的边BC 为边做等边△BCE,则∠AED的度数 为 . 6.已知菱形ABCD的边长为6,∠A=60°,如果点P是菱形内一点,且PB=PD =2那么AP的长为. 7.在平面直角坐标系中,点A、B、C的坐标分别是A(-2,5), B(-3,-1),C(1,-1),在第一象限内找一点D,使四边形 ABCD是平行四边形,那么点D的坐标是. 二、选择题(每题3分,共30分) 8.如图2在平行四边形ABCD中,∠B=110°,延长AD至F,延长CD至E,连结 EF,则∠E+∠F=( ) A.110° B.30° C.50°D.70° 图2 图3 图4 9.菱形具有而矩形不具有的性质是 ( ) A.对角相等B.四边相等 C.对角线互相平分D.四角相等 10.如图3所示,平行四边形ABCD中,对角线AC、BD交于点O,点E是BC的 中点.若OE=3 cm,则AB的长为 ( ) A.3 cm B.6 cm C.9 cm D.12 cm 11.已知:如图4,在矩形ABCD中,E、F、G、H分别为边 AB、BC、CD、DA的中点.若AB=2,AD=4, 则图中阴影部分的面积为 ( ) A.8 B.6 C.4 D.3 12.将两块能完全重合的两张等腰直角三角形纸片拼成下列图形:①平行四边形 (不包括菱形、矩形、正方形)②矩形③正方形④等边三角形⑤等腰直角三角形 E A F D C B H G

平行四边形专项练习题样本

平行四边形专项练习题 一.选择题( 共12小题) 1.在下列条件中, 能够判定一个四边形是平行四边形的是( ) A.一组对边平行, 另一组对边相等 B.一组对边相等, 一组对角相等 C.一组对边平行, 一条对角线平分另一条对角线 D.一组对边相等, 一条对角线平分另一条对角线 2.设四边形的内角和等于a, 五边形的外角和等于b, 则a与b的关系是( ) A.a>b B.a=b C.a<b D.b=a+180°3.如图是一个由5张纸片拼成的平行四边形, 相邻纸片之间互不重叠也无缝隙, 其中两张等腰直角三角形纸片的面积都为S1, 另两张直角三角形纸片的面积都为S2, 中间一张正方形纸片的面积为S3, 则这个平行四边形的面积一定能够表示为( ) A.4S1 B.4S2 C.4S2+S3 D.3S1+4S3 4.在?ABCD中, AB=3, BC=4, 当?ABCD的面积最大时, 下列结论正确的有( ) ①AC=5; ②∠A+∠C=180°; ③AC⊥BD; ④AC=BD. A.①②③B.①②④C.②③④ D.①③④ 5.如图, 在?ABCD中, AB=6, BC=8, ∠C的平分线交AD于E, 交BA的延

长线于F, 则AE+AF的值等于( ) A.2 B.3 C.4 D.6 6.如图, 在?ABCD中, BF平分∠ABC, 交AD于点F, CE平分∠BCD, 交AD于点E, AB=6, EF=2, 则BC长为( ) A.8 B.10 C.12 D.14 7.如图, 在?ABCD中, AB=12, AD=8, ∠ABC的平分线交CD于点F, 交AD 的延长线于点E, CG⊥BE, 垂足为G, 若EF=2, 则线段CG的长为( ) A. B.4 C.2 D. 8.如图, 在?ABCD中, AB>AD, 按以下步骤作图: 以点A为圆心, 小于AD的长为半径画弧, 分别交AB、 AD于点E、 F; 再分别以点E、 F为圆心, 大于EF的长为半径画弧, 两弧交于点G; 作射线AG交CD于点H, 则下列结论中不能由条件推理得出的是( ) A.AG平分∠DAB B.AD=DH C.DH=BC D.CH=DH

中考数学选择题压轴题汇编

资料收集于网络,如有侵权请联系网站删除 2017年中考数学选择题压轴题汇编(1) 2a的解为正数,且使关于的分式方程y的不等(2017重庆)若数a使关于x1.4?? x?11?xy?2y???1?23的解集为y,则符合条件的所有整数a的和为()式组 2???????0y?2a? A.10 B.12 C.14 D.16 【答案】A 【解析】①解关于x的分式方程,由它的解为正数,求得a的取值范围. 2a 4??x?11?x去分母,得2-a=4(x-1) 去括号,移项,得4x=6-a 6?a 1,得x=系数化为46?a6?a≠1,解得a且a≠2;6?,且,∴x≠1∵x且00?? 44②通过求解于y的不等式组,判断出a的取值范围. y?2y???1?32 ?????0y?2a?解不等式①,得y;2???a;解不等式②,得y ∵不等式组的解集为y,∴a;2??2??③由a且a≠2和a,可推断出a的取值范围,且a≠2,符合条件的所有整数6?a6??2?2??a为-2、-1、0、1、3、4、5,这些整数的和为10,故选A.2.(2017内蒙古赤峰)正整数x、y满足(2x-5)(2y-5)=25,则x+y等于()A.18或10 B.18 C.10 D.26 【答案】A, 【解析】本题考查了分解质因数,有理数的乘法法则和多项式的乘法,能列出满足条件的等式是解题的关键. 由两数积为正,则这两数同号.∵25=5×5=(-5)×(-5)=1×25=(-1)×(-25)只供学习与交流. 资料收集于网络,如有侵权请联系网站删除 又∵正整数x、y满足(2x-5)(2y-5)=25, ∴2x-5=5,2y-5=5或2x-5=1,2y-5=25 解各x=5,y=5或x=3,y=15. ∴x+y=10或x+y=18. 故选A. x?a?0?3.(2017广西百色)关于x的不等式组的解集中至少有5个整数解,则正数a?2x?3a?0?的最小值是() 2 D..1 B.2 CA. 3 3B. 【答案】3a3a<x≤a,因为该解集中至少5个整数解,所以a比至少【解析】不等式组的解集为??223a+5,解得a≥2 a≥.大5,即?2111122=n-m-2,则-的值等于(4.(2017四川眉山)已知m+n )44mn1D.- 1 C.B0 .-A.1 4C 【答案】11112222,m+1)n+(-1)m=0,从而=-2即1)1)由题意,【解析】得(m+m++(n-n +=0,(24421111 =-1.=n2,所以-=-2nm2-端午节前夕,在东昌湖举行的第七届全民健身运动会龙舟比赛中,甲、乙.(2017聊城)5之前的函数关系式如图所示,下列两队与时间500米的赛道上,所划行的路程(min)my()x 说法错误的是()到达终点.乙队比甲队提前A0.25min 时,此时落后甲队.当乙队划行B110m15m

中考数学平行四边形综合练习题附答案

一、平行四边形真题与模拟题分类汇编(难题易错题) 1.在四边形ABCD 中,180B D ∠+∠=?,对角线AC 平分BAD ∠. (1)如图1,若120DAB ∠=?,且90B ∠=?,试探究边AD 、AB 与对角线AC 的数量关系并说明理由. (2)如图2,若将(1)中的条件“90B ∠=?”去掉,(1)中的结论是否成立?请说明理由. (3)如图3,若90DAB ∠=?,探究边AD 、AB 与对角线AC 的数量关系并说明理由. 【答案】(1)AC AD AB =+.证明见解析;(2)成立;(3)2AD AB AC +=.理由 见解析. 【解析】 试题分析:(1)结论:AC=AD+AB ,只要证明AD= 12AC ,AB=1 2 AC 即可解决问题; (2)(1)中的结论成立.以C 为顶点,AC 为一边作∠ACE=60°,∠ACE 的另一边交AB 延长线于点E ,只要证明△DAC ≌△BEC 即可解决问题; (3)结论:AD +AB =2AC .过点C 作CE ⊥AC 交AB 的延长线于点E ,只要证明△ACE 是等腰直角三角形,△DAC ≌△BEC 即可解决问题; 试题解析:解:(1)AC=AD+AB . 理由如下:如图1中, 在四边形ABCD 中,∠D+∠B=180°,∠B=90°, ∴∠D=90°, ∵∠DAB=120°,AC 平分∠DAB , ∴∠DAC=∠BAC=60°, ∵∠B=90°,

∴AB=1 2 AC,同理AD= 1 2 AC. ∴AC=AD+AB. (2)(1)中的结论成立,理由如下:以C为顶点,AC为一边作∠ACE=60°,∠ACE的另一边交AB延长线于点E, ∵∠BAC=60°, ∴△AEC为等边三角形, ∴AC=AE=CE, ∵∠D+∠ABC=180°,∠DAB=120°, ∴∠DCB=60°, ∴∠DCA=∠BCE, ∵∠D+∠ABC=180°,∠ABC+∠EBC=180°, ∴∠D=∠CBE,∵CA=CE, ∴△DAC≌△BEC, ∴AD=BE, ∴AC=AD+AB. (3)结论:AD+AB=2AC.理由如下: 过点C作CE⊥AC交AB的延长线于点E,∵∠D+∠B=180°,∠DAB=90°, ∴DCB=90°, ∵∠ACE=90°, ∴∠DCA=∠BCE, 又∵AC平分∠DAB, ∴∠CAB=45°, ∴∠E=45°. ∴AC=CE. 又∵∠D+∠ABC=180°,∠D=∠CBE,

平行四边形综合性质及经典例题

一对一个性化辅导教案

平行四边形的性质与判定 平行四边形及其性质(一) 一、 教学目标: 1. 理解并掌握平行四边形的概念和平行四边形对边、对角相等的性质. 2. 会用平行四边形的性质解决简单的平行四边形的计算问题,并会进行有关的论证. 3. 培养学生发现问题、解决问题的能力及逻辑推理能力. 二、 重点、难点 1. 重点:平行四边形的定义,平行四边形对角、对边相等的性质,以及性质的应用. 2. 难点:运用平行四边形的性质进行有关的论证和计算. 三、 课堂引入 1.我们一起来观察下图中的竹篱笆格子和汽车的防护链,想一想它们是什么几何图形的形象 平行四边形是我们常见的图形,你还能举出平行四边形在生活中应用的例子吗 你能总结出平行四边形的定义吗 (1)定义:两组对边分别平行的四边形是平行四边形. (2)表示:平行四边形用符号“ ”来表示. 如图,在四边形ABCD 中,AB∥DC,AD∥BC,那么四边形ABCD 是平行四边形.平行四边形ABCD 记作“ ABCD”,读作“平行四边形ABCD”. ①∵AB ?50?360?360?180行 四边形的面积计算 六、随堂练习 1.在平行四边形中,周长等于48, ① 已知一边长12,求各边的长 ② 已知AB=2BC ,求各边的长 ③ 已知对角线AC 、BD 交于点O ,△AOD 与△AOB 的周长的差是10,求各边的长 2.如图,ABCD 中,AE⊥BD,∠EAD=60°,AE=2cm ,AC+BD=14cm ,则△OBC 的周长是____ ___cm .

3.ABCD 一内角的平分线与边相交并把这条边分成cm 5,cm 7的两条线段,则ABCD 的周长是__ ___cm . 七、课后练习 1.判断对错 (1)在ABCD 中,AC 交BD 于O ,则AO=OB=OC=OD . ( ) (2)平行四边形两条对角线的交点到一组对边的距离相等. ( ) (3)平行四边形的两组对边分别平行且相等. ( ) (4)平行四边形是轴对称图形. ( ) 2.在 ABCD 中,AC =6、BD =4,则AB 的范围是_ ____ __. 3.在平行四边形ABCD 中,已知AB 、BC 、CD 三条边的长度分别为(x+3),(x-4)和16,则这个四边形的周长是 . 4.公园有一片绿地,它的形状是平行四边形,绿地上要修几条笔直的小路,如图,AB =15cm ,AD =12cm ,AC ⊥BC ,求小路BC ,CD ,OC 的长,并算出绿地的面积. (一) 平行四边形的判定 一、教学目标: 1.在探索平行四边形的判别条件中,理解并掌握用边、对角线来判定平行四边形的方法. 2.会综合运用平行四边形的判定方法和性质来解决问题. 3.培养用类比、逆向联想及运动的思维方法来研究问题. 二、重点、难点 重点:平行四边形的判定方法及应用. 难点:平行四边形的判定定理与性质定理的灵活应用. 四、课堂引入 1.欣赏图片、提出问题. 展示图片,提出问题,在刚才演示的图片中,有哪些是平行四边形你是怎样判断的 2.【探究】:小明的父亲手中有一些木条,他想通过适当的测量、割剪,钉制一个平行四边形框架,你能帮他想出一些办法来吗

南昌中考数学压轴题大集合

一、函数与几何综合的压轴题 1.(2004安徽芜湖)如图①,在平面直角坐标系中,AB 、CD 都垂直于x 轴,垂足分别为B 、D 且AD 与B 相交于E 点.已知:A (-2,-6),C (1,-3) (1) 求证:E 点在y 轴上; (2) 如果有一抛物线经过A ,E ,C 三点,求此抛物线方程. (3) 如果AB 位置不变,再将DC 水平向右移动k (k >0)个单位,此时AD 与BC 相交 于E ′点,如图②,求△AE ′C 的面积S 关于k 的函数解析式. [解] (1)(本小题介绍二种方法,供参考) 方法一:过E 作EO ′⊥x 轴,垂足O ′∴AB ∥EO ′∥DC ∴ ,EO DO EO BO AB DB CD DB '''' == 又∵DO ′+BO ′=DB ∴ 1EO EO AB DC '' += ∵AB =6,DC =3,∴EO ′=2 又∵ DO EO DB AB ''=,∴2 316 EO DO DB AB ''=?=?= ∴DO ′=DO ,即O ′与O 重合,E 在y 轴上 图① 图②

方法二:由D (1,0),A (-2,-6),得DA 直线方程:y =2x -2① 再由B (-2,0),C (1,-3),得BC 直线方程:y =-x -2 ② 联立①②得0 2 x y =?? =-? ∴E 点坐标(0,-2),即E 点在y 轴上 (2)设抛物线的方程y =ax 2+bx +c (a ≠0)过A (-2,-6),C (1,-3) E (0,-2)三点,得方程组42632a b c a b c c -+=-?? ++=-??=-? 解得a =-1,b =0,c =-2 ∴抛物线方程y =-x 2-2 (3)(本小题给出三种方法,供参考) 由(1)当DC 水平向右平移k 后,过AD 与BC 的交点E ′作E ′F ⊥x 轴垂足为F 。 同(1)可得: 1E F E F AB DC ''+= 得:E ′F =2 方法一:又∵E ′F ∥AB E F DF AB DB '?= ,∴1 3DF DB = S △AE ′C = S △ADC - S △E ′DC =1112 2223 DC DB DC DF DC DB ?-?=? =1 3 DC DB ?=DB=3+k S=3+k 为所求函数解析式 方法二:∵ BA ∥DC ,∴S △BCA =S △BDA ∴S △AE ′C = S △BDE ′()11 32322 BD E F k k '= ?=+?=+ ∴S =3+k 为所求函数解析式. 证法三:S △DE ′C ∶S △AE ′C =DE ′∶AE ′=DC ∶AB =1∶2 同理:S △DE ′C ∶S △DE ′B =1∶2,又∵S △DE ′C ∶S △ABE ′=DC 2∶AB 2=1∶4 ∴()221 3992 AE C ABCD S S AB CD BD k '?= =?+?=+梯形 ∴S =3+k 为所求函数解析式. 2. (2004广东茂名)已知:如图,在直线坐标系中,以点M (1,0)为圆心、直

中考数学平行四边形综合经典题附答案

中考数学平行四边形综合经典题附答案 一、平行四边形 1.在图1中,正方形ABCD的边长为a,等腰直角三角形FAE的斜边AE=2b,且边AD和AE在同一直线上. 操作示例 当2b<a时,如图1,在BA上选取点G,使BG=b,连结FG和CG,裁掉△FAG和△CGB 并分别拼接到△FEH和△CHD的位置构成四边形FGCH. 思考发现 小明在操作后发现:该剪拼方法就是先将△FAG绕点F逆时针旋转90°到△FEH的位置,易知EH与AD在同一直线上.连结CH,由剪拼方法可得DH=BG,故△CHD≌△CGB,从而又可将△CGB绕点C顺时针旋转90°到△CHD的位置.这样,对于剪拼得到的四边形FGCH (如图1),过点F作FM⊥AE于点M(图略),利用SAS公理可判断△HFM≌△CHD,易得FH=HC=GC=FG,∠FHC=90°.进而根据正方形的判定方法,可以判断出四边形FGCH是正方形. 实践探究 (1)正方形FGCH的面积是;(用含a, b的式子表示) (2)类比图1的剪拼方法,请你就图2—图4的三种情形分别画出剪拼成一个新正方形的示意图. 联想拓展 小明通过探究后发现:当b≤a时,此类图形都能剪拼成正方形,且所选取的点G的位置在BA方向上随着b的增大不断上移.当b>a时(如图5),能否剪拼成一个正方形?若能,请你在图5中画出剪拼成的正方形的示意图;若不能,简要说明理由.

【答案】(1)a2+b2;(2)见解析;联想拓展:能剪拼成正方形.见解析. 【解析】分析:实践探究:根据正方形FGCH的面积=BG2+BC2进而得出答案; 应采用类比的方法,注意无论等腰直角三角形的大小如何变化,BG永远等于等腰直角三角形斜边的一半.注意当b=a时,也可直接沿正方形的对角线分割. 详解:实践探究:正方形的面积是:BG2+BC2=a2+b2; 剪拼方法如图2-图4; 联想拓展:能, 剪拼方法如图5(图中BG=DH=b). . 点睛:本题考查了几何变换综合,培养学生的推理论证能力和动手操作能力;运用类比方法作图时,应根据范例抓住作图的关键:作的线段的长度与某条线段的比值永远相等,旋转的三角形,连接的点都应是相同的. 2.如图,平面直角坐标系中,四边形OABC为矩形,点A,B的坐标分别为(4,0),(4,3),动点M,N分别从O,B同时出发.以每秒1个单位的速度运动.其中,点M 沿OA向终点A运动,点N沿BC向终点C运动.过点M作MP⊥OA,交AC于P,连接NP,已知动点运动了x秒. (1)P点的坐标为多少(用含x的代数式表示); (2)试求△NPC面积S的表达式,并求出面积S的最大值及相应的x值; (3)当x为何值时,△NPC是一个等腰三角形?简要说明理由.

近年来中考数学压轴题大集合

近年来中考数学压轴题大集合 【一】函数与几何综合的压轴题 1.〔2004安徽芜湖〕如图①,在平面直角坐标系中,AB 、CD 都垂直于x 轴,垂足分别为B 、D 且AD 与B 相交于E 点.:A (-2,-6),C (1,-3) (1) 求证:E 点在y 轴上; (2) 假如有一抛物线通过A ,E ,C 三点,求此抛物线方程. (3) 假如AB 位置不变,再将DC 水平向右移动k (k >0)个单位,如今AD 与BC 相交于E ′点, 如图②,求△AE ′C 的面积S 关于k 的函数解析式. [解]〔1〕 〔本小题介绍二种方法,供参考〕 方法一:过E 作EO ′⊥x 轴,垂足O ′∴AB ∥EO ′∥DC ∴,EO DO EO BO AB DB CD DB ' '''== 又∵DO ′+BO ′=DB ∴1EO EO AB DC ' ' += ∵AB =6,DC =3,∴EO ′=2 又∵DO EO DB AB ' '=,∴2 316 EO DO DB AB ''=?=?= ∴DO ′=DO ,即O ′与O 重合,E 在y 轴上 方法二:由D 〔1,0〕,A 〔-2,-6〕,得DA 直线方程:y =2x -2① 再由B 〔-2,0〕,C 〔1,-3〕,得BC 直线方程:y =-x -2② 联立①②得 2 x y =?? =-? ∴E 点坐标〔0,-2〕,即E 点在y 轴上 〔2〕设抛物线的方程y =ax 2+bx +c (a ≠0)过A 〔-2,-6〕,C 〔1,-3〕 E 〔0,-2〕三点,得方程组426 32a b c a b c c -+=-?? ++=-??=-? 解得a =-1,b =0,c =-2 ∴抛物线方程y =-x 2-2 〔3〕〔本小题给出三种方法,供参考〕 由〔1〕当DC 水平向右平移k 后,过AD 与BC 的交点E ′作E ′F ⊥x 轴垂足为F 。 同〔1〕可得:1E F E F AB DC ''+=得:E ′F =2 图①

中考数学平行四边形综合题及答案解析

中考数学平行四边形综合题及答案解析 一、平行四边形 1.在图1中,正方形ABCD的边长为a,等腰直角三角形FAE的斜边AE=2b,且边AD和AE在同一直线上. 操作示例 当2b<a时,如图1,在BA上选取点G,使BG=b,连结FG和CG,裁掉△FAG和△CGB 并分别拼接到△FEH和△CHD的位置构成四边形FGCH. 思考发现 小明在操作后发现:该剪拼方法就是先将△FAG绕点F逆时针旋转90°到△FEH的位置,易知EH与AD在同一直线上.连结CH,由剪拼方法可得DH=BG,故△CHD≌△CGB,从而又可将△CGB绕点C顺时针旋转90°到△CHD的位置.这样,对于剪拼得到的四边形FGCH (如图1),过点F作FM⊥AE于点M(图略),利用SAS公理可判断△HFM≌△CHD,易得FH=HC=GC=FG,∠FHC=90°.进而根据正方形的判定方法,可以判断出四边形FGCH是正方形. 实践探究 (1)正方形FGCH的面积是;(用含a, b的式子表示) (2)类比图1的剪拼方法,请你就图2—图4的三种情形分别画出剪拼成一个新正方形的示意图. 联想拓展 小明通过探究后发现:当b≤a时,此类图形都能剪拼成正方形,且所选取的点G的位置在BA方向上随着b的增大不断上移.当b>a时(如图5),能否剪拼成一个正方形?若能,请你在图5中画出剪拼成的正方形的示意图;若不能,简要说明理由.

【答案】(1)a2+b2;(2)见解析;联想拓展:能剪拼成正方形.见解析. 【解析】分析:实践探究:根据正方形FGCH的面积=BG2+BC2进而得出答案; 应采用类比的方法,注意无论等腰直角三角形的大小如何变化,BG永远等于等腰直角三角形斜边的一半.注意当b=a时,也可直接沿正方形的对角线分割. 详解:实践探究:正方形的面积是:BG2+BC2=a2+b2; 剪拼方法如图2-图4; 联想拓展:能, 剪拼方法如图5(图中BG=DH=b). . 点睛:本题考查了几何变换综合,培养学生的推理论证能力和动手操作能力;运用类比方法作图时,应根据范例抓住作图的关键:作的线段的长度与某条线段的比值永远相等,旋转的三角形,连接的点都应是相同的. 2.操作与证明:如图1,把一个含45°角的直角三角板ECF和一个正方形ABCD摆放在一起,使三角板的直角顶点和正方形的顶点C重合,点E、F分别在正方形的边CB、CD上,连接AF.取AF中点M,EF的中点N,连接MD、MN. (1)连接AE,求证:△AEF是等腰三角形; 猜想与发现: (2)在(1)的条件下,请判断MD、MN的数量关系和位置关系,得出结论. 结论1:DM、MN的数量关系是; 结论2:DM、MN的位置关系是; 拓展与探究: (3)如图2,将图1中的直角三角板ECF绕点C顺时针旋转180°,其他条件不变,则(2)中的两个结论还成立吗?若成立,请加以证明;若不成立,请说明理由.

2017年中考复习特殊四边形综合题

特殊四边形综合题 1.如图,BD是正方形ABCD的对角线,BC=2,边BC在其所在的直线上平移,将通过平移得到的线段记为PQ,连接PA、QD,并过点Q作QO⊥BD,垂足为O,连接OA、OP. (1)请直接写出线段BC在平移过程中,四边形APQD是什么四边形? (2)请判断OA、OP之间的数量关系和位置关系,并加以证明; ,BP=x(0≤x≤2),求y与x之间的函数关系式,并求出y (3)在平移变换过程中,设y=S △OPB 的最大值. 2.已知在矩形ABCD中,∠ADC的平分线DE与BC边所在的直线交于点E,点P是线段DE上一定点(其中EP<PD) (1)如图1,若点F在CD边上(不与D重合),将∠DPF绕点P逆时针旋转90°后,角的两边PD、PF分别交射线DA于点H、G. ①求证:PG=PF;②探究:DF、DG、DP之间有怎样的数量关系,并证明你的结论.(2)拓展:如图2,若点F在CD的延长线上(不与D重合),过点P作PG⊥PF,交射线DA于点G,你认为(1)中DF、DG、DP之间的数量关系是否仍然成立?若成立,给出证明;若不成立,请写出它们所满足的数量关系式,并说明理由. 3.已知正方形ABCD的边长为4,一个以点A为顶点的45°角绕点A旋转,角的两边分别与边BC、DC的延长线交于点E、F,连接EF.设CE=a,CF=b. (1)如图1,当∠EAF被对角线AC平分时,求a、b的值; (2)当△AEF是直角三角形时,求a、b的值;

(3)如图3,探索∠EAF绕点A旋转的过程中a、b满足的关系式,并说明理由. 4.如图,正方形ABCD的对角线相交于点O,点M,N分别是边BC,CD上的动点(不与点B,C,D重合),AM,AN分别交BD于点E,F,且∠MAN始终保持45°不变. (1)求证:=; (2)求证:AF⊥FM; (3)请探索:在∠MAN的旋转过程中,当∠BAM等于多少度时,∠FMN=∠BAM?写出你的探索结论,并加以证明. 5.如图,矩形ABCD中,点E为BC上一点,F为DE的中点,且∠BFC=90°. (1)当E为BC中点时,求证:△BCF≌△DEC; (2)当BE=2EC时,求的值; (3)设CE=1,BE=n,作点C关于DE的对称点C′,连结FC′,AF,若点C′到AF的距离是,求n的值.

中考数学压轴题大集合

一、函数与几何综合的压轴题 1.(2004安徽芜湖)如图①,在平面直角坐标系中,AB 、CD 都垂直于x 轴,垂足分别为B 、D 且AD 与B 相交于E 点.已知:A (-2,-6),C (1,-3) (1) 求证:E 点在y 轴上; (2) 如果有一抛物线经过A ,E ,C 三点,求此抛物线方程. (3) 如果AB 位置不变,再将DC 水平向右移动k (k >0)个单位,此时AD 与BC 相交于 E ′点,如图②,求△AE ′C 的面积S 关于k 的函数解析式. ~ [解] (1)(本小题介绍二种方法,供参考) ' 方法一:过E 作EO ′⊥x 轴,垂足O ′∴AB ∥EO ′∥DC ∴ ,EO DO EO BO AB DB CD DB '''' == 又∵DO ′+BO ′=DB ∴ 1EO EO AB DC '' += ∵AB =6,DC =3,∴EO ′=2 又∵ DO EO DB AB ''=,∴2 316 EO DO DB AB ''=?=?= ∴DO ′=DO ,即O ′与O 重合,E 在y 轴上 图① 图②

方法二:由D (1,0),A (-2,-6),得DA 直线方程:y =2x -2① 再由B (-2,0),C (1,-3),得BC 直线方程:y =-x -2 ② 联立①②得0 2x y =??=-? 》 ∴E 点坐标(0,-2),即E 点在y 轴上 (2)设抛物线的方程y =ax 2+bx +c (a ≠0)过A (-2,-6),C (1,-3) E (0,-2)三点,得方程组426 32a b c a b c c -+=-?? ++=-??=-? 解得a =-1,b =0,c =-2 ∴抛物线方程y =-x 2-2 (3)(本小题给出三种方法,供参考) 由(1)当DC 水平向右平移k 后,过AD 与BC 的交点E ′作E ′F ⊥x 轴垂足为F 。 同(1)可得: 1E F E F AB DC ''+= 得:E ′F =2 方法一:又∵E ′F ∥AB E F DF AB DB '?= ,∴1 3DF DB = S △AE ′C = S △ADC - S △E ′DC =1112 2223 DC DB DC DF DC DB ?-?=? ( = 1 3 DC DB ?=DB=3+k S=3+k 为所求函数解析式 方法二:∵ BA ∥DC ,∴S △BCA =S △BDA ∴S △AE ′C = S △BDE ′()11 32322 BD E F k k '= ?=+?=+ ∴S =3+k 为所求函数解析式. 证法三:S △DE ′C ∶S △AE ′C =DE ′∶AE ′=DC ∶AB =1∶2 同理:S △DE ′C ∶S △DE ′B =1∶2,又∵S △DE ′C ∶S △ABE ′=DC 2∶AB 2=1∶4 ∴()221 3992 AE C ABCD S S AB CD BD k '?= =?+?=+梯形 ∴S =3+k 为所求函数解析式. 2. (2004广东茂名)已知:如图,在直线坐标系中,以点M (1,0)为圆心、直

相关主题
文本预览
相关文档 最新文档