当前位置:文档之家› LC正弦波振荡电路详解 (2)

LC正弦波振荡电路详解 (2)

LC正弦波振荡电路详解 (2)
LC正弦波振荡电路详解 (2)

LC正弦波振荡电路详解

LC正弦波振荡电路与RC桥式正弦波振荡电路的组成原则在本质上是相同的,只是选频网络采用LC电路。在LC振荡电路中,当f=f0时,放大电路的放大倍数数值最大,而其余频率的信号均被衰减到零;引入正反馈后,使反馈电压作为放大电路的输入电压,以维持输出电压,从而形成正弦波振荡。由于LC正弦波振荡电路的振荡频率较高,所以放大电路多采用分立元件电路。

一、LC谐振回路的频率特性

LC正弦波振荡电路中的选频网络采用LC并联网络,如图所示。图(a)为理想电路,无损耗,谐振频率为

(推导过程如下)

公式推导过程:

电路导纳为

令式中虚部为零,就可求出谐振角频率

式中Q为品质因数

当Q>>1时,,所以谐振频率

将上式代入,得出

当f=f0时,电抗

当Q>>1时,,代入,整理可得

在信号频率较低时,电容的容抗()

很大,网络呈感性;在信号频率较高时,电感的

感抗()很大,网络呈容性;只有当f=f0时,

网络才呈纯阻性,且阻抗最大。这时电路产生电

流谐振,电容的电场能转换成磁场能,而电感的

磁场能又转换成电场能,两种能量相互转换。

实际的LC并联网络总是有损耗的,各种损耗等

效成电阻R,如图(b)所示。电路的导纳为

回路的品质因数

(推导过程如下)公式推导过程:

电路导纳为

令式中虚部为零,就可求出谐振角频率

式中Q为品质因数

当Q>>1时,,所以谐振频率

将上式代入,得出

当f=f0时,电抗

当Q>>1时,,代入,整理可得

上式表明,选频网络的损耗愈小,谐振频率相同时,电容容量愈小,电感数值愈大,品质因数愈大,将使得选频特性愈好。

当f=f0时,电抗(推导过程如下)公式推导过程:

电路导纳为

令式中虚部为零,就可求出谐振角频率

式中Q为品质因数

当Q>>1时,,所以谐振频率

将上式代入,得出

当f=f0时,电抗

当Q>>1时,,代入,整理可得

0o

根据式,可得适用于频率从零到无穷大时LC并联网络电抗的表达式Z=1/Y,其频率特性如下图所示。Q值愈大,曲线愈陡,选频特性愈好。

若以LC并联网络作为共射放大电路

的集电极负载,如右图所示,则电路的电

压放大倍数

根据LC并联网络的频率特性,当f=f0

时,电压放大倍数的数值最大,且无附加

相移(原因)。对于其余频率的信号,电

压放大倍数不但数值减小,而且有附加相

移。电路具有选频特性,故称之为选频放

大电路。若在电路中引入正反馈,并能用

反馈电压取代输入电压,则电路就成为正

弦波振荡电路。根据引入反馈的方式不

同,LC正弦波振荡电路分为变压器反馈

式、电感反馈式和电容反馈式三种电路。

二、变压器反馈式振荡电路

1.工作原理

引入正反馈最简单的方法是采用变压器反馈方式,如图(7114)所示,用反馈电压取代输入电压,得到变压器反馈式振荡电路。

电路分析:

★观察电路,存在放大电路、选频网络、正反馈网络以及用晶体管的非线性特性所实现的稳幅环节四个部分;

★判断放大电路能否正常工作,图中放大电路是典型的工作点稳定电路,可以设置合适的静态工作点;

★交流通路如图所示,交流信号传递过程中无开路或短路现象,电路可以正常放大;

★采用瞬时极性法判断电路是否满足相位平衡条件(具体做法)。

如图所示电路表明,变压器反馈式振荡电路中放大电路的输入电阻是放大电路负载的一部分,因此与相互关联。一般情况下,只要合理选择变压器原、副边线圈的匝数比以及其它电路参数,电路很容易满足幅值条件。

2.振荡频率及起振条件

振荡频率

其中,

起振条件

其中,

3.优缺点

变压器反馈式振荡电路易于产生振荡,输出电压的波形失真不大,应用范围广泛。但是由于输出电压与反馈电压靠磁路耦合,因而耦合不紧密,损耗较大。并且振荡频率的稳定性不高。

三、电感反馈式振荡电路

1.电路组成

为了克服变压器反馈式振荡

电路中变压器原边线圈和副边线

圈耦合不紧密的缺点,可将变压

器反馈式振荡电路的N1和N2合

并为一个线圈,如右图所示,为

了加强谐振效果,将电容C跨接

在整个线圈两端,便得到电感反

馈式振荡电路。

2.工作原理

★观察电路它包含了放大电路、选频网络、反馈网络和非线性元件(晶体管)四个部分,而且放大电路能够正常工作。

★用瞬时极性法判断电路是否满足正弦波振荡的相位条件:断开反馈,加频率为f0的输入电压,给定其极性,判断出从N2上获得的反馈电压极性与输入电压相同,故电路满足正弦波振荡的相位条件,各点瞬时极性如上图所示。

★只要电路参数选择得当,电路就可满足幅值条件,而产生正弦波振荡。

如下图所示为电感反馈式振荡电路的交流通路,原边线圈的三个

端分别接在晶体管的三个极,故称电感反馈式振荡电路为电感三点式电路。

3.振荡频率及起振条件

振荡频率

反馈系数

起振条件

4.优缺点

电感反馈式振荡电路中N2与N1之间耦合紧密,振幅大,易起振;当C采用可变电容时,可以获得调节范围较宽的振荡频率,最高振荡频率可达几十MHz。由于反馈电压取自电感,对高频信号具有较大的电抗,反馈信号中含有较多的高次谐波分量,输出电压波形不好

四、电容反馈式振荡电路

1.电路组成

为了获得较好的输出电压波

形,若将电感反馈式振荡电路中的

电容换成电感,电感换成电容,并

在转换后将两个电容的公共端接

地,且增加集电极电阻R c,就可得

到电容反馈式振荡电路,如右图所

示。因为两个电容的三个端分别接

在晶体管的三个极,故也称为电容

三点式电路。

2.工作原理

★根据正弦波振荡电路的判断方法,观察如上图所示电路,包含了放大电路、选频网络、反馈网络和非线性元件(晶体管)四个部分;

★放大电路能够正常工作;

★断开反馈,加频率为f0的输入电压,给定其极性,判断出从C2上所获得的反馈电压极性与输入电压相同,故电路弦波振荡的相位条件,各点瞬时极性如图所示。

★只要电路参数选择得当,电路就可以满足幅值条件,而产生正弦波振荡。

3.振荡频率及起振条件

正弦波振荡器设计multisim(DOC)

摘要 自激式振荡器是在无需外加激励信号的情况下,能将直流电能转换成具有一定波形、一定频率和一定幅值的交变能量电路。正弦波振荡器的作用是产生频率稳定、幅度不变的正弦波输出。基于频率稳定、反馈系数、输出波形、起振等因素的综合考虑,本次课程设计采用电容三点式振荡器,运用multisim软件进行仿真。根据静态工作点计算出回路的电容电感取值,得出输出频率与输出幅度有效值以达到任务书的要求。 关键词:电容三点式;振荡器;multisim;

目录 1、绪论 (1) 2、方案的确定 (2) 3、工作原理、硬件电路的设计和参数的计算 (3) 3.1 反馈振荡器的原理和分析 (3) 3.2. 电容三点式振荡单元 (4) 3.3 电路连接及其参数计算 (5) 4、总体电路设计和仿真分析 (6) 4.1组建仿真电路 (6) 4.2仿真的振荡频率和幅度 (7) 4.3误差分析 (8) 5、心得体会 (9) 参考文献 (10) 附录 (10) 附录Ⅰ元器件清单 (10) 附录Ⅱ电路总图 (11)

1、绪论 振荡器是不需外信号激励、自身将直流电能转换为交流电能的装置。凡是可以完成这一目的的装置都可以作为振荡器。一个振荡器必须包括三部分:放大器、正反馈电路和选频网络。放大器能对振荡器输入端所加的输入信号予以放大使输出信号保持恒定的数值。正反馈电路保证向振荡器输入端提供的反馈信号是相位相同的,只有这样才能使振荡维持 下去。选频网络则只允许某个特定频率0f能通过,使振荡器产生单一频率的输出。 振荡器能不能振荡起来并维持稳定的输出是由以下两个条件决定的;一个是反馈电压 U和输入电压i U要相等,这是振幅平衡条件。二是f U和i U必须相位相同,这是相位f 平衡条件,也就是说必须保证是正反馈。一般情况下,振幅平衡条件往往容易做到,所以在判断一个振荡电路能否振荡,主要是看它的相位平衡条件是否成立。 本次课程设计我设计的是电容反馈三点式振荡器,电容三点式振荡器,也叫考毕兹振荡器,是自激振荡器的一种,这种电路的优点是输出波形好。电容三点式振荡器是由串联电容与电感回路及正反馈放大器组成。因振荡回路两串联电容的三个端点与振荡管三个管脚分别相接而得名。 本课题旨在根据已有的知识及搜集资料设计一个正弦波振荡器,要求根据给定参数设计电路,并利用multisim仿真软件进行仿真验证,达到任务书的指标要求,最后撰写课设报告。报告内容按照课设报告文档模版的要求进行,主要包括有关理论知识介绍,电路设计过程,仿真及结果分析等。 主要技术指标:输出频率9 MHz,输出幅度(有效值)≥5V。

RC正弦波振荡器电路设计及仿真

《电子设计基础》 课程报告 设计题目: RC正弦波振荡器电路设计及仿真学生班级: 学生学号: 学生姓名: 指导教师: 时间: 成绩: 西南xx大学 信息工程学院

一.设计题目及要求 RC正弦波振荡器电路设计及仿真,要求: (1)设计完成RC正弦波振荡器电路; (2)仿真出波形,并通过理论分析计算得出频率。 二.题目分析与方案选择 在通电瞬间电路中瞬间会产生变化的信号且幅值频率都不一样,它们同时进入放大网络被放大,其中必定有我们需要的信号,于是在选频网络的参与下将这个信号谐振出来,进一步送入放大网络被放大,为了防止输出幅值过大所以在电路中还有稳幅网络(如图一中的两个二极管),之后再次通过选频网络送回输入端,经过多次放大稳定的信号就可以不断循环了,由于电路中电容的存在所以高频阻抗很小,即无法实现放大,且高频在放大器中放大倍数较小。 三.主要元器件介绍 10nf电容两个;15kΩ电阻一个;10kΩ电阻三个;滑动变阻器一个;2.2k Ω电阻一个;二极管两个;运算放大器;示波器 四.电路设计及计算 电路震荡频率计算: f=1/2πRC

起振的复制条件:R f/R i>=2 其中R f=R w+R2+R3/R d 由其电路元件特性 R=10KΩ C=10nF 电路产生自激震荡,微弱的信号1/RC 经过放大,通过反馈的选频网络,使输出越来越大,最后经过电路中非线性器件的限制,使震荡幅度稳定了下来,刚开始时A v=1+R f/R i >3。 平衡时A v=3,F v=1/3(w=w0=1/RC) 五.仿真及结果分析 在multisim中进行仿真,先如图一连接好电路,运行电路,双击示波器,产生波形如下图 图2 刚开始运行电路时,输出波形如图2,几乎与X轴平行,没有波形输出。

LC正弦波振荡电路详解

LC 正弦波振荡电路详解 LC 正弦波振荡电路与RC 桥式正弦波振荡电路的组成原则在本 质上是相同的,只是选频网络采用 LC 电路。在LC 振荡电路中,当 f=f o 时,放大电路的放大倍数数值最大,而其余频率的信号均被衰减 到零;引入正反馈后,使反馈电压作为放大电路的输入电压,以维持 输出电压,从而形成正弦波振荡。由于 LC 正弦波振荡电路的振荡频 率较高,所以放大电路多采用分立元件电路。 一、LC 谐振回路的频率特性 LC 正弦波振荡电路中的选频网络采用 LC 并联网络,如图所示 图(a )为理想电路,无损耗,谐振频率为 「—(推导过程如下) 公式推导过程: 电路导纳为 式中Q 为品质因数 R 1 当Q>>1时,?—,所以谐振频率 将上式代入…二,得出令式中虚部为零, R , 戸+(班)宀 1 就可求出谐振角频率 1

当f=fo 时,电抗 一一 丑 I?二 在信号频率较低时,电容的容抗( 兀€) J I 很大,网络呈感性;在信号频率较高 时,电感的 「二; 疼 感抗(昭祖)很大,网络呈容性;只有当f=fo 时, [ 网络才呈纯阻性,且阻抗最大。这时电路产生电O ? ------------ 流谐振,电容的电场能转换成磁场能,而电感的 磁场能又转换成电场能,两种能量相互转换。 L :;讲嵌阀 绻 实际的LC 并联网络总是有损耗的,各种损耗等 效成电阻R ,如图 (b )所示。电路的导纳为 y =亦+—5— R+ 回路的品质因数' 公式推导过程: 电路导纳为 当Q>>1时,已 ,代入:',整理可得 亍(推导过程如下) ⑹萼慮匝路损耗时] LC 并联网络

式中Q为品质因数

LC正弦波振荡电路的仿真分析

摘要 振荡器的种类很多,适用的范围也不相同,但它们的基本原理都是相同的,都由放大器和选频网络组成,都要满足起振,平衡和稳定条件。然后通过所学的高频知识进行初步设计,由于受实践条件的限制,在设计好后,我利用了模拟软件进行了仿真与分析。为了学习Multisim软件的使用,以及锻炼电子仿真的能力,我选用的仿真软件是Multisim10.0版本,该软件提供了功能强大的电子仿真设计界面和方便的电路图和文件管理功能。它包含了电路原理图的图形输入、电路硬件描述语言输入方式,具有丰富的仿真分析能力。NI Multisim软件结合了直观的捕捉和功能强大的仿真,能够快速、轻松、高效地对电路进行设计和验证。 关键词:LC振荡回路;仿真;正弦波信号;Multisim软件;

目录 一、绪论 (1) 二、方案确定 (1) 2.1电感反馈式三端振荡器 (2) 2.2电容反馈式三端振荡器 (3) 2.3 振荡平衡条件一般表达式 (4) 2.4起振条件和稳幅原理 (4) 三、LC振荡器的基本工作原理 (4) 四、总电路设计和仿真分析 (5) 4.1软件简介 (5) 4.2 总电路设计 (7) 4.3 进行仿真 (8) 4.4 各个原件对电路的影响 (11) 五、心得体会 (12) 参考文献 (13) 附录 (14) 电路原理图 (14) 元器件清单 (14)

一、绪论 在本课程设计中,对LC正弦波振荡器的仿真分析。正弦波振荡器用来产生正弦交流信号的电路,它广泛应用于通信、电视、仪器仪表和测量等系统中。在通信方面,正弦波震荡器可以用来产生运载信息的载波和作为接收信号的变频或调解时所需要的本机振荡信号。医用电疗仪中,用高频加热。在课程设计中,学习Multisim软件的使用,以及锻炼电子仿真的能力,我选用的仿真软件是Multisim10.0版本,该软件提供了功能强大的电子仿真设计界面和方便的电路图和文件管理功能。 我利用了仿真软件对电路进行了一写的仿真分析,得到了与理论值比较相近的结果,这表明电路的原理设计是比较成功的,本次课程设计也是比较成功的。 本课程设计中要求设计的正弦波振荡器能够输出稳定正弦波信号,本设计中所涉及的仿真电路是比较简单的。但通过仿真得到的结论在实际的类似电路中有很普遍的意义。 二、方案确定 通过对高频电子线路相关知识的学习,我们知道LC正弦波振荡器主要有电感反馈式三端振荡器、电容反馈式三端振荡器以及改进型电容反馈式振荡器(克拉波电路和西勒电路)等。其中互感反馈易于起振,但稳定性差,适用于低频,而电容反馈三点式振荡器稳定性好,输出波形理想,振荡频率可以做得较高。我们这里研究的主要是LC三端式振荡器。

1KHZ桥式正弦波振荡器电路的设计与制作

目录 摘要 (2) 1.系统基本方案 (2) 1.1 正弦波振荡电路的选择与论证 (2) 1.2. 运算放大器的选择 (3) 1.3最终的方案选择 (3) 2.正弦波发生器的工作原理 (3) 2.1正弦波振荡电路的组成 (3) 2.1.1 RC选频网络 (3) 2.1.2放大电路 (6) 2.1.3正反馈网络 (6) 2.2产生正弦波振荡的条件 (6) 2.3.判断电路是否可能产生正弦波的方法和步骤 (7) 3.系统仿真 (7) 4.结论 (8) 参考文献: (11) 附录 (13)

1KHZ 桥式正弦波震荡器电路的设计与制作 摘要 本设计的主要电路采用文氏电桥振荡电路。如图1-1文氏桥振荡电路由放大电路和选频网络两部分组成,施加正反馈就产生振荡,振荡频率由RC 网络的频 率特性决定。它的起振条件为: ,振荡频率为: 。运算放大 器选用LM741CN,采用非线性元件(如温度系数为负的热敏电阻或JFET )来自动调节反馈的强弱以维持输出电压的恒定,进而达到自动稳幅的目的,这样便可以保证输出幅度为2Vp-p ;而频率范围的确定是根据式RC f π21 0= 以及题目给出的频 率范围来确定电阻R 或电容C 的值,进而使其满足题目的要求。 关键词:文氏电桥、振荡频率、LM741CN 1.系统基本方案 1.1 正弦波振荡电路的选择与论证 本设计选用文氏电桥振荡电路。

图1 RC 桥式振荡电路 这种电路的特点是:它由放大器即运算放大器与具有频率选择性的反馈网络构成,施加正反馈就产生振荡。振荡频率由RC 网络的频率特性决定。它的起振条件为: 12R R f > 。它的振荡频率为:RC f π21 0= 。 1.2. 运算放大器的选择 考虑到综合性能和题目要求的关系这里我们选用LM741CN 作为运算放大。 1.3最终的方案选择 文氏电桥振荡电路适用的频率范围为几赫兹到几千赫兹,可调范围宽,电路简单易调整,同时波形失真系数为千分之几。很适合我们题目的要求。故采用文氏电桥振荡电路. RC 文氏电桥振荡电路是以RC 选频网络为负载的振荡器. 这个电路由两部分组成,即放大电路和选频网络。放大电路由集成运放所组成的电压串联负反馈放大电路,取其输入阻抗高和输出阻抗低的特点。而选频网络则由Z1、Z2组成,同时兼做正反馈网络。 2正弦波发生器的工作原理 2.1正弦波振荡电路的组成 放大电路 选频网络 正反馈网络 2.1.1 RC 选频网络

信号产生LC振荡电路

在信号频率较低时,电容的容抗()很大,网络呈感性;在信 号频率较高时,电感的感抗()很大,网络呈容性;只有当f=f0时,网络才呈纯阻性,且阻抗最大。这时电路产生电流谐振,电容的电场能转换成磁场能,而电感的磁场能又转换成电场能,两种能量相 互转换。 7.1.3 LC正弦波振荡电路 LC正弦波振荡电路与RC桥式正弦波振荡电路的组成原则在本质上是相同的,只是选频网络采用LC电路。在LC振荡电路中,当f=f0时,放大电路的放大倍数数值最大,而其余频率的信号均被衰减到零;引入正反馈后,使反馈电压作为放大电路的输入电压,以维持输出电压,从而形成正弦波振荡。由于LC正弦波振荡电路的振荡频率较高,所以放大电路多采用分立元件电路。 一、LC谐振回路的频率特性 LC正弦波振荡电路中的选频网络采用LC并联网络,如图所示。图(a)为理想电路,无损耗,谐振频率为 (推导过程如下) 公式推导过程: 电路导纳为 令式中虚部为零,就可求出谐振角频率

式中Q为品质因数 当Q>>1时,,所以谐振频率 将上式代入,得出 当f=f0时,电抗 当Q>>1时,,代入,整理可得 在信号频率较低时,电容的容抗() 很大,网络呈感性;在信号频率较高时,电感的 感抗()很大,网络呈容性;只有当f=f0时, 网络才呈纯阻性,且阻抗最大。这时电路产生电 流谐振,电容的电场能转换成磁场能,而电感的 磁场能又转换成电场能,两种能量相互转换。 实际的LC并联网络总是有损耗的,各种损耗等 效成电阻R,如图(b)所示。电路的导纳为 回路的品质因数 (推导过程如下)

公式推导过程: 电路导纳为 令式中虚部为零,就可求出谐振角频率 式中Q为品质因数 当Q>>1时,,所以谐振频率 将上式代入,得出 当f=f0时,电抗 当Q>>1时,,代入,整理可得 上式表明,选频网络的损耗愈小,谐振频率相同时,电容容量愈小,电感数值愈大,品质因数愈大,将使得选频特性愈好。 当f=f0时,电抗(推导过程如下)公式推导过程: 电路导纳为

LC正弦波振荡电路详解

LC正弦波振荡电路详解 LC正弦波振荡电路与RC桥式正弦波振荡电路的组成原则在本质上是相同的,只是选频网络采用LC电路。在LC振荡电路中,当f=f0时,放大电路的放大倍数数值最大,而其余频率的信号均被衰减到零;引入正反馈后,使反馈电压作为放大电路的输入电压,以维持输出电压,从而形成正弦波振荡。由于LC正弦波振荡电路的振荡频率较高,所以放大电路多采用分立元件电路。 一、LC谐振回路的频率特性 LC正弦波振荡电路中的选频网络采用LC并联网络,如图所示。图(a)为理想电路,无损耗,谐振频率为 (推导过程如下) 公式推导过程: 电路导纳为 令式中虚部为零,就可求出谐振角频率 式中Q为品质因数 当Q>>1时,,所以谐振频率 将上式代入,得出

当f=f0时,电抗 当Q>>1时,,代入,整理可得 在信号频率较低时,电容的容抗() 很大,网络呈感性;在信号频率较高时,电感的 感抗()很大,网络呈容性;只有当f=f0时, 网络才呈纯阻性,且阻抗最大。这时电路产生电 流谐振,电容的电场能转换成磁场能,而电感的 磁场能又转换成电场能,两种能量相互转换。 实际的LC并联网络总是有损耗的,各种损耗等 效成电阻R,如图(b)所示。电路的导纳为 回路的品质因数 (推导过程如下)公式推导过程: 电路导纳为 令式中虚部为零,就可求出谐振角频率 式中Q为品质因数

当Q>>1时,,所以谐振频率 将上式代入,得出 当f=f0时,电抗 当Q>>1时,,代入,整理可得 上式表明,选频网络的损耗愈小,谐振频率相同时,电容容量愈小,电感数值愈大,品质因数愈大,将使得选频特性愈好。 当f=f0时,电抗(推导过程如下)

RC正弦波振荡电路

RC正弦波振荡电路 概念: 采用RC选频网络构成的振荡电路称为RC正弦波振荡电路;它试用于低频振荡,产生1MHZ以下的低频信号。 电路原理图: 电路由放大电路和选频网络组成。放大电路是由集成运放所组成的电压串联负反馈放大电路,取其输入阻抗高和输出阻抗低的特点。选频网络由电阻电容串并联组成,同时兼作正反馈网络。 电路元件参数: 电阻4个(10K欧2个、4.95K欧、10K欧各一个)、电容2个10nF、LM358集成块一个、直流电源+12V、-12V。 RC串并联选频网络 RC串并联选频网络如下图(a)所示,它在正弦波振荡电路中既 为选频网络,又为正反馈网络,所以其输入电压为,输出电压为。 当信号频率足够低时,,因而网络的简化电路及其电压

和电流的向量如图(b)所示。超前,当频率趋于零时,相位超 前趋近于+900,且趋近于零。 当信号频率足够高时,,因而网络的简化电路及其电压 和电流的向量如图(c)所示。滞后,当频率趋近于无穷大时, 相位滞后趋近于-900,且趋近于零。 当信号频率从零逐渐变化到无穷大时,的相位将从+900逐渐变化到-900。因此,对于RC串并联选频网络,必定存在一个频率f0, 当f=f0时,=同相。通过计算可求出RC串并联选频网络的频 率特性,如下图所示,其谐振频率。

RC桥式正弦波振荡电路: ,从幅频特性曲线可得, 因为正弦波振荡器的起振条件是 当f=f0时,F=1/3,所以当A>3时,即RC串并联选频网络匹配一个电压放大倍数略大于3的正反馈放大器时,就可构成正弦波振荡器。 从理论上讲,任何满足放大倍数要求的放大电路与RC串并联选频网络都可组成正弦波振荡电路;但是,实际上,所选用的放大电路应具有尽可能大的输入电阻和尽可能小的输出电阻,以减小放大电路对选频特性的影响,使振荡频率几乎仅仅决定于选频网络。因此,通常选用引入电压串联负反馈的放大电路,如同相比例运算电路。 由RC串并联选频网络和同相比例运算电路所构成的RC桥式正弦波振荡电路如图所示。 正反馈网络的反馈电压是同相比例运算电路的输入电压,因而要把同相比例运算电路作为整体看成电压放大电路,它的比例系数是电压放大倍数,根据起振条件和幅值平衡条件

RC正弦波振荡电路

RC正弦波振荡电路 1. 技术指标 1.1 初始条件 直流可调稳压电源一台、万用表一块、面包板一块、元器件若干、剪刀、镊子等必备工具设计、组装、调试RC正弦波振荡电路电路,使其能产生幅度稳定的低频振荡。 1.2 技术要求 设计、组装、调试RC正弦波振荡电路电路,使其能产生幅度稳定的低频振荡 2. 设计方案及其比较 2.1 方案一 RC文氏电桥振荡器:电路结构:放大电路,选频网络,正反馈网络和稳幅环节四个部分。电路如图A所示: 图A RC文氏电桥振荡器原理图 1

电路中噪声的电磁干扰就是信号来源,不过此频率信号非常微弱。这就要求振荡器在起振时做增幅振荡,既起振条件是|AF|>1。放大电路保证电路能够有从起振到动态平衡的过程,使电路获得一定幅值的输出量,本设计采用通用集成运放电路。 选频网络兼正反馈网络 RC串并联网络使电路产生单一的频率振荡,本设计要求产生500Hz的正弦波,采用RC串并联选频网络,中心频率f0=500 Hz,ω=1/RC,则f0=1/2πRC,故选取C=0.2uF,故R=1.6K另外还增加了R1和RF负反馈网络,合理的选择R1和RF可以保证环路增益大于一。 电压放大倍数A=1+(RF/R1), 因为产生振荡的最小电压放大倍数为3,所以RF>=2R1,通过仿真,我选择R1=5K,RF=20K的滑动电阻。 一开始波形失真很严重,当调到35%,就是大约7K时,出现失真很小的正弦波,测得周期为2.16ms,频率F=1000/2.16=463KH,误差较小,基本符合要求。仿真波形如下图B所示 图B RC文氏电桥振荡器仿真波形图 2

作用是使输出信号的幅值稳定,本实验采用双向并联二极管作为稳幅电路。利用电流增大时二极管动态电阻减小,电流减小时二极管动态电阻增大的特点,加入非线性环节,从而使输出电压稳定。 2.2 方案二 RC移相振荡器 电路结构电:由反向输入比例放大器,电压跟随器,和三节RC相移网络组成。电路如图C所示: 图C RC移相振荡器原理图 电路原理:放大电路的相移为-180度,利用电压跟随器的阻抗变换作用减小放大电路输入电阻R1对RC相移网络的影响。为了满足相位平衡条件,要求反馈网络的相移为-180度,由RC电路的频率响应可知。一节RC电路的最大相移不超过正负90度,两节也不超过正负180度,而RC高通电路的频率也很低,此时输出电压已接近零,也不能满足振荡电路的相移平衡条件。对于三节RC电路,相移接近正负270度,有可能在一特定频率下满足条件,然后选取合理的器件参数,满足起振条件和振幅平衡条件,电路就会产生振荡。 起振条件:由电路的起振条件|AF|>1,经过计算可得|A|=(R2/R1)>=29时,电路产生振荡。本实验取R2=30K,R1=3K。 3

LC振荡电路的工作原理及特点

简单介绍LC振荡电路的工作原理及特点 LC振荡电路,顾名思义就是用电感L和电容C组成的一个选频网络的振荡电路,这个振荡电路用来产生一种高频正弦波信号。常见的LC振荡电路有好多种,比如变压器反馈式、电感三点式及电容三点式,它们的选频网络一般都采用LC并联谐振回路。这种振荡电路的辐射功率跟振荡频率的四次方成正比,如果要想让这种电路向外辐射足够大的电磁波的话,就必须提高其振荡频率,而且还必须是电路具备开放的形式。 LC振荡电路之所以有振荡,是因为该电路通过运用电容跟电感的储能特性,使得电磁这两种能量在交替转化,简而言之,由于电能和磁能都有最大和最小值,所以才有了振荡。当然,这只是一个理想情况,现实中,所有的电子元件都有一些损耗,能量在电容和电感之间转化是会被损耗或者泄露到外部,导致能量不断减小。所以LC 振荡电路必须要有放大元件,这个放大元件可以是三极管,也可以是集成运放或者其他的东西。有了这个放大元件,这个不断被消耗的振荡信号就会被反馈放大,从而我们会得到一个幅值跟频率都比较稳定的信号。 开机瞬间产生的电扰动经三极管V组成的放大器放大,然后由LC选频回路从众多的频率中选出谐振频率F0。并通过线圈L1和L2之间的互感耦合把信号反馈至三极管基极。设基极的瞬间电压极性为正。经倒相集电压瞬时极性为负,按变压器同名端的符号可以看出,L2的上端电压极性为负,反馈回基极的电压极性为正,满足相位平衡条件,偏离F0的其它频率的信号因为附加相移而不满足相位平衡条件,只要三极管电流放大系数B和L1与L2的匝数比合适,满足振幅条件,就能产生频率F0的振荡信号。 LC振荡电路物理模型的满足条件 ①整个电路的电阻R=0(包括线圈、导线),从能量角度看没有其它形式的能向内能转化,即热损耗为零。 ②电感线圈L集中了全部电路的电感,电容器C集中了全部电路的电容,无潜布电容存在。 ③LC振荡电路在发生电磁振荡时不向外界空间辐射电磁波,是严格意义上的闭合电路,LC电路内部只发生线圈磁场能与电容器电场能之间的相互转化,即便是电容器内产生的变化电场,线圈内产生的变化磁场也没有按麦克斯韦的电磁场理论激发相应的磁场和电场,向周围空间辐射电磁波。 能产生大小和方向都随周期发生变化的电流叫振荡电流。能产生振荡电流的电路叫振荡电路。其中最简单的振荡电路叫LC回路。 振荡电流是一种交变电流,是一种频率很高的交变电流,它无法用线圈在磁场中转动产生,只能是由振荡电路产生。 充电完毕(放电开始):电场能达到最大,磁场能为零,回路中感应电流i=0。 放电完毕(充电开始):电场能为零,磁场能达到最大,回路中感应电流达到最大。 充电过程:电场能在增加,磁场能在减小,回路中电流在减小,电容器上电量在增加。从能量看:磁场能在向电场能转化。 放电过程:电场能在减少,磁场能在增加,回路中电流在增加,电容器上的电量在减少。从能量看:电场能在向磁场能转化。 在振荡电路中产生振荡电流的过程中,电容器极板上的电荷,通过线圈的电流,以及跟电流和电荷相联系的

LC正弦波振荡器的设计

高频电子线路课程设计报告 题目: LC正弦波振荡器的设计 学院: 专业班级: 姓名: 学号: 指导教师: 二〇一三年一月八日

摘要:振荡器(英文:oscillator)是用来产生重复电子讯号(通常是正弦波或方波)的电子元件。其构成的电路叫振荡电路,能将直流信号转换为具有一定频率的交流电信号输出。振荡器的种类很多,按振荡激励方式可分为自激振荡器、他激振荡器;按电路结构可分为阻容振荡器、电感电容振荡器、晶体振荡器、音叉振荡器等;按输出波形可分为正弦波、方波、锯齿波等振荡器。广泛用于电子工业、医疗、科学研究等方面。 三点式振荡器是指LC回路的三个端点与晶体管的三个电极分别连接而组成的一种振荡器。三点式振荡器电路用电容耦合或自耦变压器耦合代替互感耦合, 可以克服互感耦合振荡器振荡频率低的缺点, 是一种广泛应用的振荡电路, 其工作频率可达到几百兆赫。本文将围绕高频电感三点式正弦波振荡器进行具有具体功能的振荡器的理论分析与设计。 关键词:高频三点式正弦波振荡器。

目录 1系统方案设计 (4) 1.1设计说明及任务要求 (4) 1.1.1设计说明 (4) 1.1.2设计要求 (5) 1.2 方案1 (6) 1.3 方案2 (7) 2电路设计 (8) 2.1工作原理 (8) 2.2设计内容 (9) 2.2.1原理图 (9) 2.2.2参数计算 (9) 2.2.2注意事项 (10) 3系统测试 (10) 3.1振荡器正常工作 (10) 3.2实现输出频率可变功能 (10) 4结论 (11) 5参考文献 (11) 6附录 (11) 6.1元器件明细表 (11) 6.2电路图图纸.......................................................................................... 错误!未定义书签。 6.2.1Altium Designer 原理图设计 (12) 6.2.2PCB制作 (13) 6.2.3成品展示 (13) 6.3电路使用说明 (13)

LC正弦波振荡器设计要点

通信基本电路课程设计报告设计题目:LC正弦波振荡器设计 专业班级电信10-03 学号 311008001022 学生姓名王勇 指导教师高娜 教师评分 2012年12月4日

目录 第一章设计任务与要求 (3) 1.1. 设计任务 (3) 1.2. 设计要求 (3) 第二章总体方案 (3) 2.1振荡器的选择 (3) 2.2信号输出波形的仿真选择 (4) 第三章电路工作原理 (4) 3.1 LC三点式振荡组成原理图 (4) 3.2 起振条件 (5) 3.3 频率稳定度 (5) 3.4 总原理图 (6) 3.5 LC振荡模块设计 (7) 第四章电路制作和调试 (12) 4.1元器清单 (12) 4.2 按设计电路安装元器件 (14) 4.3 测试点选择 (14) 4.4调试 (14) 4.5 实验结果与分析 (15) 4.6频率稳定度 (16) 第五章总结 (16) 第六章参考文献 (17)

第一章设计任务与要求 1.1 设计任务 (1).熟悉LC正弦波振荡器的工作原理,以及示波器的原理及用法。 (2).掌握LC正弦波振荡器的基本设计方法。 (3).理解LC正弦波振荡回路并掌握LC振荡器的设计,装载,调试,及其主要性能参数的测试方法和如何选择电路的测试点。 (4).了解外界因素、元件参数对振荡器工作稳定性及频率稳定度的影响情,以便提高振荡器的性能。 1.2 设计要求 (1).设计一个LC正弦波频振荡器。 (2).利用三端式振荡器原理产生正弦波信号,采用的具体电路不限。要求给出所选电路的优点和缺点并通过测量值进行证明。也可以进行不同三端式振荡器的性能比较。 (3).了解电路分布参数的影响及如何正确选择电路的静态工作点。 (4).电路的基本原理,LC正弦波振荡器是各种接收机和发射机中一种常见的电路,常用作载波振荡、本振混频振荡等。其典型形式为“三点式”振荡电路,其电路简单、频率稳定度高,它的工作原理是在正反馈的基础上,将直流电源提供的能量变成正弦交流输出。 (5).选择所需的方案,画出有关的电路原理图。 第二章总体方案 2.1振荡器的选择 LC振荡器的电路种类比较多,根据不同的反馈方式,又可分为互感反馈振荡器,电感反馈三点式振荡器,电容反馈三点式振荡器,其中互感反馈易于起振,但稳定

RC正弦波振荡电路设计

题目:RC正弦波振荡电路的设计校名:福州大学至诚学院 年级班级: 姓名: 学号:210992 指导教师:

目录 一、RC正弦波振荡电路原理 (1) 二、设计指导要求 (2) 三、RC正弦振荡电路图 (2) 四、参数计算 (3) 五、安装调试 (4) 六、设计结论 (5) 七、心得体会 (6) 八、参考文献 (6)

一、RC正弦波振荡电路原理 采用RC选频网络构成的振荡电路称为RC振荡电路,它使用于低频振荡,一般用于产生1HZ~1MHZ的低频信号。常用的RC振荡电路有RC桥式振荡电路和RC移相式振荡电路。 RC桥式振荡电路 RC桥式振荡电路如图所示,RC串并联网络接在运算放大器的输出端和同相端构成了带有选频作用的正反馈电路,另外、Rf、R1接在运算放大器的输出端与反相端之间,与集成运放一起构成负反馈放大电路。 对于负反馈放大电路,输入信号由同相端输入,根据虚短,虚断可求

得负反馈带你呀放大倍数 振幅起振条件: 二、设计指导要求 要求:设计一个振荡频率f=500HZ的RC正弦波振荡电路。 内容要求:1、设计报告,元器件清单 2、组装,调整RC正弦振荡电路,使电路产生振荡输出。 3、当输出波形稳定且不失真时,测出输出电压的频率和 幅值,检验电路是否满足设计指标。若不满足,调整设计参数。 4、若要求输出500HZ的方波,余姚增加哪些元件予以实 现? 三、RC正弦振荡电路

集成运放 四、参数计算 令 R1=R2=R , C1=C2=C f0=1 / 2πRC 取 R=16K ,f0=500HZ

C=1 / 2πRf0 =0.02 uf 取标准电容 0.022uf R F≥2.1 R3 R=R3∥R F R3=3.1R/2.1≈24K R F= R f∥rd+Rp rd=10K 二极管取IN4007 R f=10K R p=68K 五、安装调试

实验五-三点正弦振荡电路

三点式正弦波振荡器 一、实验目的 1、掌握三点式正弦波振荡器电路的基本原理,起振条件,振荡电路设计及电路参数计算。 2、通过实验掌握晶体管静态工作点、反馈系数大小、负载变化对起振和振荡幅度的影响。 3、研究外界条件(温度、电源电压、负载变化)对振荡器频率稳定度的影响。 二、实验内容 1、熟悉振荡器模块各元件及其作用。 2、进行LC振荡器波段工作研究。 3、研究LC振荡器中静态工作点、反馈系数以及负载对振荡器的影响。 4、测试LC振荡器的频率稳定度。 三、实验仪器 1、模块3 1块 2、频率计模块1块 3、双踪示波器1台 4、万用表1块 四、基本原理 将开关S1 的1 拨下2 拨上,S2 全部断开,由晶体管N1 和C3、C10、C11、C4、CC1、L1 构成电容反馈三点式振荡器的改进型振荡器——西勒振荡器,电容CCI 可用来改变振荡频率。

振荡器的频率约为4.5MHz(计算振荡频率可调范围) 振荡电路反馈系数 振荡器输出通过耦合电容C5(10P)加到由N2组成的射极跟随器的输入端,因C5容量很小,再加上射随器的输入阻抗很高,可以减小负载对振荡器的影响。射随器输出信号经N3调谐放大,再经变压器耦合从P1输出。 五、实验步骤 1、根据图5-1在实验板上找到振荡器各零件的位置并熟悉各元件的作用。 2、研究振荡器静态工作点对振荡幅度的影响。 1)将开关S1拨为“01”,S2拨为“00”,构成LC振荡器。 2)改变上偏置电位器W1,记下N1发射极电流Ieo(=Ve/R11 ,R11=1K)(将万用表红表笔接TP2,黑表笔接地测量VE),并用示波测量对应点TP4的振荡幅度VP-P,填于表5-1中,分析输出振荡电压和振荡管静态工作点的关系。 表5-1 分析思路:静态电流ICQ会影响晶体管跨导gm,而放大倍数和gm是有关系的。在饱和状态下(ICQ过大),管子电压增益AV会下降,一般取ICQ=(1~5mA)为宜。 3、测量振荡器输出频率范围 将频率计接于P1处,改变CC1,用示波器从TP8观察波形及输出频率的变化情况,记录最高频 六、实验报告

浅析LC正弦波振荡电路振荡的判断方法

目录 摘要: (1) 0 前言 (2) 1 振荡器 (2) 1.1 什么是振荡器 (2) 1.2 振荡器的相关知识 (2) 1.3 反馈式振荡器的原理知识 (3) 2 正弦波振荡电路振幅条件的判定方法 (3) 3 LC正弦波振荡电路相位条件的判定方法 (5) 3.1 变压器耦合振荡器 (5) 3.2 三点式振荡器 (6) 4 判断三点式振荡器是否满足相位条件的简单方法 (9) 4.1 晶体管极间支路的电抗特性的分析 (9) 4.2 判断方法的实例应用 (14) 5 结论 (16) 参考文献 (16)

浅析LC正弦波振荡电路振荡的判断方法 摘要: 本文主要对LC正弦波振荡电路能否振荡的判断方法进行了浅要分析。当振荡电路同时满足起振的振幅条件和相位条件时就能产生振荡。于是本文主要阐述了正弦波振荡电路振幅条件的判定方法和LC正弦波振荡电路相位条件的判定方法。针对较复杂的三点式振荡器相位条件的辨别,通过对晶体管极间支路的电抗性质进行较全面的分析,并作出总结,之后利用这些结论,可使判断过程大大简化。 关键词: LC正弦波振荡电路;振幅条件;相位条件;电抗性质 0 前言 正弦波振荡器是《通信电子线路》一书中的重点章节。本文试图通过对LC正弦波振荡电路能否振荡的判断方法的浅要分析,来更深入地理解该章内容。 在实践中,正弦波振荡器有着相当广泛的应用。如在通讯、广播、电视系统中用作载波信号源,在工业方面用于高频加热、熔炼、淬火、超声波焊接,在医学方面用于超声诊断、核磁共振成象等。由此可见,学好正弦波振荡器是十分必要的! 从结构上看,正弦波振荡器就是一个没有输入信号的带有选频网络的正反馈放大器。它也是一种能量转换器,无需外加信号,就能自动地把直流电转换成具有一定频率、一定波形和一定幅度的正弦交流电。 正弦波振荡器一般可分为:RC正弦波振荡器、LC正弦波振荡器、石英晶体振荡器,其中LC正弦波振荡器又可分为:变压器耦合振荡器、三点式振荡器。 本文通过对LC正弦波振荡电路的分析说明:当振荡电路同时满足起振的振幅条件和相位条件时就能产生振荡。需要特别指出的是,当三点式振荡器符合“射同基反”的构成原则时,就满足了振荡的相位条件[1-2];对于电路较复杂的三点式振荡器,通过分析晶体管极间支路的电抗性质,并利用其分析结果,可以使其相位条件的判断过程大大简化。 1 振荡器 1.1 什么是振荡器 不需外加输入信号,便能自行产生输出信号的电路称为振荡器。 1.2 振荡器的相关知识 1.2.1振荡器的分类 1

正弦波振荡电路设计

课程设计任务书 学生姓名:专业班级: 指导老师:刘辛工作单位:武汉理工大学理学院 题目:正弦波振荡电路设计 初始条件:直流可调稳压电源一台、示波器一台、万用表一块、面包板一块、元器件若干、剪刀、镊子等必备工具 要求完成的主要任务:(包括课程设计工作量及其技术要求以及说明书撰写等具体要求)1、技术要求: 设计一个正弦波振荡电路,使它能输出频率一定的正弦波信号,振荡频率测量值与理论值的相对误差小于±5%,电源电压变化±1V时,振幅基本稳定,振荡波形对称,无明显非线性失真。 2、主要任务: (一)设计方案 (1)按照技术要求,提出自己的设计方案(多种)并进行比较; (2)以模拟器件电路为主,设计一个正弦波振荡电路(实现方案); (3)依据设计方案,进行预答辩; (二)实现方案 (4)根据设计的实现方案,画出电路逻辑图和装配图; (5)查阅资料,确定所需各元器件型号和参数; (6)在面包板上组装电路; (7)自拟调整测试方法,并调试电路使其达到设计指标要求; (8)撰写设计说明书,进行答辩。 3、撰写课程设计说明书: 封面:题目,学院,专业,班级,姓名,学号,指导教师,日期 任务书 目录(自动生成) 正文:1、技术指标;2、设计方案及其比较;3、实现方案; 4、调试过程及结论; 5、心得体会; 6、参考文献 成绩评定表 时间安排: 课程设计时间:17周-18周 17周:明确任务,查阅资料,提出不同的设计方案(包括实现方案)并答辩; 18周:按照实现方案进行电路布线并调试通过;撰写课程设计说明书。 指导教师签名:年月日 系主任(或负责老师)签名:年月日

正弦波振荡电路 1.技术指标 1.1初始条件 直流可调稳压电源一台、示波器一台、万用表一块、面包板一块、元器件若干、剪刀、 镊子等必备工具。 1.2技术要求 设计一个正弦波振荡电路,使它能输出频率一定的正弦波信号,振荡频率测量值与理论值的相对误差小于±5%,电源电压变化±1V时,振幅基本稳定,振荡波形对称,无明显非线性失真。 1.3正弦波振荡电路原理 正弦波振荡电路是一个没有输入信号,依靠自激振荡产生正弦波输出信号的电路。正弦波振荡电路也称为正弦波振荡器,其实质是放大器引正反馈的结果。正弦波振荡电路一般由放大电路、选频网络、正反馈电路、稳幅环节四部分组成。选频网络通常不是独立存在,有时和正反馈网络合二为一,有时和放大电路合二为一。其基本原理如下:在直流电源闭合的瞬间,频率丰富的干扰信号串入振荡电路的输入端,经过放大后出现在电路的输出端,但是由于幅值很小而频率又杂,不是所要求的信号。此信号再经过选频及正反馈网络把某一频率信号筛选出来(而其他信号被抑制),再送回放大电路的输入端,整个电路的回路增益应略大于1,这样不断循环放大,得到失真的输出信号,最后经稳幅环节可输出一个频率固定、幅值稳定的正弦波信号。 总的来说,正弦波振荡电路大致作用过程如图1所示: 图1 正弦波振荡电路作用过程 2.设计方案及其比较 正弦波振荡电路的类型根据选频网络的组成元件可大致分为RC正弦波振荡电路、LC

LC正弦波振荡器课程设计

第 1 页共26 页

摘要 电子线路中,在无需外加激励信号的情况下,能将直流电能转换成具有一定波形、一定频率和一定幅度的交变能量的电子电路称为高频信号发生器。 高频信号发生器主要是产生高频正弦震荡波,电路主要由高频振荡电路构成。振荡器是一种能自动地将直流电源能量转换为一定波形的交变振荡信号能量的转换电路。它无需外加激励信号。 关键词:高频; LC正弦波振荡器;西勒电路;multisim 目录

摘要 (1) 第1章绪论 (1) 1.1 概述 (1) 1.2 平衡条件 (1) 1.3 起振条件 (1) 1.4 稳定条件 (2) 1.4.1.振幅稳定条件 (2) 1.4.2 相位平衡的稳定条件 (3) 1.5 振荡器的频率稳定度 (4) 1.5.1 频率准确度和频率稳定度 (4) 1.5.2 提高频率稳定度的措施 (4) 1.5.3 LC振荡器的设计考虑 (4) 第2章 LC正弦波振荡器 (5) 2.1 LC三点式振荡器相位平衡条件的判断准则 (5) 2.2 电感三点式振荡器 (5) 2.3 电容三点式振荡器 (6) 2.4 克拉泼和西勒振荡器 (7) 2.4.1克拉泼振荡器 (8) 2.4.2.西勒振荡器 (9) 第3章调试与分析 (10) 3.1 调试中的问题 (10) 3.2 各振荡电路的方案比较与分 (11) 3.2.1 电容三点式振荡的特点: (11) 3.2.2 电感三点式振荡特点: (11) 3.2.3 克拉泼振荡特点: (12) 3.2.4 西勒振荡器特点: (13) 结论 (18) 参考文献 (19) 附录 (20)

致谢 (21)

RC正弦波振荡器设计实验

综合设计 正弦波振荡器的设计与测试 一.实验目的 1. 掌握运用Multisim 设计RC 振荡电路的设计方法 2. 掌握RC 正弦波振荡器的电路结构及其工作原理 3. 熟悉RC 正弦波振荡器的调试方法 4. 观察RC 参数对振荡器的影响,学习振荡器频率的测定方法 二.实验原理 在正弦波振荡电路中,一要反馈信号能够取代输入信号,即电路中必须引入正反馈;二要有外加 的选频网络,用以确定振荡频率。正弦波振荡的平衡条件为:.. 1AF = 起振条件为.. ||1AF > 写成模与相角的形式:.. ||1AF = 2A F n πψ+ψ=(n 为整数) 电路如图1所示: 1. 电路分析 RC 桥式振荡电路由RC 串并联选频网络和同相放大电路组成,图中RC 选频网络形成正反馈电路, 决定振荡频率0f 。1R 、f R 形成负反馈回路,决定起振的幅值条件,1D 、2D 是稳幅元件。 该电路的振荡频率 : 0f =RC π21 ① 起振幅值条件:311 ≥+ =R R A f v ② 式中 d f r R R R //32+= ,d r 为二极管的正向动态电阻 2. 电路参数确定 (1) 根据设计所要求的振荡频率0f ,由式①先确定RC 之积,即 RC= 21 f π ③ 为了使选频网络的选频特性尽量不受集成运算放大器的输入电阻i R 和输出电阻o R 的影响,应使

R 满足下列关系式:i R >>R>>o R 一般i R 约为几百千欧以上,而o R 仅为几百欧以下,初步选定R 之后,由式③算出电容C 的值,然后再算出R 取值能否满足振荡频率的要求 (2) 确定1R 、f R :电阻1R 、f R 由起振的幅值条件来确定,由式②可知f R ≥21R , 通常 取f R =(2.1~2.5)1R ,这样既能保证起振,也不致产生严重的波形失真。此外,为了减小输入失调电流和漂移的影响,电路还应满足直流平衡条件,即: R=1R //f R (3) 确定稳幅电路:通常的稳幅方法是利用v A 随输出电压振幅上升而下降的自动调节作用实 现稳幅。图1中稳幅电路由两只正反向并联的二极管1D 、2D 和电阻3R 并联组成,利用二极管正向动态电阻的非线性以实现稳幅,为了减小因二极管特性的非线性而引起的波形失真,在二极管两端并联小电阻3R 。实验证明,取3R ≈d r 时,效果最佳。 三.实验任务 1.预习要求 (1) 复习RC 正弦波振荡电路的工作原理。 (2) 掌握RC 桥式振荡电路参数的确定方法 2. 设计任务 设计一个RC 正弦波振荡电路。其正弦波输出要求: (1) 振荡频率:接近500Hz 或1kHz 左右,振幅稳定,波形对称,无明显非线性失真 (2)* 振荡频率:50Hz~1kHz 可调,其余同(1) 四.实验报告要求 1. 简述电路的工作原理和主要元件的作用 2. 电路参数的确定 3. 整理实验数据,并与理论值比较,分析误差产生的原因 4. 调试中所遇到的问题以及解决方法 五.思考题 1. 在RC 桥式振荡电路中,若电路不能起振,应调整哪个参数?若输出波形失真应如何调整? 2. 简述图-1中21D D 和的稳幅过程。 六.仪器与器件 仪器: 同实验2 单管 器件: 集成运算放大器μA741 二极管 1N4001 电阻 瓷片电容 若干

LC正弦波振荡器仿真实验

LC正弦波振荡器仿真实验 1电容三点式 (1) (C1 , C2, L1)=(100nF,400nF,10mH) (2) (C1 , C2, L1)=(100nF,400nF,4mH) Oscilloscope-XSCl Time-ChanndjS.ChflnndJ 27.342 ms603.146frtV-5.577 V Reverse T2 * +2X401 im-l-SH V4,297 V T2-TI5a. 712 LB-Z?2¥9.374 V Xu Fi!-. hinnpf IVne base Charnel 占Chamd E rnoger Scale;SOusE :Scab: 11 V/Ofv5cate ;.2 V/Dw Ed^e-SE E |Ext D Tpog.tDw): 0r piM i0D4v): D Level:fl v1 B/A AC 'O|[K]? |K|[~Q~[bir|? Sngte Auto

Spectrum andllyzer-XSA1i (C I ,C2,L I ) U o /V Ui/V 增益A 相位 差 谐振频率f o /KHz 测量值 理论值 测量值 理论值 (100 nF ,400nF,10mH) 9.246 2.281 4.053 4 1.063* n 5.959 5.627 15.567ms 15.472ms (100 nF,400nF,4mH) 9.874 2.462 4.010 4 1.042* n 8.851 8.897 27.401ms 27.342ms (100 nF,900nF,4mH) 10.302 1.143 9.013 9 1.032* n 8.025 8.388 14.575ms 14.514ms a.asi^-s ^.2H3 v < Entef d9 Ln Span: IM kHz Rai^e: 2 | Start: 1 kH? Ref! D dB Genter: 51 Resihjtion freq: &>d: 101 鴉 1 Itflz LOW kHz StarE Sbqp Reverse Sh (MM redder. Set... Span oaitrol Set span 壬⑴ 翼即 Fili qpan Frequmv Antpilu^ Inpul ? Tr 沟ger (3) (C1 , C2, L1)=(100nF,900nF,4mH)

相关主题
文本预览
相关文档 最新文档