当前位置:文档之家› 虚拟信号发生器

虚拟信号发生器

虚拟信号发生器
虚拟信号发生器

1.摘要

本报告介绍了一个简单的信号发生器系统,综合了老师在智能仪表化技术课程中所讲解的包括结构、模块、函数等相关内容的综合。本系统是基于labview2014的虚拟信号发生器,能够在给定参数的情况下输出相应的波形,包括正弦波、锯齿波、三角波和矩形波。也可利用NI数据采集系统进行相应的链接后采集数据并进行相应显示和分析。

关键词:labview 信号发生器波形图

2.设计目的及要求

1.1设计目的

熟练掌握labview软件的基本设计思路和规则,了解各结构的功能,对给出的程序能够基本的理解和设计一些简单的智能发生程序。对G语言和其他编程语言进行一个对比,了解各自的优势和不足。对虚拟信号发生器的相关原理能够独立理解。

1.2设计要求

i.产生的正弦波、锯齿波、三角波、方波能够调节其相位、幅值、频率以

及占空比。

ii.在调节的基础上能够将相关参数显示出来。

iii.能够方便进行外部数据采集系统的扩展设计。

iv.方便对其他方面信号发生器的重新设计。

3.设计思路及流程图

1.1思路及方法

我们需要解决的一共就只有四个大问题:

<波形选择>:与我们常用的函数信号发生器相联系,根据仪器的功能,可以产生多种波形;但是我们们需要的是一种波形,所以必须做好信号相互切换的功能。因此用case条件结构是最好的选择。我可以在case结构中添加多个条件分支,并用特定的数据类型表示不同的波形。在case结构中的条件选择端口添加结构至四个(必须有一个为默认,否则会产生错误),输入各个可以产生的波形(必须与条件分支中的标签一一对应),这样就可以实现波形的选择了

<信号产生>:产生各个波形的方法有很多。比如用公式编写、有仿真信号生成、还有函数生成。但是最简单的是用【函数选板】中的【信号处理】的子选板中的【波形生成】中的【正弦波形】、【方波】、【三角波】、【锯齿波】。但是这些控件必须自己输入各种参数值.

<波形控制>:一个理想的函数信号发生器必须有一个开关,如我们所用到的函数信号发生器一样。在不需要发生器的时候就利用【开关】来控制信号的产生与否。因此,只需要在case条件结构的外面再加一个 while循环结构就可以了.

<参数显示>:产生的波形的各个参数是否满足我们的要求,如果没有显示这些参数的话,我们是不能知道的。所以只需在程序框图中加一个显示控件或局部变量都可以.

以上就是整个虚拟函数发生器的设计思路。

1.2流程图

4.程序图及其实现功能

选择分支结构进行四种信号发生器的统一组合,利用一个字符型输入模块选择波形分支。利用一个布尔型左右拨片对各函数发生器进行重置选择。按钮型布尔开关控制整个程序的停止。选用旋钮的输入调节具有随机性,具体输入数值可以精确显示。

1.1正弦波信号发生器

程序结构图如下:

根据输入的参数产生一个正弦波。由于频率是有单位的,所以用一个字符串函数对输入输出的频率产生一个单位“Hz”。

程序结构图如下:

方波有占空比的输入和调节。

1.3锯齿波信号发生器

程序结构图如下:

程序结构图如下:

5.实际运行结果

给定相关数据来测试信号发生器输出的波形的效果。

将各个可调节的旋钮随机调节到一个参数组,将波形选择输入框分别加载1~4,波形图分别输出同一参数下的不同波形。将开关布尔键长放置在打开状态下,那么使得程序只运行一个回合就停止,可以快速观察波形图。若放置在关断的情况下,那么程序一直运行,无法清除观察波形图,当按下开关后停止运行才能仔细观察。若随机调节的参数不能够清楚的观察波形图,则要将其参数重新调节,比如将频率调低,幅值调低等直至能够清除观察为止。在观察的过程中我们发现,图形还是能够直观的显示出参数的特征。

附结果及其前面板图:

多功能信号发生器设计报告.doc

重庆大学城市科技学院电气学院EDA课程设计报告 题目:多功能信号发生器 专业:电子信息工程 班级:2006级03班 小组:第12组 学号及姓名:20060075蒋春 20060071冯志磊 20060070冯浩真 指导教师:戴琦琦 设计日期:2009-6-19

多功能信号发生器设计报告 一、设计题目 运用所掌握的VHDL语言,设计一个信号发生器,要求能输出正弦波、方波、三角波、锯齿波,并且能改变其输出频率以及波形幅度,能在示波器上有相应波形显示。 二、课题分析 (1).要能够实现四种波形的输出,就要有四个ROM(64*8bit)存放正弦波、方波、三角波、锯齿波的一个周期的波形数据,并且要有一个地址发生器来给ROM提供地址,ROM给出对应的幅度值。 (2).因为要设计的是个时序电路,所以要实现输出波形能够改变频率,就必须对输入的信号进行分频,以实现整体的频率的改变。 (3).设计要求实现调幅,必须对ROM输出的幅度信息进行处理。最简单易行的方法是对输出的8位的幅度进行左移(每移移位相当于对幅度值行除以二取整的计算),从而达到幅度可以调节的目的。同时为了方便观察,应再引出个未经调幅的信号作为对比。 三、设计的具体实现 1、系统概述 系统应该由五个部分组成:分频器(DVF)、地址发生器(CNT6B)、四个ROM 模块(data_rom_sin、data_rom_sqr、data_rom_tri、data_rom_c)、四输入多路选择器mux、幅度调节单元w。 2、单元电路设计与分析 外部时钟信号经过分频器分频后提供给地址发生器和ROM,四个ROM的输出接在多路选择器上,用于选择哪路信号作为输出信号,被选择的信号经过幅度调节单元的幅度调节后连接到外部的D/A转换器输出模拟信号。 (1)分频器(DVF) 分频器(DVF)的RTL截图

信号发生器概述

信号发生器概述 凡是产生测试信号的仪器,统称为信号源,也称为信号发生器,它用于产生被测电路所需特定参数的电测试信号。 信号源是根据用户对其波形的命令来产生信号的电子仪器。信号源主要给被测电路提供所需要的已知信号(各种波形),然后用其它仪表测量感兴趣的参数。可见信号源在电子实验和测试处理中,并不测量任何参数,而是根据使用者的要求,仿真各种测试信号,提供给被测电路,以达到测试的需要。 信号源的分类和作用 信号源有很多种分类方法,其中一种方法可分为混和信号源和逻辑信号源两种。其中混和信号源主要输出模拟波形;逻辑信号源输出数字码形。混和信号源又可分为函数信号发生器和任意波形/函数发生器,其中函数信号发生器输出标准波形,如正弦波、方波等,任意波/函数发生器输出用户自定义的任意波形;逻辑信号发生器又可分为脉冲信号发生器和码型发生器,其中脉冲信号发生器驱动较小个数的的方波或脉冲波输出,码型发生器生成许多通道的数字码型。如泰克生产的AFG3000系列就包括函数信号发生器、任意波形/函数信号发生器、脉冲信号发生器的功能。 另外,信号源还可以按照输出信号的类型分类,如射频信号发生器、扫描信号发生器、频率合成器、噪声信号发生器、脉冲信号发生器等等。信号源也可以按照使用频段分类,不同频段的信号源对应不同应用领域。 下面我们将对函数信号发生器和任意波形/函数发生器做简要介绍: 1、函数信号发生器 函数发生器是使用最广的通用信号源,提供正弦波、锯齿波、方波、脉冲波等波形,有的还同时具有调制和扫描功能。 函数波形发生器在设计上分为模拟式和数字合成式。众所周知,数字合成式函数信号源(DDS)无论就频率、幅度乃至信号的信噪比(S/N)均优于模拟式,其锁相环(PLL)的设计让输出信号不仅是频率精准,而且相位抖动(phaseJitter)及频率漂移均能达到相当稳定的状态,但数字式信号源中,数字电路与模拟电路之间的干扰始终难以有效克服,也造成在小信号的输出上不如模拟式的函数信号发生器,如今市场上的大部分函数信号发生器均为DDS信号源。 2、任意波形发生器 任意波形发生器,是一种特殊的信号源,不仅具有一般信号源波形生成能力,而且可以仿真实际电路测试中需要的任意波形。在我们实际的电路的运行中,由于各种干扰和响应的存在,实际电路往往存在各种缺陷信号和瞬变信号,如果在设计之初没有考虑这些情况,有的将会产生灾难性后果。任意波发生器可以帮您完成实验,仿真实际电路,对您的设计进行全面的测试。 由于任意波形发生往往依赖计算机通讯输出波形数据。在计算机传输中,通过专用的波

函数信号发生器设计方案

函数信号发生器的设 计与制作 目录 一.设计任务概述 二.方案论证与比较 三.系统工作原理与分析 四.函数信号发生器各组成部分的工作原理 五.元器件清单 六.总结 七.参考文献

函数信号发生器的设计与制 一.设计任务概述 (1)该发生器能自动产生正弦波、三角波、方波。 (2)函数发生器以集成运放和晶体管为核心进行设计 (3)指标: 输出波形:正弦波、三角波、方波 频率范围:1Hz~10Hz,10Hz~100Hz 输出电压:方波VP-P≤24V,三角波VP-P=8V,正弦波VP-P>1V; 二、方案论证与比较 2.1·系统功能分析 本设计的核心问题是信号的控制问题,其中包括信号频率、信号种类以及信号强度的控制。在设计的过程中,我们综合考虑了以下三种实现方案: 2.2·方案论证 方案一∶采用传统的直接频率合成器。这种方法能实现快速频率变换,具有低相位噪声以及所有方法中最高的工作频率。但由于采用大量的倍频、分频、混频和滤波环节,导致直接频率合成器的结构复杂、体积庞大、成本高,而且容易产生过多的杂散分量,难以达到较高的频谱纯度。 方案二∶采用锁相环式频率合成器。利用锁相环,将压控振荡器(VCO)的输出频率锁定在所需要频率上。这种频率合成器具有很好的窄带跟踪特性,可以很好地选择所需要频率信号,抑制杂散分量,并且避免了量的滤波器,有利于集成化和小型化。但由于锁相环本身是一个惰性环节,锁定时间较长,故频率转换时间较长。而且,由模拟方法合成的正弦波的参数,如幅度、频率相信都很难控制。 方案三:采用8038单片压控函数发生器,8038可同时产生正弦波、方波和三角波。改变8038的调制电压,可以实现数控调节,其振荡范围为0.001Hz~300K 方案四:采用分立元件设计出能够产生3种常用实验波形的信号发生器,并确定了各元件的参数,通过调整和模拟输出,该电路可产生频率低于1-10Hz的3种信号输出,具有原理简单、结构清晰、费用低廉的优点。该电路已经用于实际电路的实验操作。 三、系统工作原理与分析 采用由集成运算放大器与场效应管共同组成的方波—三角波—正弦波函数发生器的设计方法,先通过比较器产生方波,再通过积分器产生三角波,最后通过场效应管正弦波转换电路形成正弦波,波形转换原理图如下:

基于Labview的虚拟信号发生器的设计(毕设)

基于Labview的虚拟信号发生器的设计(毕设)

课题名称基于LabVIEW8.0的虚拟函数信号发生器的设 计 指导教师姓名肖俊生 学生姓名刘增辉 专业自动化 学号 0967106205

基于LabVIEW的虚拟函数信号发生器的设计 摘要 本文实现了基于LabVIEW8.5的虚拟正弦波、方波、三角波、锯齿波以及任意信号波形的信号发生。操作人员可以根据需要,改变波形的频率、幅值、相位、偏移量等参数,并可保存波形的分析参数到指定文件。本论文首先简介了虚拟函数信号发生器的开发平台,及虚拟信号发生器的设计思路,并且给出了基于LabVIEW的虚拟信号发生器的前面板和程序设计流程图,讲述了功能模块的设计步骤,提供了虚拟发生器的前面板。本仪器系统操作简便,设计灵活,具有很强的适应性。 【关键词】:虚拟仪器,LabVIEW,信号发生器 第一章虚拟仪器(Virtual Instrument) 1.1 虚拟仪器概念 虚拟仪器的起源可追溯到20世纪70年代。“虚拟”的含义主要是强调了软件在这类仪器中的作用,体现了虚拟仪器与主要通过硬件实现各种功能的传统仪器的不同。由于虚拟仪器结构形式的多样性和适用领域的广泛性,目前对于虚拟仪器的概念还没有统一的定义。美国国家仪器公司(National Instruments Corporation,NI)认为,虚拟仪器是由计算机硬件资源、模块化仪器硬件和用于数据分析、过程通信及图形用户界面的软件组成的测控系统,是一种计算机操纵的模块化仪器系统。 虚拟仪器主要由通用的计算机资源(例如微处理器、内存、消声器)、应用软件和仪器硬件(例如A/D\、D/A、数字I/O、定时器、信号调理等)等构成。使用者利用应用软件将计算机资源和仪器硬件结合起来,通过友好的图形界面来操作计算机,完成对测试信号的采集、分析、判断、显示和数据处理等功能。虚拟仪器中的硬件主要用于解决信号的调理以及输入、输出问题。而软件主要

函数信号发生器课程设计报告书

信号发生器 一、设计目的 1.进一步掌握模拟电子技术的理论知识,培养工程设计能力 和综合分析问题、解决问题的能力。 2.基本掌握常用电子电路的一般设计方法,提高电子电路的 设计和实验能力。 3.学会运用Multisim10仿真软件对所作出的理论设计进行 仿真测试,并能进一步完善设计。 4.掌握常用元器件的识别和测试,熟悉常用仪表,了解电路 调试的基本方法。 二、设计容与要求 1.设计、组装、调试函数信号发生器 2.输出波形:正弦波、三角波、方波 3.频率围:10Hz-10KHz围可调 4.输出电压:方波V PP<20V, 三角波V PP=6V, 正弦波V PP>1V 三、设计方案仿真结果 1.正弦波—矩形波—三角波电路 原理图:

首先产生正弦波,再由过零比较器产生方波,最后由积分电路产生三角波。正弦波通过RC串并联振荡电路(文氏桥振荡电路)产生,利用集成运放工作在非线性区的特点,由最简单的过零比较器将正弦波转换为方波,然后将方波经过积分运算变换成三角波。 正弦—矩形波—三角波产生电路: 总电路中,R5用来使电路起振;R1和R7用来调节振荡的频率,R6、R9、R8分别用来调节正弦波、方波、三角波的幅值。左边第一个运放与RC串并联电路产生正弦波,中间部分为过零比较器,用来输出方波,最好一个运放与电容组成积分电路,用来输出三角波。

仿真波形: 调频和调幅原理 调频原理:根据RC 振荡电路的频率计算公式 RC f o π21 = 可知,只需改变R 或C 的值即可,本方案中采用两个可变电阻R1和R7同时调节来改变频率。 调幅原理:本方案选用了最简单有效的电阻分压的方式调幅,在输出端通过电阻接地,输出信号的幅值取决于电阻分得的电压多少。其最大幅值为电路的输出电压峰值,最小值为0。 RC 串并联网络的频率特性可以表示为 ) 1(311112 1 2 RC RC j RC j R C j R RC j R f Z Z Z U U F ωωωωω-+=++++=+= = ? ? ? 令,1 RC o =ω则上式可简化为) ( 31 ω ωωωO O j F -+ = ? ,以上频率特性可 分别用幅频特性和相频特性的表达式表示如下:

模拟电子技术课设之信号发生器

内蒙古师范大学计算机与信息工程学院《低频电子线路课程设计》报告 设计题目简易函数信号发生器设计 指导教师张鹏举职称讲师 姓名高佳玉 学号558 日期2010-7-14

简易函数信号发生器设计 摘要信号发生器产生正弦波、方波、三角波的方案有多,如首先产生正弦波,然后通过整形电路将正弦波变换成方波,再由积分电路将方波变成三角波;也可以首先产生三角波—方波,再将三角波变换成正弦波或将方波变成正弦波 关键词信号发生器;正弦波;方波;三角波; 1 设计任务及主要技术指标和要求 设计任务 设计一个简易波形发生器,能产生正弦波、方波、三角波。由分立元件和中小规模运放构成。 设计技术指标和要求 (1)频率范围:1-100Hz。 (2)输出电压:方波<=22V,三角波=8V,正弦波>=1V。 (3)根据上述要求选定设计方案,画出系统框图,写出详细的设计过程。 (4)利用CAD软件画出一套完整的设计电路图,并列出所有的元件清单。 2工作原理 设计方案 函数发生器一般是指能自动产生正弦波、三角波、方波及锯齿波、阶梯波等电压波形的电路或仪器。 产生正弦波、方波、三角波的方案有多种,如首先产生正弦波,然后通过整形电路将正弦波变换成方波,再由积分电路将方波变成三角波;也可以首先产生三角波—方波,

再将三角波变成正弦波或将方波变成正弦波等等。本课题采用先产生方波—三角波,再将三角波变换成正弦波的电路设计方法。 由比较器和积分器组成方波—三角波产生电路,比较器输出的方波经积分器得到三角波,三角波到正弦波的变换电路主要由差分放大器来完成。差分放大器具有工作点稳定,输入阻抗高,抗干扰能力较强等优点。特别是作为直流放大器时,可以有效地抑制零点漂移,因此可将频率很低的三角波变换成正弦波。波形变换的原理是利用差分放大器传输特性曲线的非线性。 图1 总设计框图 工作原理 方波发生电路的工作原理 此电路由反相输入的滞回比较器和RC电路组成。RC回路既作为延迟环节,又作为反馈网络,通过RC充、放电实现输出状态的自动转换,电路产生了自激振荡。 方波---三角波转换电路的工作原理

函数信号发生器的设计与制作

函数信号发生器的设计、和装配实习 一.设计制作要求: 掌握方波一三角波一正弦波函数发生器的设计方法和测试技术。学会由分立器件和集成电路组成的多级电子电路小系统的布线方法。掌握安装、焊接和调试电路的技能。掌握在装配过程中可能发生的故障进行维修的基本方法。 二.方波一三角波一正弦波函数发生器设计要求 函数发生器能自动产生正弦波、三角波、方波及锯齿波、阶梯波等电压波形。其电路中使用的器件可以是分立器件,也可以是集成电路(如单片集成电路函数发生器ICL8038)。本次电子工艺实习,主要介绍由集成运算放大器和晶体管差分放大器组成的方波一三角波一正弦波函数信号发生器的设计和制作方法。 产生正弦波、方波、三角波的方案有多 种: 1:如先产生正弦波,然后通过整 形电路将正弦波变换成方波,再由积分 电路将方波变成三角波。 2:先产生三角波一方波,再将三 角波变成正弦波或将方波变成正弦波。 3 3:本次电路设计,则采用的图1函数发生器组成框图 是先产生方波一三角波,再将三角波变换成正弦波的电路设计方法。此钟方法的电路组成框图。如图1所示:可见,它主要由:电压比较器、积分器和差分放大器等三部分构成。 为了使大家能较快地进入设计和制做状态,节省时间,在此,重新复习电压比较器、积分器和差分放大器的基本构成和工作原理: ,并判所谓比较器,是一种用来比较输入信号v1和参考电压V REF 断出其中哪个大,在输出端显示出比较结果的电路。 在《电子技术基础》一书的9.4—非正弦波信号产生电路的9.4.1中,专门讲述了: A:单门限电压比较器、B:过零比较器 C:迟滞比较器的电路结构和工作原理。 一、单门限电压比较器 所谓单门限电压比较器,是指比较器的输入端只有一个门限电压。

虚拟信号发生器(labview)

虚拟信号发生器(labview)

4 系统总体的设计及实现 4.1 系统框架和设计流程 4.1.1程序框图的设计流程 用LABVIEW设计虚拟信号发生器的主要步骤是在设计程序框图上,图4.1是设计程序框图的主要流程。 图4.1 程序框图的设计流程 4.1.2系统设计 设计信号发生器的主要任务是设计程序框图和前面板,在设计这两部分中若没有出现数据类型不匹配、控件的属性设置等问题,再跟硬件连接,看是否可以产生各种信号,并且能被数字示波器采集到,并在硬件允许的范围内体现比现有信号发生器更宽泛的信号范围。

4.2 系统具体应用程序 按系统的总体要求,可以分为两部分来设计,一个是基本波形的系统设计,如正弦波,方波,三角波和锯齿波,另一个是基于数字脉冲的PWM波设计。 4.2.1程序框图的具体设计步骤 利用LABVIEW设计一个系统,其中的主要部分是程序框图的设计,以下就是程序框图设计的基本过程。 1)创建虚拟通道,可以根据输出的波形的类型来设置物理通道的性质,并可以设置波形的一些基本参数。图4.2是输出基本波形的通道,图4.3是输出PWM波的通道。 图4.2 基本波形虚拟通道 图4.3 PWM波虚拟通道 2)设置基本波形的缓冲区和采样时钟,缓冲区中则可以对信号的频率、幅值、采样值、波形类型等进行设置,采样时钟设为模拟。本设计中的PWM波是基于计数器产生的,采样时钟则是设置成计数器(隐式)。时钟采样方式均设置为连续采样。图4.4是基本信号的时钟,图4.5则是PWM波的时钟。

图4.4 基本波形信号时钟 图4.5 PWM波信号时钟 3)基本信号发生器需要先设置模拟信号的通道数及采样数,然后运行,PWM 波则是则是在设置好波形参数和时钟后可以直接运行。 图4.6 基本信号波形运行

函数信号发生器设计报告

函数信号发生器设计报告 一、 设计要求 设计制作能产生正弦波、方波、三角波等多种波形信号输出的波形发生器,具体要求: (1) 输出波形工作频率范围为2HZ ~200KHZ ,且连续可调; (2) 输出频率分五档:低频档:2HZ ~20HZ ;中低频档:20HZ ~200HZ ; 中频档:200HZ ~2KHZ ;中高频档:2KHZ ~20KHZ ;高频档:20KHZ ~200KHZ 。 (3) 输出带LED 指示。 二、 设计的作用、目的 1. 掌握函数信号发生器工作原理。 2. 熟悉集成运放的使用。 3. 熟悉Multisim 软件。 三、 设计的具体实现 3.1函数发生器总方案 采用分立元件,设计出能够产生正弦波、方波、三角波信号的各个单元电路,利用Multisim 仿真软件模拟,调试各个参数,完成单元电路的调试后连接起来,在正弦波产生电路中加入开关控制,选择不同档位的元件,达到输出频率可调的目的。 总原理图:

3.2单元电路设计、仿真 Ⅰ、RC桥式正弦波振荡电路 图1:正弦波发生电路 正弦波振荡器是在只有直流供电、不加外加输入信号的条件下产生正弦波信号的电路。 正弦波产生电路的基本结构是:引入正反馈的反馈网络和放大电路。其中:接入正反馈是产生振荡的首要条件,它又被称为相位条件;产生振荡必须满足幅度条件;要保证输出波形为单一频率的正弦波,必须具有选频特性;同时它还应具有稳幅特性。因此,正弦波产生电路一般包括:放大电路、反馈网络、选频网络、稳幅电路四个部分。根据选频电路回路的不同,正弦波振荡器可分为RC正弦波振荡器、LC正弦波振荡器和石英晶体振荡器。其中,RC正弦波振荡器主要用于产生中低频正弦波,振荡频率一般小于1MHz,满足本次设计要求,故选用RC 正弦波振荡器。

函数信号发生器设计报告

函数信号发生器设计报告 目录 一、设计要求 .......................................................................................... - 2 - 二、设计的作用、目的 .......................................................................... - 2 - 三、性能指标 .......................................................................................... - 2 - 四、设计方案的选择及论证 .................................................................. - 3 - 五、函数发生器的具体方案 .................................................................. - 4 - 1. 总的原理框图及总方案 ................................................................. - 4 - 2.各组成部分的工作原理 ................................................................... - 5 - 2.1 方波发生电路 .......................................................................... - 5 - 2.2三角波发生电路 .................................................................... - 6 - 2.3正弦波发生电路 .................................................................. - 7 - 2.4方波---三角波转换电路的工作原理 ................................ - 10 - 2.5三角波—正弦波转换电路工作原理 .................................. - 13 - 3. 总电路图 ....................................................................................... - 15 - 六、实验结果分析 ................................................................................ - 16 - 七、实验总结 ........................................................................................ - 17 - 八、参考资料 ........................................................................................ - 18 - 九、附录:元器件列表 ........................................................................ - 19 -

虚拟信号发生器的设计

虚拟信号发生器的设计 (巢湖学院物理与电子科学系王乐07037022) 摘要:虚拟仪器是由一些必要的硬件获取调理信号,并以通用计算机为平台,实现不同测量软件对采集获得信号进行分析处理及显示。它改变了传统电子测量仪器的概念和模式,用户完全可以自己定义仪器的功能和参数,即“软件既是仪器”。计算机技术与网络技术的飞速发展,使得虚拟仪器已经成为现代电子测量仪器发展的趋势。 本文介绍了一种以LabVIEW为开发平台,能够产生正弦波、三角波、方波、锯齿波和任意波测试信号发生器,其平率、幅值、相位、电压偏置等参数可以设置,不但输出波形参数可调、而且可同步显示。本系统通过采用TCP/IP技术来实现远程数据传输功能,当两台计算机设置好端口后,就可以进行数据传输。 与传统仪器相比,本系统具有高效、开放、使用灵活、功能强大、性价比高、可操作性好等明显优点,可用于医疗,工程等精密仪器的测试,具有较强的实用性和开发价值。 关键词:虚拟仪器,Labview,函数信号发生器,网络通信。 The design of virtual signal generator and remotereslization Abstract:The virtual instrument which conditioning signals isgained by some essential hardware.It takes the general-purposecomputer as a platform and the signal is realized through thedifferent measurement software,such as signal’s analyze,processand display etc.The concept and mode of traditional measuringinstruments are changed,the parameters and functions can betransformed by the user,namely,"software is the instrument".Withthe rapid development of computer and network technology,thevirtual instrument has become a developing trend of modernelectronic measuring instruments. In this paper development platform LabVIEW is introduced firstly,then the test signals of Sine,triangle,square sawtooth andarbitrary waveform is described in the virtual signal generator.The functions of signal generator are set,such as frequency,amplitude,phase,voltage bias etc.Not only output parameters canbe adjusted but also the corresponding wave is acquiredsimultaneously in this system. The function of remote datatransmission is performed by TCP/IP technology.Data is transportedwhen the port parameters between two computers areset. Compared with traditional machines,advantages of the virtualinstrument are showed in efficiency,opening,easy using,strongfunction,cost-effective and operation etc.It can be used fortesting of medical and engineering precision instruments. Key words:Virtual instrument,LabVIEW,Function generator,NetworkCommunication 第1章绪论 在有关电参量的测量中,我们需要用到信号源,而信号发生器则为我们提供

模拟心电信号发生器SKX-2000应用

模拟心电信号发生器SKX-2000A/C/D/G

本系列模拟心电信号发生器性能特点: 1、模拟器内置大容量锂电池,可以长时间工作;充满后可以连续工作大于60个小时(出厂时)。因为是锂电池,请尽量不要过度放电。请注意正确使用充电器,充电器电压不能高于4.2V。 2、采用10个万能心电转接接头,可与各种心电图机和监护仪的导联线进行连接。 3、充电器绿灯亮表示充电完成,红色越亮表示电量低。 4、增加电池电量低自动关断功能,保护锂电池。 5、模拟器的LED显示管,为防止用户在使用过程中忘记关闭电源,系统设计为当4个小时内内没有操作按键时,CPU将进入待机状态,以便节电。按任意按键则计时归零。 本系列机型功能特点区别与价格体系如下: SKX-2000A型信号发生器 只有模拟的人体心电波形,不能更改波形内容,外壳上也无显示区;价格是380元包邮. SKX-2000C:480元包邮 本模拟器可以产生如下波形,第一位代码代表如下波形 1、正常的心电波形 2、正负三角波形 注意: 1、本模拟器上电后自动产生波形1的正常心电波形。 2、模拟器的LED显示管,当5秒内没有操作按键时,将自动关闭显示,以便节电。按任意按键则触发再次显示。 按键说明 一共有四个按键,依次为选择键、增加键、减小键、确认键,另外还有一组组合键 选择键: 此按键用来选择要改变的参数,共有4个LED管来显示4个代码,分别代表显示的内容, 1代表波形代码,2-4代表要更改的参数(2是数值的百位,3代表十位,4代表个位) LED管右下脚的亮点,表示现在选择的内容;可以进行更改。 增加键: 当使用选择键选择好更改内容后,使用此键进行参数更改。 减小键: 当使用选择键选择好更改内容后,使用此键进行参数更改。 确认键: 当参数更改完毕后,此键确认后将确认参数的更改,并产生相应的波形。

函数信号发生器的设计与实现

实验1 函数信号发生器的设计与实现 姓名:_ _____ 学号: 班内序号:____ 课题名称:函数信号发生器的设计 摘要:采用运算放大器组成的积分电路产生比较理想的方波-三角波,根 据所需振荡频率和对方波前后沿陡度、方波和三角波幅度的要求,选择运放、稳压管、限流电阻和电容。三角波-正弦波转换电路利用差分放大器传输特性曲线的非线性实现,选取合适的滑动变阻器来调节三角波的幅度和电路的对称性,同时利用隔直电容、滤波电容来改善输出正弦波的波形。 关键词:方波三角波正弦波 一、设计任务要求 1.基本要求:

设计制作一个函数信号发生器电路,该电路能够输出频率可调的正弦波、三角波和方波信号。 (1) 输出频率能在1-10KHz范围内连续可调,无明显失真。 (2) 方波输出电压Uopp=12V(误差小于20%),上升、下降沿小于10us。 (3) 三角波Uopp=8V(误差小于20%)。 (4) 正弦波Uopp1V,无明显失真。 2.提高要求: (1) 输出方波占空比可调范围30%-70%。 (2) 自拟(三种输出波形的峰峰值Uopp均可在1V-10V内连续可调)。 二、设计思路和总体结构框图 总体结构框图: 设计思路: 由运放构成的比较器和反相积分器组成方波-三角波发生电路,三角波输入差分放大电路,利用其传输特性曲线的非线性实现三角波-正弦波的转换,从而电路可在三个输出端分别输出方波、三角波和正弦波,达到信号发生器实验的基本要求。 将输出端与地之间接入大阻值电位器,电位器的抽头处作为新的输出端,实现输出信号幅度的连续调节。利用二极管的单向导通性,将方波-三角波中间的电阻改为两个反向二极管一端相连,另一端接入电位器,抽头处输出的结构,实现占空比连续可调,达到信号发生器实验的提高要求。 三、分块电路和总体电路的设计过程 1.方波-三角波产生电路 电路图:

双通道虚拟信号发生器设计

虚拟仪器课程设计报告 题目:双通道虚拟信号发生器设计 双通道虚拟信号发生器设计 一、课程设计说明: 对于任何测试来说,信号的生成非常重要。例如,当现实世界中的真正信号很难得到时,可以用仿真信号对其进行模拟。常用的测试信号包括:正弦波、三角波、方波、锯齿波、各种噪声信号以及由多种正弦波合成的多频信号。信号发生器在测量中应用非常广泛,它可以产生不同频率的正弦信号、方波、三角波、锯齿波等,

其输出的幅值和直流偏置也可以根据需要进行调节。信号发生器种类繁多,专用信号发生器是专门为某种特殊的测量而研制的,如电视信号发生器、编码脉冲信号发生器等;通用信号发生器按输出波形可分为正弦信号发生器、脉冲信号发生器、函数发生器和噪声发生器等,其中正弦信号发生器最具普遍性和广泛性。 LabVIEW虚拟仪器技术软件开发平台提供了丰富的信号产生函数。通过编写适当的LabVIEW程序,设计与实现一个双通道虚拟信号发生器。 本课题基于虚拟仪器LabVIEW图形化软件开发平台,设计一种双通道虚拟信号发生器,要求所设计的双通道虚拟信号发生器可以产生和显示正弦信号、三角波、方波、锯齿波、公式波及是否加噪声信号。具体指标与要求如下: (一) 正弦信号、三角波、方波、锯齿波信号 1、频率及幅值可调; 2、偏置量及方波的占空比可调; 3、可调整幅值、相位、频率;调整后无须重新启动(但是有组合按键); 4、在产生的信号中可以加入高斯白噪声。 5、可以设置通道选项,可以选一个通道,也可以选两通道。 6、公式波信号:当选择产生公式波信号时,可以通过信号发生器前面板输入 相应的公式,从而得到相应的波形信号。 7、通道1、通道2可以分别产生正弦信号、三角波、方波、锯齿波或公式波信 号。通过设置一个“退出”按钮来退出程序。两个通道产生的信号必须在 同一个示波器(Graph)中显示波形,但彼此互不干扰。每个通道可以对波形 进行单独控制,分别可以选择产生输出正弦信号、方波信号、三角波信号、锯齿波信号或公式波信号。并可以对采样信息,频率,幅值以及相位参数 进行调节控制,方波还可以控制占空比。 8、采样频率和采样数课设置。 9、波形颜色可以控制,可以显示出:红色,黄色,蓝色等三种颜色。这里采 用了事件结构来编写,在下面会介绍的。 二、课程设计目的 通过本次课程设计使学生具备: (1)了解现代仪器科学与技术的发展前沿;(2)学习和掌握虚拟仪器系统组成和工作原理;(3)掌握虚拟仪器LabVIEW图形化软件设计方法与调试技巧;(4)培养学生查阅资料的能力和运用知识能力。 三、课程设计要求

信号发生器课程设计报告

目录 一、课题名称 (2) 二、内容摘要 (2) 三、设计目的 (2) 四、设计内容及要求 (2) 五、系统方案设计 (3) 六、电路设计及原理分析 (4) 七、电路仿真结果 (7) 八、硬件设计及焊接测试 (8) 九、故障的原因分析及解决方案 (11) 十、课程设计总结及心得体会 (12)

一、课题名称:函数信号发生器的设计 二、内容摘要: 函数信号发生器作为一种常用的信号源,是现代测试领域内应用最为广泛的通用仪器之一。在研制、生产、测试和维修各种电子元件、部件以及整机设备时,都要有信号源,由它产生不同频率不同波形的电压、电流信号并加到被测器件或设备上,用其他仪器观察、测量被测仪器的输出响应,以分析确定它们的性能参数。信号发生器是电子测量领域中最基本、应用最广泛的一类电子仪器。它可以产生多种波形信号,如正弦波,三角波,方波等,因而此次课程设计旨在运用模拟电子技术知识来制作一个能同时输出正弦波、方波、三角波的信号发生器。 三、设计目的: 1、进一步掌握模拟电子技术知识的理论知识,培养工程设计能力和综合分析能力、解决问题的能力。 2、基本掌握常用电子电路的一般设计方法,提高电子电路的设计和实验能力。 3、学会运用Multisim仿真软件对所做出来的理论设计进行仿真测试,并能进一步解决出现的基本问题,不断完善设计。 4、掌握常用元器件的识别和测试,熟悉万用表等常用仪表,了解电路调试的基本方法,提高实际电路的分析操作能力。 5、在仿真结果的基础上,实现实际电路。 四、设计内容及要求: 1、要求完成原理设计并通过Multisim软件仿真部分 (1)RC桥式正弦波产生电路,频率分别为300Hz、1KHz、10KHz、500KHz,输出幅值300mV~5V可调、负载1KΩ。 (2)占空比可调的矩形波电路,频率3KHz,占空比可调范围10%~90%,输出幅值3V、负载1KΩ。 (3)占空比可调的三角波电路,频率1KHz,占空比可调范围10%~90%,输出幅值3V、负载1KΩ。 (4)多用信号源产生电路,分别产生正弦波、方波、三角波,频率范围

E4432B 数字和模拟信号发生器

E4432B 数字和模拟信号发生器 详细介绍: 2250KHz-3000MHz 2供单信道和多信道CDMA用的测量专用卡 2用于I和Q的20 MHz射频带宽 2极度高的电平精度 2步进扫描(频率、功率和列表) 2宽带调幅、调频和调相 2内部数据发生器和突发脉冲功能(选件UN8) 2灵活形成定制调制选件UN8,UND) 2机内有供DECT、GSM、NADC、PDC、PHS和TETRA用的TDMA格式(选件UN8) 2内部双任意波形发生器(选件UND) 2内部误码率分析仪(选件UND7) 23年保用期 产品介绍 Agilent ESG-D系列射频信号发生器除具有广泛的特性和优良的模拟性能之外,还提供多种数字调制功能,而且在价格方面亦能被用户所接受。他们提供了极好的调制精度和稳定度,以及空前的电平精度。AgilentESG-D系列特别适于满足当前数字接收机测试、元器件测试和本地振荡器应用日益提高的要求。 专门定制的调制和DECT、EDGE、GSM、NADC、PDC、PHS、TETRA标准(选件UN8) 内部生成通用标准的信号来对接收机进行测试。改变调制类型、数据、码元速率、滤波器型式和滤波因数,以生成供元器件和系统容限测试用的定制信号。很容易配置时隙来模拟不同类型的通信业务量、控制信道或同步信道(或突发信号)。可产生具有内部突发功能移动站或基站传输。还降低了对具有综合数据生成功能的外部设备的需求。 内部双任意波开发生器(选件UND) 能重现几乎任何以数学形式生成的波形。可下载长波形或多个波形(达1M取样),以放置或贮存到非易失RAM中供随后使用。14比特的数模转换器(DAC)分辨率扩大了动态范围和改善了噪声性能。在对I/Q生成进行优化后,双任意波形发生器选件将使装置大为简化。 W-CDMA和Cdma 2000 能产生符合正在拟定的国际标准的正确编码信号。模拟用于基站和移动接收机测试的全编码信道或部分编码统计修正的多信道信号,可以对用于正在拟定的国际3G标准的有源元件进行精确的大容量测试。 多信道和多载波CDMA Agilent ESG-D系列提供CDMA(选件UN5)测量专用卡。用多个信道产生多载波CDMA信号,每个载波用于基站和移动站的系统或元件测试。通过选择预定的多载波CDMA配置或明确确定每个信道对每个载波的特性,可以为某些特殊的需要,如互补累积分布函数(CCDF)专门制定某种测试。 内部误码率分析仪(选件UN7) 为测量灵敏度和选择性而进行误码率分析。选件UN7提供用于PN9或PN15比特序列的分析功能,并指出用户规定的测试极限的合格或不合格条件。 宽带I和Q调制 利用模拟I和Q输入,产生复杂的调制格式,以满足射频数字通信系统开发研究和测试的需要。机内正交调制器处理I和Q输入信号,以在10MHz(1dB)带宽范围提供极高的调制精度和稳定度。 极高的电平精度 Agilent ESG-D系列射频信号发生器能在宽的功率范围(+13dBm~-136dBm,利用选件UNB时为+17dBm~-136dBm)以极高的电平精度进行精确、有效的灵敏度测试。内部调制格式的电平精度优于±1.1dB(典型值为+0.6dB),从而保证甚至对最灵敏的数字接收机也能进行精密测量。 技术指标 2频率:250kHz~3000MHz 2关于模拟远程编程和一般技术指标,参阅ESG系列数字调制的电平精度

函数信号发生器设计报告

目录 1设计的目的及任务 1.1 课程设计的目的 1.2 课程设计的任务与要求 2函数信号发生器的总方案及原理图 2.1 电路设计原理框图 2.2 电路设计方案设计 3 各部分电路设计及选择 3.1 方波发生电路的工作原理 3.2 方波、三角波发生电路的选择 3.3三角波---正弦波转换电路的选择 3.4总电路图 4 电路仿真与调试 4.1 方波---三角波发生电路、三角波---正弦波转换电路的仿真与调试 4.2方波---三角波发生电路、三角波---正弦波转换电路的实验结果 5 PCB制版 6 设计总结 7仪器仪表明细清单 8 参考文献

1.课程设计的目的和设计的任务 1.1 设计目的 1.掌握用集成运算放大器构成正弦波、方波和三角波函数发生器的设计方法。 2.学会安装、调试与仿真由分立器件、调试与仿真由分立器件与集成电路组成的多级电子电路小系统。 2.2设计任务与要求: 设计一台波形信号发生器,具体要求如下: 1.输出波形:方波、三角波、正弦波。 2.频率范围:在1 Hz-10Hz,10 Hz -100 Hz,100 Hz -1000 Hz等三个波段。 3.频率控制方式:通过改变RC时间常数手控信号频率。 4.输出电压:方波U P-P≤24V,三角波U P-P =8V,正弦波U P-P >1V。 5.合理的设计硬件电路,说明工作原理及设计过程,画出相关的电路原理图。 6.选用常用的电器元件(说明电器元件选择过程和依据)。 7.画出设计的原理电路图,作出电路的仿真。 8.提交课程设计报告书一份,A3图纸两张,完成相应答辩。

2.函数发生器总方案及原理框图 图1-1 整体原理框图 2.2 函数发生器的总方案 函数发生器一般是指能自动产生正弦波、三角波、方波及锯齿波、阶梯波等电压波形的电路或仪器。产生正弦波、方波、三角波的方案有多种,如首先产生正弦波,然后通过整形电路将正弦波变换成方波,再由积分电路将方波变成三角波;也可以首先产生三角波—方波,再将三角波变成正弦波或将方波变成正弦波等等。本课题采用先产生方波—三角波,再将三角波变换成正弦波的电路设计方法。 本课题中函数发生器电路组成框图如下所示: 由比较器和积分器组成方波—三角波产生电路,比较器输出的方波经积分器得到三角波,三角波到正弦波的变换电路的基本结构是比例放大器,对不同区段内比例系数的切换,是通过二级管网络来实现的。如输出信号的正半周内由D1~D3控制切换,负半周由D4~D6控制切换。电阻Rb1~Rb3与Ra1~Ra3分别组成分压器,控制着各二极管的动作电平。

基于labview的虚拟信号发生器的设计(2010-1...

基于labview的虚拟信号发生器的设计

第1章虚拟信号发生器的结构与组成 1.1虚拟函数信号发生器的前面板 本虚拟信号发生器主要由一块PCI总线的多功能数据采集卡和相应的软件组成。将它们安装在一台运行Windowsxp的PC机上。即构成一台功能强大的函数信号发生器。本虚拟信号发生器的设计参考了SG 1645功率函数信号发生器。 本函数信号发生器的前面板主要由以下几个部分构成:仪器控制按钮,输出频率控制窗口(包括频率显示单位),频率倍成控制,波形选择,频率微调按钮,直流偏置,方波占空比节,输出波形幅度控制按钮。频率微调范围:O.1—1 Hz;直流偏置:一10—10V;方波占空比:0—100%;输出波形幅度:0—10V。此外还增加了许多修饰性的元件如面板上的压控输入、记数输入、同步输出、电压输出等。使用这些修饰性的元件的目的是为了增加仪器的美观性,并尽量与真实仪器的使用界面相一致。 图1-1 函数信号发生器的前面板 1.2虚拟函数信号发生器的硬件构成 本虚拟信号发生器的输入输出的硬件部分为一数据采集卡和具有一定配置要求的PC机,数据的输入输出靠对数据采集卡输出输入口的定义来实现。本设计采用的PCI一1200数据采集卡是一块性价比较好的产品,具备数/模转换的功能。能将产生的数字信号转换成模拟信号且数模转换精度高,而且还具备滤波功能,从而使输出波形光滑。它支持单极和双极性模拟信号输入,信号输入范围分别为一5一+5V和0—10V。提供l6路单端,8路差动模拟输入通道、2路独立的DA输出通道、24线的TTL型数字Ⅳ0、3个l6位的定时计数器等多种功能。硬件接口部分用于数据输入或输出时的通道设置。硬件接口部分程序框图如图1-2所示:

相关主题
文本预览
相关文档 最新文档