当前位置:文档之家› 桁架结构的有限元分析MATLAB

桁架结构的有限元分析MATLAB

桁架结构的有限元分析MATLAB
桁架结构的有限元分析MATLAB

力09创新实践

桁架结构有限元分析

学号 20092715

班级力0901-2

姓名魏强

指导教师房学谦

完成日期 2012/6/26

桁架结构有限元分析

摘要

从系统物理概念和力学原理推导有限元计算格式的方法叫做直接刚度法。本文利用推导出得有限元计算格式,通过MATLAB软件进行矩阵运算,对5杆桁架结构进行了内力分析。利用对比的方法,对照多组荷载,分析其受力的情况,为实际问题提供参考。

关键词:有限元法、MATLAB、桁架结构、内力分析

一、引言

1.工程背景及重要性

桁架结构(Truss structure)中的桁架指的是桁架梁,是格构化的一种梁式结构。桁架结构常用于大跨度的厂房、展览馆、体育馆和桥梁等公共建筑中。由于大多用于建筑的屋盖结构,桁架通常也被称作屋架。

各杆件受力均以单向拉、压为主,通过对上下弦杆和腹杆的合理布置,可适应结构内部的弯矩和剪力分布。由于水平方向的拉、压内力实现了自身平衡,整个结构不对支座产生水平推力。结构布置灵活,应用范围非常广。桁架梁和实腹梁(即我们一般所见的梁)相比,在抗弯方面,由于将受拉与受压的截面集中布置在上下两端,增大了内力臂,使得以同样的材料用量,实现了更大的抗弯强度。在抗剪方面,通过合理布置腹杆,能够将剪力逐步传递给支座。这样无论是抗弯还是抗剪,桁架结构都能够使材料强度得到充分发挥,从而适用于各种跨度的建筑屋盖结构。更重要的意义还在于,它将横弯作用下的实腹梁内部复杂的应力状态转化为桁架杆件内简单的拉压应力状态,使我们能够直观地了解力的分布和传递,便于结构的变化和组合。

在建筑结构中,桁架结构是一种应用比较普遍的结构形式,在桥梁工程、大型建筑、船舶工程、港口机械等工程领域均有广泛应用。在我国桁架结构发展迅速且应用最为广泛,如屋架、网架结构等。为了增加建筑的表现力,近些年来管桁架结构得到了许多业主的青睐,在大量的屋面结构中采用。

2.目前问题的研究现状

目前在普遍刚桁架的结构设计中,工程中普遍采用的发放时按理想铰接模型进行计算,并很据计算出的杆件界面应力选择合适的杆件型号。计算桁架结构内力时,一般采用如下基本假定:(1)接单均为铰接;(2)杆件轴线平直相交于节点中心;(3)荷载作用线通过桁架的节点。对于平面桁架还要求所有杆件轴线及荷载作用线在同一平面内。

对于桁架结构的应力分析,在方法上,结构力学中有结点法和截面法,另外

还有有限元法。

3.本文如何进行研究

本文运用有限元的分析方法,通过MATLAB软件,对5杆桁架结构进行了内力分析。先对整体结构进行分析,确定节点编号及杆件编号。然后写出每个杆的单元刚度矩阵,根据角度,写出变换矩阵并得到整体坐标下的刚度矩阵。再根据节点编号对单刚进行叠加得到整个桁架的刚度矩阵。写出位移向量后对总刚划行划列,得到所有节点的位移后就可求得每根杆的受力状态。

二、问题描述与求解

结构节点编号及杆件编号如图所示。

设杆件的弹性模量82

2.110/

E kN m

=?,杆件截面积2

0.04

A m

=,根据图中的

长度,可求得每根杆的长度:

121

L L m

==,35 1.6

L L m

==,4 1.25

L m

=。容易求得各杆的单刚如下:

然后可根据各杆的角度得到变换矩阵如下:

对1,2两杆,局部坐标与整体坐标相同,因此求得的局部坐标下的刚度矩阵也是整体坐标下的刚度矩阵,不需要求变换矩阵。

根据公式[][]T e

e K T K T ????=??

??

可求得各杆总体坐标下的刚度矩阵如下

然后根据各杆的节点号对单刚进行叠加得到总刚

根据位移向量,对总刚划行划列。对1、3节点上的力进行分解,分解成X、Y

方向的位移,得到力矩阵,

-5.18

-19.32

-5.18

-19.32

F

??

??

??

=

??

??

??

。由方程[][][]

1

K F

δ-

=求得未知的节点

位移。最后可根据公式

[]()(),j i ij ij

j i u u A E p L v v λμ??-????

=?? ???-????

求得各杆的内力如下: 1 2.5900p kN

=-,2 2.5900p kN =,320.5856p kN =,

419.3200p kN

=-,528.8736p kN =

改变力的大小,重新对桁架进行内力分析,由于杆件尺寸没有变化,所以总刚不变,只需改变力矩阵即可得到结果。

将图中施加的20kN 的力改为10kN 和30kN 后,可得到力矩阵分别为

' 2.599.662.599.66F -????-?

?=??-??-?? ''7.7628.987.7628.98F -??

??-??=??-??-??

通过相同的步骤,可求得内力分别为:

'

1-1.30kN

p =,'2 1.30kN p =,'310.29kN p =

'

4-9.66kN

p =,'514.44kN p =

''

1-3.88kN

p =,''2 3.88kN p =,''330.89kN p =

''

4-28.98kN

p =,''543.30kN p =

三、结论

由所求结果可知,1、2两杆的受力较小,从节约材料的角度考虑,可以适当减小界面尺寸,这不影响结构的可靠程度,而且尽可能的做到了等强度。

在解决桁架问题时,对于简单的结构,可采用结点法或截面法。对于某些桁架,联合应用结点法和截面法更有效。对于杆件很多的复杂桁架或空间桁架,最好的选择应是借助ANSYS 或MATLAB 等软件进行求解。

参考文献

[1]李人宪,有限元法基础,国防工业出版社;

[2]张志涌、杨祖樱, MATLAB 教程,北京航空航天大学出版社。

ansys桁架和梁的有限元分析

ansys桁架和梁的有限元分析

————————————————————————————————作者:————————————————————————————————日期:

桁架和梁的有限元分析 第一节基本知识 一、桁架和粱的有限元分析概要 1.桁架杆系的有限元分析概要 桁架杆系系统的有限元分析问题是工程中晕常见的结构形式之一,常用在建筑的屋顶、机械的机架及各类空间网架结构等多种场合。 桁架结构的特点是,所有杆件仅承受轴向力,所有载荷集中作用于节点上。由于桁架结构具有自然离散的特点,因此可以将其每一根杆件视为一个单元,各杆件之间的交点视为一个节点。 2.梁的有限元分析概要 梁的有限元分析问题也是是工程中最常见的结构形式之一,常用在建筑、机械、汽车、工程机械、冶金等多种场合。 梁结构的特点是,梁的横截面均一致,可承受轴向、切向、弯矩等载荷。根据梁的特点,等截面的梁在进行有限元分析时,需要定义梁的截面形状和尺寸,用创建的直线代替梁,在划分网格结束后,可以显示其实际形状。 二、桁架和梁的常用单元 桁架和梁常用的单元类型和用途见表7-1。 通过对桁架和粱进行有限元分析,可得到其在各个方向的位移、应力并可得到应力、位移动画等结果。 第128页

第二节桁架的有限元分析实例案例1--2D桁架的有限元分析 问题 人字形屋架的几何尺寸如图7—1所示。杆件截面尺寸为0.01m^2,试进行静力分析,对人字形屋架进行静力分析,给出变形图和各点的位移及轴向力、轴力图。 条件 人字形屋架两端固定,弹性模量为2.0x10^11N/m^2,泊松比为0.3。 解题过程 制定分析方案。材料为弹性材料,结构静力分析,属21)桁架的静力分析问题,选用Link1单元。建立坐标系及各节点定义如图7-1所示,边界条件为1点和5点固定,6、7、8点各受1000N的力作用。 1.ANSYS分析开始准备工作 (1)清空数据库并开始一个新的分析选取Utility Menu>File>Clear&Start New,弹出Clears database and Start New对话框,单击OK按钮,弹出Verify对话框,单击OK按钮完成清空数据库。 (2)指定新的工作文件名指定工作文件名。选取Utility Menu>File>Change Jobname,弹出Change Jobname对话框,在Enter New Jobname项输入工作文件名,本例中输入的工作文件名为“2D-spar”,单击OK按钮完成工作文件名的定义。 (3)指定新的标题指定分析标题。选取Ufility Menu>File>Change Title,弹出ChangeTitle对话框,在Enter New Tifie项输入标题名,本例中输入“2D-spar problem'’为标题名,然后单击OK按钮完成分析标题的定义。 (4)重新刷新图形窗9 选取Utility Menu>Plot>Replot,定义的信息显示在图形窗口中。 (5)定义结构分析运行主菜单Main Menu>Preferences,出现偏好设置对话框,赋值分析模块为Structure结构分析,单击OK按钮完成分析类型的定义。 2.定义单元类型 运行主菜单Main Menu>Preprocessor>Element Type>Add/Edit/Delete命令,弹出Element Types对话框,单击Add按钮新建单元类型,弹出Library of Element Types对话框,先选择

matlab有限元分析实例

MATLAB: MATLAB是美国MathWorks公司出品的商业数学软件,用于数据分析、无线通信、深度学习、图像处理与计算机视觉、信号处理、量化金融与风险管理、机器人,控制系统等领域。 MATLAB是matrix&laboratory两个词的组合,意为矩阵工厂(矩阵实验室),软件主要面对科学计算、可视化以及交互式程序设计的高科技计算环境。它将数值分析、矩阵计算、科学数据可视化以及非线性动态系统的建模和仿真等诸多强大功能集成在一个易于使用的视窗环境中,为科学研究、工程设计以及必须进行有效数值计算的众多科学领域提供了一种全面的解决方案,并在很大程度上摆脱了传统非交互式程序设计语言(如C、Fortran)的编辑模式。 MATLAB和Mathematica、Maple并称为三大数学软件。它在数学类科技应用软件中在数值计算方面首屈一指。MATLAB可以进行矩阵运算、绘制函数和数据、实现算法、创建用户界面、连接其他编程语言的程序等。MATLAB的基本数据单位是矩阵,它的指令表达式与数学、工程中常用的形式十分相似,故用MATLAB来解算问题要比用C,FORTRAN等语言完成相同的事情简捷得多,并且MATLAB也吸收了像Maple等软件的优点,使MATLAB成为一个强大的数学软件。在新的版本中也加入了对C,FORTRAN,C++,JAVA的支持。 MATLAB有限元分析与应用:

《MATLAB有限元分析与应用》是2004年4月清华大学出版社出版的图书,作者是卡坦,译者是韩来彬。 内容简介: 《MATLAB有限元分析与应用》特别强调对MATLAB的交互应用,书中的每个示例都以交互的方式求解,使读者很容易就能把MATLAB用于有限分析和应用。另外,《MATLAB有限元分析与应用》还提供了大量免费资源。 《MATLAB有限元分析与应用》采用当今在工程和工程教育方面非常流行的数学软件MATLAB来进行有限元的分析和应用。《MATLAB有限元分析与应用》由简单到复杂,循序渐进地介绍了各种有限元及其分析与应用方法。书中提供了大量取自机械工程、土木工程、航空航天工程和材料科学的示例和习题,具有很高的工程应用价值。

结构力学实验-平面桁架结构的设计

结构力学实验土木建筑学院 实验名称:平面桁架结构的设计 实验题号:梯形桁架D2-76 姓名: 学号: 指导老师: 实验日期:

一、实验目的 在给定桁架形式、控制尺寸和荷载条件下,对桁架进行内力计算,优选杆件截面,并进行刚度验算。 ①掌握建立桁架结构力学模型的方法,了解静定结构设计的基本过程; ②掌握通过多次内力和应力计算进行构件优化设计的方法; ③掌握结构刚度验算的方法。 梯形桁架D ;其中结点1到结点7的水平距离为15m;结点1到结点8的距离为2m;结点7到结点14的距离为3m。选用的是Q235钢,[ɑ]=215MPa。

完成结构设计后按如下步骤计算、校核、选取、设计、优化 二、强度计算 1)轴力和应力 2)建立结构计算模型后,由“求解→内力计算”得出结构各杆件的轴力N(见图3)再由6=N/A得出各杆件应力。 表1内力计算 杆端内力值 ( 乘子 = 1) -------------------------------------------------------------------------------------------- 杆端 1 杆端 2 ------------------------------------- ------------------------------------------ 单元码轴力剪力弯矩轴力剪力弯矩 -------------------------------------------------------------------------------------------- 1 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 2 51.9230769 0.00000000 0.00000000 51.9230769 0.00000000 0.00000000 3 77.1428571 0.00000000 0.00000000 77.1428571 0.00000000 0.00000000 4 67.5000000 0.00000000 0.00000000 67.5000000 0.00000000 0.00000000 5 39.7058823 0.00000000 0.00000000 39.7058823 0.00000000 0.00000000 6 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 7 -54.0000000 0.00000000 0.00000000 -54.0000000 0.00000000 0.00000000 8 -52.0383336 0.00000000 0.00000000 -52.0383336 0.00000000 0.00000000 9 -77.3140956 0.00000000 0.00000000 -77.3140956 0.00000000 0.00000000 10 -81.1798004 0.00000000 0.00000000 -81.1798004 0.00000000 0.00000000 11 -81.1798004 0.00000000 0.00000000 -81.1798004 0.00000000 0.00000000 12 -67.6498337 0.00000000 0.00000000 -67.6498337 0.00000000 0.00000000 13 -39.7940198 0.00000000 0.00000000 -39.7940198 0.00000000 0.00000000 14 -54.0000000 0.00000000 0.00000000 -54.0000000 0.00000000 0.00000000 15 66.4939824 0.00000000 0.00000000 66.4939824 0.00000000 0.00000000 16 -41.5384615 0.00000000 0.00000000 -41.5384615 0.00000000 0.00000000 17 33.3732229 0.00000000 0.00000000 33.3732229 0.00000000 0.00000000 18 -21.8571428 0.00000000 0.00000000 -21.8571428 0.00000000 0.00000000 19 5.27613031 0.00000000 0.00000000 5.27613031 0.00000000 0.00000000 20 -18.0000000 0.00000000 0.00000000 -18.0000000 0.00000000 0.00000000 21 19.7385409 0.00000000 0.00000000 19.7385409 0.00000000 0.00000000 22 -31.5000000 0.00000000 0.00000000 -31.5000000 0.00000000 0.00000000 23 42.0090820 0.00000000 0.00000000 42.0090820 0.00000000 0.00000000 24 -47.6470588 0.00000000 0.00000000 -47.6470588 0.00000000 0.00000000 25 62.0225709 0.00000000 0.00000000 62.0225709 0.00000000 0.00000000

Matlab有限元分析操作基础

Matlab 有限元分析20140226 为了用Matlab 进行有限元分析,首先要学会Matlab 基本操作,还要学会使用Matlab 进行有限元分析的基本操作。 1. 复习:上节课分析了弹簧系统 x 推导了系统刚度矩阵 11221 21200k k k k k k k k -????-????--+??

2. Matlab有限元分析的基本操作 (1)单元划分(选择何种单元,分成多少个单元,标号)(2)构造单元刚度矩阵(列出…) (3)组装系统刚度矩阵(集成整体刚度矩阵) (4)引入边界条件(消除冗余方程) (5)解方程 (6)后处理(扩展计算)

3. Matlab有限元分析实战【实例1】

分析: 步骤一:单元划分

步骤二:构造单元刚度矩阵 >>k1=SpringElementStiffness(100) >>…?

步骤三:构造系统刚度矩阵 a) 分析SpringAssemble库函数function y = SpringAssemble(K,k,i,j) % This function assembles the element stiffness % matrix k of the spring with nodes i and j into the % global stiffness matrix K. % function returns the global stiffness matrix K % after the element stiffness matrix k is assembled. K(i,i) = K(i,i) + k(1,1); K(i,j) = K(i,j) + k(1,2); K(j,i) = K(j,i) + k(2,1); K(j,j) = K(j,j) + k(2,2); y = K; b) K是多大矩阵? 今天的系统刚度矩阵是什么? 因为 11 22 1212 k k k k k k k k - ?? ?? - ????--+ ?? 所以 1000100 0200200 100200300 - ?? ?? - ?? ?? -- ?? ?

第9章 桁架和梁的有限元分析

第9章桁架和梁的有限元分析 第1节基本知识 一、桁架和梁的有限元分析概要 1.桁架杆系的有限元分析概要 桁架杆系系统的有限元分析问题是工程中最常见的结构形式之一,常用在建筑的屋顶、机械的机架及各类空间网架结构等多种场合。 桁架结构的特点是,所有杆件仅承受轴向力,所有载荷集中作用于节点上。由于桁架结构具有自然离散的特点,因此可以将其每一根杆件视为一个单元,各杆件之间的交点视为一个节点。 2.梁的有限元分析概要 梁的有限元分析问题也是是工程中最常见的结构形式之一,常用在建筑、机械、汽车、工程机械、冶金等多种场合。 梁结构的特点是,梁的横截面均一致,可承受轴向、切向、弯矩等载荷。根据梁的特点,等截面的梁在进行有限元分析时,需要定义梁的截面形状和尺寸,用创建的直线代替梁,在划分网格结束后,可以显示其实际形状。 二、桁架和梁的常用单元 桁架和梁常用的单元类型和用途见表9-1。 通过对桁架和梁进行有限元分析,可得到其在各个方向的位移、应力并可得到应力、位

移动画等结果。 第2节桁架的有限元分析实例 一、案例1——2D桁架的有限元分析 图9-1 人字形屋架的示意图 问题 人字形屋架的几何尺寸如图9-1所示。杆件截面尺寸为0.01m2,试进行静力分析,对人字形屋架进行静力分析,给出变形图和各点的位移及轴向力、轴力图。 条件 人字形屋架两端固定,弹性模量为2.0×1011 N/m2,泊松比为0.3。 解题过程 制定分析方案。材料弹性材料,结构静力分析,属2D桁架的静力分析问题,选用Link1单元。建立坐标系及各节点定义如图9-1所示,边界条件为1点和5点固定,6、7、8点各受1000 N的力作用。 1.ANSYS分析开始准备工作 (1)清空数据库并开始一个新的分析选取Utility>Menu>File>Clear & Start New,弹出Clears database and Start New对话框,单击OK按钮,弹出Verify对话框,单击OK按钮完成清空数据库。 (2)指定新的工作文件名指定工作文件名。选取Utility>Menu> File>Change Jobname,弹出Change Jobname对话框,在Enter New Jobname项输入工作文件名,本例中输入的工作文件名为“2D-spar”,单击OK按钮完成工作文件名的定义。 (3)指定新的标题指定分析标题。选取Utility>Menu>File>Change Title,弹出Change Title对话框,在Enter New Title项输入标题名,本例中输入“2D-spar problem”为标题名,然

第七专题平面桁架结构

平面桁架结构 一、平面桁架的形式 1.屋盖结构体系 屋盖分为无檩屋盖有檩屋盖。无檩屋盖一般用于预应力混凝土大型屋面板等重型屋面,将屋面板直接放在屋架上。有檩屋盖常用于轻型屋面材料的情况。 2.屋架的形式 屋架外形常用的有三角形、梯形、平行弦和人字形等。 桁架外形应尽可能与其弯矩图接近,这样弦杆受力均匀,腹杆受力较小。腹杆的布置应尽量用长杆受拉、短杆受压,腹杆的数目宜少,总长度要短,斜腹杆的倾角一般在30°~60°之间,腹杆布置时应注意使荷载都作用在桁架的节点上。 (1)三角形桁架 三角形桁架适用于陡坡屋面(i>1/3)的有檩屋盖体系,屋架通常与柱子只能铰接。弯矩图与三角形的外形相差悬殊,弦杆受力不均,支座处内力较大,跨中内力较小,弦杆的截面不能充分发挥作用。支座处上、下弦杆交角过小内力又较大,使支座节点构造复杂。 (2)梯形桁架 梯形屋架适用于屋面坡度较为平缓的无檩屋盖体系,它与简支受弯构件的弯矩图形比较接近,弦杆受力较为均匀。梯形屋架与柱的连接可以做成铰接也可以做成刚接。梯形屋架的中部高度一般为(1/10~1/8)L,与柱刚接的梯形屋架,端部高度一般为(1/16~1/12)L,通常取为2.0~2.5m。与柱铰接的梯形屋架,端部高度可按跨中经济高度和上弦坡度决定。 (3)人字形桁架 人字形屋架的上、下弦可以是平行的,坡度为1/20~1/10,节点构造较为统一;也可以上、下弦具有不同坡度或者下弦有一部分水平段,以改善屋架受力情况。人字形屋架因中高度一般为2.0~2.5m,跨度大于36m时可取较大高度但不宜超过3m;端部高度一般为跨度的1/18~1/12。 (4)平行弦桁架 平行弦桁架在构造方面有突出的优点,弦杆及腹杆分别等长、节点形式相同、能保证桁架的杆件重复率最大,且可使节点构造形式统一,便于制作工业化。 3.托架形式 支承中间屋架的桁架称为托架,托架一般采用平行弦桁架,其腹杆采用带竖杆的人字形体系。托架高度般取跨度的1/5~1/10,托架的节间长度一般为2m或3m。 二、屋盖支撑

四杆桁架结构的有限元分析命令流

四杆桁架结构的有限元分析 在ANSYS 平台上,完成相应的力学分析。即如图1所示的结构,各杆的弹性模量和横截面积都为4229.510N/mm E =?, 2 100mm A =,基于ANSYS 平台,求解该结构的节点位移、单元应力以及支反力。 图1四杆桁架结构 完整的命令流 !直接生成有限元模型 / PREP7 !进入前处理 /PLOPTS,DA TE,0 !设置不显示日期和时间 !设置单元、材料,生成节点及单元 ET,1,LINK1 !选择单元类型 UIMP,1,EX, , ,2.95e11, !给出材料的弹性模量 R,1,1e-4, !给出实常数(横截面积) N,1,0,0,0, !生成1号节点,坐标(0,0,0) N,2,0.4,0,0, !生成2号节点,坐标(0.4,0,0) N,3,0.4,0.3,0, !生成3号节点,坐标(0.4,0.3,0) N,4,0,0.3,0, !生成4号节点,坐标(0,0.3,0) E,1,2 !生成1号单元(连接1号节点和2号节点) E,2,3 !生成2号单元(连接2号节点和3号节点) E,1,3 !生成3号单元(连接1号节点和3号节点) E,4,3 !生成4号单元(连接4号节点和3号节点) FINISH !前处理结束 !在求解模块中,施加位移约束、外力,进行求解 /SOLU !进入求解状态(在该状态可以施加约束及外力) ANTYPE,0 !定义分析类型为静力分析 D,1,ALL !将1号节点的位移全部固定 D,2,UY , !将2号节点的Y 方向位移固定 D,4,ALL !将4号节点的位移全部固定 F,2,FX,20000, !在2号节点处施加X 方向的力(20000)

基于MATLAB的平面刚架静力分析

基于MATLAB 的平面刚架静力分析 为了进一步理解有限元方法计算的过程,本文根据矩阵位移法的基本原理应用MATLAB 编制计算程序对以平面刚架结构进行了静力分析。本文还利用ANSYS 大型商用有限元分析软件对矩阵位移法的计算结果进行校核,发现两者计算结果相当吻合,验证了计算结果的可靠性。 一、 问题描述 如图1所示的平面刚架,各杆件的材料及截面均相同,E=210GPa ,截面为0.12×0.2m 的实心矩形,现要求解荷载作用下刚架的位移和内力。 5m 4m 3m 图1 二、矩阵位移法计算程序编制 为编制程序方便考虑,本文计算中采用“先处理法”。具体的计算步骤如下。

(1) 对结构进行离散化,对结点和单元进行编号,建立结构(整体)坐标系 和单元(局部)坐标系,并对结点位移进行编号; (2) 对结点位移分量进行编码,形成单元定位向量e λ; (3) 建立按结构整体编码顺序排列的结点位移列向量δ,计算固端力e F P 、等 效结点荷载E P 及综合结点荷载列向量P ; (4) 计算个单元局部坐标系的刚度矩阵,通过坐标变换矩阵T 形成整体坐标 系下的单元刚度矩阵e T e K T K T = ; (5) 利用单元定位向量形成结构刚度矩阵K ; (6) 按式1=K P δ- 求解未知结点位移; (7) 计算各单元的杆端力e F 。 根据上述步骤编制了平面刚架的分析程序。程序中单元刚度矩阵按下式计算。 32322 23 2 32 22 0000 1261260 064620 00001261260062640 EA EA l l EI EI EI EI l l l l EI EI EI EI l l l l K EA EA l l EI EI EI EI l l l l EI EI EI EI l l l l ??- ??? ???- ?? ? ???- ??? ?=??-?? ? ???---??? ???-??? ?

(完整版)有限元大作业matlab---课程设计例子

有限元大作业程序设计 学校:天津大学 院系:建筑工程与力学学院 专业:01级工程力学 姓名:刘秀 学号:\\\\\\\\\\\ 指导老师:

连续体平面问题的有限元程序分析 [题目]: 如图所示的正方形薄板四周受均匀载荷的作用,该结构在边界 上受正向分布压力, m kN p 1=,同时在沿对角线y 轴上受一对集中压 力,载荷为2KN ,若取板厚1=t ,泊松比0=v 。 [分析过程]: 由于连续平板的对称性,只需要取其在第一象限的四分之一部分参加分析,然后人为作出一些辅助线将平板“分割”成若干部分,再为每个部分选择分析单元。采用将此模型化分为4个全等的直角三角型单元。利用其对称性,四分之一部分的边界约束,载荷可等效如图所示。

[程序原理及实现]: 用FORTRAN程序的实现。由节点信息文件NODE.IN和单元信息文件ELEMENT.IN,经过计算分析后输出一个一般性的文件DATA.OUT。模型基本信息由文件为BASIC.IN生成。 该程序的特点如下: 问题类型:可用于计算弹性力学平面问题和平面应变问题 单元类型:采用常应变三角形单元 位移模式:用用线性位移模式 载荷类型:节点载荷,非节点载荷应先换算为等效节点载荷 材料性质:弹性体由单一的均匀材料组成 约束方式:为“0”位移固定约束,为保证无刚体位移,弹性体至少应有对三个自由度的独立约束 方程求解:针对半带宽刚度方程的Gauss消元法

输入文件:由手工生成节点信息文件NODE.IN,和单元信息文件ELEMENT.IN 结果文件:输出一般的结果文件DATA.OUT 程序的原理如框图:

平面桁架结构的有限元分析

运用ANSYS进行平面刚架模拟建模及误差分析 摘要 有限单元法(或称有限元法)是在当今工程分析中获得最广泛应用的数值计算方法。由于它的通用性和有效性,受到工程技术界的高度重视。伴随着计算机科学和技术的快速发展,现已成为计算机辅助设计和计算机辅助制造的重要组成部分。ANSYS软件是目前世界范围内增长最快的计算机辅助工程(CAE)软件,能与多数计算机辅助设计软件接口,实现数据的共享和交换。本文主要分析平面刚架在均布荷载作用下模拟的有限元模型计算与手工计算之间的误差。 关键字:ANSYS软件有限元平面刚架 PIANE STEEL FRAME WITH ANSYS SIMULATION MODELING AND ERROR ANALYSIS ABSTRACT Finite element method (or finite element method) is the most widely used in modern engineering analysis of numerical calculation method. Because of its versatility and effectiveness, attaches great importance to by the engineering and technology. Along with the rapid development of computer science and technology, has now become a computer aided design and computer aided manufacturing is an important part .At present,the software of ANSY is the fastest growing computer aided engineering (CAE) software on the world, interfacing with the majority of computer aided design software, realizing the sharing and exchange of data. This paper mainly analyzes the model of planar frame software of ANSYS. KEYWARDS:software of ANSYS,finite element,planar frame

2016基本平面刚架各种荷载MATLAB程序

% 平面刚架MATLAB程序 % 2003.9.16 2007.2.28 2008.4.1 2009.10 2011.10 2013.9 2014.09 2016.03 %************************************************* % 变量说明 % NPOIN NELEM NVFIX NFPOIN NFPRES % 总结点数,单元数, 约束个数, 受力结点数, 非结点力数 % COORD LNODS YOUNG % 结构节点坐标数组, 单元定义数组, 弹性模量 % FPOIN FPRES FORCE FIXED % 结点力数组,非结点力数组,总体荷载向量, 约束信息数组 % HK DISP % 总体刚度矩阵,结点位移向量 %************************************************** format short e %设定输出类型 clear %清除内存变量 FP1=fopen('6-6.txt','rt') %打开初始数据文件 %读入控制数据 NELEM=fscanf(FP1,'%d',1); %单元数 NPOIN=fscanf(FP1,'%d',1); %结点数 NVFIX=fscanf(FP1,'%d',1); %约束数 NFPOIN=fscanf(FP1,'%d',1); %作用荷载的结点个数 NFPRES=fscanf(FP1,'%d',1); %非结点荷载数 YOUNG=fscanf(FP1,'%f',1); %弹性模量 % 读取结构信息 LNODS=fscanf(FP1,'%f',[6,NELEM])' % 单元定义:左、右结点号,面积,惯性矩,线膨胀系数,截面高度(共计NELEM组)COORD=fscanf(FP1,'%f',[2,NPOIN])' % 坐标:x,y坐标(共计NPOIN 组) FPOIN=fscanf(FP1,'%f',[4,NFPOIN])' % 节点力(共计NFPOIN 组):受力结点号、X方向力(向右正), % Y方向力(向上正),M力偶(逆时针正) FPRES=fscanf(FP1,'%f',[7,NFPRES])' % 均布力(共计 % NFPRES 组):单元号、荷载类型、荷载大小、距离左端长度,温差=(下端-上端)梯形上边。下边(改) % 荷载类型1-均布荷载2-横向集中力3-纵向集中力4-三角形荷载5-温度荷载6-梯形荷载 FIXED=fscan f(FP1,'%f',NVFIX)' % 约束信息:约束对应的位移编码(共计NVFIX 组) %--------------------------------------------------------- HK=zeros(3*NPOIN,3*NPOIN); % 张成总刚矩阵并清零 FORCE=zeros(3*NPOIN,1); % 张成总荷载向量并清零 %形成总刚 for i=1:NELEM % 对单元个数循环

Matlab有限元分析操作基础共11页

Matlab有限元分析20140226 为了用Matlab进行有限元分析,首先要学会Matlab基本操作,还要学会使用Matlab进行有限元分析的基本操作。 1. 复习:上节课分析了弹簧系统 x 推导了系统刚度矩阵

2. Matlab有限元分析的基本操作 (1)单元划分(选择何种单元,分成多少个单元,标号)(2)构造单元刚度矩阵(列出…) (3)组装系统刚度矩阵(集成整体刚度矩阵) (4)引入边界条件(消除冗余方程) (5)解方程 (6)后处理(扩展计算)

3. Matlab有限元分析实战【实例1】

分析: 步骤一:单元划分

>>k1=SpringElementStiffness(100)

a) 分析SpringAssemble库函数 function y = SpringAssemble(K,k,i,j) % This function assembles the element stiffness % matrix k of the spring with nodes i and j into the % global stiffness matrix K. % function returns the global stiffness matrix K % after the element stiffness matrix k is assembled. K(i,i) = K(i,i) + k(1,1); K(i,j) = K(i,j) + k(1,2); K(j,i) = K(j,i) + k(2,1); K(j,j) = K(j,j) + k(2,2); y = K; b) K是多大矩阵? 今天的系统刚度矩阵是什么? 因为 11 22 1212 k k k k k k k k - ?? ?? - ????--+ ?? 所以 1000100 0200200 100200300 - ?? ?? - ????-- ???

基于matlab的有限元法分析平面应力应变问题刘刚

姓名:刘刚学号:15 平面应力应变分析有限元法 Abstruct:本文通过对平面应力/应变问题的简要理论阐述,使读者对要分析的问题有大致的印象,然后结合两个实例,通过MATLAB软件的计算,将有限元分析平面应力/应变问题的过程形象的展示给读者,让人一目了然,快速了解有限元解决这类问题的方法和步骤! 一.基本理论 有限元法的基本思路和基本原则以结构力学中的位移法为基础,把复杂的结构或连续体看成有限个单元的组合,各单元彼此在节点出连接而组成整体。把连续体分成有限个单元和节点,称为离散化。先对单元进行特性分析,然后根据节点处的平衡和协调条件建立方程,综合后做整体分析。这样一分一合,先离散再综合的过程,就是把复杂结构或连续体的计算问题转化简单单元分析与综合问题。因此,一般的有限揭发包括三个主要步骤:离散化单元分析整体分析。 二.用到的函数 1. LinearTriangleElementStiffness(E,NU,t,xi,yi,xj,yj,xm,ym,p) (K k I f) (k u) (k u A) (E NU t) 三.实例 例1.考虑如图所示的受均布载荷作用的薄平板结构。将平板离散化成两个线性三角元,假定E=200GPa,v=,t=0.025m,w=3000kN/m. 1.离散化 2.写出单元刚度矩阵

通过matlab 的LinearTriangleElementStiffness 函数,得到两个单元刚度矩阵1k 和2k ,每个矩阵都是6 6的。 >> E=210e6 E = >> k1=LinearTriangleElementStiffness(E,NU,t,0,0,,,0,,1) k1 = +006 * Columns 1 through 5 0 0 0 0 0 0 0 0 Column 6 >> NU= NU = >> t= t = >> k2=LinearTriangleElementStiffness(E,NU,t,0,0,,0,,,1)

平面桁架结构matlab

桁架结构计算第四章P56 ******************************************************************************* function y=plane_truss_element_stiffness(E,A,L,theta) %平面桁架单元刚度 x=theta*pi/180; C=cos(x); S=sin(x); y=E*A/L*[ C*C C*S -C*C -C*S; C*S S*S -C*S -S*S; -C*C -C*S C*C C*S; -C*S -S*S C*S S*S];%平面桁架刚度矩阵 ******************************************************************************* function y=plane_truss_assemble(K,k,i,j) %平面桁架组装 K(2*i-1,2*i-1)=K(2*i-1,2*i-1)+k(1,1); K(2*i-1,2*i)=K(2*i-1,2*i)+k(1,2); K(2*i-1,2*j-1)=K(2*i-1,2*j-1)+k(1,3); K(2*i-1,2*j)=K(2*i-1,2*j)+k(1,4); K(2*i,2*i-1)=K(2*i,2*i-1)+k(2,1); K(2*i,2*i)=K(2*i,2*i)+k(2,2); K(2*i,2*j-1)=K(2*i,2*j-1)+k(2,3); K(2*i,2*j)=K(2*i,2*j)+k(2,4); K(2*j-1,2*i-1)=K(2*j-1,2*i-1)+k(3,1); K(2*j-1,2*i)=K(2*j-1,2*i)+k(3,2); K(2*j-1,2*j-1)=K(2*j-1,2*j-1)+k(3,3); K(2*j-1,2*j)=K(2*j-1,2*j)+k(3,4); K(2*j,2*i-1)=K(2*j,2*i-1)+k(4,1); K(2*j,2*i)=K(2*j,2*i)+k(4,2); K(2*j,2*j-1)=K(2*j,2*j-1)+k(4,3); K(2*j,2*j)=K(2*j,2*j)+k(4,4); y=K; ******************************************************************************* function y=plane_truss_element_force(E,A,L,theta,u)%力的表达式 x=theta*pi/180; C=cos(x); S=sin(x); y=E*A/L*[-C -S C S]*u; ******************************************************************************* function y=plane_truss_element_stress(E,L,theta,u) %应力表达式 x=theta*pi/180; C=cos(x); S=sin(x); y=E/L*[-C -S C S]*u; ***************************************************************************************************** *****************************************************************************************************

桁架单元例子MATLAB 1

no axial forces acting on the beam. Use two elements to solve the problem. (a) Determine the deflection and slope at x = 0.5, 1 and 1.5 m; (b) Draw the bending moment and shear force diagrams for the entire beam; (c) What are the support reactions? (d) Use the beam element shape functions to plot the deflected shape of the beam. Use EI = 1,000 Nm, L = 1 m, and F = 1,000 N. Solution: Solution: (a) Given, ?(?)=?(?)=?=1?; ??=1000??; ?=1000? For any element of length L, the structural stiffness matrix is defined as, ???=????? 126? ?126? 6?4?? ?6?2?? ?12?6? 12?6?6?2?? ?6?4?? ? The element stiffness matrix for element 1 is: ?(?) =????(?)???126?12664?62?12?612?6 62?64?=1000?126?126 64?62?12?612?662?64 ? The element stiffness matrix for element 2 is: Element 1 Element 2

有限元分析(桁架结构)

有限元上机分析报告 学院:机械工程 专业及班级:机械设计及其自动化08级7班姓名:王浩煜 学号:20082798 题目编号: 2

1.题目概况 1.1 结构组成和基本数据 结构:该结构为一个六根杆组成的桁架结构,其中四根杆组成了直径为800cm的正方形,其他两根杆的两节点为四边形的四个角。 材料:该六根杆截面面积均为100cm2,材料均为Q235,弹性模量为200GPa,对于直径或厚度大于100mm的截面其强度设计值为190Mpa。 载荷:结构的左上和左下角被铰接固定,限制了其在平面内x和y方向的位移,右上角受到大小为2000KN的集中载荷。 结构的整体状况如下图所示: 1.2 分析任务 该分析的任务是对该结构的静强度进行校核分析以验算该结构否满足强度要求。 2.模型建立 2.1 物理模型简化及其分析 由于该结构为桁架结构,故认为每根杆件只会沿着轴线进行拉压,而不会发

生弯曲和扭转等变形。结构中每根杆为铰接连接,有集中载荷作用于最上方的杆和最右方杆的铰接点。 2.2单元选择及其分析 由于该结构的杆可以认为是只受拉压的杆件,故可以使用LINK180单元,该单元是有着广泛工程应用的杆单元,它可以用来模拟桁架、缆索、连杆、弹簧等等。这种三维杆单元是杆轴方向的拉压单元,每个节点具有三个自由度:沿节点坐标系X、Y、Z方向的平动。就像铰接结构一样,不承受弯矩。输入的数据有:两个节点、横截面面积(AREA)、单位长度的质量(ADDMAS)及材料属性。输出有:单元节点位移、节点的应力应变等等。由此可见,LINK180单元适用于该结构的分析。 3.3 模型建立及网格划分 (1)启动Ansys软件,选择Preferences→Structural,即将其他非结构菜单过滤掉。 (2)选择单元类型:选择Preprocessor→Element Type→Add/Edit/Delete→Add,在出现的对话框中选择Link→3d finit stn 180,即LINK180,点击“OK”

基于MATLAB的桁架结构优化设计

基于MAT LAB 的桁架结构优化设计 林 琳 张云波 (华侨大学土木系福建泉州 362011) 【摘 要】 介绍了基于BP 神经网络的全局性结构近似分析方法,解决了结构优化设计问题中变量的非线性映射问题。在此基础上,利用改进的遗传算法,对桁架结构在满足应力约束条件下进行结构最轻优化设计。利用 Matlab 的神经网络工具箱,编程求解了三杆桁架优化问题。 【关键词】 改进遗传算法;BP 神经网络;结构优化设计;满应力准则 【中图分类号】 T U20114 【文献标识码】 A 【文章编号】 100126864(2003)01-0034-03 TRUSS STRUCTURA L OPTIMIZATON BASE D ON MAT LAB LI N Lin ZH ANG Y unbo (Dept.of Civil Engineering ,Huaqiao University ,Quanzhou ,362011) Abstract :Optimal structural design method based on BP neural netw ork and m odified genetic alg orithm were proposed in this paper.The high parallelism and non -linear mapping of BP neural netw ork ,an approach to the global structural approximation analysis was introduced.It can s olve the mapping of design variables in structural optimization problems.C ombining with an im proved genetic alg orithm ,the truss structure is optimized to satis fy the full stress criteria.Under the condition of MAT LAB 5.3,an exam ple of truss structure has been s olved by this method. K ey w ords :G enetic alg orithm ;BP neural netw ork ;Structural optimization design ;Full stress principle 结构优化设计,就是在满足结构的使用和安全要求的基础上,降低工程造价,更好地发挥投资效益。传统的优化方法有工程法和数学规划法,其难以解决离散变量问题,对多峰问题容易陷入局部最优,且对目标函数要求有较好的连续性或可微性。而近年来提出的基于生物自然选择与遗传机理的随机搜索遗传算法对所解的优化问题没有太多的数学要求,可以处理任意形式的目标函数和约束,对离散设计变量的优化问题尤为有效。进化算子的各态历经性使得遗传算法能够非常有效地进行概率意义下的全局搜索,能高效地寻找到全局最优点。但采用遗传算法时,进化的每一代种群成员必须要进行结构分析,因此所需的结构分析次数较多。 1 桁架结构优化设计问题的表述 在满足应力约束条件下的桁架重量最轻优化问题为: min w (A )=Σn i =1ρA i L i s.t 1 σi ≤[σi ] (i =1,2……n ) A min ≤A i ≤A max w (A )为结构总重量,ρ为材料密度,L i 为第i 杆的长度,A i 为第i 杆件面积,σi 为第i 杆的应力,[σi ]为第i 杆的许用 应力,A min 、A max 分别为杆件面积的下界与上界;n 为杆件总数。 2 神经网络结构近似分析方法 人工神经网络是由大量模拟生物神经元功能的简单处理单元相互连接而成的巨型复杂网络,它是一个具有高度非线 性的超大规模连续时间自适应信息处理系统,易处理复杂的非线性建模问题。文献[1]在K olm og orov 多层神经网络映射存在定理的基础上,针对近似结构分析问题提出的多层神经网络映射存在定理,确定了近似结构分析的神经网络的基本模型。从理论上证明一个三层神经网络可用来描述任一弹性结构的应力、位移等变量和结构设计变量之间的映射关系,为利用人工神经网络来进行结构近似分析提供理论基础。 211 BP 神经网络及其算法改进 BP 神经网络,即误差反向传播神经网络。其最主要的 特性就是具有非线性映射功能。1989年R obert Hecht -Niel 2 s on 证明了对于任何闭区间内的一个连续函数,都可用一个 隐含层的BP 网络来逼近。因而一个三层BP 网络可完成任意的n 维到m 维的映照,它由输入层、隐层和输出层构成。 传统的BP 网络存在着局部极小问题和收敛速度较慢的问题,因此本文采用了动量法和学习率自适应调整的策略,提高了学习速度并增加了算法的可靠性。 动量法考虑了以前时刻的梯度方向,降低了网络对误差曲面局部细节的敏感性,有效地抑制了网络陷于局部极小。 w (k +1)=w (k )+α[(1-η)D (k )+ηD (k -1)] α(k )=2λα(k -1)λ=stg n[D (k )D (k -1)] w (A )为权值向量,D (k )=- 5E 5w (k ) 为k 时刻的负梯度,D (k -1)为k -1时刻的负梯度,η为动量因子,α为学习率。 4 3 低 温 建 筑 技 术 2003年第1期(总第91期)

相关主题
文本预览
相关文档 最新文档