当前位置:文档之家› 概率论与数理统计3-2随机变量函数的数学期望

概率论与数理统计3-2随机变量函数的数学期望

概率论与数理统计习题集及答案

* 《概率论与数理统计》作业集及答案 第1章 概率论的基本概念 §1 .1 随机试验及随机事件 1. (1) 一枚硬币连丢3次,观察正面H ﹑反面T 出现的情形. 样本空间是:S= ; (2) 一枚硬币连丢3次,观察出现正面的次数. 样本空间是:S= ; 2.(1) 丢一颗骰子. A :出现奇数点,则A= ;B :数点大于2,则B= . (2) 一枚硬币连丢2次, A :第一次出现正面,则A= ; B :两次出现同一面,则= ; C :至少有一次出现正面,则C= . ? §1 .2 随机事件的运算 1. 设A 、B 、C 为三事件,用A 、B 、C 的运算关系表示下列各事件: (1)A 、B 、C 都不发生表示为: .(2)A 与B 都发生,而C 不发生表示为: . (3)A 与B 都不发生,而C 发生表示为: .(4)A 、B 、C 中最多二个发生表示为: . (5)A 、B 、C 中至少二个发生表示为: .(6)A 、B 、C 中不多于一个发生表示为: . 2. 设}42:{},31:{},50:{≤<=≤<=≤≤=x B x x A x x S :则 (1)=?B A ,(2)=AB ,(3)=B A , (4)B A ?= ,(5)B A = 。 \ §1 .3 概率的定义和性质 1. 已知6.0)(,5.0)(,8.0)(===?B P A P B A P ,则 (1) =)(AB P , (2)()(B A P )= , (3))(B A P ?= . 2. 已知,3.0)(,7.0)(==AB P A P 则)(B A P = . §1 .4 古典概型 1. 某班有30个同学,其中8个女同学, 随机地选10个,求:(1)正好有2个女同学的概率, (2)最多有2个女同学的概率,(3) 至少有2个女同学的概率. 2. 将3个不同的球随机地投入到4个盒子中,求有三个盒子各一球的概率. — §1 .5 条件概率与乘法公式 1.丢甲、乙两颗均匀的骰子,已知点数之和为7, 则其中一颗为1的概率是 。 2. 已知,2/1)|(,3/1)|(,4/1)(===B A P A B P A P 则=?)(B A P 。 §1 .6 全概率公式 1. 有10个签,其中2个“中”,第一人随机地抽一个签,不放回,第二人再随机地抽一个 签,说明两人抽“中‘的概率相同。

概率论与数理统计练习题

概率论与数理统计练习题 一、填空题 1、设A 、B 为随机事件,且P (A)=,P (B)=,P (B A)=,则P (A+B)=__ __。 2、θθθ是常数21? ,?的两个 无偏 估计量,若)? ()?(21θθD D <,则称1?θ比2?θ有效。 3、设A 、B 为随机事件,且P (A )=, P (B )=, P (A ∪B )=,则P (B A )=。 4. 设随机变量X 服从[0,2]上的均匀分布,Y =2X +1,则D (Y )= 4/3 。 5. 设随机变量X 的概率密度是: ?? ?<<=其他 103)(2 x x x f ,且{}784 .0=≥αX P ,则α= 。 6. 已知随机向量(X ,Y )的联合密度函数 ?????≤≤≤≤=其他 , 010,20, 2 3 ),(2y x xy y x f ,则 E (Y )= 3/4 。 7. 若随机变量X ~N (1,4),Y ~N (2,9),且X 与Y 相互独立。设Z =X -Y +3,则Z ~ N (2, 13) 。 * 8. 设A ,B 为随机事件,且P (A)=,P (A -B)=,则=?)(B A P 。 9. 设随机变量X ~ N (1, 4),已知Φ=,Φ=,则{}=<2X P 。 10. 随机变量X 的概率密度函数1 22 1 )(-+-= x x e x f π ,则E (X )= 1 。 11. 已知随机向量(X ,Y )的联合密度函数 ?? ?≤≤≤≤=其他 , 010,20, ),(y x xy y x f ,则 E (X )= 4/3 。 12. 设A ,B 为随机事件,且P (A)=, P (AB)= P (B A ), 则P (B )= 。 13. 设随机变量),(~2σμN X ,其密度函数6 4 4261)(+-- = x x e x f π ,则μ= 2 。 14. 设随机变量X 的数学期望EX 和方差DX >0都存在,令DX EX X Y /)(-=,则D Y= 1 。 15. 随机变量X 与Y 相互独立,且D (X )=4,D (Y )=2,则D (3X -2Y )= 44。 16. 三个人独立地向某一目标进行射击,已知各人能击中的概率分别为3 1 ,41,51,则目标能被击中 的概率是3/5 。 17. 设随机变量X ~N (2,2σ),且P {2 < X <4}=,则P {X < 0}= 。 ! 18. 设随机变量X 的概率分布为5.0)3(,3.0)2(,2.0)1(======X P X P X P ,则X 的期望

概率论与数理统计习题集及答案

《概率论与数理统计》作业集及答案 第1章 概率论的基本概念 §1 .1 随机试验及随机事件 1. (1) 一枚硬币连丢3次,观察正面H ﹑反面T 出现的情形. 样本空间是:S= ; (2) 一枚硬币连丢3次,观察出现正面的次数. 样本空间是:S= ; 2.(1) 丢一颗骰子. A :出现奇数点,则A= ;B :数点大于2,则B= . (2) 一枚硬币连丢2次, A :第一次出现正面,则A= ; B :两次出现同一面,则= ; C :至少有一次出现正面,则C= . §1 .2 随机事件的运算 1. 设A 、B 、C 为三事件,用A 、B 、C 的运算关系表示下列各事件: (1)A 、B 、C 都不发生表示为: .(2)A 与B 都发生,而C 不发生表示为: . (3)A 与B 都不发生,而C 发生表示为: .(4)A 、B 、C 中最多二个发生表示为: . (5)A 、B 、C 中至少二个发生表示为: .(6)A 、B 、C 中不多于一个发生表示为: . 2. 设}42:{},31:{},50:{≤<=≤<=≤≤=x B x x A x x S :则 (1)=?B A ,(2)=AB ,(3)=B A , (4)B A ?= ,(5)B A = 。 §1 .3 概率的定义和性质 1. 已知6.0)(,5.0)(,8.0)(===?B P A P B A P ,则 (1) =)(AB P , (2)()(B A P )= , (3))(B A P ?= . 2. 已知,3.0)(,7.0)(==AB P A P 则)(B A P = . §1 .4 古典概型 1. 某班有30个同学,其中8个女同学, 随机地选10个,求:(1)正好有2个女同学的概率, (2)最多有2个女同学的概率,(3) 至少有2个女同学的概率. 2. 将3个不同的球随机地投入到4个盒子中,求有三个盒子各一球的概率. §1 .5 条件概率与乘法公式 1.丢甲、乙两颗均匀的骰子,已知点数之和为7, 则其中一颗为1的概率是 。 2. 已知,2/1)|(,3/1)|(,4/1)(===B A P A B P A P 则=?)(B A P 。 §1 .6 全概率公式 1. 有10个签,其中2个“中”,第一人随机地抽一个签,不放回,第二人再随机地抽一个 签,说明两人抽“中‘的概率相同。 2. 第一盒中有4个红球6个白球,第二盒中有5个红球5个白球,随机地取一盒,从中 随机地取一个球,求取到红球的概率。

随机变量的函数的分布

8.随机变量的函数的分布 【教学容】:高等教育大学盛骤,式千,承毅编的《概率论与数理统计》 第二章第五节的随机变量的函数的分布 【教材分析】:本节课主要是在学生学习了随机变量的概念和随机变量的分布的基础上进行的教学;本节从随机变量的分布入手引入随机变量的函数的随机性特征, 即由自变量X 的统计规律性出发研究因变量Y 的统计性规律的问题;本节课的教学先讲授离散型随机变量的函数的分布接着讲连续型随机变量的函数的分布。让学生掌握两种不同的随机变量的分布的求解方法。其中,离散型随机变量的函数的分布是比较容易求得而连续型随机变量的函数的分布学生往往束手无策,因此,我在本次教学中,先复习分布函数和概率密度函数的关系,后通过简单例子来讲解,最后归纳总结 ,再研究连续型随机变量的函数的一种特殊情形的分布问题。最后导出一个重要的定理。 【学情分析】: 1、知识经验分析 学生具有一定的随机变量及其分布相关理论知识及微分学相关知识,通过前两次课的学习已具备一定的解题方法,本节课通过让学生观察、思考,教师启发、引导等教学方式,让学生自然过渡到随机变量的函数的分布的学习中。 2、学习能力分析 学生虽然具备一定的微积分的知识和随机变量的理论基础,但概念理解不透彻,解决问题的能力不高,方法应用不熟练,知识没有融会贯通。 【教学目标】:掌握随机变量的函数的概率分布的求法。 【教学重点、难点】: 重点:离散型随机变量的函数的分布;连续型随机变量的函数的分布。 难点:连续型随机变量的函数的分布。 【教学方法】:讲授法 启发式教学法 【教学课时】:1个课时 【教学过程】: 一、问题引入 在实际中,人们常常对随机变量 X 的函数()Y g X =所表示的随机变量Y 更感兴趣。

对概率论与数理统计的认识

对概率论与数理统计的认识

————————————————————————————————作者: ————————————————————————————————日期: ?

对概率论与数理统计的认识 院系数学与信息工 程系 专业数学与应用数学 姓名刘建丽

对概率论与数理统计的认识 摘要 概率作为数学的一个重要部分,在生活中的应用越来越广,同样也在发挥着越来越广泛的用处。加强数学的应用性,让学生用数学知识和数学的思维方法去看待,分析,解决实际生活问题,在数学活动中获得生活经验。这是当前课程改革的大势所趋。加强应用概率的意识,不仅仅是学习的需要,更是工作生活必不可少的。人类认识到随机现象的存在是很早的,但书上讲的都是理论知识,我们不仅仅要学好理论知识,应用理论来实践才是重中之重。学好概率论,并应用概率知识解决现实问题已是我们必要的一种生活素养。 关键字:概率论实践解决问题 一,学科历史 三四百年前在欧洲许多国家,贵族之间盛行赌博之风。掷骰子是他们常用的一种赌博方式。因骰子的形状为小正方体,当它被掷到桌面上时,每个面向上的可能性是相等的,即出现1点至6点中任何一个点数的可能性是相等的。有的参赌者就想:如果同时掷两颗骰子,则点数之和为9与点数之和为10,哪种情况出现的可能性较大。 17世纪中叶,法国有一位热衷于掷骰子游戏的贵族德·梅耳,发现了这样的事实:将一枚骰子连掷四次至少出现一个六点的机会比较多,而同时将两枚骰子掷24次,至少出现一次双六的机会却很少。这是什么原因呢?后人称此为著名的德·梅耳问题。又有人提出了“分赌注问题”:两个人决定赌若干局,事先约定谁先赢得6局便算赢家。如果在一个人赢3局,另一人赢4局时因故终止赌博,应如何分赌本?诸如此类的需要计算可能性大小的赌博问题提出了不少,但他们自己无法给出答案。数学家们“参与”赌博。参赌者将他们遇到的上述问题请教当时法国数学家帕斯卡,帕斯卡接受了这些问题,他没有立即回答,而把它交给另一位法国数学家费尔马。他们频频通信,互相交流,围绕着赌博中的数学问题开始了深入细致的研究。这些问题后来被来到巴黎的荷兰科学家惠更斯获悉,回荷兰后,他独立地进行研究。帕斯卡和费尔马一边亲自做赌博实验,一边仔细分析计算赌博中出现的各种问题,终于完整地解决了“分赌注问题”,并将此题的解法向更一般的情况推广,从而建立了概率论的一个基本概念——数学期望,这是描述随机变量取值的平均水平的一个量。而惠更斯经过多年的潜心研究,解决了掷骰子中的一些数学问题。1657年,他将自己的研究成果写成了专著《论掷骰子游戏中的计算》。这本书迄今为止被认为是概率论中最早的论著。因此可以说早期概率论的真正创立者是帕斯卡、费尔马和惠更斯。这一时期被称为组合概率时期,计算各种古典概率。在他们之后,对概率论这一学科做出贡献的是瑞士数学家族——贝努利家族的几位成员。雅可布·贝努利在前人研究的基础上,继续分析赌博中的其他问题,给出了“赌徒输光问题”的详尽解法,并证明了被称为“大数定律”的一个定理,这是研究等可能性事件的古典概率论中的极其重要的结果。大数定律证明的发现过程是极其困难的,他做了大量的实验计算,首先猜想到这一事实,然后为了完善这一猜想的证明,雅可布花了20年的时光。雅可布将他的全部心血倾注到这一数学研究之中,从中他发展了不少新方法,取得了许多新成果,终于将此定理证实。1713年,雅可布的著作《猜度术》出版。遗憾的是在他的大作问世之时,雅可布已谢世

随机变量的数学期望与方差

第9讲随机变量的数学期望与方差 教学目的:1.掌握随机变量的数学期望及方差的定义。 2.熟练能计算随机变量的数学期望与方差。 教学重点: 1.随机变量的数学期望 For personal use only in study and research; not for commercial use 2.随机变量函数的数学期望 3.数学期望的性质 4.方差的定义 For personal use only in study and research; not for commercial use 5.方差的性质 教学难点:数学期望与方差的统计意义。 教学学时:2学时。 For personal use only in study and research; not for commercial use 教学过程: 第三章随机变量的数字特征 §3.1 数学期望 For personal use only in study and research; not for commercial use 在前面的课程中,我们讨论了随机变量及其分布,如果知道了随机变量X的概率分布,那么X的全部概率特征也就知道了。然而,在实际问题中,概率分布一般是较难确定的,而在一些实际应用中,人们并不需要知道随机变量的一切概率性质,只要知道它的某些数字特征就够了。因此,在对随机变量的研究中,确定其某些数字特征是重要的,而在这些数字特征中,最常用的是随机变量的数学期望和方差。

1.离散随机变量的数学期望 我们来看一个问题: 某车间对工人的生产情况进行考察。车工小张每天生产的废品数X 是一个随机变 量,如何定义X 取值的平均值呢? 若统计100天,32天没有出废品,30天每天出一件废品,17天每天出两件废品, 21天每天出三件废品。这样可以得到这100天中每天的平均废品数为 27.1100 213100172100301100320=?+?+?+? 这个数能作为X 取值的平均值吗? 可以想象,若另外统计100天,车工小张不出废品,出一件、二件、三件废品的 天数与前面的100天一般不会完全相同,这另外100天每天的平均废品数也不一定是 1.27。 对于一个随机变量X ,若它全部可能取的值是 ,,21x x , 相应的概率为 ,,21P P , 则对X 作一系列观察(试验)所得X 的试验值的平均值是随机的。但是,如果试验次数 很大,出现k x 的频率会接近于K P ,于是试验值的平均值应接近 ∑∞=1k k k p x 由此引入离散随机变量数学期望的定义。 定义1 设X 是离散随机变量,它的概率函数是 ,2 ,1,)()(====k P x X P x p K K k 如果 ∑∞ =1||k k k p x 收敛,定义X 的数学期望为 ∑∞ ==1)(k k k p x X E 也就是说,离散随机变量的数学期望是一个绝对收敛的级数的和。 例1 某人的一串钥匙上有n 把钥匙,其中只有一把能打开自己的家门,他随意地 试用这串钥匙中的某一把去开门。若每把钥匙试开一次后除去,求打开门时试开次数 的数学期望。

概率论与数理统计习题解答

第一章随机事件及其概率 1. 写出下列随机试验的样本空间: (1)同时掷两颗骰子,记录两颗骰子的点数之和; (2)在单位圆内任意一点,记录它的坐标; (3)10件产品中有三件是次品,每次从其中取一件,取后不放回,直到三件次品都取出为止,记录抽取的次数; (4)测量一汽车通过给定点的速度. 解所求的样本空间如下 (1)S= {2,3,4,5,6,7,8,9,10,11,12} (2)S= {(x, y)| x2+y2<1} (3)S= {3,4,5,6,7,8,9,10} (4)S= {v |v>0} 2. 设A、B、C为三个事件,用A、B、C的运算关系表示下列事件: (1)A发生,B和C不发生; (2)A与B都发生,而C不发生; (3)A、B、C都发生;

(4)A、B、C都不发生; (5)A、B、C不都发生; (6)A、B、C至少有一个发生; (7)A、B、C不多于一个发生; (8)A、B、C至少有两个发生. 解所求的事件表示如下 3.在某小学的学生中任选一名,若事件A表示被选学生是男生,事件B表示该生是三年级学生,事件C表示该学生是运动员,则 (1)事件AB表示什么? (2)在什么条件下ABC=C成立? ?是正确的? (3)在什么条件下关系式C B (4)在什么条件下A B =成立? 解所求的事件表示如下 (1)事件AB表示该生是三年级男生,但不是运动员. (2)当全校运动员都是三年级男生时,ABC=C成立. ?是正确的. (3)当全校运动员都是三年级学生时,关系式C B

(4)当全校女生都在三年级,并且三年级学生都是女生时,A B =成立. 4.设P (A )=,P (A -B )=,试求()P AB 解 由于 A ?B = A – AB , P (A )= 所以 P (A ?B ) = P (A ?AB ) = P (A )??P (AB ) = , 所以 P (AB )=, 故 ()P AB = 1? = . 5. 对事件A 、B 和C ,已知P(A) = P(B)=P(C)=1 4 ,P(AB) = P(CB) = 0, P(AC)= 1 8 求A 、B 、C 中至少有一个发生的概率. 解 由于,()0,?=ABC AB P AB 故P(ABC) = 0 则P(A+B+C) = P(A)+P(B)+P(C) –P(AB) –P(BC) –P(AC)+P(ABC) 6. 设盒中有α只红球和b 只白球,现从中随机地取出两只球,试求下列事件的概率: A ={两球颜色相同}, B ={两球颜色不同}. 解 由题意,基本事件总数为2a b A +,有利于A 的事件数为2 2a b A A +,有利于B 的事件数为111111 2a b b a a b A A A A A A +=, 则 2 2 11 2 22()()a b a b a b a b A A A A P A P B A A +++==

随机变量的数学期望教案

随机变量的数学期望教 案 -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

教 案:数学期望 试讲人 郑丽霞 教材来源:《概率论与数理统计》 袁荫棠 授课题目:数学期望 第三章第一节 教学目标:会计算数学期望;通过数学期望的学习了解数学期望的实际应用及统计意义 教学重点:数学期望的计算 教学难点:如何将实际问题转化为数学问题 教学过程: 1. 引入课题 引例:在一次射击比赛中,每个人射击10次,甲选手射了4个1分,1个2分,5个3分,问甲选手的平均得分是多少? 1.210 5 31012104110531241=?+?+?=?+?+? 则其“均值”应为11 1k k i i i i i i n n x x n n ===∑∑. 所以上面的均值是以i n n 频率为权重的加权平均。

我们前面学了随机变量,那我用随机变量ξ来表示甲射击得分情况,求ξ的分布? 平均得分=1×0.4+2×0.1+3×0.5=2.1 大体上讲,数学期望(或均值)就是随机变量的平均取值 2. 概念讲解 (一)离散型随机变量的数学期望 定义3.1 设离散型随机变量ξ的分布列为 (),1,2, ,,.i i p P x i n ξ=== 如果 1 ||.i i i x p +∞ =<+∞∑ 则称 1 ()i i i E x p ξ+∞ ==∑ 为随机变量ξ的数学期望,简称期望或均值。若级数1 ||()i i i x p x +∞=∑不收 敛,则称ξ的数学期望不存在。 例1 投掷一颗均匀的骰子,以ξ表示掷的点数,求ξ的数学期望。 解:6 1 17 ()62i E i ξ==?=∑

概率论与数理统计习题答案

习题五 1.一颗骰子连续掷4次,点数总和记为X .估计P {10

【解】令1,,0,i i X ?? ?若第个产品是合格品其他情形. 而至少要生产n 件,则i =1,2,…,n ,且 X 1,X 2,…,X n 独立同分布,p =P {X i =1}=. 现要求n ,使得 1 {0.760.84}0.9.n i i X P n =≤ ≤≥∑ 即 0.80.9n i X n P -≤≤≥∑ 由中心极限定理得 0.9,Φ-Φ≥ 整理得0.95,Φ≥?? 查表 1.64,10≥ n ≥, 故取n =269. 3. 某车间有同型号机床200部,每部机床开动的概率为,假定各机床开动与否互不影响,开动时每部机床消耗电能15个单位.问至少供应多少单位电能 才可以95%的概率保证不致因供电不足而影响生产. 【解】要确定最低的供应的电能量,应先确定此车间同时开动的机床数目最大值m ,而m 要满足200部机床中同时开动的机床数目不超过m 的概率为95%,

浙大版概率论与数理统计答案---第六章

第六章 统计量与抽样分布 注意: 这是第一稿(存在一些错误) 1、解:易知的X 期望为μ,方差为2n σ ,则 ()0,1X N μσ-近似地 , 所以,( ) (0.10.10.909X P X P μσ μσσ? ? - ? -<=<≈Φ= ? ? ??? 。 2、解 (1)由题意得: 2 2 2 2211111()()()()n n i i i i E X D X E X D X E X n n n σμ==??=+=+=+ ???∑∑ ()2211111111 ()()n n i i i i E X X E X X E X X n n n σμ==?=?==+∑∑ (2)1X X -服从正态分布,其中: 1()0E X X -=,22 1122111()( )()()n n n D X X D X D X n n n σ----=+= 从而 2 11~(0,)n X X N n σ-- 由于 ~(0,1)i X N μ σ -,1,2, i n =,且相互独立,因此: () ()2 22 1 ~n i i X n μχσ=-∑ ~(0,1)X N μ -,所以( ) ()2 22 ~1n X μ χσ- 由于 ()2 22 (1)~1n S n χσ--,所以 () () ()2 2 2 2 22 (1)/~1,1(1) n X n X n S F n n S μ μ σσ---=-- (3)由于 () 2 /2 2 1 ~(/2)n i i X n μχσ =-∑ ,以及 () 2 2 1/2 ~(/2)n i i n X n μχσ =+-∑ ,因此有:

概率论与数理统计复习题--带答案

概率论与数理统计复习题--带答案

;第一章 一、填空题 1.若事件A?B且P(A)=0.5, P(B) =0.2 , 则P(A -B)=(0.3 )。 2.甲、乙各自同时向一敌机炮击,已知甲击中敌 机的概率为0.7,乙击中敌机的概率为0.8.求 敌机被击中的概率为(0.94 )。 3.设A、B、C为三个事件,则事件A,B,C中 不少于二个发生可表示为(AB AC BC ++)。 4.三台机器相互独立运转,设第一,第二,第三 台机器不发生故障的概率依次为0.9,0.8,0.7,则这三台机器中至少有一台发生故障的概率 为(0.496 )。 5.某人进行射击,每次命中的概率为0.6 独立 射击4次,则击中二次的概率为 ( 0.3456 )。 6.设A、B、C为三个事件,则事件A,B与C都 不发生可表示为(ABC)。 7.设A、B、C为三个事件,则事件A,B,C中 不多于一个发生可表示为(AB AC BC I I); 8.若事件A与事件B相互独立,且P(A)=0.5, P(B) =0.2 , 则P(A|B)=(0.5 );

9.甲、乙各自同时向一敌机炮击,已知甲击中敌机 的概率为0.6,乙击中敌机的概率为0.5.求敌机被击中的概率为(0.8 ); 10.若事件A与事件B互不相容,且P(A)=0.5, P(B) =0.2 , 则P(B A-)=(0.5 ) 11.三台机器相互独立运转,设第一,第二,第三 台机器不发生故障的概率依次为0.8,0.8,0.7,则这三台机器中最多有一台发生故障的概率为(0.864 )。 12.若事件A?B且P(A)=0.5, P(B) =0.2 , 则 P(B A)=(0.3 ); 13.若事件A与事件B互不相容,且P(A)=0.5, P(B) =0.2 , 则P(B A)=(0.5 ) 14.A、B为两互斥事件,则A B= U(S )15.A、B、C表示三个事件,则A、B、C恰 有一个发生可表示为 (ABC ABC ABC ++) 16.若()0.4 P AB A B= U P AB=0.1则(|) P B=,() P A=,()0.2 ( 0.2 ) 17.A、B为两互斥事件,则AB=(S ) 18.保险箱的号码锁定若由四位数字组成,则一次 )。 就能打开保险箱的概率为(1 10000

概率论与数理统计习题集及答案

《概率论与数理统计》作业集及答案
第 1 章 概率论的基本概念
§1 .1 随机试验及随机事件 1. (1) 一枚硬币连丢 3 次,观察正面 H﹑反面 T 出现的情形. 样本空间是:S=
(2) 一枚硬币连丢 3 次,观察出现正面的次数. 样本空间是:S= 2.(1) 丢一颗骰子. A:出现奇数点,则 A= ;B:数点大于 2,则 B= (2) 一枚硬币连丢 2 次, A:第一次出现正面,则 A= ; B:两次出现同一面,则= ; C:至少有一次出现正面,则 C= ;b5E2RGbCAP ;p1EanqFDPw .DXDiTa9E3d .
§1 .2 随机事件的运算
1. 设 A、B、C 为三事件,用 A、B、C 的运算关系表示下列各事件: (1)A、B、C 都不发生表示为: .(2)A 与 B 都发生,而 C 不发生表示为: .RTCrpUDGiT (3)A 与 B 都不发生,而 C 发生表示为: .(4)A、B、C 中最多二个发生表示为: .5PCzVD7HxA (5)A、B、C 中至少二个发生表示为: .(6)A、B、C 中不多于一个发生表示为: .jLBHrnAILg 2. 设 S ? {x : 0 ? x ? 5}, A ? {x : 1 ? x ? 3}, B ? {x : 2 ?? 4}:则 (1) A ? B ? (4) A ? B = , (2) AB ? , (5) A B = , (3) A B ? 。 ,
xHAQX74J0X
§1 .3 概率的定义和性质
1. 已知 P( A ? B) ? 0.8, P( A) ? 0.5, P( B) ? 0.6 ,则 (1) P( AB) ? , (2)( P( A B) )= 则 P( AB) = , (3) P( A ? B) = . .LDAYtRyKfE
2. 已知 P( A) ? 0.7, P( AB) ? 0.3,
§1 .4 古典概型
1. 某班有 30 个同学,其中 8 个女同学, 随机地选 10 个,求:(1)正好有 2 个女同学的概率, (2)最多有 2 个女同学的概率,(3) 至少有 2 个女同学的概率. 2. 将 3 个不同的球随机地投入到 4 个盒子中,求有三个盒子各一球的概率.
§1 .5 条件概率与乘法公式
1.丢甲、乙两颗均匀的骰子,已知点数之和为 7, 则其中一颗为 1 的概率是 2. 已知 P( A) ? 1 / 4, P( B | A) ? 1 / 3, P( A | B) ? 1 / 2, 则 P( A ? B) ? 。 。
§1 .6 全概率公式
1.
有 10 个签,其中 2 个“中” ,第一人随机地抽一个签,不放回,第二人再随机地抽一个签,说明两人 抽“中‘的概率相同。Zzz6ZB2Ltk 1 / 19

概率论与数理统计作业与解答

概率论与数理统计作业及解答 第一次作业 ★ 1.甲.乙.丙三门炮各向同一目标发射一枚炮弹?设事件ABC 分别表示甲.乙.丙 击中目标.则三门炮最多有一门炮击中目标如何表示? 事件E 丸事件A, B,C 最多有一个发生},则E 的表示为 E =ABC ABC ABC ABC;或工 ABU AC U B C;或工 ABU ACU BC; 或工 ABACBC ;或工 ABC_(AB C ABC A BC ). (和 A B 即并AU B,当代B 互斥即AB 二'时.AU B 常记为AB) 2. 设M 件产品中含m 件次品.计算从中任取两件至少有一件次品的概率 ★ 3.从8双不同尺码鞋子中随机取6只.计算以下事件的概率 A 二{8只鞋子均不成双}, B={恰有2只鞋子成双}, C 珂恰有4只鞋子成双}. C 6 (C 2 )6 32 C 8C 4(C 2)4 80 0.2238, P(B) 8 皆 0.5594, P(A) 8 /143 ★ 4.设某批产品共50件.其中有5件次品?现从中任取3件?求 (1) 其中无次品的概率-(2)其中恰有一件次品的概率‘ /八 C 5 1419 C :C 5 99 ⑴冷 0.724.⑵虫产 0.2526. C 50 1960 C 50 392 5. 从1?9九个数字中?任取3个排成一个三位数?求 (1) 所得三位数为偶数的概率-(2)所得三位数为奇数的概率? 4 (1) P {三位数为偶数} = P {尾数为偶数}=-, 9 ⑵P {三位数为奇数} = P {尾数为奇数} = 5, 9 或P {三位数为奇数} =1 -P {三位数为偶数} =1 -彳=5. 9 9 6. 某办公室10名员工编号从1到10任选3人记录其号码 求(1)最小号码为5的概率 ⑵ 最大号码为5的概率 记事件A ={最小号码为5}, B={最大号码为5}. 1 1 2 C m C M m C m m(2M - m -1) M (M -1) 6 — C 16 143 P(C)二 C 8 CJC 2 ) 30 0.2098. 143 C 16

§4随机变量函数的分布

§3.4 随机变量函数的分布 对离散型随机变量,我们讨论过随机变量函数的分布问题,对一般的随机变量当然也存在同样的问题。例如,若ξ是N (2 ,σμ)分布的随机变量,为了解决计算中的查表问题, 在中曾经引入变换 η=σ ξa - 这个新出现的随机变量η就是原来的随机变量ξ的一个函数。现在来讨论连续型随机变量函数的分布问题,先介绍一个便于应用的定理。 定理3.1 设ξ是一个连续型随机变量,其密度函数为p (x),又y =)(x f 严格单调,其反函数)(x h 有连续导数,则=η)(ξf 也是一个连续型随机变量,且其密度函数为 ? ? ?<<*=其他,0|],)(|)([)('β α?y y h y h p y (3.51) 其中 α=min{)(-∞f ,)(+∞f } β=min{)(-∞f ,)(+∞f } (证明 略) 例3.11(略) 例3.12(略) 2χ—分布 我们先给出下述一个式子: p (x,y)=? ? ???≤>Γ-0,00,)2(212x x x n y n 我们通常把以上述(3.53)式(其中n 是参数)为密度函数的分布称为是自由度为n 的 2χ—分布(2χ读作“卡方”),并记作)(2 n χ,它是数理统计中一个重要的分布。 (一)和的分布 设),(ηξ是一个二维连续型随机变量,密度函数为p (x,y),现在来求ηξζ+=的分布,按定义为 F ζ(y)= P (ζ

F ζ(y)= ??<+y x x dx dx x x p 2121 2 1 ),( = dx dx x x p )),((221?? ∞∞ -∞ ∞ - (3.54) 如果ξ与η是独立的,由(3.48)知P ξ(x)·P η(y)是(ηξ,)的密度函数,用P ξ(x)·P η(y)代替(3.54)式中的p (x 1,x 2)便得 F ζ(y) = dx dx x p x p ))()((221?? ∞∞ -∞ ∞-ηξ =dx dz x z p x p y ))()((11? ?∞ ∞-∞--ηξ = dz dx x z p x p y ))()((11?? ∞ -∞∞ --ηξ 由此可得 ζ 的密度函数为 F ζ(y)= F ' ξ(y)= dx x y p x p ? ∞ ∞ --)()(ηξ (3.55) 由对称性还可得 F ζ(y)= dx x p x y p ? ∞ ∞ --)()(ηξ (3.56) 由(3.55)或(3.56)式给出的运算称为卷积,通常简单地记作 P ζ=P ξ* P η 例3.13(略) 我们已经知道某些分布具有可加性,其实还有一些其它分布,也具有可加性,其中2 χ—分布的可加性在数理统计中颇为重要,我们这里顺便证明这个结论。为此,可以讨论更一般形式的一个分布—Γ分布。如果随机变量ξ具有密度函数为 p (x,y)=?? ???≤>Γ--0,00 ,)(1x x e x x βαααβ (3.57) (其中α>0, β>0为两个常数),这时称ξ是参数为(α,β)的Γ分布的随机变量,相应的分布称作参数为(α,β)的Γ分布,并记作Γ(α,β). 例3.14(略) (二)商的分布 设),(ηξ是一个二维连续型随机变量,密度函数为p (x 1,x 2),现在来求η ξ ζ= 的分

概率论与数理统计练习题及答案

A . P(A B) =P(A) B . P AB 二 P A 概率论与数理统计习题 、选择题(在每个小题四个备选答案中选出一个正确答案,填在题末的括号中) 1. 设 X~N(1.5,4),且:?:」(1.25) =0.8944,.:」(1.75) = 0.9599,贝U P{-2

随机变量的数学期望与方差

限时作业62 随机变量的数学期望与方差 一、选择题 1.下列说法中,正确的是( ) A.离散型随机变量的均值E(X)反映了X取值的概率平均值 B.离散型随机变量的方差D(X)反映了X取值的平均水平 C.离散型随机变量的均值E(X)反映了X取值的平均水平 D.离散型随机变量的方差D(X)反映了X取值的概率平均值 解析:离散型随机变量X的均值反映了离散型随机变量×取值的平均水平,随机变量的方差反映了随机变量取值偏离于均值的平均程度. 答案:C 则D(X)等于( ) A.0 B.0.8 C.2 D.1 解析:根据方差的计算公式,易求V(X)=0.8. 答案:B 3.若随机变量X服从两点分布,且成功的概率p=0.5,则E(X)和D(X)分别为( ) A.0.5和0.25 B.0.5和0.75 C.1和0.25 D.1和0.75 解析:∵X服从两点分布, ∴X的概率分布为 D(X)=0.52×0.5+(1-0.5)2×0.5=0.25. 答案:A 4.离散型随机变量X的分布列为P(X=k)=p k q1-k(k=0,1,p+q=1),则EX与DX依次为( ) A.0和1 B.p和p2 C.p和1-p D.p和p(1-p) 解析:根据题意,EX=0×q+1×p=p,DX=(0-p)2q+(1-p)2p=p(1-p)或可以判断随机变量X 满足两点分布,所以EX与DX依次为p和p(1-p),选D. 答案:D 5.已知X~B(n,p),EX=8,DX=1.6,则n与p的值分别是( ) A.100,0.08 B.20,0.4 C.10,0.2 D.10,0.8 解析:由于X~B(n,p),EX=8,DX=1.6,即np=8,np(1-p)=1.6, 可解得p=0.8,n=10,应选D. 答案:D 二、填空题 6.①连续不断地射击,首次击中目标所需要的射击次数为X;②南京长江大桥一天经过的车辆数为X;③某型号彩电的寿命为X;④连续抛掷两枚骰子,所得点数之和为X;⑤某种水管的外径与内径之差X. 其中是离散型随机变量的是____________.(请将正确的序号填在横线上) 解析:②④中X的取值有限,故均为离散型随机变量;①中X的取值依次为1,2,3,…,虽然无限,但可按从小到大顺序列举,故为离散型随机变量;而③⑤中X的取值不能按次序一一列举,故均不是离散型随机变量.

概率论与数理统计作业

概率论与数理统计作业 第一章随机事件与概率 1?将一枚均匀的硬币抛两次,事件代B,C分别表示“第一次出现正面”,“两次出现同一面”,“至少有一次出现正面”。试写出样本空间及事件A,B,C中的样本点。 解:舄」正正、正反、反正、反反] A=.正正、正反/, B =「正正1, C =:正正、正反、反正 / 2.设P(A)二3,P(B)二2,试就以下三种情况分别求P(BA): 3 2 (1)AB=必,(2)A B,( 3)P(AB)=1 8 解: (1)P(BA) =P(B — AB) =P(B) — P(AB) =P(B) =0.5 (2)P(BA)二P(B —AB)二P(B) —P(AB)二P(B) 一P(A) = 0.5 -1/3 = 1/6 (3)P(BA)二P(B — AB)二P(B) —P(AB) =0.5 —0.125 =0.375 3.某人忘记了电话号码的最后一个数字,因而随机的拨号,求他拨号不超过三次而接通所需的电话的概率是多少?如果已知最后一个数字是奇数,那么此概率是多少? 解:记H表拨号不超过三次而能接通。 Ai表第i次拨号能接通。 注意:第一次拨号不通,第二拨号就不再拨这个号码。

寫H = A +瓦人 2 +瓦入2民三种情况互斥 二P(H) =P(A)+P(AjP(A2 |瓦)+ 卩(瓦)卩(入2丨A I)P(A3 1A1A2) 19 19 8 13 =—+—X —+ —X —X —=— 10 10 9 10 9 8 10 如果已知最后一个数字是奇数(记为事件B)问题变为在B已发生的条件下,求H再发 生的概率。 P(H |B) =PA |B A A2 |B A1A2A3| B) = P(A!|B) P(A1| B)P(A2|BA1) P(A1| B)P(A2| BA!)P(A3 |B^A2) 14 14 3 13 = ---- i ----- 4 --- I ------ A. ---- A. --- = ------ 5 5 4 5 4 3 5 4?进行一系列独立试验,每次试验成功的概率均为,试求以下事件的概率: (1)直到第r次才成功; (2)在n次中取得r(「乞r乞n)次成功; 解:(1) P=(1—p)rJL p (2) P =C:p r(1 一p)^ 5.设事件A, B的概率都大于零,说明以下四种叙述分别属于那一种:(a)必然对,(b) 必然错,(c)可能对也可能错,并说明理由。 (1)若A,B互不相容,则它们相互独立。 (2)若A与B相互独立,则它们互不相容。 (3)P(A)二P(B) =0.6,则 A与 B互不相容。 (4)P(A)二P(B) =0.6,则 A与 B相互独立。 解:(1)b, 互斥事件,一定不是独立事件 (2)c, 独立事件不一定是互斥事件, (3)b, P(A + B) = P(A) + P(B) - P(AB)若 A与 B互不相容,则P(AB) = 0 而P(A B) =P(A) P(B) - P(AB) =1.2 1 ⑷a, 若A与B相互独立,则P(AB) = P(A)P(B) J 这时P(A B)二P(A) P(B) -P(AB) =1.2 -0.36 =0.84 6.有甲、乙两个盒子,甲盒中放有 3个白球,2个红球;乙盒中放有4个白球,4个红球,现从甲盒中随机地取一个球放到乙盒中,再从乙盒中取出一球,试求: (1)从乙盒中取出的球是白球的概率; ⑵若已知从乙盒中取出的球是白球,则从甲盒中取出的球是白球的概率。 解:(1)记A, A分别表“从甲袋中取得白球,红球放入乙袋”

相关主题
文本预览
相关文档 最新文档