当前位置:文档之家› 抽屉原理及其应用

抽屉原理及其应用

抽屉原理及其应用
抽屉原理及其应用

抽屉原理及其应用

许莉娟

(数学科学学院,2003 ( 4)班,03213123号)

[摘要]抽屉原理是数学中的重要原理,在解决数学问题时有非常重要的作用.各种形式的抽屉原理在高等数学和初等数学中经常被采用.本文着重从抽屉的构造方法阐述抽屉原理在高等数学和初等数学(竞赛题)中的应用,同时指岀了它在

应用领域中的不足之处.

[关键词]抽屉原理高等数学初等数学

抽屉原理也称为鸽笼原理或鞋箱原理,它是组合数学中的一个最基本的原理.抽屉原

理主要用于证明某些存在性问题及必然性题目,如几何问题、涂色问题等?抽屉原理的简

单形式可以描述为:“如果把n ? 1个球或者更多的球放进n个抽屉,必有一个抽屉至少有两个球.”它的正确性十分明显,很容易被并不具备多少数学知识的人所接受,如果将其灵活地运用,则可得到一些意想不到的效果.

各种形式的抽屉原理在高等数学和初等数学中经常被采用,使用该原理的关键在于如何巧妙地构造抽屉,即如何找出合乎问题条件的分类原则,抽屉构造得好,可得出非常巧妙的结论,下面我们着重从抽屉的构造途径去介绍抽屉原理在高等数学和初等数学(竞赛题)中的应用,同时指出它在应用领域中的不足之处?

一、抽屉原理

陈景林、阎满富编著的中国铁道出版社出版的《组合数学与图论》一书中对抽屉原理给出了比较具体的定义,概括起来主要有下面几种形式:

原理I把多于n个的元素按任一确定的方式分成n个集合,则一定有一个集合中含有两个或两个以上的元素?

原理U把m个元素任意放到n(m ? n)个集合里,则至少有一个集合里至少有

k个元素,其中

当n能整除m时,

当n不能整除m时.

原理川把无穷个元素按任一确定的方式分成有穷个集合,则至少有一个集合中仍含无穷个

元素.

原理n>m是对原理I的进一步深入阐述,把抽屉原理推入了更深更广的层次.并且我们很容易对其进行证明,可见它们都是非常简单的原理,可是,正是这样一些简单的原则,

在初等数学乃至高等数学中,有着许多应用.巧妙地运用这些原则,可以很顺利地解

决一些看上去相当复杂,甚至觉得简直无法下手的数学题目.

二、抽屉的构造途径

在利用抽屉原理解题时,首先要明确哪些是“球”,哪些是“抽屉”,而这两者通常不会现成存在于题目中,尤其是“抽屉”,往往需要我们用一些巧妙的方法去构造.下面举例说明几种常见的抽屉构造法.

(一)利用等分区间构造抽屉

所谓等分区间简单的说即是:如果在长度为1的区间内有多于n个的点,可考虑把区

间n等分成n个子区间,这样由抽屉原理可知,一定有两点落在同一子区间,它们之间的距离

不大于-.这种构造法常用于处理一些不等式的证明?

n

例1已知11个数/X, , x n ,全满足0

1

满足X j _X j兰一.

j10

证明如图1,将实数轴上介于0与1那段(连同端点)等分为10小段(这10个小段也就

是10个等分区间,即10个抽屉),每一小段长为丄.由抽屉原理,11个点(数)中至少

10

有口+1=2个点落在同一条小线段上,这两点相应的数之差的绝对值乞丄.

1(10 10

0 1

图1

例2任给7个实数,证明必存在两个实数a ,b满足0—..3(a-b):::1+ab.

Tt 31 证明设七个实数为a1,a2,a3,…,a y,作Q i =arctga i( i =1, 2,…',7),显然Q j € ( ,),

2 2

n n n n n n n n n

把(石三)等分成六个区间:

(石二),肓二),蔷①,0,6),6,3),3 由抽屉原理,Q1,Q2,…,Q7必有两个属于同一区间,不妨设为Q i ,Q j,而不论Q i ,Q j属于哪

1

个小区间都有0乞Q i-Q j :::—,由正切函数的单调性可知,0 :::tg(Q i -Q j):::tg 1

(“),

6 6 <3

a -

b 0( Q i Q j ),1+ ab 0,从而有 0 _ 3 (a -b) :: 1+ab .

对于给定了一定的长度或区间并要证明不等式的问题,我们常常采用等分区间的构造 方法来构造抽屉,正如上面的两个例子,在等分区间的基础上我们便很方便的构造了抽屉, 从而寻找到了证明不等式的一种非常特殊而又简易的方法,与通常的不等式的证明方法(构 造函数法,移位相减法)相比,等分区间构造抽屉更简易,更容易被人接受 ?

(二)利用几何图形构造抽屉

在涉及到一个几何图形内有若干点时,常常是把图形巧妙地分割成适当的部分,然后 用分割所得的小图形作抽屉?这种分割一般符合一个“分划”的定义,即抽屉间的元素既 互不重复,也无遗漏;但有时根据解题需要,分割也可使得抽屉之间含有公共元素

例3如果直径为5的圆内有10个点,求证其中有某两点的距离小于 2.

证明 先将圆分成八个全等的扇形,再在中间作一个直径d=1.8的圆(如图2),这就把 已知的圆分成了 9个区域(抽屉).由抽屉原理,圆内的10个点(球),必有两点落在同一区 域内,只须证明每个区域中的两点的距离都小于 2.显然,小圆内任两点间的距离小于 2, 又曲边扇形ABCD 中,AB :::2, AD :::2, CD ::: 2,而任两点距离最大者 AC ,有

AC = OA 2 OC 2 -2OA OCcos45

=2.52 0.92

-2.5 0.9 , 2 (三)利用整数分组制构造抽屉

例4对于m 1个不同的自然数,若每一数都小于 2m,那么可以从中选取三个数,使 其中两个数之和等于第三个数? 不妨记 a 二tgQ j ,b =tgQ j ,贝U tg(Q i -Q j )= a - b 1 ab

而由()知0< a - b 1 ab ,又因为有

=.3.88<2.

图2

小学奥数:抽屉原理(含答案)

教案 抽屉原理 1、概念解析 把3个苹果任意放到两个抽屉里,可以有哪些放置的方法呢?一个抽屉放一个,另一个抽屉放两个;或3个苹果放在某一个抽屉里.尽管放苹果的方式有所不同,但是总有一个共同的规律:至少有一个抽屉里有两个或两个以上的苹果.如果把5个苹果任意放到4个抽屉里,放置的方法更多了,但仍有这样的结果.由此我们可以想到,只要苹果的个数多于抽屉的个数,就一定能保证至少有一个抽屉里有两个或两个以上的苹果.道理很简单:如果每个抽屉里的苹果都不到两个(也就是至多有1个),那么所有抽屉里的苹果数的和就比总数少了.由此得到: 抽屉原理:把多于n个的苹果放进n个抽屉里,那么至少有一个抽屉里有两个或两个以上的苹果。 如果把苹果换成了鸽子,把抽屉换成了笼子,同样有类似的结论,所以有时也把抽屉原理叫做鸽笼原理.不要小看这个“原理”,利用它可以解决一些表面看来似乎很难的数学问题。 比如,我们从街上随便找来13人,就可以断定他们中至少有两个人属相(指鼠、牛、虎、兔、…等十二种生肖)相同.怎样证明这个结论是正确的呢?只要利用抽屉原理就很容易把道理讲清楚.事实上,由于人数(13)比属相数(12)多,因此至少有两个人属相相同(在这里,把13人看成13个“苹果”,把12种属相看成12个“抽屉”)。 应用抽屉原理要注意识别“抽屉”和“苹果”,苹果的数目一定要大于抽屉的个数。 2、例题讲解 例1 有5个小朋友,每人都从装有许多黑白围棋子的布袋中任意摸出3枚棋子.请你证明,这5个人中至少有两个小朋友摸出的棋子的颜色的配组是一样的。 例2 一副扑克牌(去掉两张王牌),每人随意摸两张牌,至少有多少人才能保证他们当中一定有两人所摸两张牌的花色情况是相同的? 例3 从2、4、6、…、30这15个偶数中,任取9个数,证明其中一定有两个数之和是34。

行测数学运算16种题型之抽屉原理问题

考试行测数学运算16种题型之抽屉原理问题 行测数学运算—抽屉原理问题 抽屉原理有时也被称为鸽巢原理(“如果有五个鸽子笼,养鸽人养了6只鸽子,那么当鸽子飞回笼中后,至少有一个笼子中装有2只鸽子”)。它是德国数学家狄利克雷首先明确的提出来并用以证明一些数论中的问题,因此,也称为狄利克雷原理。它是组合数学中一个重要的原理。 假设有3个苹果放入2个抽屉中,则必然有一个抽屉中有2个苹果,她的一般模型可以表述为: 第一抽屉原理:把(mn+1)个物体放入n个抽屉中,其中必有一个抽屉中至少有(m+1)个物体。 若把3个苹果放入4个抽屉中,则必然有一个抽屉空着,她的一般模型可以表述为:第二抽屉原理:把(mn-1)个物体放入n个抽屉中,其中必有一个抽屉中至多有(m—1)个物体。 制造抽屉是运用原则的一大关键 例1、一副扑克牌有四种花色,每种花色各有13张,现在从中任意抽牌。问最少抽几张牌,才能保证有4张牌是同一种花色的? A.12 B.13 C.15 D.16 【解析】根据抽屉原理,当每次取出4张牌时,则至少可以保障每种花色一样一张,按此类推,当取出12张牌时,则至少可以保障每种花色一样三张,所以当抽取第13张牌时,无论是什么花色,都可以至少保障有4张牌是同一种花色,选B。 例2、从1、2、3、4……、12这12个自然数中,至少任选几个,就可以保证其中一定包括两个数,他们的差是7? A.7 B.10 C.9 D.8 【解析】在这12个自然数中,差是7的自然树有以下5对:{12,5}{11,4}{10,3}{9,2}{8,1}。另外,还有2个不能配对的数是{6}{7}。可构造抽屉原理,共构造了7个抽屉。只要有两个数是取自同一个抽屉,那么它们的差就等于7。这7个抽屉可以表示为{12,5}{11,4}{10,3}{9,2}{8,1}{6}{7},显然从7个抽屉中取8个数,则一定可以使有两个数字来源于同一个抽屉,也即作差为7,所以选择D。

抽屉原理在数学中的运用

抽屉原理在初等数学中的运用 摘要:抽屉原理也称为鸽巢原理,它是组合数学中的一个最基本的原理.也是数学中的一个重要原理,抽屉原理的简单形式可以描述为:“如果把1+n 个球或者更多的球放进n 个抽屉,必有一个抽屉至少有两个球.”它的正确性十分明显,很容易被并不具备多少数学知识的人所接受,如果将其灵活地运用,则可得到一些意想不到的效果. 运用抽屉原理可以论证许多关于“存在”、“总有”、“至少有”的存在性问题。学习抽屉原理可以用来解决数学中的许多问题,也可以解决生活中的一些现象。如招生录取、就业安排、资源分配、职称评定等等,都不难看到抽屉原理的作用。在解决数学问题时有非常重要的作用. 抽屉原理主要用于证明某些存在性问题及必然性题目,如几何问题、涂色问题等. 各种形式的抽屉原理在高等数学和初等数学中经常被采用,使用该原理的关键在于如何巧妙地构造抽屉,即如何找出合乎问题条件的分类原则,抽屉构造得好,可得出非常巧妙的结论.本文着重从抽屉的构造方法阐述抽屉原理在高等数学和初等数学(竞赛题)中的应用,同时指出了它在应用领域中的不足之处. 关键词:抽屉原理;初等数学;应用 一、 抽屉原理(鸽巢原理) 什么是抽屉原理?先举个简单的例子说明,就是将3个球放入2个篮子里,无论怎么放,必有一个篮子中至少要放入2个球,这就是抽屉原理.或者假定有五个鸽子笼,养鸽人养了6只鸽子,当鸽子飞回巢中,那么一定至少有一个鸽笼里有两只鸽子,这就是著名的鸽巢原理. 除了这种比较普遍的形式外,抽屉原理还经许多学者推广出其他的形式.比如陈景林、阎满富编著的中国铁道出版社出版的《组合数学与图论》一书中对抽屉原理给出了比较具体的定义,概括起来主要有下面几种形式: 原理1 把多于n 个的元素按任一确定的方式分成n 个集合,则一定有一个集合中含有两个或两个以上的元素.

抽屉原理例习题

8-2抽屉原理 教学目标 抽屉原理是一种特殊的思维方法,不但可以根据它来做出许多有趣的推理和判断,同时能够帮助同学证明很多看似复杂的问题。本讲的主要教学目标是: 1.理解抽屉原理的基本概念、基本用法; 2.掌握用抽屉原理解题的基本过程; 3. 能够构造抽屉进行解题; 4. 利用最不利原则进行解题; 5.利用抽屉原理与最不利原则解释并证明一些结论及生活中的一些问题。 知识点拨 一、知识点介绍 抽屉原理有时也被称为鸽笼原理,它由德国数学家狄利克雷首先明确提出来并用来证明一些数论中的问题,因此,也被称为狄利克雷原则.抽屉原理是组合数学中一个重要而又基本的数学原理,利用它可以解决很多有趣的问题,并且常常能够起到令人惊奇的作用.许多看起来相当复杂,甚至无从下手的问题,在利用抽屉原则后,能很快使问题得到解决. 二、抽屉原理的定义 (1)举例 桌上有十个苹果,要把这十个苹果放到九个抽屉里,无论怎样放,有的抽屉可以放一个,有的可以放两个,有的可以放五个,但最终我们会发现至少我们可以找到一个抽屉里面至少放两个苹果。 (2)定义 一般情况下,把n+1或多于n+1个苹果放到n个抽屉里,其中必定至少有一个抽屉里至少有两个

苹果。我们称这种现象为抽屉原理。 三、抽屉原理的解题方案 (一)、利用公式进行解题 苹果÷抽屉=商……余数 余数:(1)余数=1, 结论:至少有(商+1)个苹果在同一个抽屉里 (2)余数=x ()()11x n -, 结论:至少有(商+1)个苹果在同一个抽屉里 (3)余数=0, 结论:至少有“商”个苹果在同一个抽屉里 (二)、利用最值原理解题 将题目中没有阐明的量进行极限讨论,将复杂的题目变得非常简单,也就是常说的极限思想“任我意”方法、特殊值方法. 模块一、利用抽屉原理公式解题 (一)、直接利用公式进行解题 (1)求结论 【例 1】 6只鸽子要飞进5个笼子,每个笼子里都必须有1只,一定有一个笼子里有2只鸽子.对吗? 【解析】 6只鸽子要飞进5个笼子,如果每个笼子装1只,这样还剩下1只鸽子.这只鸽子可以任意飞进 其中的一个笼子,这样至少有一个笼子里有2只鸽子.所以这句话是正确的. 利用刚刚学习过的抽屉原理来解释这个问题,把鸽笼看作“抽屉”,把鸽子看作“苹果”, 6511÷= ,112+=(只)把6个苹果放到5个抽屉中,每个抽屉中都要有1个苹果,那么 肯定有一个抽屉中有两个苹果,也就是一定有一个笼子里有2只鸽子. 【巩固】 把9条金鱼任意放在8个鱼缸里面,请你说明至少有一个鱼缸放有两条或两条以上金鱼. 【解析】 在8个鱼缸里面,每个鱼缸放一条,就是8条金鱼;还剩下的一条,任意放在这8个鱼缸其中的 任意一个中,这样至少有一个鱼缸里面会放有两条金鱼. 【巩固】 教室里有5名学生正在做作业,现在只有数学、英语、语文、地理四科作业 试说明:这5名 学生中,至少有两个人在做同一科作业. 【解析】 将5名学生看作5个苹果 将数学、英语、语文、地理作业各看成一个抽屉,共4个抽屉 由抽 屉原理,一定存在一个抽屉,在这个抽屉里至少有2个苹果.即至少有两名学生在做同一科的 作业. 【巩固】 年级一班学雷锋小组有13人.教数学的张老师说:“你们这个小组至少有2个人在同一月过生 日.”你知道张老师为什么这样说吗? 【解析】 先想一想,在这个问题中,把什么当作抽屉,一共有多少个抽屉?从题目可以看出,这道题显 知识精讲

8-5 抽屉原理.学生版

抽屉原理是一种特殊的思维方法,不但可以根据它来做出许多有趣的推理和判断,同时能够帮助同学证明很多看似复杂的问题。本讲的主要教学目标是: 1.理解抽屉原理的基本概念、基本用法; 2.掌握用抽屉原理解题的基本过程; 3. 能够构造抽屉进行解题; 4. 利用最不利原则进行解题; 5.利用抽屉原理与最不利原则解释并证明一些结论及生活中的一些问题。 一、知识点介绍 抽屉原理有时也被称为鸽笼原理,它由德国数学家狄利克雷首先明确提出来并用来证明一些数论中的问题,因此,也被称为狄利克雷原则.抽屉原理是组合数学中一个重要而又基本的数学原理,利用它可以解决很多有趣的问题,并且常常能够起到令人惊奇的作用.许多看起来相当复杂,甚至无从下手的问题,在利用抽屉原则后,能很快使问题得到解决. 二、抽屉原理的定义 (1)举例 桌上有十个苹果,要把这十个苹果放到九个抽屉里,无论怎样放,有的抽屉可以放一个,有的可以放两个,有的可以放五个,但最终我们会发现至少我们可以找到一个抽屉里面至少放两个苹果。 (2)定义 一般情况下,把n +1或多于n +1个苹果放到n 个抽屉里,其中必定至少有一个抽屉里至少有两个苹果。我们称这种现象为抽屉原理。 三、抽屉原理的解题方案 (一)、利用公式进行解题 苹果÷抽屉=商……余数 余数:(1)余数=1, 结论:至少有(商+1)个苹果在同一个抽屉里 (2)余数=x ()()11x n -, 结论:至少有(商+1)个苹果在同一个抽屉里 (3)余数=0, 结论:至少有“商”个苹果在同一个抽屉里 (二)、利用最值原理解题 将题目中没有阐明的量进行极限讨论,将复杂的题目变得非常简单,也就是常说的极限思想“任我意”方法、特殊值方法. (一)、直接利用公式进行解题 (1)求结论 【例 1】 6只鸽子要飞进5个笼子,每个笼子里都必须有1只,一定有一个笼子里有2只鸽子.对吗? 知识精讲 知识点拨 教学目标 抽屉原理

抽屉原理基础题

抽屉原理基础题 1.学校买来历史、文艺、科普三种图书若干本,每个学生从中任意借两本。那么,至少多少学生中一 定有两人所借的图书属于同一种。 答:从三种图书中任意借两本有6种借法。6+1=7,由抽屉原理可知,至少7个学生种有两人所借图书种类完全相同。 2.礼堂里有253人开会,这253人中至少有多少人的属相相同 答:22人 3.某旅游车上有47名乘客,每位乘客都只带有一种水果。如果乘客中有人带梨,并且其中任何两位乘 客中至少有一个人带苹果,那么乘客中有______人带苹果。 (A)46 (B)24 (C)23 (D)1 答:选A。 由题意,不带苹果的乘客不多于一名,但又确实有不带苹果的乘客,所以不带苹果的乘客恰有一名,所以带苹果的就有46人。 4.一些苹果和梨混放在一个筐里,小明把这筐水果分成了若干堆,后来发现无论怎么分,总能从这若 干堆里找到两堆,把这两堆水果合并在一起后,苹果和梨的个数是偶数,那么小明至少把这些水果分成了_______堆。 (A)3 (B)4 (C)5 (D)6 答:选C。 要求把其中两堆合并在一起后,苹果和梨的个数一定是偶数,那么这两堆水果中,苹果和梨的奇偶性必须相同。对于每一堆苹果和梨,奇偶可能性有4种:(奇,奇),(奇,偶),(偶,奇),(偶,偶),所以根据抽屉原理可知最少分了4+1=5筐。 5.有黑色、白色、蓝色手套各5只(不分左右手),至少要拿出_____只(拿的时候不许看颜色),才能 使拿出的手套中一定有两双是同颜色的。 (A)4 (B)5 (C)6 (D)7 答:选C。 考虑最坏情况,假设拿了3只黑色、1只白色和1只蓝色,则只有一双同颜色的,但是再多拿一只,不论什么颜色,则一定会有两双同颜色的,所以至少要那6只。 提高班 1.证明:从1,3,5,……,99中任选26个数,其中必有两个数的和是100。 答:将这50个奇数按照和为100,放进25个抽屉:(1,99),(3,97),(5,95),……,(49,51)。根据抽屉原理,从中选出26个数,则必定有两个数来自同一个抽屉,那么这两个数的和即为100。 2.某旅游车上有47名乘客,每位乘客都只带有一种水果。如果乘客中有人带梨,并且其中任何两位乘 客中至少有一个人带苹果,那么乘客中有______人带苹果。 (A)46 (B)24 (C)23 (D)1

五年级简单的抽屉原理练习题及答案【五篇】

【第一篇方格涂色】把一个长方形画成 3 行 9 列共 27 个小方格, 然后用红、蓝铅笔任意将每个小方格涂上红色或蓝色。
是否一定有两列小方格涂色的方式相同? 将 9 列小方格看成 9 件物品,每列小方格不同的涂色方式看成不 同的抽屉。 如果涂色方式少于 9 种,那么就可以得到肯定的答案。 涂色方式共有下面 8 种 9 件物品放入 8 个抽屉,必有一个抽屉的物品数不少于 2 件,即 一定有两列小方格涂色的方式相同。 【第二篇相同的四位数】用 1,2,3,4 这 4 个数字任意写出一 个 10000 位数,从这个 10000 位数中任意截取相邻的 4 个数字,可以 组成许许多多的四位数。 这些四位数中至少有多少个是相同的? 猛一看,谁是物品,谁是抽屉,都不清楚。 因为问题是求相邻的 4 个数字组成的四位数有多少个是相同的, 所以物品应是截取出的所有四位数,而将不同的四位数作为抽屉。 在 10000 位数中,共能截取出相邻的四位数 10000-3=9997 个, 即物品数是 9997 个。 用 1,2,3,4 这四种数字可以组成的不同四位数,根据乘法原 理有 4×4×4×4=256 种,这就是说有 256 个抽屉。 9997÷256=3913,所以这些四位数中,至少有 40 个是相同的。 【第三篇取数字】从 1,3,5,7,,47,49 这 25 个奇数中至少

任意取出多少个数,才能保证有两个数的和是 52。 首先要根据题意构造合适的抽屉。 在这 25 个奇数中,两两之和是 52 的有 12 种搭配 {3,49},{5,47},{7,45},{9,43}, {11,41},{13,39},{15,37},{17,35}, {19,33},{21,31},{23,29},{25,27}。 将这 12 种搭配看成 12 个抽屉,每个抽屉中有两个数,还剩下一
个数 1,单独作为一个抽屉。 这样就把 25 个奇数分别放在 13 个抽屉中了。 因为一共有 13 个抽屉,所以任意取出 14 个数,无论怎样取,至
少有一个抽屉被取出 2 个数,这两个数的和是 52。 所以本题的答案是取出 14 个数。 【第四篇班级人数】 把 125 本书分给五 2 班学生,如果其中至少有 1 人分到至少 4 本
书,那么,这个班最多有多少人? 这道题一下子不容易理解,我们将它变变形式。 因为是把书分给学生,所以学生是抽屉,书是物品。 本题可以变为 125 件物品放入若干个抽屉,无论怎样放,至少有
一个抽屉中放有 4 件物品,求最多有几个抽屉。 这个问题的条件与结论与抽屉原理 2 正好相反,所以反着用抽屉
原理 2 即可。 由 125÷4-1=412 知,125 件物品放入 41 个抽屉,至少有一个

最新小学六年级数学抽屉原理练习题

小学六年级数学抽屉原理练习题 1.木箱里装有红色球3个、黄色球5个、蓝色球7个,若蒙眼去摸,为保证取出的球中有两个球的颜色相同,则最少要取出多少个球? 解:把3种颜色看作3个抽屉,若要符合题意,则小球的数目必须大于3,故至少取出4个小球才能符合要求. 2.一幅扑克牌有54张,最少要抽取几张牌,方能保证其中至少有2张牌有相同的点数? 解:点数为1(A)、2、3、4、5、6、7、8、9、10、11(J)、12(Q)、13(K)的牌各取1张,再取大王、小王各1张,一共15张,这15张牌中,没有两张的点数相同.这样,如果任意再取1张的话,它的点数必为1~13中的一个,于是有2张点数相 同. 3.11名学生到老师家借书,老师是书房中有A、B、C、D四类书,每名学生最多可借两本不同类的书,最少借一本.试证明:必有两个学生所借的书的类型相同. 证明:若学生只借一本书,则不同的类型有A、B、C、D四种,若学生借两本不同类型的书,则不同的类型有AB、AC、AD、BC、BD、CD六种.共有10种类型,把这10种类型看作10个“抽屉”,把11个学生看作11个“苹果”.如果谁借哪种类型的书,就进入哪个抽屉,由抽屉原理,至少有两个学生,他们所借的书的类型相 同. 4.有50名运动员进行某个项目的单循环赛,如果没有平局,也没有全胜,试证明:一定有两个运动员积分相同. 证明:设每胜一局得一分,由于没有平局,也没有全胜,则得分情况只有1、2、3……49,只有49种可能,以这49种可能得分的情况为49个抽屉,现有50名运动员得分,则一定有两名运动员得分相同. 5.体育用品仓库里有许多足球、排球和篮球,某班50名同学来仓库拿球,规定每个人至少拿1个球,至多拿2个球,问至少有几名同学所拿的球种类是一致 的? 解题关键:利用抽屉原理2. 解:根据规定,多有同学拿球的配组方式共有以下9种:﹛足﹜﹛排﹜﹛蓝﹜﹛足足﹜﹛排排﹜﹛蓝蓝﹜﹛足排﹜﹛足蓝﹜﹛排蓝﹜.以这9种配组方式制造9个抽屉,将这50个同学看作苹果50÷9 =5 (5) 由抽屉原理2k=[m/n ]+1可得,至少有6人,他们所拿的球类是完全一致的. 6.某校有55个同学参加数学竞赛,已知将参赛人任意分成四组,则必有一组的女生多于2人,又知参赛者中任何10人中必有男生,则参赛男生的人生为 __________人. 解:因为任意分成四组,必有一组的女生多于2人,所以女生至少有4×2+1=9(人);因为任意10人中必有男生,所以女生人数至多有9人.所以女生有9人,男生有55-9=46(人)

抽屉原理的例题

例1正方体各面上涂上红色或蓝色的油漆(每面只涂一种色),证明正方体一定有三个面颜色相同. 证明:把颜两种色当作两个抽屉,把正方体六个面当作物体,那么6=2×2+2,根据原理二,至少有三个面涂上相同的颜色. 例2:17个科学家中每个人与其余16个人通信,他们通信所讨论的仅有三个问题,而任两个科学家之间通信讨论的是同一个问题。证明:至少有三个科学家通信时讨论的是同一个问题。 解:不妨设A是某科学家,他与其余16位讨论仅三个问题,由鸽笼原理知,他至少与其中的6位讨论同一问题。设这6位科学家为B,C,D,E,F,G,讨论的是甲问题。 若这6位中有两位之间也讨论甲问题,则结论成立。否则他们6位只讨论乙、丙两问题。这样又由鸽笼原理知B至少与另三位讨论同一问题,不妨设这三位是C,D,E,且讨论的是乙问题。 若C,D,E中有两人也讨论乙问题,则结论也就成立了。否则,他们间只讨论丙问题,这样结论也成立。 例3 从2、4、6、…、30这15个偶数中,任取9个数,证明其中一定有两个数之和是34。 分析与解答我们用题目中的15个偶数制造8个抽屉: 此抽屉特点:凡是抽屉中有两个数的,都具有一个共同的特点:这两个数的和是34。现从题目中的15个偶数中任取9个数,由抽屉原理(因为抽屉只有8个),必有两个数可以在同一个抽屉中(符合上述特点).由制造的抽屉的特点,这两个数的和是34。 例4:某校校庆,来了n位校友,彼此认识的握手问候.请你证明无论什么情况,在这n个校友中至少有两人握手的次数一样多。 分析与解答共有n位校友,每个人握手的次数最少是0次,即这个人与其他校友都没有握过手;最多有n-1次,即这个人与每位到会校友都握了手.然而,如果有一个校友握手的次数是0次,那么握手次数最多的不能多于n-2次;如果有一个校友握手的次数是n-1次,那么握手次数最少的不能少于1次.不管是前一种状态0、1、2、…、n-2,还是后一种状态1、2、3、…、n-1,握手次数都只有n-1种情况.把这n-1种情况看成n-1个抽屉,到会的n 个校友每人按照其握手的次数归入相应的“抽屉”,根据抽屉原理,至少有两个人属于同一抽屉,则这两个人握手的次数一样多。 例题5:任取5个整数,必然能够从中选出三个,使它们的和能够被3整除.

河南省南阳市数学小学奥数系列8-2-1抽屉原理(三)

河南省南阳市数学小学奥数系列8-2-1抽屉原理(三) 姓名:________ 班级:________ 成绩:________ 亲爱的小朋友们,这一段时间的学习,你们收获怎么样呢?今天就让我们来检验一下吧! 一、 (共48题;共246分) 1. (5分)从2、4、6、…、30这15个偶数中,任取9个数,证明其中一定有两个数之和是34. 2. (5分)四个连续的自然数分别被除后,必有两个余数相同,请说明理由. 3. (5分)任意给定一个正整数,一定可以将它乘以适当的整数,使得乘积是完全由0和7组成的数. 4. (5分)从,,,,这个数中任意挑出个数来,证明在这个数中,一定有两个数的差为。 5. (15分) 17个小朋友乘6条小船游玩,至少要有几个小朋友坐在同一条船上? 6. (5分) 11名学生到老师家借书,老师的书房中有文学、科技、天文、历史四类书,每名学生最多可借两本不同类的书,最少借一本.试说明:必有两个学生所借的书的类型相同。 7. (5分)盒子里有大小相同的红、黄、蓝、白四种颜色的球各12个,要想摸出的球一定有2个是同色的,至少要摸出几个球? 8. (5分)池塘里有6只青蛙跳到4片荷叶上,总有一片荷叶上至少有2只青蛙。为什么? 9. (5分)五年级数学小组共有20名同学,他们在数学小组中都有一些朋友,请你说明:至少有两名同学,他们的朋友人数一样多. 10. (5分)把125本书分给五⑵班的学生,如果其中至少有一个人分到至少4本书,那么,这个班最多有多少人? 11. (5分)任意给出5个不同的自然数,其中至少有两个数的差是4的倍数.你能说出其中的道理吗? 12. (5分)把7只小猫分别关进3个笼子里,不管怎么放,总有一个笼子里至少有多少只猫? 13. (5分)任意的25个人中,至少有几个人的属相是相同的?为什么?

抽屉原理教案

抽屉原理 教学目标 知识与技能:经历“抽屉原理”的探究过程,初步了解“抽屉原理”,会用“抽 屉原理”解决简单的实际问题。培养学生有根据、有条理地进行思 考和推理的能力。 过程与方法:通过操作发展学生的类推能力,形成比较抽象的数学思维。 情感态度与价值观:通过“抽屉原理”的灵活应用感受数学的魅力。提高学生解 决数学问题的能力和兴趣。 教学重点:经历“抽屉原理”的探究过程,初步了解“抽屉原理”。 教学难点:理解“抽屉原理”,并对一些简单实际问题加以“模型化” 教具准备:小棒,杯子,书(每组5,7本),扑克牌,练习题字条, 教学过程 一、游戏激趣,初步体验。 老师组织学生做“抢凳子的游戏”。 请4位同学上来,摆开3张凳子。 老师宣布游戏规则:4位同学围着凳子转圈,老师喊“停”的时候,3个人 每个人都必须坐在凳子上。 教师背对着游戏的学生,宣布游戏开始,然后叫“停”! 师:都坐下了吗?老师不用看,也知道肯定有一张凳子上至少坐着2位同学。 老师说得对吗?(要不再试一次) 刚才的游戏为什么我能做出准确的判断呢?道理是什么?这其中蕴含着一 个有趣的数学原理,这节课我们就一起来研究这个原理。 二、操作探究,发现规律 就从刚才的游戏入手,用4根小棒代替4个同学用3个杯子代替3个凳子, 4个同学抢3个凳子游戏就相当于把4根小棒放进3个杯子里,现在请小组同学 共同合作动手摆摆有几种不同的摆法?也可以记录下来。说说每种摆法中较多的 杯子里分别有几根小棒?想想你们有什么发现? 1、概括现象。学生以小组为单位进行操作和交流时,教师深入了解学生操 作情况,找出列举所有情况的学生。(观察) (1)先请列举所有情况的学生进行汇报,教师根据学生的回答板书所有的 情况。 (4,0,0)(3,1,0)(2,1,1)(2,2,1) (2)说说每种摆法中较多的杯子里分别有几根小棒? 每种摆法中较多的杯子里有的是2,3,4根小棒,还可以怎么概括这句话? 至少有2根小棒,至少是什么意思?是不是每个杯子里都至少有2根呢?不 管哪种摆法,总有一个杯子有这种情况。多喊几个人说(把你的这个发现也 说给同学听)得出:把4根小棒放进3个杯子里,不管怎么放,总有一个杯 子里至少放2根。(老师板书)再请同学们互相说说刚才我们把4根小棒放 进3个杯子里,有什么发现?要求把句子说完整, 2、找出规律 把4根小棒放进3个杯子里,除了这样一一列举,我们能不能找到一种更为 直接简便的方法,也能得到这个结论呢?小组内互相讨论动手摆摆。

河北省邢台市小学数学小学奥数系列8-2-1抽屉原理(一)

河北省邢台市小学数学小学奥数系列8-2-1抽屉原理(一) 姓名:________ 班级:________ 成绩:________ 亲爱的小朋友们,这一段时间的学习,你们收获怎么样呢?今天就让我们来检验一下吧! 一、 (共34题;共175分) 1. (5分)一副扑克牌,共54张,问:至少从中摸出多少张牌才能保证: (1)至少有5张牌的花色相同; (2)四种花色的牌都有; (3)至少有3张牌是红桃. (4)至少有2张梅花和3张红桃. 2. (5分)幼儿园大班小朋友练习口算,他们每人都从1~6这六个数中任选两个来做加法,结果发现至少有7个小朋友所得的和是相等的,那么这个班至少有多少名小朋友? 3. (5分)任意10个正整数,每一个都用9来除,其中必有两个余数相同.请说明你的理由. 4. (5分) 8个学生解8道题目. (1)若每道题至少被5人解出,请说明可以找到两个学生,每道题至少被过两个学生中的一个解出.(2)如果每道题只有4个学生解出,那么(1)的结论一般不成立.试构造一个例子说明这点. 5. (5分)如图,分别标有数字的滚珠两组,放在内外两个圆环上,开始时相对的滚珠所标的数字都不相同.当两个圆环按不同方向转动时,必有某一时刻,内外两环中至少有两对数字相同的滚珠相对. 6. (5分)小明参加飞镖比赛,投了5镖,成绩是36环,小明至少有一镖不低于8环,对吗?为什么?

7. (5分)有49个小孩,每人胸前有一个号码,号码从1到49各不相同.现在请你挑选若干个小孩,排成一个圆圈,使任何相邻两个小孩的号码数的乘积小于100,那么你最多能挑选出多少个孩子? 8. (5分)一副扑克牌有四种花色,每种花色13张,从中任意抽出多少张牌才能保证有4张是同一花色的? 9. (5分)平面上给定17个点,如果任意三个点中总有两个点之间的距离小于1,证明:在这17个点中必有9个点可以落在同一半径为1的圆内。 10. (5分)从1、2、3、4、…、19、20这20个自然数中,至少任选几个数,就可以保证其中一定包括两个数,它们的差是12. 11. (5分)幼儿园买来许多牛、马、羊、狗塑料玩具,每个小朋友任意选择两件,但不能是同样的,问:至少有多少个小朋友去拿,才能保证有两人所拿玩具相同? 12. (5分)从2、4、6、…、30这15个偶数中,任取9个数,证明其中一定有两个数之和是34. 13. (5分)在下面每个格子中任意写上“爸爸”或“妈妈”,至少有几列所写的字是完全一样的? 14. (5分)在2009张卡片上分别写着数字1、2、3、4、……、2009,现在将卡片的顺序打乱,让空白面朝上,并在空白面上又分别写上1、2、3、4、……、2009.然后将每一张卡片正反两个面上的数字相加,再将这2009个和相乘,所得的积能否确定是奇数还是偶数? 15. (5分)体育用品的仓库里有许多足球、排球和篮球,有66个同学来仓库拿球,要求每个人至少拿一个,最多拿两个球,问至少有多少名同学所拿的球的种类是完全一样的? 16. (5分)张老师说北京市的所有人中一定有两个人头发根数一样多.你觉得张老师说的话有道理吗?为什么?(人的头发约有十万根) 17. (10分)一次数学竞赛出了10道选择题,评分标准为:基础分10分,每道题答对得3分,答错扣 1分,不答不得分。问:要保证至少有4人得分相同,至少需要多少人参加竞赛?

抽屉原理基本介绍

基本介绍 应用抽屉原理解题 抽屉原理的内容简明朴素,易于接受,它在数学问题中有重要的作用。许多有关存在性的证明都可用它来解决。 例1:同年出生的400人中至少有2个人的生日相同。 解:将一年中的365天视为365个抽屉,400个人看作400个物体,由抽屉原理1可以得知:至少有2人的生日相同. 400/365=1…35,1+1=2又如:我们从街上随便找来13人,就可断定他们中至少有两个人属相相同。 “从任意5双手套中任取6只,其中至少有2只恰为一双手套。” “从数1,2,...,10中任取6个数,其中至少有2个数为奇偶性不同。” 例2:幼儿园买来了不少白兔、熊猫、长颈鹿塑料玩具,每个小朋友任意选择两件,那么不管怎样挑选,在任意七个小朋友中总有两个彼此选的玩具都相同,试说明道理. 解:从三种玩具中挑选两件,搭配方式只能是下面六种:(兔、兔),(兔、熊猫),(兔、长颈鹿),(熊猫、熊猫),(熊猫、长颈鹿),(长颈鹿、长颈鹿)。把每种搭配方式看作一个抽屉,把7个小朋友看作物体,那么根据原理1,至少有两个物体要放进同一个抽屉里,也就是说,至少两人挑选玩具采用同一搭配方式,选的玩具相同. 上面数例论证的似乎都是“存在”、“总有”、“至少有”的问题,不错,这正是抽屉原则的主要作用.(需要说明的是,运用抽屉原则只是肯定了“存在”、“总有”、“至少有”,却不能确切地指出哪个抽屉里存在多少. 抽屉原理虽然简单,但应用却很广泛,它可以解答很多有趣的问题,其中有些问题还具有相当的难度。下面我们来研究有关的一些问题。 制造抽屉是运用原则的一大关键 例1 从2、4、6、…、30这15个偶数中,任取9个数,证明其中一定有两个数之和是34。 分析与解答我们用题目中的15个偶数制造8个抽屉: 此抽屉特点:凡是抽屉中有两个数的,都具有一个共同的特点:这两个数的和是34。现从题目中的15个偶数中任取9个数,由抽屉原理(因为抽屉只有8个),必有两个数可以在同一个抽屉中(符合上述特点).由制造的抽屉的特点,这两个数的和是34。 例2:从1、2、3、4、…、19、20这20个自然数中,至少任选几个数,就可以保证其中一定包括两个数,它们的差是12。

抽屉原理练习题 学生版

抽屉原理练习题 1、光明小学有367名2000年出生的学生,请问是否有生日相同的学生? 2、用五种颜色给正方体各面涂色(每面只涂一种色),请你说明:至少会有两个面涂色相同. 3、三个小朋友在一起玩,其中必有两个小朋友都是男孩或者都是女孩. 4、试说明400人中至少有两个人的生日相同. 5、证明:任取6个自然数,必有两个数的差是5的倍数。 6、从1,4,7,10,…,37,40这14个数中任取8个数,试证:其中至少有

2个数的和是41. 7、从1,2,3, ,100这100个数中任意挑出51个数来,证明在这51个数中,一定有两个数的差为50。 8、从1、2、3、4、…、19、20这20个自然数中,至少任选几个数,就可以保证其中一定包括两个数,它们的差是12. 9、有10只鸽笼,为保证至少有1只鸽笼中住有2只或2只以上的鸽子.请问:至少需要有几只鸽子? 10、三年级二班有43名同学,班上的“图书角”至少要准备多少本课外书,才能保证有的同学可以同时借两本书? 11、篮子里有苹果、梨、桃和桔子,现有若干个小朋友,如果每个小朋友都从中任意拿两个水果,那么至少有多少个小朋友才能保证有两个小朋友拿的水果是相同的?

12、学校里买来数学、英语两类课外读物若干本,规定每位同学可以借阅其中两本,现有4位小朋友前来借阅,每人都借了2本.请问,你能保证,他们之中至少有两人借阅的图书属于同一种吗? 13、11名学生到老师家借书,老师的书房中有文学、科技、天文、历史四类书,每名学生最多可借两本不同类的书,最少借一本.试说明:必有两个学生所借的书的类型相同 14、有一个布袋中有5种不同颜色的球,每种都有20个,问:一次至少要取出多少个小球,才能保证其中至少有3个小球的颜色相同? 15、有红、黄、白三种颜色的小球各10个,混合放在一个布袋中,一次至少摸出个,才能保证有5个小球是同色的? 16、把9条金鱼任意放在8个鱼缸里面,请你说明至少有一个鱼缸放有两条或两条以上金鱼.

小学人教四年级数学抽屉原理

《抽屉原理》教学教案 井冈山小学:吴宇峰 本节课的教学目的: 1.知识与能力:初步了解抽屉原理,运用抽屉原理知识解决简单的实际问题。 2.过程和方法:经历抽屉原理的探究过程,通过动手操作、分析、推理等活动, 发现、归纳、总结原理。 3.情感与价值:通过“抽屉原理”的灵活应用感受数学的魅力;提高同学们解 决问题的能力和兴趣。教学重点:经历“抽屉原理”的探究过程,初步了解“抽屉原理”。教学难点:理解“抽屉原理”,并对一些简单实际问题加以“模型化”。 新授 一、问题引入。 师:今天,我们教室里来了很多的客人,希望每位同学能够超常发挥,在客人的面前能够充分展示自我,大家有信心吗? 生:齐答,好! 师:好!,我们一起来玩一个游戏游戏吧!这个游戏的名字叫做“抢椅子” 现在,老师这里准备了3把椅子,请4个同学上来,谁愿来? 生:生争先恐后的要上来,师顺势一大组选一代表 师:请听清楚游戏要求,下面的同学为他们进行倒计时,时间一到,请你们5个都坐在椅子上,每个人必须都坐下。听清楚要求了吗? 游戏完后师述: “不管怎么坐,总有一把椅子上至少坐两个同学”这句话说得对吗? 不管怎么坐,总有一把椅子上至少坐两个同学?你知道这是什么道理吗?这其中蕴含着一个有趣的数学原理,这节课我们就一起来研究这个原理。 二、探究新知 (一)教学例1 课件出示题目:有4枝铅笔,3个盒子,把4枝铅笔放进3个盒子里,怎么放?有几种不同的放法? 师:请同学们分小组实际放放看,或者动手画一画。 生:分小组活动 各小组汇报放或者画的情况. (1)、枚举法(师用课件演示各种摆放的过程) (2)、数的分解法:(课件出示) (4,0,0)(3,1,0)(2,2,0)(2,1,1), 课件出示问题: 4个人坐在3把椅子上,不管怎么坐,总有一把椅子上至少坐两个同学。4支笔放进3个盒子里呢? 总结:不管怎么放,总有一个盒子里至少有2枝笔。 课件出示问题,生回答后师课件出示 (1)“总有”是什么意思?(一定有) (2)“至少”有2枝什么意思?(不少于两只,可能是2枝,也可能是多于2枝?)教师引导学生总结规律:我们把4枝笔放进3个盒子里,不管怎么放,总有一个

抽屉原理问题(公务员考试数学运算基础详解)

抽屉原理问题——基础学习 一、解答题 2、抽屉原理1例1:400人中至少有几个人的生日相同? 【解题关键点】将一年中的366天视为366个抽屉,400个人看作400个物体,由抽屉原理1可以得知:至少有两人的生日相同. 【结束】 3、抽屉原理1例2:五年级有47名学生参加一次数学竞赛,成绩都是整数,满分是100分。已知3名学生的成绩在60分以下,其余学生的成绩均在75~95分之间。问:至少有几名学生的成绩相同? 【答案】至少有3名学生的成绩是相同的。

【解题关键点】关键是构造合适的抽屉。既然是问“至少有几名学生的成绩相同”,说明应以成绩为抽屉,学生为物品。除3名成绩在60分以下的学生外,其余成绩均在75~95分之间,75~95共有21个不同分数,将这21个分数作为21个抽屉,把47-3=44(个)学生作为物品。 44÷21= 2……2, 根据抽屉原理2,至少有1个抽屉至少有3件物品,即这47名学生中至少有3名学生的成绩是相同的。 【结束】 5、抽屉原理2例1:某幼儿班有40名小朋友,现有各种玩具122件,把这些玩具全部分给小朋友,是否会有小朋友得到4件或4件以上的玩具? 【答案】至少会有一个小朋友得到4件或4件以上的玩具。 【解题关键点】将40名小朋友看成40个抽屉。今有玩具122件,122=3×40+2。应用抽屉原理2,取n=40,m=3,立即知道:至少有一个抽屉中放有4件或4件以上的玩具。也就是说,至少会有一个小朋友得到4件或4件以上的玩具。 【结束】 6、抽屉原理2例2:一个布袋中有40块相同的木块,其中编上号码1,2,3,4的各有10块。问:一次至少要取出多少木块,才能保证其中至少有3块号码相同的木块? 【答案】一次至少要取出9块木块,才能保证其中有3块号码相同的木块。 【解题关键点】将1,2,3,4四种号码看成4个抽屉。要保证有一个抽屉中至少有3件物品,根据抽屉原理2,至少要有4×2+1=9(件)物品。所以一次至少要取出9块木块,才能保证其中有3块号码相同的木块。 【结束】 7、抽屉原理2例3:六年级有100名学生,他们都订阅甲、乙、丙三种杂志中的一种、二种或三种。问:至少有多少名学生订阅的杂志种类相同? 【答案】至少有15人所订阅的报刊种类是相同的。 【解题关键点】首先应当弄清订阅杂志的种类共有多少种不同的情况。 订一种杂志有:订甲、订乙、订丙3种情况;

简单抽屉原理

简单抽屉原理 把3 个苹果放进2个抽屉中,无论怎么放,一定能找到一个抽屉,里面至少有2

个苹果.这个现象,在数学中我们把它称作抽屉原理。 抽屉原理I 把一些苹果随意放入若干个抽屉,如果苹果个数多于抽屉个数,那么 一定能找到一个抽屉,里面至少有2 个苹果. 抽屉原理II 把m 个苹果放入n 个抽屉(m 大于n),结果有两种可能: (1)如果m ÷n没有余数,那么就一定有抽屉至少放了“m ÷n”个苹果; (2)如果m ÷n有余数,那么就一定有抽屉至少放了“m ÷n的商再加1” 个苹果. 例1 一个鱼缸里有4 个品种的鱼,每种鱼都有很多条.至少要捞出多少条鱼,才能保证其中有5 条相同品种的鱼? 练习1. 一个布袋里有7 种不同颜色的彩球,每种颜色的彩球都有很多,那么至少要拿出多少个彩球,才能保证其中有6 个相同颜色的彩球?

例2 一个布袋里有大小相同颜色不同的一些木球,其中红色的有10 个,黄色的有8 个,蓝色的有3 个,绿色的有1 个.现在闭着眼睛从中摸球,请问:(1)至少要取出多少个球,才能保证取出的球至少有三种颜色? (2)至少要取出多少个球,才能保证其中必有红球和黄球? 练习2. 爷爷给小明买了一盒糖,这些糖分为苹果味、桔子味和菠萝味三种口味,每种口味各30 颗.小明特别喜欢吃苹果味的,他闭着眼睛,至少需要摸出多少颗糖,才能保证一定能拿到1 颗苹果味的?至少需要摸出多少颗糖,才能保证能拿到两种口味的糖? 例3将1 只白袜子、2 只黑袜子、3 只红袜子、8 只黄袜子和9 只绿袜子放入一个布袋里.请问: (1)一次至少要摸出多少只袜子才能保证一定有颜色相同的两双袜子? (2)一次至少要摸出多少只袜子才能保证一定有颜色不同的两双袜子? (两只袜子颜色相同即为一双) 练习3. 袋子里白袜子、黑袜子、红袜子各10 只,现在闭着眼睛从袋子中摸袜子,请问: (1)至少要摸出多少只袜子才能保证一定有颜色相同的两双袜子? (2)至少要摸出多少只袜子才能保证一定有颜色不同的两双袜子?(两只袜子颜色相同即为一双)

小学六年级简单的抽屉原理

一、抽屉原理定义 (1)举例 桌上有十个苹果,要把这十个苹果放到九个抽屉里,无论怎样放,有的抽屉可以放一个,有的可以放两个,有的可以放五个,但最终我们会发现至少我们可以找到一个抽屉里面至少放两个苹果。 (2)定义 一般情况下,把n +1或多于n +1个苹果放到n 个抽屉里,其中必定至少有一个抽屉里至少有两个苹果。我们称这种现象为抽屉原理。 二、抽屉原理的解题方案 (一)、利用公式进行解题 苹果÷抽屉=商……余数 余数:(1)余数=1结论:至少有(商+1)个苹果在同一个抽屉里 (2)余数=x ()()11x n - ,结论:至少有(商+1)个苹果在同一个抽屉里 (3)余数=0,结论:至少有“商”个苹果在同一个抽屉里 例1.A 、3个苹果放到2个抽屉里,那么一定有1个抽屉里至少有2个苹果。 B 、5块手帕分给4个小朋友,那么一定有1个小朋友至少拿了( )块手帕。 C 、6只鸽子飞进5个鸽笼,那么一定有一个鸽笼至少飞进( )只鸽子。 例2、 三个小朋友在一起玩,请说明其中必有两个小朋友是同性别。 例 3. 三年一班有13名女生,她们的年龄都相同,请说明,至少有两个小朋友在一个相同的月份内出生。 例4. 任意三个整数中,总有两个整数的差是偶数。 例5. 有10个鸽笼,为保证每个鸽笼中最多住1只鸽子(可以不住鸽子),那么鸽子总数最多能有几只?请用抽屉原理加以说明。 例6. 某班有37个学生,最大的10岁,最小的8岁,问:是否一定有4个学生,他们是同年同月出生的? 例7、有红袜2双,白袜3双,黑袜4双,黄袜5双,(每双袜子包装在一起)若取出9双,证明其中必有黑袜或黄袜2双. 1.6只鸽子飞进了5个鸟巢,则总有一个鸟巢中至少有( )只鸽子; 2.把三本书放进两个书架,则总有一个书架上至少放着( )本书; 3.把7封信投进3个邮筒,则总有一个邮筒投进了不止( )封信。

抽屉原理教学设计

《抽屉原理》教学设计① 上传: 刘玲芳更新时间:2012-7-21 14:11:08 安义县逸夫小学喻永红 教学内容:义务教育课程标准实验教科书六年级下册《抽屉原理》。 教学目标: 1.知识与能力:初步了解抽屉原理,运用抽屉原理知识解决简单的实际问题。 2.过程和方法:经历抽屉原理的探究过程,通过动手操作、分析、推理等活动,发现、归纳、总结原理。 3.情感与价值:通过“抽屉原理”的灵活应用感受数学的魅力;提高同学们解决问题的能力和兴趣。 教学重点:经历“抽屉原理”的探究过程,初步了解“抽屉原理”。 教学难点:理解“抽屉原理”,并对一些简单实际问题加以“模型化”。 教具学具:课件、扑克牌、每组都有相应数量的文具盒、铅笔、书。 教学过程: 一、创设情景,导入新课 师:今天的课前五分钟我们来做一个游戏。同学们玩过扑克牌吗?扑克牌有几种花色?课前,老师为每个小组准备了一副取出了两张王的扑克牌。现在请每个小组从中任意取出五张扑克牌。老师不看大家手里的牌,就可以肯定地说:每个小组的五张牌里面至少有两张同花色的牌。老师说得对吗? 师:老师为什么能做出准确的判断呢?道理是什么?这其中蕴含着一个有趣的数学原理,这节课就让我们一起走进数学广角来探讨这个原理。希望大家都能积极的动手动脑,参与到学习活动中来,齐心协力把这个数学奥秘弄明白! 二、探究新知 (一)教学例1 1.出示题目:把4枝铅笔放进3个文具盒里。 师:先进入活动(一):把4枝铅笔放进3个文具盒里,有多少种放法呢?会出现什么情况呢?大家摆摆看。在不同的摆法中,把每个文具盒里面铅笔的枝数记录下来,当某个文具盒中没放铅笔时可以用0表示。 2.学生动手操作,自主探究。师巡视,了解情况。 3.汇报交流师用课件展示出来。 4.思考:再认真观察记录,有什么发现? 课件出示:总有一个文具盒里至少有2枝铅笔。 5.理解“总有”、“至少”的含义 总有一个文具盒:一定有一个文具盒,但并不一定是只有一个文具盒。 至少2枝铅笔:最少2枝,也可能比2枝多 6.讨论、交流:刚刚我们是把每一种放法都列举出来,知道了总有一个文具盒里至少有2枝铅笔。那为什么会出现这种情况呢?可不可以每个文具盒里只放1枝铅笔呢?和小组里的同学说说你的想法。 7.汇报: 铅笔多,文具盒少。 课件演示:如果每个文具盒只放1枝铅笔,最多放3枝。剩下的1枝铅笔不管放进哪个文具盒里,一定会出现“总有一个文具盒里至少有2枝铅笔”的现象。 8.优化方法 如果把5枝铅笔放进4个文具盒,结果是否一样呢?怎样解释这一现象? 师:把4枝铅笔放进3个文具盒里,把5枝铅笔放进4个文具盒里,都会出现“总有一个文具盒里至少有2枝铅笔”的现象。那么 把6枝铅笔放进5个文具盒里,把7枝铅笔放进6个文具盒里,把100枝铅笔放进99个文具盒里,结果会怎样呢?

相关主题
文本预览
相关文档 最新文档