当前位置:文档之家› 高一必修二经典立体几何专项练习题

高一必修二经典立体几何专项练习题

高一必修二经典立体几何专项练习题
高一必修二经典立体几何专项练习题

高一必修二经典立体几何专项练习题

1、直线与平面有三种位置关系:(1)直线在平面内有无数个公共点(2)直线与平面相交有且只有一个公共点(3)直线在平面平行没有公共点指出:直线与平面相交或平行的情况统称为直线在平面外,可用a α来表示a α a∩α=A a∥α

2、2、直线、平面平行的判定及其性质

2、2、1 直线与平面平行的判定

1、直线与平面平行的判定定理:平面外一条直线与此平面内的一条直线平行,则该直线与此平面平行。简记为:线线平行,则线面平行。符号表示:a αb β => a∥αa∥b

2、2、2 平面与平面平行的判定

1、两个平面平行的判定定理:一个平面内的两条交直线与另一个平面平行,则这两个平面平行。符号表示:

β β∩ = β∥∥∥

2、判断两平面平行的方法有三种:(1)用定义;(2)判定定理;(3)垂直于同一条直线的两个平面平行。

2、2、3

2、3、4直线与平面、平面与平面垂直的性质

1、直线与平面垂直的性质定理:垂直于同一个平面的两条直线平行。

2、两个平面垂直的性质定理:

两个平面垂直,则一个平面内垂直于交线的直线与另一个平面垂直。DABCOEP

17、(本题15分)如图,ABCD是正方形,O是正方形的中心,PO底面ABCD,E是PC的中点、求证:(1)PA∥平面BDE;(2)平面PAC平面BDE、

16、(本题10分)如图所示,在直三棱柱中,,,、分别为、的中点、(Ⅰ)求证:;(Ⅱ)求证:、

18、(本题12分)已知四棱锥P-ABCD,底面ABCD是、边长为的菱形,又,且PD=CD,点M、N分别是棱A

D、PC的中点、(1)证明:DN//平面PMB;(2)证明:平面PMB平面PAD;(3)求点A到平面PMB的距离、

16、(本题10分) 如图所示,在直三棱柱中,,,、分别为、的中点、(Ⅰ)求证:;(Ⅱ)求证:、解析:(Ⅰ)在直三棱柱中,侧面⊥底面,且侧面∩底面=,∵∠=90,即,∴平面∵平面,∴、

……2分∵,,∴是正方形,∴,∴、……………4分(Ⅱ)取的中点,连、、………………5分在△中,、是中点,∴,,又∵,,∴,,………6分故四边形是平行四边形,∴,…………8分而面,平面,∴面……10分

18、(本题12分)已知四棱锥P-ABCD,底面ABCD是、边长为的菱形,又,且PD=CD,点M、N分别是棱A

D、PC的中点、(1)证明:DN//平面PMB;(2)证明:平面PMB平面PAD;(3)求点A到平面PMB的距离、解析:(1)证明:取PB中点Q,连结MQ、NQ,因为M、N分别是棱A

D、PC中点,所以 QN//BC//MD,且QN=MD,于是

DN//MQ、、…………………4分(2)又因为底面ABCD是,边长为的菱形,且M为中点,所以、又所以、………………8分(3)因为M是AD中点,所以点A与D到平面PMB等距离、过点D作于H,由(2)平面PMB平面PAD,所以、故DH是点D到平面PMB的距离、

17、(本题15分)证明(1)∵O是AC的中点,E是PC的中点,∴OE∥AP,………………4分又∵OE平面BDE,PA平面BDE,∴PA∥平面BDE、………………7分(2)∵PO底面ABCD,∴POBD,………………10分又∵ACBD,且ACPO=O∴BD平面PAC,而BD平面BDE,………………13分∴平面PAC平面BDE、………………15分(1)当点为对角线的中点时,点的坐标是、因为点在线段上,设、

、当时,的最小值为,即点在棱的中点时,有最小值、(2)因为在对角线上运动、是定点,所以当时,最短、因为当点为棱的中点时,,是等腰三角形,所以,当点是的中点时,取得最小值、(3)当点在对角线上运动,点在棱上运动时,的最小值仍然是、证明:如下图,设,由正方体的对称性,显然有、

设在平面上的射影是、在中,,所以,即有、所以,点的坐标是、由已知,可设,则、当时,取得最小值,最小值是、

高一数学必修二立体几何测试题

A A 1 P 1一 :选择题(4分10?题) 1.下面四个条件中,能确定一个平面的条件是( ) A . 空间任意三点 B.空间两条直线 C.空间两条平行直线 D.一条直线和一个点 2.1l ,2l ,3l 是空间三条不同的直线,则下列命题正确的是( ). A.12l l ⊥,23l l ⊥13//l l ? ? B.12l l ⊥,23//l l ?13l l ⊥ C.233////l l l ?1l ,2l ,3l 共面? ? D.1l ,2l ,3l 共点?1l ,2l ,3l 共面 3.已知m,n是两条不同的直线,,,αβγ是三个不同的平面,下列命题中正确的是: A.若,αγβγ⊥⊥,则α∥β B.若,m n αα⊥⊥,则m ∥n C .若m ∥α,n ∥α,则m ∥n D .若m ∥α,m ∥β,则α∥β 4.在四面体ABC P -的四个面中,是直角三角形的面至多有( ) A .0 个 B.1个 C. 3个 D .4个 5,下列命题中错误..的是?? A .如果平面αβ⊥平面,那么平面α内一定存在直线平行于平面β ?B.如果平面α不垂直于平面β,那么平面α内一定不存在直线垂直于平面β C .如果平面αγ⊥平面,平面βγ⊥平面,l =βα ,那么l γ⊥平面 ?D.如果平面αβ⊥平面,那么平面α内所有直线都垂直于平面β 6.如图所示正方体1AC ,下面结论错误的是( ) A. 11//D CB BD 平面 B . BD AC ⊥1 C . 111 D CB AC 平面⊥ D . 异面直线1CB AD 与角为? 60 7.已知圆锥的全面积是底面积的3倍,那么该圆锥的侧面展开图扇形的圆心角是( ) A. ?120 B. ?150 C. ?180 D . ? 240 8.把正方形ABCD 沿对角线BD 折成直二面角后,下列命题正确的是( ) A. BC AB ⊥ B . BD AC ⊥ C . ABC CD 平面⊥ D . ACD ABC 平面平面⊥ 9某几何体的三视图如图所示,则该几何体的表面积为( ) .A 180 .B 200 .C 220 .D 240 左视图

必修二_立体几何复习+经典例题

一、判定两线平行的方法 1、平行于同一直线的两条直线互相平行 2、垂直于同一平面的两条直线互相平行 3、如果一条直线和一个平面平行,经过这条直线的平面和这个平面相交,那么这条直 线就和交线平行 4、如果两个平行平面同时和第三个平面相交,那么它们的交线平行 5、在同一平面的两条直线,可依据平面几何的定理证明 二、判定线面平行的方法 1、据定义:如果一条直线和一个平面没有公共点 2、如果平面外的一条直线和这个平面的一条直线平行,则这条直线和这个平 面平行 3、两面平行,则其中一个平面的直线必平行于另一个平面 4、平面外的两条平行直线中的一条平行于平面,则另一条也平行于该平面 5、平面外的一条直线和两个平行平面中的一个平面平行,则也平行于另一个平面 三、判定面面平行的方法 1、定义:没有公共点 2、如果一个平面有两条相交直线都平行于另一个平面,则两面平行 3 垂直于同一直线的两个平面平行 4、平行于同一平面的两个平面平行 四、面面平行的性质 1、两平行平面没有公共点 2、两平面平行,则一个平面上的任一直线平行于另一平面 3、两平行平面被第三个平面所截,则两交线平行 4、垂直于两平行平面中一个平面的直线,必垂直于另一个平面 五、判定线面垂直的方法 1、定义:如果一条直线和平面的任何一条直线都垂直,则线面垂直 2、如果一条直线和一个平面的两条相交线垂直,则线面垂直 3、如果两条平行直线中的一条垂直于一个平面,则另一条也垂直于该平面 4、一条直线垂直于两个平行平面中的一个平面,它也垂直于另一个平面 5、如果两个平面垂直,那么在一个平面垂直它们交线的直线垂直于另一个平面 6、如果两个相交平面都垂直于另一个平面,那么它们的交线垂直于另一个平面 六、判定两线垂直的方法 90角 1、定义:成? 2、直线和平面垂直,则该线与平面任一直线垂直 3、在平面的一条直线,如果和这个平面的一条斜线的射影垂直,那么它也和这条斜线 垂直 4、在平面的一条直线,如果和这个平面的一条斜线垂直,那么它也和这条斜线的射影 垂直 5、一条直线如果和两条平行直线中的一条垂直,它也和另一条垂直 七、判定面面垂直的方法 1、定义:两面成直二面角,则两面垂直 2、一个平面经过另一个平面的一条垂线,则这个平面垂直于另一平面 八、面面垂直的性质 90 1、二面角的平面角为?

高中立体几何典型题及解析

高中立体几何典型500题及解析(二)(51~100题) 51. 已知空间四边形ABCD 中,AB=BC=CD=DA=DB=AC,M 、N 分别为BC 、AD 的中点。 求:AM 及CN 所成的角的余弦值; 解析:(1)连接DM,过N 作NE∥AM 交DM 于E ,则∠CNE 为AM 及CN 所成的角。 ∵N 为AD 的中点, NE∥AM 省 ∴NE=2 1AM 且E 为MD 的中点。 设正四面体的棱长为1, 则NC=21·23= 4 3且ME=2 1MD= 4 3 在Rt△MEC 中,CE 2=ME 2+CM 2= 163+41=16 7 ∴cos ∠CNE= 324 3 432167)43()43( 2222 22-=??-+=??-+NE CN CE NE CN , 又∵∠CNE ∈(0, 2 π) ∴异面直线AM 及CN 所成角的余弦值为3 2. 注:1、本题的平移点是N ,按定义作出了异面直线中一条的平行线,然后先在△CEN 外计算CE 、CN 、EN 长,再回到△CEN 中求角。 2、作出的角可能是异面直线所成的角,也可能是它的邻补角,在直观图中无法判定,只有通过解三角形后,根据这个角的余弦的正、负值来判定这个角是锐角(也就是异面直线所成的角)或钝角(异面直线所成的角的邻补角)。最后作答时,这个角的余弦值必须为正。

52. .如图所示,在空间四边形ABCD 中,点E 、F 分别是BC 、AD 上的点,已知AB=4,CD=20,EF=7, 3 1 ==EC BE FD AF 。求异面直线AB 及CD 所成的角。 解析:在BD 上取一点G ,使得3 1 =GD BG ,连结EG 、FG 在ΔBCD 中,GD BG EC BE = ,故EG//CD ,并且4 1==BC BE CD EG , 所以,EG=5;类似地,可证FG//AB ,且 4 3 ==AD DF AB FG , 故FG=3,在ΔEFG 中,利用余弦定理可得 cos ∠ FGE= 2 1 5327532222222- =??-+=??-+GF EG EF GF EG ,故∠FGE=120°。 另一方面,由前所得EG//CD ,FG//AB ,所以EG 及FG 所成的锐角等于AB 及CD 所成的角,于是AB 及CD 所成的角等于60°。 53. 在长方体ABCD -A 1B 1C 1D 1中,AA 1=c ,AB=a ,AD=b ,且a >b .求AC 1及BD 所成的角的余弦. A B C D E F G E D 1 C 1 B 1 A 1 A B D C O

必修二立体几何测试题资料

2015-2016学年第一学期立体几何测试 高二理科数学 参考公式: 圆柱的表面积公式:rl r S ππ222 +=,圆锥的表面积公式:rl r S ππ+=2 台体的体积公式h S S S S V )(3 1'' ++= ,球的表面积公式:24r S π= 圆台的表面积公式Rl rl R r S π+π+π+π=2 2,球的体积公式:33 4r V π= 一、选择题(每小题5分,共60分) 1.下列四个几何体中,是棱台的为( ) 2.如图所示为一平面图形的直观图,则此平面图形可能是( ) 3.给出下列命题: ①垂直于同一直线的两条直线互相平行; ②若直线a ,b ,c 满足a ∥b ,b ⊥c ,则a ⊥c ; ③若直线l 1,l 2是异面直线,则与l 1,l 2都相交的两条直线是异面直线. 其中假命题的个数是( ) A .1 B .2 C .3 D .4

4.空间几何体的三视图如图所示,该几何体的表面积为( ) A .96 B .136 C .152 D .192 5.若棱长为1的正方体的各棱都与一球面相切,则该球的体积为( ) A .3π2 B .2π3 C .2π12 D .π 6 6.对于直线m ,n 和平面α,β,能得出α⊥β的一个条件是( ) A .m ⊥n ,m ∥α,n ∥β B .m ⊥n ,α∩β=m ,n ?α C .m ∥n ,n ⊥β,m ?α D .m ∥n ,m ⊥α,n ⊥β 7.一个几何体的三视图如图所示,则该几何体的表面积为( ) A .10π+96 B .9π+96 C .8π+96 D .9π+80 8.m,n 是空间两条不同直线,α,β是空间两个不同平面,下面有四种说法: 其中正确说法的个数为 ( ) ①m ⊥α,n ∥β,α∥β?m ⊥n; ②m ⊥n,α∥β,m ⊥α?n ∥β; ③m ⊥n,α∥β,m ∥α?n ⊥β; ④m ⊥α,m ∥n,α∥β?n ⊥β. A.1 B.2 C.3 D.4

必修2立体几何复习(知识点+经典习题)

必修二立体几何知识点与复习题 一、判定两线平行的方法 1、平行于同一直线的两条直线互相平行 2、垂直于同一平面的两条直线互相平行 3、如果一条直线和一个平面平行,经过这条直线的平面和这个平面相交,那么这条直线就和交线平 行 4、如果两个平行平面同时和第三个平面相交,那么它们的交线平行 5、在同一平面内的两条直线,可依据平面几何的定理证明 二、判定线面平行的方法 1、据定义:如果一条直线和一个平面没有公共点 2、如果平面外的一条直线和这个平面内的一条直线平行,则这条直线和这个平面平行 3、两面平行,则其中一个平面内的直线必平行于另一个平面 4、平面外的两条平行直线中的一条平行于平面,则另一条也平行于该平面 5、平面外的一条直线和两个平行平面中的一个平面平行,则也平行于另一个平面 三、判定面面平行的方法 1、定义:没有公共点 2、如果一个平面内有两条相交直线都平行于另一个平面,则两面平行 3 垂直于同一直线的两个平面平行 4、平行于同一平面的两个平面平行 四、面面平行的性质 1、两平行平面没有公共点 2、两平面平行,则一个平面上的任一直线平行于另一平面 3、两平行平面被第三个平面所截,则两交线平行 4、垂直于两平行平面中一个平面的直线,必垂直于另一个平面 五、判定线面垂直的方法 1、如果一条直线和一个平面内的两条相交线垂直,则线面垂直 2、如果两条平行直线中的一条垂直于一个平面,则另一条也垂直于该平面 3、一条直线垂直于两个平行平面中的一个平面,它也垂直于另一个平面 4、如果两个平面垂直,那么在一个平面内垂直它们交线的直线垂直于另一个平面 5、如果两个相交平面都垂直于另一个平面,那么它们的交线垂直于另一个平面 六、判定两线垂直的方法 1、定义:成? 90角 2、直线和平面垂直,则该线与平面内任一直线垂直 3、在平面内的一条直线,如果和这个平面的一条斜线的射影垂直,那么它也和这条斜线垂直 4、在平面内的一条直线,如果和这个平面的一条斜线垂直,那么它也和这条斜线的射影垂直 5、一条直线如果和两条平行直线中的一条垂直,它也和另一条垂直 七、判定面面垂直的方法 1、定义:两面成直二面角,则两面垂直 2、一个平面经过另一个平面的一条垂线,则这个平面垂直于另一平面 八、面面垂直的性质 1、二面角的平面角为? 90 2、在一个平面内垂直于交线的直线必垂直于另一个平面 3、相交平面同垂直于第三个平面,则交线垂直于第三个平面 九、各种角的范围 1、异面直线所成的角的取值范围是:? ≤ < ?90 0θ(]? ?90 , 2、直线与平面所成的角的取值范围是:? ≤ ≤ ?90 0θ[]? ?90 , 3、斜线与平面所成的角的取值范围是:? ≤ < ?90 0θ(]? ?90 , 4、二面角的大小用它的平面角来度量;取值范围是:? ≤ < ?180 0θ(]? ?180 , 十、三角形的心 1、内心:内切圆的圆心,角平分线的交点 2、外心:外接圆的圆心,垂直平分线的交点 3、重心:中线的交点 4、垂心:高的交点 考点一,几何体的概念与性质 【基础训练】 1.判定下面的说法是否正确: (1)有两个面互相平行,其余各个面都是平行四边形的几何体叫棱柱. (2)有两个面平行,其余各面为梯形的几何体叫棱台. 2.下列说法不正确的是() A.空间中,一组对边平行且相等的四边形一定是平行四边形。 B.同一平面的两条垂线一定共面。 C.过直线上一点可以作无数条直线与这条直线垂直,且这些直线都在同一平面内。 D.过一条直线有且只有一个平面与已知平面垂直。 【高考链接】 1.设α和β为不重合的两个平面,给出下列命题: (1)若α内的两条相交直线分别平行于β内的两条直线,则α平行于β;(2)若α外一条直线l与α内的一条直线平行,则l和α平行; (3)设α和β相交于直线l,若α内有一条直线垂直于l,则α和β垂直;

高中空间立体几何典型例题

高中空间立体几何典型 例题 -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

1 如图所示,正方体ABCD —A 1B 1C 1D 1中,侧面对角线AB 1,BC 1上分别有两点E ,F ,且B 1E=C 1F. 求证:EF ∥平面ABCD. 证明 方法一 分别过E ,F 作EM ⊥AB 于M ,FN ⊥BC 于N ,连接MN. ∵BB 1⊥平面ABCD , ∴BB 1⊥AB ,BB 1⊥BC , ∴EM ∥BB 1,FN ∥BB 1, ∴EM ∥FN. 又∵B 1E=C 1F ,∴EM=FN , 故四边形MNFE 是平行四边形,∴EF ∥MN. 又MN ?平面ABCD ,EF ?平面ABCD , 所以EF ∥平面ABCD. 方法二 过E 作EG ∥AB 交BB 1于G , 连接GF ,则B B G B A B E B 1111=, ∵B 1E=C 1F ,B 1A=C 1B , ∴B B G B B C E C 1111=,∴FG ∥B 1C 1∥BC , 又EG ∩FG =G ,AB ∩BC =B , ∴平面EFG ∥平面ABCD ,而EF ?平面EFG , ∴EF ∥平面ABCD . 2 已知P 为△ABC 所在平面外一点,G 1、G 2、G 3分别是△PAB 、△PCB 、△PAC 的重心.

(1)求证:平面G 1G 2G 3∥平面ABC ; (2)求S △3 21G G G ∶S △ABC . (1)证明 如图所示,连接PG 1、PG 2、PG 3并延长分别与边AB 、BC 、AC 交于点D 、E 、F , 连接DE 、EF 、FD ,则有PG 1∶PD =2∶3, PG 2∶PE =2∶3,∴G 1G 2∥DE . 又G 1G 2不在平面ABC 内, ∴G 1G 2∥平面ABC .同理G 2G 3∥平面ABC . 又因为G 1G 2∩G 2G 3=G 2, ∴平面G 1G 2G 3∥平面ABC . (2)解 由(1)知PE PG PD PG 21 =32,∴G 1G 2=32DE . 又DE =21AC ,∴G 1G 2=31 AC . 同理G 2G 3=31AB ,G 1G 3=3 1BC . ∴△G 1G 2G 3∽△CAB ,其相似比为1∶3, ∴S △3 21G G G ∶S △ABC =1∶9. 3如图所示,已知S 是正三角形ABC 所在平面外的一点,且SA =SB =SC ,SG 为△SAB 上的高, D 、 E 、 F 分别是AC 、BC 、SC 的中点,试判断S G 与平面DEF 的位置关系,并给予证明. 解 SG ∥平面DEF ,证明如下: 方法一 连接CG 交DE 于点H , 如图所示.

必修二立体几何单元测试题

立体几何单元测试 一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的) 1.下面四个命题: ①分别在两个平面内的两直线是异面直线; ②若两个平面平行,则其中一个平面内的任何一条直线必平行于另一个平面; ③如果一个平面内的两条直线平行于另一个平面,则这两个平面平行; ④如果一个平面内的任何一条直线都平行于另一个平面,则这两个平面平行. 其中正确的命题是( ) A.①②B.②④ C.①③ D.②③ 答案:B 2.棱台的一条侧棱所在的直线与不含这条侧棱的侧面所在平面的位置关系是( ) A.平行B.相交 C.平行或相交D.不相交 解析:由棱台的定义知,各侧棱的延长线交于一点,所以选B. 答案:B 3.一直线l与其外三点A,B,C可确定的平面个数是( ) A.1个B.3个 C.1个或3个D.1个或3个或4个 解析:当A、B、C共线且与l平行或相交时,确定一个平面;当A、B、C共线且与l 异面时,可确定3个平面;当A、B、C三点不共线时,可确定4个平面.答案:D 4.若三个平面两两相交,有三条交线,则下列命题中正确的是( ) A.三条交线为异面直线 B.三条交线两两平行 C.三条交线交于一点 D.三条交线两两平行或交于一点 答案:D 5.如图,在△ABC中,∠BAC=90°,PA⊥面ABC,AB=AC,D是BC的中点,则图中直角三角形的个数是( )

A.5 B.8 C.10 D.6 解析:这些直角三角形是:△PAB,△PAD,△PAC,△BAC,△BAD,△CAD,△PBD,△PCD.共8个. 答案:B 6.下列命题正确的有( ) ①若△ABC在平面α外,它的三条边所在直线分别交α于P、Q、R,则P、Q、R三点共线. ②若三条平行线a、b、c都与直线l相交,则这四条直线共面. ③三条直线两两相交,则这三条直线共面. A.0个B.1个 C.2个D.3个 解析:易知①与②正确,③不正确. 答案:C 7.若平面α⊥平面β,α∩β=l,且点P∈α,P?l,则下列命题中的假命题是( ) A.过点P且垂直于α的直线平行于β B.过点P且垂直于l的直线在α内 C.过点P且垂直于β的直线在α内 D.过点P且垂直于l的平面垂直于β 答案:B 8.如右图,在棱长为2的正方体ABCD-A1B1C1D1中,O是底面ABCD的中心,M、N分别是棱DD1、D1C1的中点,则直线OM( ) A.与AC、MN均垂直相交 B.与AC垂直,与MN不垂直 C.与MN垂直,与AC不垂直 D.与AC、MN均不垂直

高一数学(必修二)立体几何练习题(含答案)

一.选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中只有一个是符合题目要求的) 1、下列命题为真命题的是( ) A. 平行于同一平面的两条直线平行; B.与某一平面成等角的两条直线平行; C. 垂直于同一平面的两条直线平行; D.垂直于同一直线的两条直线平行。 2、下列命题中错误的是:( ) A. 如果α⊥β,那么α内一定存在直线平行于平面β; B. 如果α⊥β,那么α内所有直线都垂直于平面β; C. 如果平面α不垂直平面β,那么α内一定不存在直线垂直于平面β; D. 如果α⊥γ,β⊥γ,α∩β=l,那么l ⊥γ. 3、右图的正方体ABCD-A ’B ’C ’D ’ 中,异面直线AA ’ 与BC 所成的角是( ) A. 300 B.450 C. 600 D. 900 4、右图的正方体ABCD- A ’B ’C ’D ’中, 二面角D ’-AB-D 的大小是( ) A. 300 B.450 C. 600 D. 900 5.在空间中,下列命题正确的是 A.若三条直线两两相交,则这三条直线确定一个平面 B.若直线m 与平面α内的一条直线平行,则α//m C.若平面βα⊥,且l =βα ,则过α内一点P 与l 垂直的直线垂直于平面β D.若直线a 与直线b 平行,且直线a l ⊥,则b l ⊥ 6.设平面α∥平面β,A ,C ∈α,B ,D ∈β,直线AB 与CD 交于点S ,且点S 位于平面α,β之间,AS =8,BS =6,CS =12,则SD =( ) A .3 B .9 C .18 D .10 7.下图是一个几何体的三视图,根据图中数据,可得该几何体的表面积是( ) A .9π B .10π C .11π D .12π A B D A ’ B ’ D ’ C C ’

高中数学必修2立体几何专题线面角典型例题求法总结

线面角的求法 1.直接法 :平面的斜线与斜线在平面内的射影所成的角即为直线与平面所成的角。通常是解由斜线段,垂线段,斜线在平面内的射影所组成的直角三角形,垂线段是其中最重要的元素,它可以起到联系各线段的作用。 例1 ( 如图1 )四面体ABCS 中,SA,SB,SC 两两垂直,∠SBA=45°, ∠SBC=60°, M 为 AB 的中点,求(1)BC 与平面SAB 所成的角。(2)SC 与平面ABC 所成的角。 B M H S C A 解:(1) ∵SC ⊥SB,SC ⊥SA, 图1 ∴SC ⊥平面SAB 故 SB 是斜线BC 在平面SAB 上的射影, ∴∠SBC 是直线BC 与平面SAB 所成的角为60°。 (2) 连结SM,CM ,则SM ⊥AB, 又∵SC ⊥AB,∴AB ⊥平面SCM, ∴面ABC ⊥面SCM 过S 作SH ⊥CM 于H, 则SH ⊥平面ABC ∴CH 即为 SC 在面ABC 内的射影。 ∠SCH 为SC 与平面ABC 所成的角。 sin ∠SCH=SH /SC ∴SC 与平面ABC 所成的角的正弦值为√7/7 (“垂线”是相对的,SC 是面 SAB 的垂线,又是面 ABC 的斜线. 作面的垂线常根据面面垂直的性质定理,其思路是:先找出与已知平面垂直的平面,然后一面内找出或作出交线的垂线,则得面的垂线。) 2. 利用公式sin θ=h /ι 其中θ是斜线与平面所成的角, h 是 垂线段的长,ι是斜线段的长,其中求出垂线段的长(即斜线上的点到面的距离)既是关键又是难点,为此可用三棱锥的体积自等来求垂线段的长。 例2 ( 如图2) 长方体ABCD-A 1B 1C 1D 1 , AB=3 ,BC=2, A 1A= 4 ,求AB 与面 AB 1C 1D 所成的角。 A 1 C 1 D 1 H 4 C B 1 23 B A D 解:设点 B 到AB 1C 1D 的距离为h ,∵V B ﹣AB 1C 1 =V A ﹣BB 1C 1 ∴1/3 S △AB 1C 1 ·h= 1/3 S △BB 1C 1 ·AB,易得h=12/5 ,

立体几何空间直角坐标系解法典型例题

立体几何坐标解法典型例题 1、如图,正三棱柱111ABC A B C -的所有棱长都为2,D 为1CC 中点. (Ⅰ)求证:1AB ⊥平面1A BD ; (Ⅱ)求二面角1A A D B --的大小; (Ⅲ)求点C 到平面1A BD 的距离. 2、如图,在Rt AOB △中, π6 OAB ∠=,斜边4AB =.Rt AOC △可以通过Rt AOB △以直线AO 为轴旋转得到,且二面角B AO C --的直二面角.D 是AB 的中点. (1)求证:平面COD ⊥平面AOB ; (2)求异面直线AO 与CD 所成角的大小. A B C D

3.(2010·上海松江区模拟)设在直三棱柱ABC -A 1B 1C 1中,AB =AC =AA 1=2,∠BAC =90°,E ,F 依次为C 1C ,BC 的中点. (1)求异面直线A 1B 、EF 所成角θ的正弦值; (2)求点B 1到平面AEF 的距离. 4.四棱锥S ABCD -中,底面ABCD 为平行四边形,侧面SBC ⊥底面ABCD .已知45ABC =o ∠, 2AB = ,BC = SA SB == (Ⅰ)证明SA BC ⊥; (Ⅱ)求直线SD 与平面SAB 所成角的大小. D B C A S

5.如图,点P 是单位正方体ABCD -A 1B 1C 1D 1中异于A 的一个顶点,则AP →·AB → 的值为( ) A .0 B .1 C .0或1 D .任意实数 5.在棱长为1的正方体ABCD -A 1B 1C 1D 1中,M 、N 分别为A 1B 1和BB 1的中点,那么直线AM 与CN 所成角的余弦值等于( ) A.32 B.1010 C.35 D.25 <二>选择题辨析 [注]: ①两条异面直线在同一平面内射影一定是相交的两条直线.(×) ②直线在平面外,指的位置关系:平行或相交 ③若直线a 、b 异面,a 平行于平面,b 与的关系是相交、平行、在平面内. ④两条平行线在同一平面内的射影图形是一条直线或两条平行线或两点. ⑤在平面内射影是直线的图形一定是直线.(×) ⑥在同一平面内的射影长相等,则斜线长相等.(×) ⑦是夹在两平行平面间的线段,若,则的位置关系为相交或平行或异面. [注]: ①直线与平面内一条直线平行,则∥. (×) ②直线与平面内一条直线相交,则与平面相交. (×) ③若直线与平面平行,则内必存在无数条直线与平行. (√) ④两条平行线中一条平行于一个平面,那么另一条也平行于这个平面. (×) ⑤平行于同一直线的两个平面平行.(×) ⑥平行于同一个平面的两直线平行.(×) ⑦直线与平面、所成角相等,则∥.(×) [注]: ①垂直于同一平面....的两个平面平行.(×) ②垂直于同一直线的两个平面平行.(√) ③垂直于同一平面的两条直线平行.(√) αααb a ,b a =b a ,a αa αa αa αa ααa l αβαβ

高一必修二立体几何练习题(含答案)

《立体几何初步》练习题 一、 选择题 1、一条直线和三角形的两边同时垂直,则这条直线和三角形的第三边的位置关系是( ) A 、垂直 B 、平行 C、相交不垂直 D 、不确定 2. 在正方体1111ABCD A B C D -中, 与1A C 垂直的是( ) A. BD B. CD C. BC D. 1CC 3、线n m ,和平面βα、,能得出βα⊥的一个条件是( ) A.βα//n ,//m ,n m ⊥ B.m ⊥n ,α∩β=m ,n ?α C.αβ?⊥m n n m ,,// D .βα⊥⊥n m n m ,,// 4、平面α与平面β平行的条件可以是( ) A.α内有无穷多条直线与β平行; B.直线a//α,a//β C.直线a α?,直线b β?,且a//β,b //α D.α内的任何直线都与β平行 5、设m、n 是两条不同的直线,,,αβγ是三个不同的平面,给出下列四个命题: ①若m ⊥α,n //α,则m n ⊥ ②若αβ//,βγ//,m ⊥α,则m ⊥γ ③若m //α,n //α,则m n // ④若αγ⊥,βγ⊥,则//αβ 其中正确命题的序号是( ) A .①和②? B.②和③? C.③和④ D.①和④ 6.点P为ΔABC 所在平面外一点,PO ⊥平面ABC,垂足为O ,若PA=PB=PC, 则点O 是ΔABC 的( ) A.内心 B.外心 C.重心 D .垂心 7. 若l 、m、n 是互不相同的空间直线,α、β是不重合的平面, 则下列命题中为真命题的是( )

A .若//,,l n αβαβ??,则//l n B.若,l αβα⊥?,则l β⊥ C . 若,//l l αβ⊥,则αβ⊥ D .若,l n m n ⊥⊥,则//l m 8. 已知两个平面垂直,下列命题中正确的个数是( ) ①一个平面内的已知直线必垂直于另一个平面的任意一条直线; ②一个平面内的已知直线必垂直于另一个平面的无数条直线; ③一个平面内的任一条直线必垂直于另一个平面; ④过一个平面内任意一点作交线的垂线,则垂线必垂直于另一个平面. A.3 B .2 C .1 D.0 9.(2013浙江卷)设m.n是两条不同的直线,α.β是两个不同的平面, ( ) A.若m ∥α,n ∥α,则m ∥n?B.若m ∥α,m ∥β,则α∥β C.若m ∥n,m ⊥α,则n ⊥α D .若m ∥α,α⊥β,则m⊥β 10.(2013广东卷)设l 为直线,,αβ是两个不同的平面,下列命题中正确的是?( ) A .若//l α,//l β,则//αβ B .若l α⊥,l β⊥,则//αβ C.若l α⊥,//l β,则//αβ D .若αβ⊥,//l α,则l β⊥ 二、填空题 11、在棱长为2的正方体ABCD —A1B 1C1D 1中,E ,F 分别是棱AB,BC 中点,则三棱锥B —B 1E F的体积为 . 12.对于空间四边形ABCD ,给出下列四个命题:①若AB=AC,BD=CD 则BC⊥AD;②若AB=CD,AC=BD 则BC ⊥AD;③若AB ⊥AC,B D⊥CD 则B C⊥AD;④若A B⊥CD, BD ⊥AC 则B C⊥AD;其中真命题序号是 . 13. 已知直线b//平面α,平面α//平面β,则直线b 与β的位置关系为 . 14. 如图,△ABC 是直角三角形,∠ACB=? 90,PA ⊥平面AB C, A B C P

高一立体几何平行垂直解答题精选

高一立体几何平行、垂直解答题精选 2017.12.18 1.已知直三棱柱ABC-A 1B 1C 1,点N 在AC 上且CN=3AN ,点M ,P ,Q 分别是AA 1,A 1B 1,BC 的中点.求证:直线PQ ∥平面BMN. 2.如图,在正方形ABCD -A 1B 1C 1D 1中,E ,F ,M 分别是棱B 1C 1,BB 1,C 1D 1的中点,是否存在过点E ,M 且与平面A 1FC 平行的平面?若存在,请作出并证明;若不存在,请说明理由. 3.在正方体1111ABCD A B C D 中, M , O 分别是1,A B BD 的中点.

(1)求证: //OM 平面11AA D D ; (2)求证: 1OM BC ⊥. 4.如图, AB 为圆O 的直径,点,E F 在圆O 上,且//AB EF ,矩形ABCD 所在的平面和圆O 所在的平面垂直,且1,2AD EF AF AB ====. (1)求证:平面AFC ⊥平面CBF ; (2)在线段CF 上是否存在了点M ,使得//OM 平面ADF ?并说明理由. 5.已知:正三棱柱111ABC A B C -中, 13AA =, 2AB =, N 为棱AB 的中点. (1)求证: 1AC P 平面1NB C . (2)求证:平面1CNB ⊥平面11ABB A . (3)求四棱锥111C ANB A -的体积.

6.已知△BCD 中,∠BCD=90°,BC=CD=1,AB⊥平面BCD ,∠ADB=60°,E 、F 分别是AC 、AD 上的动点,且(01).AE AF AC AD λλ==<< (1)求证:不论λ为何值,总有平面BEF⊥平面ABC ; (2)当λ为何值时,平面BEF⊥平面ACD ? 7.如图,在菱形ABCD 中, 60,ABC AC ∠=o 与BD 相交于点O , AE ⊥平面ABCD , //,2CF AE AB AE ==. (I )求证: BD ⊥平面ACFE ; (II )当直线FO 与平面ABCD 所成的角的余弦值为10时,求证: EF BE ⊥; (III )在(II )的条件下,求异面直线OF 与DE 所成的余弦值. 8.如图,四棱锥P ABCD -中,//AD BC ,24AD BC ==,

必修二立体几何测试题

1 2013年高一数学必修二立体几何测试题 一:选择题(4分10 ?题) 1.下面四个条件中,能确定一个平面的条件是() A. 空间任意三点 B.空间两条直线 C.空间两条平行直线 D.一条直线和一个点 2. 1 l, 2 l, 3 l是空间三条不同的直线,则下列命题正确的是(). A. 12 l l ⊥, 23 l l ⊥ 13 // l l ?B. 12 l l ⊥, 23 // l l? 13 l l ⊥ C. 233 //// l l l? 1 l, 2 l, 3 l共面D. 1 l, 2 l, 3 l共点? 1 l, 2 l, 3 l共面3.已知m,n是两条不同的直线,,, αβγ是三个不同的平面,下列命题中正确的是:A.若, αγβγ ⊥⊥,则α∥β B.若, m n αα ⊥⊥,则m∥n C.若m∥α,n∥α,则m∥n D.若m∥α,m∥β,则α∥β 4.在四面体ABC P-的四个面中,是直角三角形的面至多有() A.0 个 B.1个 C. 3个 D .4个 5,下列命题中错误 ..的是 A.如果平面αβ ⊥平面,那么平面α内一定存在直线平行于平面βB.如果平面α不垂直于平面β,那么平面α内一定不存在直线垂直于平面β C.如果平面αγ ⊥平面,平面βγ ⊥平面,l= β α ,那么lγ ⊥平面D.如果平面αβ ⊥平面,那么平面α内所有直线都垂直于平面β 6.如图所示正方体 1 AC,下面结论错误的是() A. 1 1 //D CB BD平面 B. BD AC⊥ 1 C. 1 1 1 D CB AC平面 ⊥ D. 异面直线 1 CB AD与角为? 60 7.已知圆锥的全面积是底面积的3倍,那么该圆锥的侧面展开图扇形的圆心角是() A. ? 120 B. ? 150 C. ? 180 D. ? 240

(完整版)高一必修二经典立体几何专项练习题

高一必修二经典立体几何专项练习题 空间中直线与平面、平面与平面之间的位置关系 1、直线与平面有三种位置关系: (1)直线在平面内——有无数个公共点 (2)直线与平面相交——有且只有一个公共点 (3)直线在平面平行——没有公共点 指出:直线与平面相交或平行的情况统称为直线在平面外,可用a α来表示 a α a∩α=A a∥α 2.2.直线、平面平行的判定及其性质 2.2.1 直线与平面平行的判定 1、直线与平面平行的判定定理:平面外一条直线与此平面内的一条直线平行,则该直线与此平面平行。 简记为:线线平行,则线面平行。 符号表示: a α b β => a∥α a∥b 2.2.2 平面与平面平行的判定 1、两个平面平行的判定定理:一个平面内的两条交直线与另一个平面平行,则这两个平面平行。 符号表示: aβ bβ a∩b =pβ∥α a∥α b∥α 2、判断两平面平行的方法有三种: (1)用定义; (2)判定定理; (3)垂直于同一条直线的两个平面平行。

2.2.3 —2.2.4直线与平面、平面与平面平行的性质 1、直线与平面平行的性质定理:一条直线与一个平面平行,则过这条直线的任一平面与此平面的交线与该直线平行。 简记为:线面平行则线线平行。 符号表示: a ∥α a β a∥b α∩β= b 作用:利用该定理可解决直线间的平行问题。 2、两个平面平行的性质定理:如果两个平行的平面同时与第三个平面相交,那么它们的交线平行。 符号表示: α∥β α∩γ=a a∥b β∩γ=b 作用:可以由平面与平面平行得出直线与直线平行 2.3直线、平面垂直的判定及其性质 2.3.1直线与平面垂直的判定 1、定义:如果直线L与平面α内的任意一条直线都垂直,我们就说直线L与平面α互相垂直,记作L⊥α,直线L叫做平面α的垂线,平面α叫做直线L的垂面。如图,直线与平面垂直时,它们唯一公共点P叫做垂足。 P a L 2、直线与平面垂直的判定定理:一条直线与一个平面内的两条相交直线都垂直,则该直线与此平面垂直。 注意点: a)定理中的“两条相交直线”这一条件不可忽视; b)定理体现了“直线与平面垂直”与“直线与直线垂直”互相转化的数学思想。 2.3.2平面与平面垂直的判定 1、二面角的概念:表示从空间一直线出发的两个半平面所组成的图形 A

(完整版)必修二立体几何11道经典证明题

1.如图,三棱柱 ABC — A i B i C i 中,侧棱垂直底面, 1 / ACB=90 , AC=BC= gAA i , D 是棱 AA i 的中点 (I )证明:平面 BDC i 丄平面BDC (n)平面BDC i 分此棱柱为两部分,求这两部分体积的 比? 2?如图5所示,在四棱锥 P ABCD 中, AB 平面 PAD , AB//CD , PD AD , E 是 1 PB 的中点,F 是CD 上的点且 DF —AB , 2 PH PAD 中AD 边上的高? (1) 证明:PH 平面ABCD ; (2) 若 PH i , AD 2, FC i ,求三 (3)证明:EF 平面PAB . 3.如图,在直三棱柱ABC ABG 中,AB i AC i , D ,E 分 别是棱 BC , CC i 上的点(点D 不同于点C ),且AD DE , F 为B,G 的 中点. 求证:(i )平面ADE 平面BCGB,; (2)直线AF 〃平面ADE . 棱锥E BCF 的体积 ; 妥5小

4. 如图,四棱锥P—ABCD中,ABCD为矩形,△ PAD为等腰直角三角 形,/ APD=90 面PAD丄面ABCD,且AB=1 , AD=2 , E、F分别为 PC和BD的中点. (1) 证明:EF//面PAD ; (2) 证明:面PDC丄面PAD ; (3) 求四棱锥P—ABCD的体积. 5. 在如图所示的几何体中,四边形ABCD是正方形, MA 平面ABCD , PD//MA , E、G、F 分别为MB、PB、 PC 的中点,且AD PD 2MA. (I)求证:平面EFG 平面PDC ; (II )求三棱锥P MAB与四棱锥P ABCD的体积之比. B

高中立体几何经典题型练习题(含答案)

高中数学立体几何练习题精选试卷 姓名班级学号得分 说明: 1、本试卷包括第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。满分100分。考试时间90分钟。 2、考生请将第Ⅰ卷选择题的正确选项填在答题框内,第Ⅱ卷直接答在试卷上。考试结束后,只收第Ⅱ卷 第Ⅰ卷(选择题) 一.单选题(每题2分,共40分) 1.设直线l,m和平面α,β,下列条件能得到α∥β的有() ①l?α,m?α,且l∥β,m∥β; ②l?α,m?α且l∥m; ③l∥α,m∥β且l∥m. A.1个B.2个C.3个D.0个 2.一个四面体中如果有三条棱两两垂直,且垂足不是同一点,这三条棱就象中国武术中的兵器--三节棍,所以,我们常把这类四面体称为“三节棍体”,三节棍体ABCD四个顶点在空间直角坐标系中的坐标分别为A(0,0,0)、B(0,4,0)、C(4,4,0)、D(0,0,2),则此三节棍体外接球的表面积是() A.36πB.24πC.18πD.12π

3.一个圆锥的侧面展开图的圆心角为90°,它的表面积为a,则它的底面积为()A.B.C.D. 4、如图,三棱柱ABC-A1B1C1的侧棱长和底面边长均为4,且侧棱AA1⊥底面ABC,其主视图是边长为4的正方形,则此三棱柱的侧视图的面积为() A.16B.2C.4D. 5.三棱锥P-ABC的侧棱PA,PB,PC两两互相垂直,且PA=PB=PC=2,则三棱锥P-ABC的外接球的体积是() A.2πB.4πC.πD.8π 6.在正方体ABCD-A′B′C′D′中,过对角线BD‘的一个平面交AA′于点E,交CC′于点F.则下列结论正确的是() ①四边形BFD′E一定是平行四边形 ②四边形BFD′E有可能是正方形 ③四边形BFD′E在底面ABCD的投影一定是正方形 ④四边形BFD′E有可能垂于于平面BB′D. A.①②③④B.①③④C.①②④D.②③④ 7.如图,在四面体A-BCD中,AB⊥平面BCD,BC⊥CD,若AB=BC=CD=1,则AD=()

高中数学空间向量与立体几何典型例题

空间向量与立体几何典型例题 一、选择题: 1.(2008全国Ⅰ卷理)已知三棱柱111ABC A B C -的侧棱与底面边长都相等,1A 在底面ABC 内的射影为ABC △的中心,则1AB 与底面ABC 所成角的正弦值等于( C ) A . 13 B C D .23 1.解:C .由题意知三棱锥1A ABC -为正四面体,设棱长为a ,则1AB = ,棱柱的高 1 3AO a ===(即点1B 到底面ABC 的距离),故1AB 与底面ABC 所成角的正弦值为113 AO AB =. 另解:设1,,AB AC AA u u u r u u u r u u u r 为空间向量的一组基底,1,,AB AC AA u u u r u u u r u u u r 的两两间的夹角为0 60 长度均为a ,平面ABC 的法向量为111133 OA AA AB AC =--u u u r u u u r u u u r u u u r ,11AB AB AA =+u u u r u u u r u u u r 211112,,33 OA AB a OA AB ?===u u u r u u u r u u u r u u u r 则1AB 与底面ABC 所成角的正弦值为11 1 13OA AB AO AB ?=u u u u r u u u r u u u r u u u r . 二、填空题: 1.(2008全国Ⅰ卷理)等边三角形ABC 与正方形ABDE 有一公共边AB ,二面角 C AB D -- M N ,分别是AC BC ,的中点,则EM AN ,所成角的余弦值等于 6 1 . 1.答案: 1 6 .设2AB =,作CO ABDE ⊥面, OH AB ⊥,则CH AB ⊥,CHO ∠为二面角C AB D -- cos 1CH OH CH CHO ==?∠=,结合等边三角形ABC 与正方形ABDE 可知此四棱锥为正四棱锥,则AN EM ==11(),22AN AC AB EM AC AE =+=-u u u r u u u r u u u r u u u u r u u u r u u u r , 11()()22AN EM AB AC AC AE ?=+?-=u u u r u u u u r u u u r u u u r u u u r 12 故EM AN ,所成角的余弦值1 6 AN EM AN EM ?=u u u r u u u u r u u u r u u u u r 另解:以O 为坐标原点,建立如图所示的直角坐标系, 则点(1,1,0),(1,1,0),(1,1,0),A B E C ----,

高一立体几何经典例题复习课程

立体几何周练 命题人---王利军 一、选择题(每小题5分,共60分) 1、线段AB 在平面α内,则直线AB 与平面α的位置关系是 A 、A B α? B 、AB α? C 、由线段AB 的长短而定 D 、以上都不对 2、下列说法正确的是 A 、三点确定一个平面 B 、四边形一定是平面图形 C 、梯形一定是平面图形 D 、平面α和平面β有不同在一条直线上的三个交点 3、垂直于同一条直线的两条直线一定 A 、平行 B 、相交 C 、异面 D 、以上都有可能 4、在正方体1111ABCD A B C D -中,下列几种说法正确的是 A 、11AC AD ⊥ B 、11D C AB ⊥ C 、1AC 与DC 成45o 角 D 、11AC 与1B C 成 60o 角 5、若直线l ∥平面α,直线a α?,则l 与a 的位置关系是 A 、l ∥a B 、l 与a 异面 C 、l 与a 相交 D 、l 与a 没有公共点 6、下列命题中:(1)、平行于同一直线的两个平面平行;(2)、平行于同一平面的两个平面平行; (3)、垂直于同一直线的两直线平行;(4)、垂直于同一平面的两直线平行.其中正确的个数有 A 、1 B 、2 C 、3 D 、4 7、在空间四边形ABCD 各边AB BC CD DA 、、、上分别取E F G H 、、、四点,如果与EF GH 、能相交于点P ,那么 A 、点必P 在直线AC 上 B 、点P 必在直线BD 上 C 、点P 必在平面ABC 内 D 、点P 必在平面ABC 外 8、a ,b ,c 表示直线,M 表示平面,给出下列四个命题:①若a ∥M ,b ∥M ,则a ∥b ;②若b ?M , a ∥ b ,则a ∥M ;③若a ⊥ c ,b ⊥c ,则a ∥b ;④若a ⊥M ,b ⊥M ,则a ∥b .其中正确命题的个数有 A 、0个 B 、1个 C 、2个 D 、3个 9、一个棱柱是正四棱柱的条件是 A 、底面是正方形,有两个侧面是矩形 B 、底面是正方形,有两个侧面垂直于底面 C 、底面是菱形,且有一个顶点处的三条棱两两垂直 D 、每个侧面都是全等矩形的四棱柱 10、在棱长为1的正方体上,分别用过共顶点的三条棱中点的平面截该正方体,则截去8个

相关主题
文本预览
相关文档 最新文档