当前位置:文档之家› 紫外红外双光谱电力设备在线监测系统

紫外红外双光谱电力设备在线监测系统

紫外红外双光谱电力设备在线监测系统
紫外红外双光谱电力设备在线监测系统

红外测试技术培训试题教案资料

红外测试技术培训试 题

红外测试技术培训试题 一、 单选题 1. 红外成像仪的色标温度量程宜设置在环境温度加 左右的温升范围内。 ( ) (a ) (A )10K-20K (B )5K-10K (C )15K-25K (D )20K-30K 2. 下图中哪个成像图不符合“确保被测设备不被遮蔽”原则( ) (d ) 3. 在进行红外测试时,有以下步骤需要遵循,①重点、温度异常点精确测 温,②全面测温,③环境检测;应遵循的正确顺序为:( ) (c ) (A ) ③①② (B ) ②③① ℃ 51.5℃3540 4550AR01℃51.5℃ 35404550 AR01℃ 51.5℃ 35 40 4550 AR01℃51.5℃ 35 404550 AR01 (A ) (B ) (C ) (D )

(C)③②① (D)②①③ 4.对变压器进行红外诊断,应开变电站第种工作票。()(b) (A) 第一种工作票 (B) 第二种工作票 (C) 第三种工作票 5.在红外诊断对环境的要求中,下列说法不恰当的为()(b) (A) 环境温度一般不宜低于5℃、相对湿度一般不大于85% (B) 最好在阳光充足,天气晴朗的天气进行 (C) 检测电流致热型的设备,最好在高峰负荷下进行。否则,一般应在不低于30%的额定负荷下进行 (D) 在室内或晚上检测应避开灯光的直射,最好闭灯检测 6.在对红外热像仪拍摄的图像进行分析时,采用的是表面温度判别法,下列 解释准确的为( ) (d) (A) 同组三相设备、同相设备之间及同类设备之间对应部位的温差进行相比较 (B) 与红外测试的历史数据作相比较 (C) 在一段时间内使用红外热像仪连续检测某被测设备,观察设备温度随 负载、时间等因素变化的方法。 (D) 将所测得温度、与环境的温差,与设备运行规定值相比较 7.红外检测中,精确检测要求设备通电时间不小于()(c) (A) 2h (B) 4h (C) 6h (D) 8h

电力设备红外精确测温规范及图谱库的建立与 应用

Transmission and Distribution Engineering and Technology 输配电工程与技术, 2015, 4(4), 132-138 Published Online December 2015 in Hans. https://www.doczj.com/doc/589968517.html,/journal/tdet https://www.doczj.com/doc/589968517.html,/10.12677/tdet.2015.44014 文章引用: 李进扬, 刘国兴, 徐声龙, 袁修昉, 韩幸军, 付小华. 电力设备红外精确测温规范及图谱库的建立与应用 Standardization of Accurate Infrared Temperature Measurement for Electric Power Equipment and the Establishment and Application of Atlases Database Jinyang Li 1, Guoxing Liu 2, Shenglong Xu 2, Xiufang Yuan 2, Xingjun Han 3, Xiaohua Fu 4* 1 Hubei Electric Power Company, State Grid Corporation of China, Wuhan Hubei 2Hubei Electric Power Company Maintenance Company, Wuhan Hubei 3Zhoushan Power Supply Company, Zhejiang Electric Power Corporation, State Grid Corporation of China, Zhoushan Zhejiang 4Zhejiang Hannuo Photoelectric Technology Co. Ltd., Jiangshan Zhejiang Received: Dec. 12th , 2015; accepted: Dec. 27th , 2015; published: Dec. 31st , 2015 Copyright ? 2015 by authors and Hans Publishers Inc. This work is licensed under the Creative Commons Attribution International License (CC BY). https://www.doczj.com/doc/589968517.html,/licenses/by/4.0/ Abstract One of the very important features of the intelligent grid construction is the transition from sche-duling maintenance to condition-based maintenance, which places higher demands on the means and effect of grid equipment monitoring. Therefore, how to improve the skills of precise infrared temperature measuring and the informatization level of test data becomes a very urgent issue. This thesis demonstrates the methods of improving the acquisition quality and analysis efficiency by applying standardization and database of the infrared temperature measurement of power equipment. Keywords Smart Power Grid, Infrared Ray, Accurate Temperature Measurement, Database *通讯作者。

红外检测技术介绍-安徽电科院

电网设备状态检测技术培训 ---------红外检测技术
安徽省电力科学研究院 王庆军 2011年3月
输变电设备运维及故障诊断分析技术交流会

主讲人简介
王庆军,安徽省电力科学研究院高压所副所长,国网 公司技术专家 长期从事红外检测技术研究工作 公司技术专家,长期从事红外检测技术研究工作。
输变电设备运维及故障诊断分析技术交流会

? ? ? ? ?
一、红外检测基本知识及术语 红外 测基本 及术语 二、红外热像仪的操作使用 三、判断方法 判断 法 四、诊断依据及缺陷类型确定 、诊断依据及缺陷类型确定 五、电气设备红外缺陷典型图谱
输变电设备运维及故障诊断分析技术交流会

一、红外检测基本知识及术语 红外检测基本知识及术语
? 1 、红外线是 、红外线是一种电磁波(英国物理学家 种电磁波(英国物理学家 赫胥尔 1800 年发 现) (0.75  ̄1000 微米) ,位于可见光红色光带(0.38 ̄0.78 微米)之外,普通玻璃能透过可见光,但是却几乎不能透 过红外线。
输变电设备运维及故障诊断分析技术交流会

? 2 2、热传输的方式 热传输的方式 热传输有三种方式,分别是:传导、对流和辐射。对流通常只发生 在流体介质中。 介质中 ? 3、红外热像仪一般是由三部分组成: 红外探测头、图像处理、监视器。 ? 4、焦平面红外探测器的工作原理: 是依靠探测微型辐射热量的热探测器(Microbolometer)。探测器通过吸 收 射的红外辐射致使自身温度上升,从而引起探测器电阻变化,在 收入射的红外辐射致使自身温度上升,从而引起探测器电阻变化,在 外加电压的情况下进而产生信号电压。 ? 5、黑体: 任何情况下对一切波长的入射辐射的吸收率都等于1的物体。
输变电设备运维及故障诊断分析技术交流会

红外光谱与拉曼光谱的异同点

红外光谱与拉曼光谱的异同点 红外光谱又叫做红外吸收光谱,它是红外光子与分子振动、转动的量子化能级共振产生吸收而产生的特征吸收光谱曲线。要产生这一种效应,需要分子内部有一定的极性,也就是说存在分子内的电偶极矩。在光子与分子相互作用时,通过电偶极矩跃迁发生了相互作用。因此,那些没有极性的分子或者对称性的分子,因为不存在电偶极矩,基本上是没有红外吸收光谱效应的。 拉曼光谱一般也是发生在红外区,它不是吸收光谱,而是在入射光子与分子振动、转动量子化能级共振后以另外一个频率出射光子。入射和出射光子的能量差等于参与相互作用的分子振动、转动跃迁能级。与红外吸收光谱不同,拉曼光谱是一种阶数更高的光子——分子相互作用,要比红外吸收光谱的强度弱很多。但是由于它产生的机理是电四极矩或者磁偶极矩跃迁,并不需要分子本身带有极性,因此特别适合那些没有极性的对称分子的检测。 一、相同点在于: 对于一个给定的化学键,其红外吸收频率与拉曼位移相等,均代表振动能级的能量。因此,对某一给定的化合物,某些峰的红外吸收波数和拉曼位移完全相同,红外吸收波数与拉曼位移均在红外光区,两者都反映分子的结构信息。拉曼光谱和红外光谱一样,也是用来检测物质分子的振动和转动能级。 二、不同点在于: 两者产生的机理不同;红外光谱的入射光及检测光均为红外光,而拉曼光谱的入射光大多数是可见光,散射光也是可见光;红外光谱测定的是光的吸收,而拉曼测定的是光的散射;红外光谱对于水溶液、单晶和聚合物的检测比较困难,但拉曼光谱几乎可以不必特别制样处理就可以进行分析,比较方便;红外光谱不可以用水做溶剂,但是拉曼可以,水似拉曼光谱的一种优良溶剂;拉曼光谱的是利用可见光获得的,所以拉曼光谱可用普通的玻璃毛细管做样品池,拉曼散射光能全部透过玻璃,而红外光谱的样品池需要特殊材料做成的。 本质区别:红外是吸收光谱,拉曼是散射光谱;拉曼光谱光谱与红外光谱两种技术包含的信息通常是互补的。 主要区别:

拉曼光谱、红外光谱、XPS的原理及应用..

拉曼光谱的原理及应用 拉曼光谱由于近几年来以下几项技术的集中发展而有了更广泛的应用。这些技术是:CCD 检测系统在近红外区域的高灵敏性,体积小而功率大的二极管激光器,与激发激光及信号过滤整合的光纤探头。这些产品连同高口径短焦距的分光光度计,提供了低荧光本底而高质量的拉曼光谱以及体积小、容易使用的拉曼光谱仪。 (一)含义 光照射到物质上发生弹性散射和非弹性散射. 弹性散射的散射光是与激发光波长相同的成分.非弹性散射的散射光有比激发光波长长的和短的成分, 统称为拉曼效应当用波长比试样粒径小得多的单色光照射气体、液体或透明试样时,大部分的光会按原来的方向透射,而一小部分则按不同的角度散射开来,产生散射光。在垂直方向观察时,除了与原入射光有相同频率的瑞利散射外,还有一系列对称分布着若干条很弱的与入射光频率发生位移的拉曼谱线,这种现象称为拉曼效应。由于拉曼谱线的数目,位移的大小,谱线的长度直接与试样分子振动或转动能级有关。因此,与红外吸收光谱类似,对拉曼光谱的研究,也可以得到有关分子振动或转动的信息。目前拉曼光谱分析技术已广泛应用于物质的鉴定,分子结构的研究谱线特征 (二)拉曼散射光谱具有以下明显的特征: a.拉曼散射谱线的波数虽然随入射光的波数而不同,但对同一样品,同一拉曼谱线的位移与入射光的波长无关,只和样品的振动转动能级有关; b. 在以波数为变量的拉曼光谱图上,斯托克斯线和反斯托克斯线对称地分布在瑞利散射线两侧, 这是由于在上述两种情况下分别相应于得到或失去了一个振动量子的能量。 c. 一般情况下,斯托克斯线比反斯托克斯线的强度大。这是由于Boltzmann分布,处于振动基态上的粒子数远大于处于振动激发态上的粒子数。 (三)拉曼光谱技术的优越性 提供快速、简单、可重复、且更重要的是无损伤的定性定量分析,它无需样品准备,样品可直接通过光纤探头或者通过玻璃、石英、和光纤测量。此外 1 由于水的拉曼散射很微弱,拉曼光谱是研究水溶液中的生物样品和化学化合物的理想工具。 2 拉曼一次可以同时覆盖50-4000波数的区间,可对有机物及无机物进行分析。相反,若让红外光谱覆盖相同的区间则必须改变光栅、光束分离器、滤波器和检测器 3 拉曼光谱谱峰清晰尖锐,更适合定量研究、数据库搜索、以及运用差异分析进行定性研究。在化学结构分析中,独立的拉曼区间的强度可以和功能集团的数量相关。 4 因为激光束的直径在它的聚焦部位通常只有0.2-2毫米,常规拉曼光谱只需要少量的样品就可以得到。这是拉曼光谱相对常规红外光谱一个很大的优势。而且,拉曼显微镜物镜可将激光束进一步聚焦至20微米甚至更小,可分析更小面积的样品。 5 共振拉曼效应可以用来有选择性地增强大生物分子特个发色基团的振动,这些发色基团的拉曼光强能被选择性地增强1000到10000倍。 (四)几种重要的拉曼光谱分析技术 1、单道检测的拉曼光谱分析技术 2、以CCD为代表的多通道探测器用于拉曼光谱的检测仪的分析技术 3、采用傅立叶变换技术的FT-Raman光谱分析技术 4、共振拉曼光谱分析技术 5、表面增强拉曼效应分析技术 (五) 拉曼频移,拉曼光谱与分子极化率的关系 1、拉曼频移:散射光频与激发光频之差,取决于分子振动能级的改变,所以它是特征的,

红外检测技术介绍

红外探测技术 红外检测技术基本原理 红外技术的原理是基于自然界中一切温度高于绝对零度的物体,每时每刻都辐射出红外线,同时,这种红外线辐射都载有物体的特征信息,这就为利用红外技术探测和判别各种被测目标的温度高低与热分布场提供了客观的基础。 红外线是波长在0. 76?1000 U m之间的一种电磁波,按波长范围可分为近红外、中红外、远红外、极远红外四类,它在磁波连续频谱中的位置是处于无线电波与可见光之间的区域。 红外线辐射在真空中的传播速度 C=299792458m/s ?3xlO lu cm/s 红外辐射的波长 A = — co 式中:C:速度 2:波长 3 :频率 红外线辐射是自然界存在的一种最为广泛的电磁波辐射,它是基于任何物体在常规环境下都会产生自身的分子和原子无规则的运动,并不停的辐射出热红外能量,分子和原子的运动愈剧烈,辐射的能量愈大,反之,辐射的能量愈小。 温度在绝对零度以上的物体,都会因自身的分子运动而辐射出红外

线。其中黑体频谱辐射能流密度对红外辐射波长的关系,根据普郎克定律: D一GxL (瓦?厘米”"微米") 式中: P一波长%,热力r AT 学温度为T时,黑体的红外辐射功率。 C一光速度 (axiomcm/s) C—第一辐射常 数二3.7415X104(瓦厘米?微米2) 之一波长(微米),T热力学 温度(K)温度辐射的能量密 度峰值对应的 波长,随物体温度的升高波长变短。 根据维思定律:人理(urn) T 式中: A一峰值波长,单位:um T一物体的绝对温度单位K 物体的红外辐射功率与物体表面绝对温度的四次方成正比,与物体表面的发 射率成正比。物体红外辐射的总功率对温度的关系,根据斯蒂芬—波尔兹曼定 律:

电力设备带电检测技术规范20130530

电力设备带电检测技术规范 国家电网公司 2010年1月

目录 前言 .............................................................................................................................................. I 1范围 . (1) 2规范性引用文件 (1) 3定义 (1) 5变压器检测项目、周期和标准 (4) 6套管检测项目、周期和标准 (5) 7电流互感器检测项目、周期和标准 (6) 8电压互感器、耦合电容器检测项目、周期和标准 (8) 9避雷器检测项目、周期和标准 (9) 10 GIS本体检测项目、周期和标准 (10) 11开关柜检测项目、周期和标准 (12) 12敞开式SF6断路器检测项目、周期和标准 (12) 13高压电缆带电检测项目、周期和标准 (13) 附录A 高频局部放电检测标准 (17) 附录B 高频局部放电检测典型图谱 (18) 附录C GIS超高频局部放电检测典型图谱 (21) 附录D 高压电缆局部放电典型图谱 (29) 附录E 编制说明 (30)

Q/GDW ××××-2009 前言 电力设备带电检测是发现设备潜伏性运行隐患的有效手段,是电力设备安全、稳定运行的重要保障。为规范和有效开展电力设备带电检测工作,参考国内外有关标准,结合实际情况,制订本规范。 本标准附录A为规范性附录,附录B、附录C、附录D为资料性附录。 本标准由国家电网公司生产技术部提出。 本标准由国家电网公司科技部归口。 本标准主要起草单位:北京市电力公司、中国电力科学研究院、国网电力科学研究院 本标准参加起草单位:江苏省电力公司、福建省电力公司、湖北省电力公司 本标准的主要起草人:刘庆时、张国强、丁屹峰、韩晓昆、黄鹤鸣、杨清华、赵颖、闫春雨、毛光辉、彭江、牛进仓、孙白、王承玉 本标准由国家电网公司生产部负责解释。 本标准自发布之日起实施。

紫外-可见吸收光谱与红外光谱.

紫外-可见吸收光谱与红外光谱 基本概念 紫外-可见吸收光谱:让不同波长的光通过待测物,经待测物吸收后,测量其对不同波长光的吸收程度(吸光度A),以吸光度A为纵坐标,辐射波长为横坐标作图,得到该物质的吸收光谱或吸收曲线,即为紫外—可见吸收光谱。 红外光谱:又称为分子振动转动光谱,属分子吸收光谱。样品受到频率连续变化的红外光照射时,分子吸收其中一些频率的辐射,分子振动或转动引起偶极矩的净变化,使振-转能级从基态跃迁到激发态,相应于这些区域的透射光强减弱,记录百分透过率T%对波数或波长的曲线,即为红外光谱。 两者都是红分了的吸收光谱图。 区别--起源不同 1.紫外吸收光谱由电子能级跃迁引起紫外线波长短、频率高、光子能量大,能引起分子外层电子的能级跃迁。电子跃迁虽然伴随着振动及转动能级跃迁,但因后者能级差小,常被紫外曲线所淹没。除某些化合物蒸气(如苯等)的紫外吸收光谱会显现振动能级跃起迁外,一般不显现。因此,紫外吸收光谱属电子光谱。光谱简单。 2.中红外吸收光谱由振—转能级跃迁引起? 红外线的波长比紫外线长,光子能量比紫外线小得多,只能收起分子的振动能级并伴随转动能级的跃迁,因而中红外光谱是振动—转动光谱,光谱复杂。 适用范围 紫外吸收光谱法只适用于芳香族或具有共轭结构的不饱和脂肪族化合物及某些无物的定性分析,不适用于饱和有机化合物。红外吸收光谱法不受此限,在中红外区,能测得所有有机化合物的特征红外光谱,用于定性分析及结构研究,而且其特征性远远高于紫外吸收光谱,除此之外,红外光谱还可以用于某些无机物的研究。 紫外分光光度法测定对象的物态以溶液为主,以及少数物质的蒸气;而红外分光光度法的测定对象比紫外分光光度法广泛,可以测定气、液、固体样品,并以测定固体样品最为方便。 红外分光光度法主要用于定性鉴及测定有机化合物的分子结构,紫外分光光度法主要用于定量分析及测定某些化合物的类别等。 特性 红外光谱的特征性比紫外光谱强。因为紫外光谱主要是分子的∏电子或n电子跃迁所产生的吸收光谱。因此,多数紫外光谱比较简单,特征性差。 UV-Vis主要用于分子的定量分析,但紫外光谱(UV)为四大波谱之一,是

红外光谱与拉曼光谱的区别

红外光谱与拉曼光谱的区别 1) 拉曼谱峰比较尖锐,识别混合物,特别是识别无机混合物要比红外光谱容易。 2) 在鉴定有机化合物方面,红外光谱具有较大的优势,主要原因是红外光谱的标准数据库比拉曼光谱的丰富。 3)在鉴定无机化合物方面,拉曼光谱仪获得400cm-1以下的谱图信息要比红外光谱仪容易得多。所以一般说来,无机化合物的拉曼光谱信息量比红外光谱的大。4)拉曼光谱与红外光谱可以互相补充、互相佐证。 红外光谱与拉曼光谱的比较 1、相同点 对于一个给定的化学键,其红外吸收频率与拉曼位移相等,均代表第一振动能级的能量。因此,对某一给定的化合物,某些峰的红外吸收波数与拉曼位移完全相同,红外吸收波数与拉曼位移均在红外光区,两者都反映分子的结构信息。 2、不同点 (1)红外光谱的入射光及检测光均是红外光,而拉曼光谱的入射光大多数是可见光,散射光也是可见光; (2)红外谱测定的是光的吸收,横坐标用波数或波长表示,而拉曼光谱测定的是光的散射,横坐标是拉曼位移; (3)两者的产生机理不同。红外吸收是由于振动引起分子偶极矩或电荷分布变化产生的。拉曼散射是由于键上电子云分布产生瞬间变形引起暂时极化,是极化率的改变,产生诱导偶极,当返回基态时发生的散射。散射的同时电子云也恢复原态; (4)红外光谱用能斯特灯、碳化硅棒或白炽线圈作光源而拉曼光谱仪用激光作光源;(5)用拉曼光谱分析时,样品不需前处理。而用红外光谱分析样品时,样品要经过前处理,液体样品常用液膜法和液体样品常用液膜法,固体样品可用调糊法,高分子化合物常用薄膜法,体样品的测定可使用窗板间隔为2.5-10 cm的大容量气体池; (6)红外光谱主要反映分子的官能团,而拉曼光谱主要反映分子的骨架主要用于分析生物大分子;(7)拉曼光谱和红外光谱可以互相补充,对于具有对称中心的分子来说,具有一互斥规则:与对称中心有对称关系的振动,红外不可见,拉曼可见;与对称中心无对称关系的振动,红外可见,拉曼不可见。 拉曼光谱和红外光谱的区别 红外光谱和拉曼光谱都属于分子振动光谱,都是研究分子结构的有力手段。红外光谱测定的是样品的透射光谱。当红外光穿过样品时,样品分子中的基团吸收红外光产生振动,使偶极矩发生变化,得到红外吸收光谱。拉曼光谱测定的是样品的发射光谱。当单色激光照射在样品上时,分子的极化率发生变化,产生拉曼散射,检测器检测到的是拉曼散射光。 单色激光照射样品后,产生瑞利散射和拉曼散射。瑞利散射是激光的弹性散射,不负载样品的任何信息。拉曼散射又分为斯托克斯散射和反斯托克斯散射,拉曼散射负载有样品的信息。

红外拉曼光谱复习题

红外、拉曼光谱习题 三.问答题 1. 分子的每一个振动自由度是否都能产生一个红外吸收?为什么? 答:(1)产生条件:激发能与分子的振动能级差相匹配,同时有偶极矩的变化。并非所有的分子振动都会产生红外吸收光谱,具有红外吸收活性,只有发生偶极矩的变化时才会产生红外光谱。 (2)产生红外吸收的条件: 1)红外辐射的能量应与振动能级差相匹配。即 v E E ?=光; 2)分子在振动过程中偶极矩的变化必须不等于零。 故只有那些可以产生瞬间偶极距变化的振动才能产生红外吸收。 2. 如何用红外光谱区别下列各对化合物? a P-CH 3-Ph-COOH 和Ph-COOCH 3 b 苯酚和环己醇 答:a 、在红外谱图中P-CH 3-Ph-COOH 有如下特征峰:vOH 以3000cm-1为中心 有一宽而散的峰。而Ph-COOCH3没有。 b 、苯酚有苯环的特征峰:即苯环的骨架振动在1625~1450cm-1之间,有几个 吸收峰,而环己醇没有。 3. 下列振动中哪些不会产生红外吸收峰? (1)CO 的对称伸缩 (2)CH 3CN 中C —C 键的对称伸缩 (3)乙烯中的下列四种振动 (A ) (B ) (C ) (D )

答:(1)0 ≠ ?μ,有红外吸收峰 (2)0 ≠ ?μ,有红外吸收峰 (3)只有D无偶极矩变化,无红外吸收峰 4、下列化合物在红外光谱中哪一段有吸收?各由什么类型振动引起? HO— CH = O CH3—CO2CH2C≡CH (A)(B) 答:(A)HO C-H :v OH3700~3200cm-1 δOH1300~1165cm-1 v CH(O)2820~2720cm-1双峰 v C=O1740~1720cm-1 苯骨架振动:1650~1450 cm-1 苯对位取代:860~800 cm-1 v=CH3100~3000cm-1 (B)CH3—COCH2C≡CH : v C=O1750~1735cm-1 v C—O—C1300~1000cm-1 v C≡C2300~2100cm-1 v≡CH3300~3200cm-1 v as C—H2962±10cm-1、2926±5cm-1 v s C—H2872±10cm-1、2853±10cm-1 δas C—H1450±20cm-1、1465±20cm-1 δs C—H1380~1370cm-1 5、红外光谱(图10-28)表示分子式为C8H9O2N的一种化合物,其结构与下列结构式哪一个符合? O

《带电设备红外诊断技术应用导则》DLT

带电设备红外诊断技术应用导则 参照中华人民共和国 电力行业标准DL/T664-1999《带电设备红外诊断技术应用导则》 《华北电网有限公司红外技术管理制度》 1、从事红外检测与诊断工作的人员应具备以下素质: (1)从事红外检测与诊断工作的人员应熟悉红外检测与诊断技术的基本原理,掌握红外检测仪器的工作原理、主要性能、技术指标以及操作方法,并能熟练操作红外检测仪器。 (2)从事红外检测与诊断工作的人员应了解电气设备的性能、结构、运行状况。 (3)从事红外检测与诊断工作的人员应熟悉掌握中华人民共和国电力行业标准DL/T664-1999《带电设备红外诊断技术应用导则》和本管理制度,掌握《国家电网公司电力安全工作规程(变电站和发电厂电气部分、电力线路部分)(试行)》和现场试验的有关安全规定。 2、红外检测的范围:只要表面发出的红外辐射不受阻挡都属于红外诊断的有效监测设备。例如:旋转电机、变压器、断路器、互感器、电力电容器、避雷器、电力电缆、母线、导线、绝缘子串、组合电器、低压电器及二次回路等。 二、红外检测与诊断的基本要求 (一)对检测设备的要求 1、红外测温仪应操作简单,携带方便,测温精确度高,测量结果的重复性好,不受测量环境中高压电磁场的干扰,仪器应满足现场带电实测对距离的要求,并应能对表面放射率、大气环境参数、测量距离等进行修正以保证测量结果的真实性。 2、红外热电视应操作简单携带方便,有较好的测温精确度,测量结果的重复性好,不受测量环境中高压电磁场的干扰图像清晰,具有图像锁定、记录、输出和简单的分析功能。 3、红外热像仪应图象清晰、稳定,不受测量环境中高压电磁场的干扰,具有较强的图象分析功能,具有较高的热传感分辨率和图象分辨率,空间分辨率应满足实测距离的要求,具有较高的测量精确度和合适的测温范围。 (二)对被检测设备的要求 1、被检测设备应为带电设备。

红外光谱、拉曼和紫外作业

1.比较C=C和C=O键的伸缩振动,谱带强度更大的是C=O。 2.何谓基团频率?它有什么重要性及用途? 答: 不同分子中同一类型的化学基团,在红外光谱中的吸收频率总是出现在一个较窄的范围内,这种吸收谱带的频率称为基团频率。 它们不随分子构型的变化而出现较大的改变,可用作鉴别化学基团。基团频率区在4000~1300厘米-1,其中4000~2500厘米-1为单键伸缩振动区,2500~1900厘米-1为叁键和累积双键区,1900~1300厘米-1为双键伸缩振动区和单键弯曲振动区。 3.某化合物C8H9NO2,试根据如下谱图推断其结构,并说明依据。 答:U=8-(1-9)/2 + 1 =5,推断有苯环和C=C或C=O δ=3.8,单峰,归属CH3,推测为O-CH3

δ=7.1,7.8,均是双峰,归属Ar-H,是苯环对位取代特征峰 δ=7.2,双峰,推测可能为-NH2 3392cm-1,3172cm-1,N-H伸缩振动,双峰说明可能是-NH2 1651cm-1,N-H变形振动 1618cm-1,1574cm-1,1516cm-1,1423cm-1,芳环C=C伸缩振动 1397cm-1,甲基变形振动 1254cm-1,C-O-C伸缩振动吸收峰 853cm-1,苯环相邻两个H原子=C-H的面外变形振动,苯环对位取代的特征 故推测结构为 4.紫外吸收光谱有哪些基本特征? 答: (1)紫外吸收光谱所对应的电磁波长较短,能量大,它反映了分子中价电子能级跃迁情况。主要应用于共轭体系(共轭烯烃和不饱和羰基化合物)及芳香族化合物的分析。(2)由于电子能级改变的同时,往往伴随有振动能级的跃迁,所以电子光谱图比较简单,但峰形较宽。一般来说,利用紫外吸收光谱进行定性分析信号较少。 (3)紫外吸收光谱常用于共轭体系的定量分析,灵敏度高,检出限低。 5.光度分析误差的主要来源有哪些?如何降低光度分析的误差? 1对朗伯-比尔定律的偏离: (1)非单色光引起的偏离。◎使用比较好的单色器,从而获得纯度较高的“单色光”,使标准曲线有较宽的线性范围。◎人射光波长选择在被测物质的最大吸收处,保证测定有较高的灵敏度,此处的吸收曲线较为平坦,在此最大吸收波长附近各波长的光的?值大体相等,由于非单色光引起的偏离要比在其他波长处小得多。◎测定时应选择适当的浓度范围,使吸光度读数在标准曲线的线性范围内。 (2)介质不均匀引起的偏离。故在光度法中应避免溶液产生胶体

主要电力设备故障图像特征及识别方法研究改

摘要 摘要内容 伴随着我国电网规模的日益加大,各类变电设备的运作状态是促使其安全高效运行的最为主要的因素之一。对于各类变电设备的在线状态监测系统的推广越来越发普及。研究基于图像特征的电力设备自动故障识别具有重要意义。 本文对各类主要电力设备,研究各类变电设备故障识别分类及相应故障的图像特征,以及基于红外与紫外图像特征的故障识别方法。对于紫外放电成像技术图像的处理与特征提取,本文从紫外成像技术的基本原理出发,在讲解紫外放电图片特性的基础上,对紫外放电图像使用灰度化预处理,以及应用中值滤波等方法对图像进行降噪。并通过canny算子边缘检测计算紫外光斑面积判断是否发生放电故障。针对红外故障图像,本文在红外成像原理的基础上,对红外图像进行超像素分割及HSV空间颜色提取,对应用卷积神经网络对红外故障图像故障区域检测进行理论上的研究。 关键词:红外成像紫外成像图像处理

ABSTRACT With the increasing scale of China's power grid, the operation of various types of substation equipment is one of the most important factors to promote the safe and efficient operation. The popularization of the on-line condition monitoring system for all kinds of transformer equipment is becoming more and more popular. Research on image feature based automatic fault recognition of power equipment is of great significance. In this paper, various types of main power equipment, the study of various types of substation equipment fault identification and classification of image features, as well as infrared and ultraviolet image features based on fault identification method. For ultraviolet discharge imaging technique to image processing and feature extraction, this paper from the basic principle of UV imaging technology of on the explanation of the ultraviolet discharge picture characteristics based and discharge on the UV image using grayscale preprocessing and application of median filtering method of image in noise reduction. And through the Canny operator edge detection to determine whether the area of the UV spot to determine whether the discharge fault. Aiming at the

红外检测方法

红外检测方法 红外线的划分 1672年英国著名科学家牛顿首次用三棱镜将太阳光分解为红、橙、黄、绿、青、兰、紫七色,开始了可见光光谱学的研究.英国著名天文学家赫胥尔在研究太阳光谱中各单色光的热效应时,发现最大的热效应是出现在红色光谱以外,从而发现了红外线的存在。英国著名物理学家马克斯威尔在研究电磁理论时,证实了可见光及看不见的红外线,紫外线等均属于电磁波段的一部分,从而把人们的认识统一到电磁波理论中。从波长为数千米的无线电波, 到波长为10-8A ~10-10A(1A=10-4 μm )的宇宙射线均属于电磁波的范围,而可见光谱的波长从0.4~0.76μm 仅占电磁波中极窄的一部波段。红外光谱的波段为0.76~1000μm ,要比可见光波段宽得多。为了研究和应用的方便。根据红外辐射与物质作用时各波长的响应特性和在大气中传输吸收的特性,可把红外线按波长划分为四部分: ①近红外线——波长为0.76~3 μm ; ②中红外线——波长为3~6 μm ; ③远红外线——波长为6~15 μm ; ④超远红外线——波长为15~1000 μm 目前,600 ℃以上的高温红外线仪表多利用近红外波段。600℃以下的中、低温测温仪表面热成像系统多利用中、远红外线波段,而红外线加热装置则主要利用远红外线波段。超远红外线的利用尚在开发研究中。 红外线辐射的基本定理 ①辐射能 Q ——辐射源以电磁波形式所辐射的能量(J)。 ②辐射功率 P ——辐射源在单位时间内向整个半球空间所发射的能量 (w /s)。 ③辐射度M ——辐射源单位面积所发射的功率, ( W/m -2 )。一般,源的表面积A 越大,发射的功率也越多。因此辐射度M 是描述辐射功率P 沿源表面分布的特性。辐射度在某些文献上又称为辐出度或辐射出射度等。 ④光谱辐射度M λ——表示在波长λ处单位波长间隔内,辐射源单位面积所发射的功率。即 单位波长的辐射度, ( W/m 2·μm ),通常辐射源所发出的红外电磁波都是由多种波长成分所组成(全波辐射)。前述的辐射度M 是描述全波辐射的,因此又称为全辐射 度。而光谱辐射度则是描述某一特定波长成分的辐射度。而光谱辐射度则是描述某一特定波长成分的辐射度。 ⑤黑体的概念——黑体是为了研究方便而引入的一种理想物体。它定义为能在任何温度下将辐射到它表面上的任何波长的热辐射能全部吸收;并与其它任何物体相比,在相同温度和相同表面积的情况下其辐射功率为最大的一种物体。黑体辐射可用黑体炉来模拟。对 此,19世纪末叶的物理学家们曾做了大量实验工作,为非黑体辐射的研究奠定了基础。 ⑥比辐射率 ——定义为在相同温度及相同的条件下,实际物体(非黑体)与黑体的辐射度的比值,即: 黑体的辐射度实际物体的辐射度==b M M ε 有的文献还定义了光谱比辐射率 黑体的光谱辐射度实际物体的光谱辐射度== b λλεM M Q P t ?=?P M A ?=?M M λλ?=?

电气设备红外检测程序

电气设备红外检测程序 1、前言 A)设备红外诊断技术三大主要应用 ?定时或连续测定设备表面一定范围内的温度或温度变化情况,实现无接触测温。 ?普查设备上可能存在的热状态异常和潜伏的热故障点,实现设备大范围、高效率在线检测。 ?对设备热状态进行大量的数据采集、处理、分析和存储,实现设备热特性的分析和设备诊断。 B)应用特点 ?操作安全:由于进行红外热成像检查时不需要与设备进行接触,所以操作时十分安全。 ?灵敏度高:由于红外探测器具有很高的灵敏度,因此可以诊断出设备细微的热状态变化。 ?检查效率高: 效率很高,数据采集速度都很快。 ?可进行计算机分析:可以对设备热状态和变化进行各种计算、分析处理和在线检测,以及建立设备热数据库。 ?红外热像仪价格都远高于常规测温仪表,所以在能够使用一般测温仪表的场合,不特别推荐使用红外热像。 C)电力行业的应用 ?适用于电压致热效应、电流致热效应及其它制热效应的各电压等级设备,包括电机、变压器、发电机、电抗器、断路器、隔

离开关、互感器、套管、避雷器、电力电缆、母线、绝缘子、 组合电器、低压电器及一次回路、二次回路等。 ?红外线不具备穿透性,只能测量物体表面温度,存在较大的局 限性;公司电力设备大部分采用组合式开关柜且无红外窗口, 柜内各元器件的实际温度无法测量,更不能准确的通过温度来 考量设备的运行状况。 ? 2、检测要求 ?被检测设备是带电运行设备,应尽量避开视线中的封闭遮蔽物,如门和盖板等。 ?环境温度一般不低于5℃,相对湿度一般不大于85%;天气以 阴天、多云为宜,夜间图像质量为佳;不应在雷、雾、雪等气 象条件下进行。 ?户外晴天要避开阳光直射和反射进入仪器镜头,在室内或晚上 检测应避开灯光的直射,有条件可关灯检测。 ?检测电流致热型设备,最好在高峰负荷下进行,否则一般应在 不低于30%的额定负荷下进行,对于间歇性负载应在设备运行 时进行。 ?作为一般检测,被测设备的辐射率一般取0.9左右。 ?红外检测周期为每季度一次,分四个列表,每班依次循环进行,每年每班均完成所有列表任务,并做好检测记录,存在问题或 缺陷的设备应建立红外检测分析报告,格式见下表。

红外拉曼光谱练习题

红外、拉曼光谱习题 一. 选择题 1.红外光谱是( AE ) A :分子光谱 B :原子光谱 C :吸光光谱 D :电子光谱 E :振动光谱 2.当用红外光激发分子振动能级跃迁时,化学键越强,则( ACE ) A :吸收光子的能量越大 B :吸收光子的波长越长 C :吸收光子的频率越大 D :吸收光子的数目越多 E :吸收光子的波数越大 3.在下面各种振动模式中,不产生红外吸收的是(AC ) A :乙炔分子中对称伸缩振动 B :乙醚分子中不对称伸缩振动 C :CO 2分子中对称伸缩振动 D :H 2O 分子中对称伸缩振动 E :HCl 分子中H -Cl 键伸缩振动 4.下面五种气体,不吸收红外光的是( D ) A:O H 2 B:2CO C:HCl D:2N 5 分子不具有红外活性的,必须是( D ) A:分子的偶极矩为零 B:分子没有振动 C:非极性分子 D:分子振动时没有偶极矩变化 E:双原子分子 6.预测以下各个键的振动频率所落的区域,正确的是( ACD ) A:O-H伸缩振动数在4000~25001 -cm B:C-O 伸缩振动波数在2500~15001 -cm C:N-H 弯曲振动波数在4000~25001 -cm D:C-N 伸缩振动波数在1500~10001 -cm E:C ≡N 伸缩振动在1500~10001 -cm 7.下面给出五个化学键的力常数,如按简单双原子分子计算,则在红外光谱中波数最大者是( B ) A:乙烷中C-H 键,=k 5.1510?达因1 -?cm B: 乙炔中C-H 键, =k 5.9510?达因1 -?cm

C: 乙烷中C-C 键, =k 4.5510?达因1 -?cm D: CH 3C ≡N 中C ≡N 键, =k 17.5510?达因1 -?cm E:蚁醛中C=O 键, =k 12.3510?达因1 -?cm 8.基化合物中,当C=O 的一端接上电负性基团则( ACE ) A:羰基的双键性增强 B:羰基的双键性减小 C:羰基的共价键成分增加 D:羰基的极性键成分减小 E:使羰基的振动频率增大 9.以下五个化合物,羰基伸缩振动的红外吸收波数最大者是( E ) A: B: C: D: E: 10.共轭效应使双键性质按下面哪一种形式改变( ABCD ) A:使双键电子密度下降 B:双键略有伸长 C:使双键的力常数变小 D.使振动频率减小 E:使吸收光电子的波数增加 11.下五个化合物羰基伸缩振动的红外吸收波数最小的是( E ) A: B: C: D: E: 12.下面四个化合物中的C=C 伸缩振动频率最小的是( D ) A: B: C: D: 13.两 个化合物(1) ,(2) 如用红外光谱鉴别,主要依 据的谱带是( C )

电力设备检测中红外热成像技术的应用分析

电力设备检测中红外热成像技术的应用分析 摘要:随着经济社会的快速发展,居民的日常生活和企业的生产活动对电能的 要求越来越高。随着电力设备和电网负荷的爆炸性增长,电网系统中许多潜在的 危险因素正在威胁着人们的生命财产安全。为了保证设备的安全稳定运行,电力 设备的状态检修和故障诊断显得尤为重要。随着电力系统和设备的发展,故障的 准确度、可靠性和安全性越来越低,使得故障的及时识别和诊断变得越来越困难。因此,迫切需要一种新的检测方法。目前,由于红外检测技术在设备检测中具有 无损、快速、方便、非接触等优点,红外检测技术在电力系统故障检测中得到迅 速推广,成为研究和探讨的热点。 关键词:电力设备检测;红外热成像技术;应用 1电力设备传统故障检测方法综述 1.1主观诊断 以往在电力设备检修过程中,相关仪器设备很少使用,往往是检修人员根据 自身经验判断的关键。维修人员往往通过听、看、闻、摸等感官和自己的直觉和 经验,大致定位故障的原因和位置,然后选择适当的措施来处理仪器故障。该方 法包括直观检测、参数测量、逻辑分析和故障数分析。这种方法虽然省时省力, 但诊断精度往往达不到要求,只能找到故障的大致位置,而不能直接找到准确的 故障设备。同时,这种方法有时需要现场操作,会对维修人员的生命安全造成一 定威胁。如果停电,将影响正常的生产和生活。 1.2数学模型诊断方法 数学模型诊断是指在动态测试技术和传感技术相结合的前提下,应用数字处 理技术和建模技术对电力设备进行故障诊断。主要包括参数估计和状态估计两种 方法。在获得电力设备当前运行参数的前提下,与预测的信息和数据进行比较, 分析故障的位置和原因。这种技术不需要大量的人工参与,相对安全,是我国较 为先进的技术之一。然而,目前电网和设备的数学参数模型的建立是一个非常复 杂的过程,特别是在电网分布复杂的城镇地区,这种方法的应用难度更大。 1.3光谱分析与诊断 频谱分析与诊断方法可用于电力电子系统故障原因分析。在用波形分析法诊 断电力电子系统故障过程中,如果存在强噪声,通常是波形不能真实反映噪声特 性的信号。因此,频谱分析法可用于电力电子系统故障诊断。该方法能有效地提 取信号中的噪声,然后根据噪声的详细特征,快速准确地诊断出系统故障的原因 和位置,进而排除故障。 2红外热成像技术在电力设备状态检修工作中的运用方法 2.1运用红外热成像技术进行电力设备检测的准备工作 运用红外热成像技术进行电力设备运行状态检测时,需要电力设备做好以下 几方面准备工作:首先,红外热成像技术对检测环境有一定要求。在检测过程中 需要电力设备带电运行,需要保证设备温度高于5℃,环境湿度需要控制在85% 以下,环境风速需要达到5m/s以下。因此,可以选择阴天或者夜晚进行检测, 但是雨雪天气或者大雾天气等会影响红外热成像检测结果。如果在晴天或者白天 进行检测,需要注意不能让强光直接照射在设备探测头上;如果在室内或者夜晚 进行检测,需要注意是否有灯光直射探测头,最好是闭灯检测。此外,在检测时 需要注意躲避强磁场的干扰。其次,需要注意红外热成像仪的使用要求。红外热 成像仪由于型号及精密程度不同,需要注意不同的红外热成像仪的检测温度范围、

相关主题
文本预览
相关文档 最新文档