当前位置:文档之家› (建筑工程管理)建筑结构设计应具备的概念

(建筑工程管理)建筑结构设计应具备的概念

(建筑工程管理)建筑结构设计应具备的概念
(建筑工程管理)建筑结构设计应具备的概念

(建筑工程管理)建筑结构设计应具备的概念

1、轴压比:主要为控制结构的延性,规范对墙肢和柱均有相应限值要求,见抗规6.3.7和6.4.6,在剪力墙的轴压比计算中,轴力取重力荷载代表设计值,和柱子的不壹样。

2、剪重比:主要为控制各楼层最小地震剪力,确保结构安全性,见抗规5.2.5。

3、侧向刚度比:主要为控制结构竖向规则性。

4、位移比:主要为控制结构平面规则性,以免形成扭转,对结构产生不利影响。控制比例为1.5。见抗规3.4.2、3.4.3。

5、周期比:主要为控制结构扭转效应,减小扭转对结构产生的不利影响,要求见高规4.3.5。

6、刚重比:主要为控制结构的稳定性,以免结构产生滑移和倾覆,要求见高规。

7、剪跨比:梁的剪跨比,剪力的位置a和h0的比值。剪跨比影响了剪应力和正应力之间的相对关系,因此也决定了主应力的大小和方向,也影响着梁的斜截面受剪承载力和破坏的方式;同时也反映在受剪承载力的公式上。柱的剪跨比,若反弯点在柱子层高范围内,可取柱子的剪跨比小于2时,需要全长加密,见混凝土规范11.4.12、11.4.17。

8、剪压比(梁柱截面上的名义剪应力V/bh0和混凝土轴心抗压强度设计值的比值):梁塑性铰区的截面剪压比对梁的延性、耗能能力及保持梁的强度、刚度有明显的影响,当剪压比大于0.15的时候,梁的强度和刚度有明显的退化现象,此时再增加箍筋用量,也不能发挥作用,因此对梁柱的截面尺寸有所要求。

9、轴压比:轴压比是指有地震作用组合的柱组合轴压力设计值和柱的全截面面积和砼轴心受压抗压强度设计值乘积的比值,是影响柱子破坏形态和延性的主要因素之壹。轴压比限值的依据是理论分析和试验研究且参照国外的类似条件确定的,其基准值是对称配筋柱大小偏心受压状态的轴压比分界值。

10、跨高比:梁的跨高比(梁的净跨和梁截面高度的比值)对梁的抗震性能有明显的影响。梁(非剪力墙的连梁)的跨高比小于5和深梁都按照深受弯构件进行计算的。

11、延性比:延性比即为弹塑性位移增大系数。延性是指材料、构件、结构在初始强度没有明显退化的情况下的非弹性变形能力。延性比主要分为三个层面,即截面的延性比、构件的延性比和结构的延性比。结构的延性比多指框架或者剪力墙等结构的水平荷载-顶层水平位移(P-delta)、水平荷载-层间位移等曲线。结构的屈服位移有等能量方法、几何做图法等

12、薄弱层:该楼层的层间受剪承载力小于相邻上壹楼层的80%;薄弱层主要是针对大震而言的;屈强系数小于0.5的结构层、在大震下楼层塑性变形大于规范要求的大震下的允许值的结构层。

所谓的薄弱层,是指在强烈地地震作用下,结构首先发生屈服且产生较大弹塑性变形的部位。是指该楼层的层间受剪承载力小于向邻上壹楼层的80%,能够认为,是从结构强度的角度来判断。高规中说明竖向不规则结构形成薄弱部位,而薄弱部位有三种情况,壹是刚度不连续形成的柔软层,壹是强度不连续形成的薄弱层,仍有壹种就是有水平转换体系的竖向构件不连续的结构.因此2楼和5楼说的都是柔软层.但实际我见很多地方所说的薄弱层就是指薄弱部位的意思,且没区分的很仔细

位置在下列情况确定:

1)楼层屈服强度系数沿房屋高度分布均匀的结构,可取底层;

2)楼层屈服强度系数沿房屋高度分布不均匀的结构,可取该系数最小的楼层(部位)和相对较小的楼层,壹般不超过2-3处;

3)单层厂房,可取上层;

薄弱层指强度,软弱层指刚度。壹个是刚度比,另壹个是承载力比,二者不满足规范要求均是薄弱层。请见见高规条文说明 4.4.2“正常设计的高层建筑下部楼层刚度宜大于上部楼层的侧向刚度,否则变形会集中于刚度小的下部楼层而形成结构薄弱层”由此可推断出只要是刚度小于上层的楼层都应当算作薄弱层。按照高规5.1.14“对于竖向不规则的高层建筑结构,小于

上层70%或小于其上相邻3层侧向刚度平均值的80%,或结构楼层层间抗侧力结构承载力小于其上壹层的80%,或结构某楼层竖向抗侧力构件不连续,其薄弱层对应于地震作用标准值的地震剪力应乘以1.15的增大系数”

13、软弱层:该楼层的侧向刚度小于相邻上壹层的70%,或小于其上三个楼层侧向刚度平均值的80%;除顶层外,局部收进的水平向尺寸大于相邻下壹层的25%;

14、转换层:该楼层水平转换构件(梁、桁架等)将上壹层的竖向抗侧力构件(柱、抗震墙、抗震支撑)的内力由本层向下传递;

15、框支层:如果结构同壹位置转换层之上为剪力墙,转换层以下为框架,那么转换层以下的楼层为框支层,因为建筑功能的要求,下部大空间,上部部分竖向构件不能直接连续贯通落地,而通过水平转换结构和下部竖向构件连接。当布置的转换梁支撑上部的结构为剪力墙的时候,转换梁叫框支梁,支撑框支梁的就是框支柱。框支柱的构造要求见高规10。2。11条

16、法向刚度、剪切刚度的单位同样是N/m或N/mm,差别在于力的方向不同,变形模量的单位为MPa

17、偶然偏心:对规则结构,考虑偶然偏心(2005版本是必须考虑),柱子能够考虑双偏压,可是如果不是十分复杂的话,建议仍是单偏压计算,双偏压复合,角柱手动定义。对不规则结构,考虑双向地震,柱子仍是单偏压计算双偏压复合,此时如果再考虑双偏压要慎重,钢筋会大很多很多。

18、短肢剪力墙、异形柱、壁式框架三者的区别

要想了解第壹个和第三个的区别,必须先了解剪力墙的分类。

A根据整体性系数来区别剪力墙的种类。

a>=10,In/I<=kesi,为整体小开口墙,它的整体性很强,截面应变符合平截面假定,墙肢不出现反弯点,变形以弯曲型为主;

a<10,In/I<=kesi,为联肢墙,它的整体性不很强,墙肢不出现和很少出现反弯点,变形仍以弯曲型为主;

a>=10,In/I>kesi,为壁式框架,它的整体性虽然很强,但在多数楼层的墙肢出现反弯点,变形以剪切型为主,受力性能接近于框架。

《高层建筑混凝土结构技术规程》(征求意见稿)指出:短肢剪力墙是指墙肢截面高度和厚度之比为5-8的剪力墙,墙厚不小于200mm。

B中间第二名词和其它俩个不属于同壹类。异形柱是指具有不规则截面的柱。如L形,T形柱等等,不同于常见的矩形、方形和圆形截面的柱。这些柱多数在受力性能不及常见截面柱的合理,可是和建筑使用功能以及美学结合的较好。所以当下应用越来越普遍。

C异形柱的设计要比常见截面的柱设计要复杂壹些。例如偏压构件,矩形截面的受压区总是矩形,内力臂较大,而对于异性柱,受压区图形通常比较复杂,可能三角形,也可能是多边形,手算和分析起来比较费劲,比如如何大小偏压的界限,极限承载力如何计算?难度大于壹般截面柱。

其次,对于受压呈多边形分布的截面,压区边缘混凝土应力过于集中,壹旦达到受压强度,破坏区域往内渗透得过快,不利于外边缘的混凝土纤维经历下降段,从而影响整个截面和构件的延性问题。对于有抗震要求的构件,在规范不建议采用异形柱。

第三,在试验仍发现,对于异形柱,仍出现截面翘曲的问题,常见的基于平截面假定的公式受到挑战。

第四,对异性柱的分析、试验以及和设计方法等壹套体系仍没有完全建立起来,仍有待于进壹步的研究。

19、抗震措施:除地震作用计算和抗力计算以外的抗震设计内容,包括建筑总体布置,结构

选型,地基抗液化措施,考虑概念设计要求对地震作用效应(内力及变形)的调整,以及各种构造措施。请注意:抗震等级划分属“抗震措施”的宏观控制,抗震规范第3页,第2.1.9和2.1.10条有明确的定义.

20、抗震构造措施:根据抗震概念设计原则,壹般不需计算而对结构和非结构各部分必须采取的各种细部要求。如钢筋锚固,搭接,混凝土保护层,最小配筋率等。“抗震措施”涵盖了“抗震构造措施”抗震等级的确定是按抗震措施来划分的,抗震设计是按照“地震作用”和“抗震措施”俩个手段的,平时说的“抗震等级”就是按照“抗震措施”来划分的,平时所说的“剪力调整”其实就是抗震措施中的计算部分,另壹部分就是规范明确说明的“抗震构造措施”,这俩部分构成了“抗震措施”的俩大具体板块。在考试中经常容易混淆的就是乙类建筑的“乙类建筑,地震作用应符合本地区抗震设防烈度的要求;抗震措施,壹般情况下,当抗震设防烈度为6~8度时,应符合本地区抗震设防烈度提高壹度的要求,当为9度时,应符合比9度抗震设防更高的要求;”,此时就要按照抗震措施的要求该提高壹度查表的查表来确定抗震等级。

21、设计特征周期:抗震设计用的地震影响系数曲线中,反映地震等级,震中距和场地类别等因素的下降段起始点对应的周期值.----------------根据其所在地的设计地震分组和场地类别确定.详见抗震规范.

22、自振周期:是结构本身的动力特性.是结构按某壹振行完成壹次自由振动所需的时间.和结构的H,B有关.当自振周期和地震作用的1/f接近时,共振发生,对建筑造成很大影响

23、结构可靠度:建筑结构的可靠性包括安全性、适用性和耐久性三项要求。结构可靠度是结构可靠性的概率度量,其定义是:结构在规定的时间内,在规定的条件下,完成预定功能的概率,称为结构可靠度。其“规定的时间”是指设计基准期50年,这个基准期只是在计算可靠度时,考虑各项基本变量和时间关系所用的基准时间,且非指建筑结构的寿命;“规定的条件”是指正常设计、正常施工和正常的使用条件,不包括人为的过失影响;“预定的功能”则是能承受在正常施工和正常使用时可能出现的各种作用的能力(即安全性);在正常使用时具有良好的工作性能(即适用性);在正常维护下具有足够的耐久性能(耐久性)。在偶然事件发生时及发生后,仍能保持必需的整体稳定性。结构能完成预定功能的概率称为可靠概率p↓s,结构不能完成预定功能的概率称为失效概率Pf,Pf=1-Ps,用以度量结构构件可靠度是用可靠指标β,它和失效概率Pf的关系为Pf=ψ(-β)。根据对正常设计和施工的建筑结构可靠度水平的校正结果,且考虑到长期的使用经验和经济后果后,《统壹标准》给出构件强度的统-β值:对于安全等级为二级的各种构件,延性破坏的,β=3.2;脆性破坏的,β=3.7。影响结构可靠度的因素主要有:荷载、荷载效应、材料强度、施工误差和抗力分析五种,这些因素壹般都是随机的,因此,为了保证结构具有应有的可靠度,仅仅在设计上加以控制是远远不够的,必须同时加强管理,对材料和构件的生产质量进行控制和验收,保持正常的结构使用条件等都是结构可靠度的有机组成部分。为了照顾传统习惯和实用上的方便,结构设计时不直接按可靠指标β,而是根据俩种极限状态的设计要求,采用以荷载代表值、材料设计强度(设计强度等于标准强度除以材料分项系数)、几何参数标准值以及各种分项系数表达的实用表达式进行设计。其中分项系数反映了以β为标志的结构可靠水平。24、建筑结构的安全等级:建筑结构设计时,应根据结构破坏可能产生的后果(危及人的生命、造成经济损失、产生社会影响等)的严重性,采用不同的安全等级。它以结构重要性系数的形式反映在设计表达式中,如表4-2。建筑物中各类结构构件的安全等级,宜和整个结构的安全等级相同,对其中部分结构构件的安全等级可进行调整,但不得低于三级。

25、荷载的代表值:是结构或构件设计时采用的荷载取值,它包括标准值、准永久值和组合值等。设计时应根据不同极限状态的设计要求来确定采用哪壹种荷载值。1.荷载标准值(G↓K、Q↓K)。荷载的基本代表值,是结构设计按各类极限状态设计时所采用的荷载代表值。2.荷载组合值(ψ↓qQ↓x)。是当结构承受俩个或俩个之上可变荷载时,承载能力极限状态按基本

组合设计及正常使用极限状态按短期效应组合设计所采用的荷载代表值。3.荷载准永久值(ψ↓cQ↓K)。是正常使用极限状态长期效应组合设计时所采用的荷载代表值。因此,永久荷载只有标准值作为它的唯壹代表值,而可变荷载的代表值则除了标准值外,仍有组合值和准永久值。结构自重的标准值,可按设计尺寸和材料的标准容重计算。可变荷载的标准值Q↓K,应根据荷载的观测和试验数据,且考虑工程经验,按设计基准期最大荷载概率分布的某壹分位值确定,设计时可按《荷载规范》采用。荷载组合值系数ψ↓c应根据俩个或俩个之上可变荷载在设计基准期内的相遇情况及其组合的最大荷载效应概率分布,且考虑结构构件可靠指标具有壹致性的原则确定。壹般情况下,当有风荷载参和组合时,ψc取0.6;当没有风荷载参和组合时,ψc取1.0;对于高层建筑和高耸构筑物,其组合中风荷载效应的Ψ↓c均取1.0;在壹般框架、排架结构的简化组合中,当参和组合的可变荷载有俩个或俩个之上,且其中包括风荷载时,ψ取0.85;其他情况,Ψ均取1.0。荷载准永久值系数Ψ↓q是荷载准永久值和荷载标准值的比值。荷载准永久值应按在设计基准期内荷载达到和超过该值的总持续时间T,和设计基准期T的比值确定,比值Tq/T可采用0,5。所以荷载准永久值相当于任意时点荷载概率密度函数50%的分位值。

26、结构上的作用:各种施加在结构上的集中或分布荷载,以及引起结构外加变形或约束变形的原因,均称为结构上的作用。引起结构外加变形或约束变形的原因系指地层、基础沉降、温度变化和焊接等作用。结构上前作用可按下列原则分类:1.按其随时间的变异性和出现的可能性可分为永久作用,如结构自重、土压力、预应力等;可变作用,如楼面活荷载、风、雪荷载、温度等;偶然作用,如地震、爆炸、撞击等。2.按随空间位置的变异分为固定作用,如楼面上的固定设备荷载、构件自重等;可动作用,如楼面上人员荷载、吊车荷载等。3.按结构的反应分为静态作用,如结构自重、楼面活荷重等;动态作用,如地震、吊车荷载及高耸结构上的风荷载等。

27、结构的作用效应:作用引起的结构或构件的内力和变形即称为结构的作用效应。常见的作用效应有:1.内力。(1)轴向力,即作用引起的结构或构件某壹正截面上的法向拉力或压力;(2)剪力,即作用引起的结构或构件某壹截面上的切向力;(3)弯矩,即作用引起的结构或构件某壹截面上的内力矩;(4)扭矩,即作用引起的结构或构件某壹截面上的剪力构成的力偶矩。2.应力。如正应力、剪应力、主应力等。3.位移。作用引起的结构或构件中某点位置改变(线位移)或某线段方向的改变(角位移)。4.挠度。构件轴线或中面上某点在弯短作用平面内垂直于轴线或中面的线位移。5.变形。作用引起的结构或构件中各点间的相对位移。变形分为弹性变形和塑性变形。6.应变:如线应变、剪应变和主应变等。28、结构抗力:结构或构件承受作用效应的能力称为抗力,如强度、刚度和抗裂度等。强度:材料或构件抵抗破坏的能力,其值为在壹定的受力状态和工作条件下,材料所能承受的最大应力或构件所能承受的最大内力(承载能力)。刚度:结构或构件抵抗变形的能力,包括构件刚度和截面刚度,按受力状态不同可分为轴向刚度、弯曲刚度、剪变刚度和扭转刚度等。对于构件刚度,其值为施加于构件上的力(力矩)和它引起的线位移(角位移)之比。对于截面刚度,在弹性阶段,其值为材料弹性模量或剪变模量和截面面积或惯性矩的乘积。抗裂度:结构或构件抵抗开裂的能力。

29、弹性模量(E)是材料在单向受拉或受压且应力和应变呈线性关系时,截面上正应力和对应的正应变的比值:E:σ/ε。

30、剪变模量(G):材料在单向受剪且应力和应变呈线性关系时,截面上剪应力和对应的剪应变的比值:G=τ/γ(τ为剪应力,γ为剪切角)。在弹性变形范围内,G=E/2(1+υ)。υ——泊松比,预料在单向受拉或受压时,横向正应变和轴向正应变的比值。如对钢材,=0.3,算得G=0.384E;对混凝土,υ=1/6,则得G=0.425E。

31、变形模量(Edef):材料在单向受拉或受压且应力和应变呈非线性(或部分线性和部分非

线性)关系时,截面上正应力和对应的正应变的比值。例如混凝土,其应力应变关系只是在快速加荷或应力小于fc/3(fc为混凝土轴心抗压强度)时才接近直线,而壹般情况下应力应变为曲线关系。混凝土规范中的Ec是在应力上限为σ:0.5fc反复加荷5~10次后变形趋于稳定,应力应变曲线接近于直线,其斜率即为混凝土的弹性模量Ec。当应力较大时,应力应变曲线上任壹点,和原点。的联线oa的斜率称为混凝土的变形模量E=tga↓1。E′c也称为割线模量。变形模量可用弹性模量表示:E′c=,Ec。υ为弹性系数,随应力的增大而减小,即变形模量降低。

32.截面面积矩(又叫静矩s)。截面上某壹微元面积到截面上某壹指定轴线距离的乘积,称为微元面积对指定轴的静矩;而把微元面积和各微元至截面上指定轴线距离乘积的积分称为截面的对指定轴的静矩Sx=ydF。

33.截面惯性矩(I)。截面各微元面积和各微元至截面某壹指定轴线距离二次方乘积的积分Ix=y↑2dF。

34.截面极惯性矩(Ip)。截面各微元面积和各微元至垂直于截面的某壹指定轴线二次方乘积的积分Ip=P↑2dF。截面对任意壹对互相垂直轴的惯性矩之和,等于截面对该二轴交点的极惯性矩Ip=Iy+Iz。

35.截面抵抗矩(W)。截面对其形心轴惯性矩和截面上最远点至形心铀距离的比值W2=。36.截面回转半径(i)。截面对其形心轴的惯性矩除以截面面积的商的二次方根。

37.弯曲中心。对矩形、I形梁的纵向对称中面施加垂直(或叫横向力)外,对其他截面梁除产生弯曲外,仍产生扭转。欲使梁不产生扭转,就必须使外力P在过某壹A点的纵向平面内,此A点就称为弯曲中心,即只有当横向力P作用在通过弯曲中心的纵向平面内时,梁才只产生弯曲而不产生扭转。

38、脆性破坏:结构或构件在破坏前无明显变形或其它预兆的破坏类型。

39、延性破坏:结构或构件在破坏前有明显变形或其它预兆的破坏类型。

在冲击和振动荷载作用下,要求结构的材料能够吸收较大的能量,同时能产生壹定的变形而不致破坏,即要求结构或构件有较好的延性。例如,钢结构材料延性好,可抵抗强烈地震而不倒塌;而砖石结构变形能力差,在强烈地震下容易出现脆性破坏而倒塌。为此,砖石砌体结构房屋需按抗震规范要求设置构造柱和抗震圈梁,约束砌体的变形,以增加其在地震作用下的抗倒塌能力。钢筋混凝土材料具有双重性,如果设计合理,能消除或减少混凝土脆性性质的危害,充分发挥钢筋塑性性能,实现延性结构。为此,抗震的钢筋混凝土结构都要按照延性结构要求进行抗震设计,以达到抗震设防的三水准要求:小震下结构处于弹性状态;中震时,结构可能损坏,但经修理即可继续使用;大震时,结构可能有些破坏,但不致倒塌或危及生命安全。

40、压杆稳定:细长的受压杆当压力达到壹定值时,受压杆可能突然弯曲而破坏,即产生失稳现象。由于受压杆失稳后将丧失继续承受原设计荷载的能力,而失稳现象又常是突然发生的,所以,结构中受压杆件的失稳常造成严重的后果,甚至导致整个结构物的倒塌。工程上出现较大的工程事故中,有相当壹部分是因为受压构件失稳所致,因此对受压杆的稳定问题绝不容忽视。所谓压杆的稳定,是指受压杆件其平衡状态的稳定性。当压力P小于某壹值时,直线状态的平衡为稳定的,当P大于该值时,便是不稳定的,其界限值P↓(1j)称为临界力。当压杆处于不稳定的平衡状态时,就称为丧失稳定或简称失稳。显然,承载结构中的受压杆件绝对不允许失稳。由于杆端的支承对杆的变形起约束作用,且不同的支承形式对杆件变形的约束作用也不同,因此,同壹受压杆当俩端的支承情况不同时,其所能受到的临界力值也必然不同。工程中壹般根据杆件支承条件用“计算长度”来反映压杆稳定的因素。不同材料的压杆,在不同支承条件下,其承载力的折减系数也不同,所用的名称也不同,例如钢压杆叫长细比,钢筋混凝土柱叫高宽比,砌体墙、柱叫高厚比,但这些都是考虑压杆稳定问题。

高层建筑结构设计分析王方成

高层建筑结构设计分析王方成 发表时间:2016-07-28T15:02:06.787Z 来源:《基层建设》2016年10期作者:王方成 [导读] 本文结合工程实际,对高层建筑结构设计分析。 深圳市建筑设计研究总院有限公司 摘要:随着我国科学技术的不断进步和经济的快速发展,城市中高楼耸立,高层建筑物已成为人们共同的追求。本文结合工程实际,对高层建筑结构设计分析。 关键词:高层建筑;结构设计 1 工程概况 该建筑总长46.10m,总宽35.90m,总高 111.563m,大屋面层高96.90m。地上共23层,地下 2 层。地下室层高 4.7m 与 3.75m。1~22 层层高 4.2m,23 层层高4.5m。上部均为办公室,地下部分为车库和设备用房。总建筑面积53065.79 m2,其中地上37307.59 m2,地下 15758.20 m2,建筑占地面积 10636m2。 2 自然地质情况 本工程场地地震基本烈度 7 度,设计地震分组第三组,设计基本地震加速度 0.1g,属于抗震不利地段,建筑场地类别Ⅱ类,设计特征周期取 0.45s。50 年遇基本风压 0.80kN/m2,场地地基土自上而下可划分为 7 层,从上至下依次为①层填石,层厚 2.7~19m;②层中砂,层厚 0.90~22.9m;②-A 层淤泥,层厚 1.70~1.90m;③层(含砾砂)粉质粘土,层厚 1.3~3.2m;④层残积砂质粘性土,层厚 2.6~8.0m;⑤层全风化花岗岩,层厚1.1~7.3m;⑥层强风化花岗岩:灰白、灰黄、灰褐色,饱和。⑥-1层砂土状强风化花岗岩,层厚 1.1~11.1m;⑥-2 层碎块状强风化花岗岩,层厚 0.8~11.5m;⑦层中风化花岗岩:灰、灰黄、灰白色,岩芯多呈短柱状和长柱状,局部呈块状,中粗粒花岗结构,块状构造,岩芯裂隙较发育,多呈闭合,岩芯采取率 67%~87%,RQD=38~71,岩石饱和单轴抗压试验为 64.60~70.10MPa,标准值为 66.03MPa,岩石坚硬程度为坚硬岩,岩体完整程度为破碎~较完整,岩体基本质量等级为Ⅱ~Ⅳ级。本次勘察所有钻孔均有揭示至该层,均未揭穿,揭露厚度为2.20~10.76m。 3 基础形式 由于办公楼及其周边纯地下室在基坑开挖后存在一定厚度的①层填石(厚度为 3.46~11.54m),采用预应力管桩时难以穿越填石层,另可供预应力管桩选择的桩端持力层④层残积砂质粘性土、⑤层全风化花岗岩和⑥-1 层砂土状强风化花岗岩分布不均匀,考虑到⑥-2层碎块状强风化花岗岩和⑦层中风化花岗岩分布较均匀,根据拟建场地岩土层特性、拟建物结构特点及荷载情况,采用冲(钻)孔灌注桩基础。 4 主体结构设计 4.1 结构选型 本建筑抗震设防类别为标准设防类(丙类)。由于建筑功能布局多为开敞办公区、大会议室等大空间,中间部分以及建筑外形要求美观、大方等方面因素,故本建筑主体部分采用钢筋混凝土框架———核心筒结构形式。框架———核心筒结构的周边框架与核心筒之间形成的可用空间较大,能使房屋空间布局灵活,又能使高层建筑结构满足较大刚度的要求,因此广泛用于写字楼、多功能建筑。具体做法是在建筑中部的电梯井筒及楼梯间四周布置抗震墙框筒,加大外框筒的柱距,减小梁的高度,周边形成稀柱框架。参照规范抗震设防烈度为7 度,确定抗震等级框架为二级,核心筒为二级。 4.2 主要荷载取值 高压配电房、电梯机房、通风机房活荷载为 7.0 kN/ m2,储藏间活荷载为 5.0 kN/m2,备餐间、车库活荷载为 4.0 kN/m2,商场、消防疏散楼梯活荷载为3.5 kN/ m2,办公室、卫生间、走廊、门厅、屋面花园、多功能厅大会议室活荷载为 3.0 kN/ m2,食堂活荷载为 2.5 kN/m2,上人屋面活荷载为 2.0 kN/m2,不上人屋面活荷载为 0.5 kN/m2。大型设备按实际情况考虑。 4.3 主要受力构件尺寸取值 地下室~1 层墙厚度为 400mm,2~23 层墙厚度为300mm。框架柱截面尺寸:地下室为 1200mm×1200mm,1~3层为1100mm×1100mm,4~6 层为 1000mm×1100mm,7~9 层为 1000mm×1000mm,10~12 层为 900mm×1000mm,13~15层为 800mm×900mm,16~18 层为 800mm×800mm,19~21 为700mm×700mm,22~23 层为 600mm×600mm。地下室负一层顶板的厚度为 200mm,地下室顶板除核心筒内板厚 180mm之外,其余部位板厚为 300mm,屋面层的板厚为 120mm,其它各楼层的板厚为 100mm。 4.4 主要结构材料选取 梁板混凝土强度等级为 C30,柱墙混凝土强度等级:-2~4层为C50,5~9层为C45,10~14 层为 C40,15~19 层为C35,20构架层为 C30。此外,圈梁、构造柱、挑檐、雨篷及楼梯均采用 C30 混凝土。主要用于基础梁、板,墙和柱以及楼面梁的纵筋选用 HRB400级钢筋。 4.5 计算软件及计算依据 本工程计算使用程序为中国建筑科学研究院开发的建筑结构三维设计与分析软件 SATWE。计算依据为建筑条件图以及《建筑结构荷载规范》GB50009-2012、《建筑抗震设计规范》GB50011-2010、《建筑地基基础设计规范》GB50007-2011、《高层建筑混凝土结构技术规程》JGJ3-2010等国家相关规范。 4.6 计算结果分析 (1)位移比。基于刚性楼板假定,考虑偶然偏心的条件下,X 方向最大层间位移与平均层间位移的比值:1.19 (第26层第1塔),Y 方向最大层间位移与平均层间位移的比值:1.28(第 26 层第 1 塔),属于平面不规则中的扭转不规则。位移比超过 1.2,需要考虑双向地震作用。 (2)层间位移。计算时不扣除整体弯曲变形,不考虑偶然偏心的影响,X 方向地震力作用下的楼层最大位移:1/1055<1/800;Y 方

建筑工业化的结构体系和关键技术

建筑工业化的结构体系和关键技术 打印来源:碧野牛得草的博客 建筑工业化不仅是施工问题,而且与建筑、结构设计关系也极大。设计是龙头,应该为建筑工业化创造条件,建筑的结构体系施工,施工单位不能也无权决定或修改结构设计,就是一些建筑构件做法也都要经过设计认可,因此要求设计单位应该把建筑工业化揉在建筑结构设计的全过程中,为建筑工业化创造条件。设计成果的内容和深度是构件生产、施工阶段对设计需求的结果。而在装配式建筑中,设计与生产又存在着不可分割的联系:设计便于生产制造中成本降低;生产工艺改进促使设计灵活性提高,设计与工艺成为了一个互利互进的关键环节。 (一)工业化建筑的设计分析 1、从构件生产工艺角度来看深化设计需考虑以下几个环节: 1)构件详图:制作适合生产的构件详图,包括模板图、配筋图。 2)模具图纸设计:符合模具设计的初步构件图可以在构件外观尺寸确定后提供,设计师根据需要可审核模具图。 3)模具加工:尽量考虑模具使用的通用性及重复利用率。 4)工厂备料:设计确定构件的所有预埋件型号、外饰面材料、门窗型号等。 5)绑筋、组模、预埋:构件图中需明确表示配筋要求、预埋件的定位、防雷设置要求,注意位置避免互相干涉打架。 6)混凝土浇筑:构件图需表达不同构件所用混凝土的标号。 7)脱模、养护:构件图需表达脱模的吊点、吊具型号及位置。 2、从构件物流运输角度来看深化设计需考虑以下几个环节: 1)构件养护:是否达到脱模、起吊强度要求,要求达到设计强度75%以上。 2)成品堆放:构件详图明确构件编号、楼栋号、层号、轴线及构件顺序,构件表面喷涂相应信息。 3)成品质检:对应构件详图检验钢筋外露尺寸、构件尺寸等,发放合格证或准用证。 4)构件装车:构件拆分尺寸考虑车辆宽度及载重要求,配备专用构件运输架。 5)构件质量检查:深化设计图纸明确构件验收标准。 (二)工业化建筑的结构体系分析 工业化建筑是指采用构配件定型生产的装配施工方式,按照统一标准定型设计,在工厂内成批生产各种构件,然后运到工地,在现场以机械化的方法装配而成的建筑。 1)外墙挂板体系: 内墙用大模板以混凝土浇筑,墙体内配钢筋网架;外墙挂预制混凝土复合墙板,配以构造柱和圈梁。便于施工,加快进度,提高建筑的工厂化加工,确保工程质量和不降低抗震能力的前提下节省建设投资。 预制部件:外墙、叠合楼板、阳台、楼梯、叠合梁 体系特点:竖向受力结构采用现浇,外墙挂板不参与受力,预制比例一般10%-50%,施工难度较低,成本较低。 适用高度:高层、超高层 适用建筑:保障房、商品房、办公建筑 2)装配式框架体系 预制装配式框架结构体系是按标准化设计,根据结构、建筑特点将柱、梁、板、楼梯、阳台、外墙等构件拆分,在工厂进行标准化预制生产,现场采用塔吊等大型设备安装,形成房屋建筑。 预制部件:柱、叠合梁、叠合楼板、阳台、楼梯等 体系特点:工业化程度高,内部空间自由度好,室内梁柱外露,施工难度较高,成本较高。 适用高度:60米以下 适用建筑:公寓、办公、酒店、学校等建筑

专升本《高层建筑结构设计》_试卷_答案

专升本《高层建筑结构设计》_试卷_答案

专升本《高层建筑结构设计》 一、(共75题,共150分) 1. 将高层建筑等效为固定在地面上的竖向悬臂结构,则水平位移与高度的()次方成正比。(2分) A.1 B.2 C.3 D.4 .标准答案:D 2. 下列关于剪力墙结构的说法,错误的一项是()(2分) A.剪力墙结构的抗侧力构件为剪力墙 B.剪力墙结构的侧移曲线为弯曲型 C.结构设计时,剪力墙构件即可抵抗平面内荷载,也可抵抗平面外荷载 D.短肢剪力墙受力性能不如普通剪力墙 .标准答案:C 3. 由密柱深梁框架围成的结构体系称为()(2分) A.框架结构 B.框架-剪力墙结构 C.剪力墙结构 D.框筒结构 .标准答案:D 4. 为了减轻结构温度应力而设置的结构缝为()。(2分) A.防震缝 B.伸缩缝 C.沉降缝 D.以上均不对 .标准答案:B 5. 50年内超越概率为10%的地震为()。(2分) A.小震 B.中震 C.大震 D.强震 .标准答案:B 6. 有斜交抗侧力构件的结构,当相交角度大于()°时,应分别计算各抗侧力构件方向的水平地震作用。(2分) A.5 B.10 C.15 D.12 .标准答案:C 7. 底部剪力法中,考虑高振型对水平地震作用沿高度分布的影响而采取的措施是()。(2分) A.在顶部附加水平作用力ΔFn B.对计算结果乘以大于1的增大系数 C.提高抗震等级 D.提高重力荷载代表值.标准答案:A 8. 在风荷载及多遇地震作用下,应进行结构()变形验算。(2分) A.弹性 B.塑性 C.弹塑性 D.重力二阶效应 .标准答案:A 9. 一般住宅建筑的抗震设防类别为()。(2分) A.特殊设防类 B.重点设防类 C.标准设防类 D.适度设防类 .标准答案:C 10. 延性指屈服后强度或承载力没有显著降低时的()变形能力。(2分) A.弹性 B.塑性 C.线性 D.以上均不对 .标准答案:B 11. 某框架-剪力墙结构高度45m(丙类建筑),7度设防时,框架部分的抗震等级应为()级。(2分) A.一 B.二 C.三 D.四 .标准答案:C 12. 下列关于楼板平面内刚度无限大的假定,理解错误的一项是()(2分) A.平面内刚度无限大指在侧向力作用下,楼板只发生刚体平移或转动 B.当楼板开洞口较大时,仍可采用平面内无限刚度假定 C.各个抗侧力构件之间通过楼板相互联系并协调工作 D.楼板平面外刚度很小,可以忽略 .标准答案:B 13. 大型博物馆,幼儿园、中小学宿舍的抗震设防类别是()(2分) A.特殊设防类 B.重点设防类 C.标准设防类 D.适度设防类 .标准答案:B 14. 柱抗侧刚度D值的定义为()(2分) A.使柱端产生单位水平位移所需施加的水平推力 B.使柱端产生单位水平推力所需施加的水平位移 C.柱抗弯刚度与柱长度的比值 D.EIc/h .标准答案:A 15. 框架结构与剪力墙结构相比,下述概念哪一个是正确的()(2分)

高层建筑结构设计原则及意义分析

高层建筑结构设计原则及意义分析 发表时间:2018-11-29T18:12:15.133Z 来源:《防护工程》2018年第22期作者:周德泓 [导读] 随着社会的不断进步和科技的不断发展,高层建筑越来越广泛的出现在城市建设中。 中国联合工程有限公司 310000 摘要:随着社会的不断进步和科技的不断发展,高层建筑越来越广泛的出现在城市建设中。在高层建筑结构设计方面出现了新的发展和变化。高层建筑的结构设计已经成为了高层建筑设计的重点内容,因此,研究高层建筑结构设计的问题是非常重要和有意义的。介绍了高层建筑结构特征,分析了高层建筑结构设计的原则,阐述了高层建筑结构体系的选型问题,并重点分析了高层建筑结构设计问题及对策。 关键词:高层建筑结构;设计;对策 0 引言 随着科技和社会的不断发展和进步,自从19 世纪以来出现了现代高层建筑,高层建筑越来越广泛的出现在人们的生活中。作为一个庞大复杂的系统,高层建筑的结构设计,一方面要满足包括抗震,抗风等在内的安全性能的要求,另一方面,也要满足高层建筑结构的科学性和合理性。 1 高层建筑结构的特征 高层建筑结构不但承受着由于外界的风产生的水平方向的荷载,同时也承受着在垂直方向的荷载,并且对于地震的抵抗能力也有要求。一般情况下,建筑结构受到低层建筑结构水平方向上的影响比较弱,然而在高层建筑中,外界地震的影响和外界风产生的水平方向的荷载的影响是主要的影响因素。随着建筑物高度的增加,高层建筑的位移增加较快,但是高层建筑过大的侧移不但影响人的舒适度,同时使得建筑物的使用受到影响,并且容易损坏结构构件以及非结构构件。基于此,在设计高层建筑结构时,首先控制侧移在规定的范围之内,所以,高层建筑结构设计的核心是抗侧力结构的设计。 2 高层建筑结构设计的原则 2.1 选择合理的高层建筑结构计算简图在计算简图基础上进行高层建筑结构设计的计算,如果选择不合理的计算简图,那么就比较容易造成由于结构安发生的事故,基于此,高层建筑结构设计安全保证的前提是合理的计算简图的选择。同时,计算简图应该采用相应的构造方法保证安全。在实际的结构中,其结构节点不单是钢节点或者饺节点,保证和计算简图的误差在规范规定的范围内。 2.2 选择合理的高层建筑结构基础设计按照高层建筑地质条件进行基础设计的选择。综合分析高层建筑上部的结构类型与荷载分布情况,考虑施工条件,相邻的建筑物的影响等各个因素,在此基础上选择科学合理的基础方案。基础方案的选择应该使得地基的潜力得到最大程度的发挥,必要的时候要求进行地基变形的检验。高层建筑设计要有详细的地质勘查报告,如果缺失,那么应该进行现场勘查并参考相邻建筑物的有关资料。一般情况下,相同结构单元应该采用相同的类型。 2.3 选择合理的高层建筑结构方案合理的结构设计方案必须满足经济性的要求,并且要满足结构形式和结构体系的要求。结构体系的要求是受力明确,传力简单。在相同的结构单元当中,应该选择相同结构体系,如果高层建筑处于地震区,那么应力需要平面和竖向的规则。在进行了地理条件,工程设计需求,施工条件,材料等的综合分析的基础上,并和建筑包括水,暖,电等各个专业的相协调的情况下,选择合理的结构,从而确定结构的方案。 2.4 对计算结果进行准确的分析随着科技的不断进步,计算机技术被广泛的应用在建筑结构的设计中。当前市场上存在着形形色色的计算软件,采用不同的软件得到的结果可能不同,所以,建筑结构设计人员在全面了解的软件使用的范围和条件的前提下,选择合适的软件进行计算。由于建筑结构的实际情况和计算机程序并不一定完全相符,所以进行计算机辅助设计的时候,出现人工输入误差或者因为软件本身存在着缺陷使得计算结果不准确的问题,基于此,结构设计工程师在得到了通过计算机软件得到的结果以后,应该进行校核,进行合理判断,得出准确结果。 2.5 高层建筑的结构设计要采用相应构造措施高层建筑结构设计的原则是强剪切力弱弯变,强压力弱拉力,强柱弱梁。高层建筑结构设计过程中把握上述原则,加强薄弱部位,对钢筋的执行段锚固长度给予重视,并且要重点考虑构件延性的性能和温度应力对构件的影响。 3 高层建筑结构体系的选型 建筑的结构在抵抗来自于水平方向和竖直方向的荷载时构件的组成形式和传力的路径就是高层建筑的结构体系。通过包括墙,柱等的竖向构件和楼盖等水平构件将竖向荷载传递到基础,利用抗侧力体系将水平荷载传递到基础。 根据高层建筑结构的材料将高层建筑的结构体系分为钢筋混凝土结构体系,钢结构体系,钢-混凝土混合结构体系以及钢-混凝土组合结构体系。钢筋混凝土结构体系被广泛的应用在各类的工程结构中,具有混凝土和钢筋两种材料的协同受力性能特征,造价低廉,耐久耐火,成本低,整体性能优良,但存在着自重大,延性差,施工慢等缺点;钢结构体系的强度高,抗震性能比较好,施工方便,跨度大,用途多,但是存在着费用高,防火性能差,施工复杂等不足;钢-混凝土混合结构结合了钢筋混凝土构件和钢构件的长处,不但增加了钢构件的材料强度,同时具有较高的抗震性能,成本低廉,然而这两种材料构件的连接技术还存在着不足;钢-混凝土组合结构具有承载能力高,抗震性能强,比钢结构具有更优良的耐火性,施工速度快,但是存在着节点的构造比较复杂的缺点,一般被用于小屁偏心受压构件。 根据结构形式可以将高层建筑结构分为框架结构体系,剪力墙结构体系,框架-剪力墙结构体系。利用柱,梁等结构体系作为高层建筑竖向承重的结构,并且承受水平荷载,这种结构侧向位移大,框架结构内力大,适于50m 高度以下的建筑;通过高层建筑的墙体当做抵抗侧力和竖向承重的结构体系,就是剪力墙结构体系。这种剪力墙结构的刚度大,整体性能好,不易受水平力作用发生变形,适应于高层建筑,但是由于剪力墙的间距小,使得平面的布置不灵活,因此,在公共建筑中不宜使用;利用框架和剪力墙组合的而构成的结构形式就是框架-剪力墙结构体系,这种结构形式不但具有实用性强,布局灵活的优点,同时承受水平负载的能力更高,在高层建筑中被广泛使用。在框架-剪力墙结构体系中,需要注意考虑剪力墙的位置,设计合理的剪力墙的数量,以及满足框架的设计要求。

浅析高层建筑结构设计的难点

浅析高层建筑结构设计的难点 我国建筑行业发展至今,不管是其规模还是建筑技术在国际领域都是名列前茅。在建筑工程中,结构设计环节,是高层建筑未来施工的主要参考依据。它具有基础性、关联性、创新性等特征,在当代城市规划中,发挥着越来越重要的作用。基于此,结合国内高层结构设计的相关理论,着重对其设计难点进行分析,以达到降低高层建筑建设成本,保障结构设计质量的目的。 标签:高层建筑;结构设计;难点分析 一、高层建筑结构的特征 与普通建筑相比,高层建筑需承载垂直和水平两个方向的荷载,因此,其对结构的荷载承受能力要求更高,其中垂直荷载主要是由建筑物高度引起的,而水平荷载则是由外界风力产生的,外界风力和地震都是影响高层建筑结构稳定性的重要因素,另外,建筑层数的增高也会加快建筑物的位移速度,而过快得位移速度则会对建筑物的功能性和建筑物内住户的舒适度产生直接的影响,并且过大的侧移位还会对建筑的结构和非结构构件造成损害,因此,相关人员在进行高层建筑结构设计时,需合理控制建筑物的侧移范围,才能保证其结构功能性良好。 二、高层建筑结构的设计原则 (一)基础方案的合理性 高层建筑结构基础施工方案,是保证高层建筑施工整体性和良好性的基础保障,在实际的建筑结构方案设计当中,相关设计单位需要依照具体施工地质条件,依照具体的建筑施工要求来对结构实施设计。一方面,在建筑结构基础方案的配置上,需要和地质调查报告进行对接,保证其中各项调查数据充分符合工程施工标准。另一方面,在进行高层建筑施工过程中,还需要对建筑实施综合性进行分析,特别是对建筑整体结构的稳定程度、每一个环节的负载加以考虑,通过这种施工设计方式,充分保证工程施工的稳定性。 (二)结构措施完善 在高层建筑施工当中,除了需要对基础施工方案和施工图纸进行设计之外,其中还有一个比较重要的施工原则是相关施工单位经常忽略的问题,那就是需要保证建筑结构实施措施完善化。相关设计单位在对高层建筑结构进行设计的过程当中,需要充分地注意各部分组件相互之间的衔接程度。比如建筑体当中的钢筋锚固长度等,同时,设计单位还需要充分注意建筑体存在的一些薄弱环节,建筑体本身的温度对建筑体组件产生的影响等,对这几个方面的问题,在实际的设计工作当中,需要充分遵循“强柱弱梁、强剪弱弯、强压弱拉”的基本结构设计原则,保证高层建筑结构设计的稳定性。

浅析高层建筑结构设计的中震设计概念

浅析高层建筑结构设计的中震设计概念 发表时间:2016-06-27T14:51:54.553Z 来源:《基层建设》2016年5期作者:隆凡梅 [导读] 本文主要阐述了中中震设计的原理、设计方法及软件操作,并提出一些个人见解以供参考。 摘要:对于普通建筑物的结构抗震设计,目前我国是以小震为设计基础,中震和大震则是通过地震力的调整系数和各种抗震构造措施来保证的。但是对于较重要的、超高的、超限的建筑物则需要进行中震和大震的抗震计算。本文主要阐述了中中震设计的原理、设计方法及软件操作,并提出一些个人见解以供参考。 关键词:中震设计概念;地震影响系数;荷载 《建筑抗震设计规范》(GB50011-2001 2008年版)(下简称《抗规》)中对中震设计仅在总则中提到“小震不坏、中震可修、大震不倒”的抗震设防目标,但没有给出中震设计的设计要求和判断标准。 首先我们了解一下现行《抗规》存在几个问题: 1规范未对结构存在的薄弱构件进行分析并作出专门的设计规定,仅对框架类剪切型结构适用的薄弱层作了一些规定; 2在中震作用下,规范仅提出“中震可修”的概念设计要求,没有具体的抗震设计方法; 3“中震可修”的技术经济问题:可修的标准决定工程????造价、破坏损失、震后修复费用。 随着时代的进步,现在的建筑物体型复杂,结构新颖,超高超限越来越多,因此要求对结构进行中震的设计也越来越多。 2 中震设计 2.1 为何要进行中震设计呢? 《抗规》条文说明1.0.1条指出,对大多数结构,可只进行第一阶段设计(即小震下的弹性计算),而通过概念设计和抗震构造措施来实现“中震可修和大震不倒”的设计要求,但前提是建筑物的体型常规、合理,经验上一般能满足大中震的抗震要求。反之对于一些体型很不好的甚至超限的建筑物,在大震下的结构反应和小震完全不同,不进行相应的中震和大震计算是没法保证结构安全的。 为达到各阶段抗震要求,须对于上述体型异常、刚度变化大、超高超限等类型建筑物进行中震抗震设计,其余类型建筑物建议可按中震抗震进行验算。 2.2 中震设计的基本概念 抗震设计要达到的目标是在不同频数和强度的地震时,要求建筑物具有不同的抵抗能力。中震设计就是为了使建筑物满足该地区的基本设防烈度,即能够抵抗50年限期内可能遭遇超越概率为10%的地震烈度。 中震设计和大震设计都可称为性能设计。基于性能的抗震设计是建筑结构抗震设计的一个新的重要发展,它的特点是使抗震设计从宏观性、规范指定的目标向具体量化的多重目标过渡,业主(设计者)可选择所需的性能目标,而不仅仅是按现行规范通过分项系数、内力调整系数、抗震构造措施等粗略、定性的手段来满足中震和大震的设防要求。针对本工程的结构特点,设定本结构的抗震性能目标。对超限结构而言,利用这些指标能更合理地判断整体结构在中震、大震作用下的性能表现,给超限设计提供可靠的判断依据。 2.3 中震设计的分类 中震设计就是结构在地震影响系数按小震的2.875倍(αmax=0.23)取值下进行验算。目前工程界对于结构的中震设计有两种方法,第一种按照中震弹性设计,第二种是按照中震不屈服设计。 首先明确一点,中震弹性和中震不屈服是两个完全不同的概念,两者所采用的设计方法与设防目的均不相同。中震弹性设计,设计中取消《抗规》要求的各项地震组合内力调整系数,保留材料、荷载等分项系数,对应地保留了结构的安全度和可靠度,结构仍属于弹性阶段,属正常设计。中震不屈服设计,设计中除了地震内力不作调整,同时也取消了材料、荷载等分项系数,对应地不考虑结构的安全度和可靠度,结构已经处于弹塑性阶段,属承载力极限状态设计,是一种基于性能的设计方法。由此可见,中震弹性设计接近于平常的小震弹性设计,而中震不屈服设计则与大震设计同属于基于性能的设计。 3 基本方法及应用 根据中震设计的分类,以下分别阐述中震弹性及中震不屈服的具体设计方法,介绍如何在satwe、etabs、midas等软件中实现中震设计。 3.1 中震不屈服设计 3.3.1 不同抗震烈度下的各级屈服控制 若场地安评报告提供实际的地震影响系数,则应取用所提供的多遇地震、设防烈度地震下相应的地震影响系数,屈服判别地震作用1、2 的地震影响系数可相应插值求得。 3.3.2 SAWTE计算:地震信息中抗震等级均为四级;αmax按表3取值;总信息中风荷载不参加计算;勾选地震信息中的按中震(或大震)不屈服做结构设计选项;其它设计参数的定义均同小震设计。 3.3.3 MIDAS/Gen计算:主菜单→设计→钢筋混凝土构件设计参数→定义抗震等级:四级;主菜单→荷载→反应谱分析数据→反应谱函数:定义中震反应谱,在相应的小震反应谱基础上输入放大系数β即可,β值按表3计算所得;总信息中风荷载不参加计算;主菜单→结果→荷载组合:将各项荷载组合中的地震作用分项系数取为1.0;主菜单→设计→钢筋混凝土构件设计参数→材料分项系数:将材料分项系数取为1.0;其它同小震。 3.3.4 ETABS计算:选项→首选项→混凝土框架设计→定义抗震设计等级:四级;定义→反应谱函数→Add Chinese 2002 Spectrum→定义中震反应谱,地震影响系数最大值αmax取值,其余参数按《抗规》;静荷载工况中不定义风荷载作用;定义→荷载组合→各项荷载比例系数均取为荷载分项系数1.0x荷载组合系数φ;定义→材料属性→填写各材料的强度标准值其它同小震。 4 工程算例 4.1 示范算例 4.1.1 基本参数:二十二层框支剪力墙结构,三层楼面转换,无地下室,首、二层4.5米,标准层3.5米,总高79m。结构平面布置如图一所示。结构高宽比3.76,长宽比1.22;抗震参数,7 度,第一组,0.10g;场地II类;风荷载100年一遇为0.9kN/㎡。

预制装配式建筑结构设计与施工关键技术研究

预制装配式建筑结构设计与施工关键技术研究 摘要:预制装配式建筑结构设计,对建筑质量非常关键。尤其是建筑行业快速发 展前提下,质量与实际应用要求愈加严格。通过预制装配式建筑结构设计凸显建筑 行业在发展中的技术优势,提高建筑工程质量的同时,全面落实节能减排要求。预 制装配式建筑结构设计关键技术要求非常严格,必须打破传统观念限制,应对全新 发展挑战,关注施工关键技术应用,从而达到提高质量的目的。 关键词:预制装配式;建筑结构设计;施工技术 1制装配式建筑技术的优势 1.1有助于提升建设单位的经济效益 在应用预制装配式建筑施工技术过程中,由于相关的构件可以在工厂内进行预制,所以可以为建设单位节约一大笔构件制造的费用,并且具体施工作业流程较为 简单,施工效率也可因此得到提升,所以可以帮助建筑建设单位进一步提高其经济 效益。除此之外,与传统建筑的施工模式相比,预制装配式建筑施工技术在给排水 工程、采暖工程以及电气工程等环节的施工成本均显著低于传统施工模式,所以预 制装配式建筑施工技术在节约施工成本方面的优势也是显而易见的。另外,从结构 构件的重量来看,传统混凝土结构构件的重量显然大于预制装配式构件的重量,所 以使得预制装配式建筑对于地基工程的要求大为减少,有助于缩减地基工程的施工 时间,同时也会降低工程的施工难度,对提升建设单位的经济效益有着显著作用。 1.2有助于降低能源消耗 在预制装配式建筑中,其中大部分结构构件可以在工厂完成大规模的预制,所以可以显著提升构件的预制效率,并且也有助于减少构件预制所需要的能源消耗。此外,与传统施工模式相比,预制装配式建筑施工技术的应用可以节能约15%左右,对 于水资源的消耗来讲,预制装配式建筑施工技术也可进一步缩减水资源在建筑工程 中的消耗,最多可节约水资源约为30%以上。 1.3有助于提升环境质量 相关研究表明,如用工业化的方式来开展建筑工程施工,其可产生的建筑垃圾远低于传统施工方式,并且也不会对施工周边环境的大气质量造成显著影响,同时对 于噪音控制效果也更为显著。此外,对于预制式装配建筑来讲,其隔音效果也明显 好于传统建筑。同时,预制装配式建筑施工技术可以有效的解决传统施工工艺所存 在的一些弊端,同时也可促进节能减排,提升整个建筑的施工效率与质量,进一步降 低工程投入成本,符合未来建筑工程绿色发展的要求。 2预制装配式建筑结构施工关键技术 2.1预制剪力墙 预制剪力墙施工技术,结合预制构件为基础,做好连接处理,从而保证工程施工 质量,在此基础上还能够强化建筑工程抗震性能,节省工程施工材料。预制装配式 建筑结构施工中,剪力墙施工技术应用,主要以螺栓连接为主,注意预制构件之间精 密度,做好预制构件处理工作。预制构件安装期间,剪力墙施工技术,需要进行下层 板插筋处理,检查内墙预制预留板螺栓孔中全部插入钢筋。尤其是建筑工程施工中,螺栓孔还要及时固定,灌入水泥砂浆,有效连接剪力墙与不同结构之间的距离,进而 保证建筑工程整体结构的稳定。与此同时,预制剪力墙技术中还包括套筒连接技术、浆锚链接技术与机械连接技术。 套筒连接技术:准备好钢筋材料,将其插入到高强套筒内,套筒必须带凹凸槽,随 即进行灌浆,待灌浆樱花之后,整合钢筋、套筒变为整体,进而达到剪力墙传力的目

高层建筑结构设计分析论文

关于高层建筑结构设计分析 摘要:随着社会经济的迅速发展,人民物质生活水平的不断提高,居住条件的不断改善,高层住宅如雨后春笋一座座拔地而起。一个优秀的建筑结构设计往往是适用、安全、经济、美观便于施工的最佳结合。 关键词:建筑结构结构设计 abstract: with the rapid development of social economy, the people’s material life level unceasing enhancement, the constant improvement of the living conditions, high-rise residential have mushroomed place have sprung up. a good structure design is often apply, safety, economy, beautiful is advantageous for the construction of the best combination. keywords: building structure design 中图分类号: tu3文献标识码:a 文章编号: 一、高层建筑各专业设计的协调 高层建筑设计是个多专业、多程序的复杂系统工程,涉及“建筑、结构、设备”三个基本环节,参与高层建筑设计的工程师都深深体会到,对于每个专业单独而言是最完美的设计,但结合在一起却不是优秀的设计。各专业之间的矛盾如不妥善处理!高层建筑就无法施工,建成后也无法使用。“建筑、结构、设备”是互相制约的三个有机组成部分,高层建筑设计既是各个专业自我完善的过

高层建筑结构设计分析论文

高层建筑结构设计分析论文 1结构分析及设计分析 1.1分析三种重要的体系 1.1.1剪力墙体系 剪力墙结构是利用建筑的内、外墙做成剪力墙以承受垂直和水平荷载的结构体系。剪力墙的变形状态和受力特性同剪力墙的开洞情况联系密切,其中依据轧受力特性的不同,单片剪力墙可以分为特殊开洞墙和单肢墙。类型不同的剪力墙,对应的也会有不同的截面应力分布,所以,在对位移和内力进行计算时,也应该对不同的计算和设计方法进行使用,将平面有限元法应用到剪力墙的结构计算中。此种方法能够比较准确地完成计算,能够应用到各类剪力墙之间,然而,也有一定的弊端存在于这种方法中,其有着较多的自由度。所以,在具体的应用时,较为普遍地应用了开洞墙这一类型。 1.1.2筒体结构 筒体结构分为框架—核心筒、筒中筒等结构体系,其中框架—核心筒受力特点为框架主要承受竖向荷载,筒体主要承受水平荷载,变性特点类似于框架剪力墙,但抗侧刚度较大。依据不同的计算机模型处理手段,有三种类型的分析方法:主要为离散化方法、三维空间分析和连续化方法,其中三维空间方法的精确性会更高。 1.1.3框架—剪力墙体系 框架—剪力墙结构,是由若干个框架和剪力墙共同作为竖向承重结构的建筑结构体系。此种结构位移和内力等计算方法尽管种类较

多,然而,连梁连续化假定方法会经常被使用,在对位移协调条件进行计算时,应该按照框架水平位移和剪力墙转角进行设计,将外荷载和位移的关系用微分方程建立起来。然而,应该考虑需求和因素量会存在的差异,所以,也会有着不同形式的解答方式。 1.2具体的设计与分析 1.2.1合理地确定水平荷载 每一个建筑结构都应该一同承受风产生的水平荷载和垂直荷载,对于抵抗地震的能力也应该具备。高层建筑中,尽管结构设计会较大程度上受到竖向荷载的影响,然而,水平荷载却占据着重大的比重。随着不断增多的高层建筑层数,在高层建筑的结构设计中,水平荷载成为了其中一个重要的影响因素。首先,由于楼面使用荷载和楼房自重在竖构件中发挥的功能,对应水平荷载会将一定的倾覆作用施加到结构中,并且竖构件中就会出现高层建筑结构的作用力;其次,就高层建筑结构而言,地震作用和竖向荷载,也会跟着建筑结构的动力情况而出现较大的改变。 1.2.2合理地确定侧控 同低层建筑不同,在高层建筑结构设计中,结构侧移已经成为 了其中一个非常重要的影响因素。随着不断增加的楼层数量,结构侧移在水平荷载侧向变形下会逐渐增大。在高层建筑结构进行设计中,不但规定结构要有一定的强度,对于荷载作用带来的内力能够有效的予以承受,同时,还应该确保具备一定的抗侧刚度,确保在某一限度内控制结构在水平荷载作用出现的侧移情况。

复杂大平面、大跨度结构设计关键技术

复杂大平面、大跨度结构设计关键技术

目录 复杂大平面、大跨度钢结构的特点 1 2 3钢屋盖结构设计 大跨度钢结构楼盖设计 4利用建筑形态改善楼盖竖向舒适度 5太原南站“伞”状屋盖结构 6复杂结构试验 7健康检测 8超长无缝钢筋混凝土结构(十堰站前广场)

大型站房一般为高架站房,该类型站房在使用功能上有如下特点: 1)采用“上进下出”的旅客流线模式,从上至下依次为候车厅层、站台层及出站层;

大型站房一般为高架站房,该类型站房在使用功能上有如下特点: 2)站台层到发线轨间立柱支承上部结构,在正线通过处不立柱(个别站除外); 3)高架层柱与轨道层柱直接相连,以减少最下部出站层柱数量,改善出站层的使用功能(提高使用面积、提高净空尺寸和通透性),即通常所说的“站桥合一”,“在房子里走火车”; 4)高架候车厅层结构在垂直于轨道方向的正线通过处楼盖跨度超过43m; 5)屋盖柱数量减少,屋盖跨度加大,屋盖跨度大于50m较常见,局部区域大于100m;柱和屋盖的结构形态复杂多样; 6)屋盖和楼盖平面尺寸较大,枢纽站房的高架层及屋盖在垂直于轨道方向的尺寸一般大于500m。 7)高架层上幕墙结构高度一般大于20m。

根据上述特点,大型站房的大跨度高架层、商业夹层和屋盖结构采用钢结构较多。 近几年完成的大型站房的相关数据如表1和表2所示。 站名站房建筑面 积(万平米) 站房形式 高架层平面 尺寸(m) 屋盖平面 尺寸(m) 站台层结构 长沙南站19.9“站桥合一”高架站 房 177×231177×286 桥墩+预应力钢筋混凝土连续箱梁 桥 杭州东站32“站桥合一”枢纽站 房 144×463285×516钢管混凝土柱+双向钢骨梁框架 郑州东站40“站桥合一”枢纽站 房 156×476272×510 钢骨柱+双向预应力混凝土箱型框 架 太原南站20高架站房112×281373×226混凝土地下通道 表1 站房概况

高层建筑结构设计管理

高层结构设计管理 随着房地产行业的持续发展,成本控制开始被越来越多的地产公司所重视,由于结构成本占据了相当大的一部分成本,所以如何优化控制结构成本,成为了时下地产业内普遍关心的话题。笔者根据在设计院、房地产工作的经验及相关报告、书籍,将结构成本控制的管理方法、技术关键点,在这里作一简单介绍。 一、结构成本控制的重要性 大量的统计数据和实践表明,前期策划和设计阶段(项目策划、方案设计、初步设计、施工图设计)影响整个房地产项目投资在80%以上,而结构成本占到建安成本的40%~60%,同时结构成本还常常由于策划及设计管理的好坏出现非常大的波动,常常造成上千万元的造价差别;因此结构成本的管理就成为整个设计阶段成本管理的重中之重。 二、当前结构成本管理的市场状况 1、三种认识:首先认为建筑方案一经确定,结构成本基本就确定了。其实建筑方案确定之后,结构方案仍然有一个优化设计的过程,这个过程,成本会相差30%;其次是认为结构成本的降低必然会导致结构安全储备的下降。这种理解也有偏差,结构成本的降低是指积极化的设计,降低无效成本。三是对于建筑这样的“百年大计”,一定要保证“安全”。这里的“安全”是指满足规范、结构合理,与其增加结构的安全储备,不如使结构成本显性化,如提高抗震等级,显示给业主,更有优势。 2、一个现状:仅从经济指标上对结构成本进行控制。应该说事先控制和过程控制更重要。 3、一种思路:非常重视和强调结构成本的控制,认为含钢量、含混凝土量越低,结构设计越优秀。这种思路有点走极端,如果设计中稍有一点纰漏,结构容易出问题,再者这么精确的设计需要时间和周期,应该把握一个度。 三、成本管理的内涵 成本管理的总目标:项目全寿命周期的最小投入产出比。 成本管理的控制过程:项目论证、项目策划阶段、设计准备、设计、招投标、施工、投入实用阶段。 成本管理的控制措施:组织措施、技术措施、经济措施、合同措施。 成本管理的工作性质:技术工作、经济工作、管理工作。 四、结构成本控制的管理思路和方法 结构成本控制必须贯穿整个设计和策划的全过程,包括前期论证及策划阶段的地质情况调查、规划阶段的初勘、方案阶段的结构介入、扩初阶段对结构方案的优化、施工图阶段给设计院灌输成本意识及施工图配合阶段变更、签证的管理。 (一)事前控制的几个要点 1、设计院的选择 应选择易于管理、态度重视,并且服务意识和市场口碑好的设计院,另外应视设计院当时的项目情况,要能抽出足够的人力。 2、专业负责人的选择 专业负责人应有2、3个以上的业绩、经验,市场反馈图纸质量好,负责意识、成本意识、服务意识强,在图纸修改配和、专业配合、现场配合方面做的好,且专业负责人对项目有影响力和控制力。 3、与设计院沟通并灌输工程成本控制的意识

探讨民用建筑结构设计的关键技术发展

探讨民用建筑结构设计的关键技术发展 民用建筑是常见的一类建筑,其结构设计合理与否,直接关系着民用建筑结构的安全性。为保证民用建筑使用安全,必须科学合理的设计民用建筑结构。本文结合大量文献材料,以民用建筑常用类型为切入点,对民用建筑结构设计中的关键技术进行了分析,仅供参考借鉴。 标签:建筑结构;常用类型;特点;剪力墙结构;框架结构 近些年,我国民用建筑数量越来越多,结构类型多样、空间结构复杂,对建筑结构设计提出了更高要求。对于民用建筑而言,结构是一个主体框架,应具备足够的可靠性,才能保证建筑结构安全。经过几十年发展,我国民用建筑结构设计的相关技术水平已经有了大幅度提升,但是依然不能满足复杂建筑结构设计的基本需求,急需在现有的技术条件上有新的发展。为此,下面基于当前我国民用常用的结构类型及特点,对结构设计的关键技术发展进行了探讨分析。 1、民用建筑结构常用的类型及特点 1.1砌体结构 砌体结构主体采用围墙形式,围墙是主要的承重构件,同时也具备护围作用。砌体结构主要特点:第一,成本低,經济性高;第二,设计简单,对设计人员的专业性、工作经验等方面要求相对较低;第三,承重强度低,抗震力低,不适用于高层建筑结构。如果是低层的民用建筑可以使用砌体结构设计。 1.2框架结构 框架结构具备砌体结构的功能,但是与砌体结构设计相比,框架结构设计的平面布置更灵活,基本替代了砌体结构设计。框架结构特点:第一,采用钢筋混凝土和型钢构件来称重,结构的承重力、抗震力高于砌体结构;第二,采用梁柱刚接,有较好的延伸性。设计中,对结构平面、立面进行合理规划设计,使结构各部位受力均匀。 1.3剪力墙结构 剪力墙结构设计时,要充分考虑民用建筑结构布置、平面布置方面的要求,一般只应用于公寓建筑等。剪力墙结构由于自身特殊的结构和承重特性,剪力墙有承重、分隔空间、护围等作用。但是,也正是因为剪力墙有间距限制,造成剪力墙平面布置灵活性差。 1.4筒体结构 筒体结构设计的平面布置灵活,具有较强的抗侧刚度、抗扭刚度,对结构中

高层建筑结构设计考试试题(含答案)

高层建筑结构设计考试试题一、填空题( 2× 15=30) 1、2、钢筋混凝土剪力墙结构的水平荷载一般由剪力墙承担,竖向荷载由剪力墙承担。其整体位移曲线特点为弯曲型,即结构的层间侧移随楼层的 而增大而增大。与框架结构相比,有结构整体性好,刚度大,结构高度可 以更大。等优点。 框架——剪力墙结构体系是把框架和剪力墙结构两种结构共同结合在一起形成的结构体系。结构的竖向荷载由框架和剪力墙承担,而水平作用主要由 剪力墙承担。其整体位移曲线特点为弯剪型,即结构的层间位移在结构底部层间位移随层数的增加而增大,到中间某一位置,层间位移随 层数的增加而增大。 3、框架结构水平荷载作用近似手算方法包括反弯点法、D值 4、 法。当结构的质量 中心下会发生扭转。 中心和刚度中心中心不重合时,结构在水平力作用 二、多项选择题(4×5= 20) 1、抗震设防结构布置原则(ABC) A 、合理设置沉降缝C、 足够的变形能力B D 、合理选择结构体系 、增大自重 E、增加基础埋深 2、框架梁最不利内力组合有(AC) A、端区 -M max, +M max, V max C、跨中 +M max D B、端区 M max及对应 N, V 、跨中 M max及对应 N, V E、端区N max及对应M, V 3、整体小开口剪力墙计算宜选用( A )分析方法。 A、材料力学分析法 B、连续化方法 C、壁式框架分析法 D、有限元法 4、高层建筑剪力墙可以分为(ABCD )等几类。 A、整体剪力墙 B、壁式框架 C、联肢剪力墙 D、整体小开口墙 5、高层建筑基础埋置深度主要考虑(ACD)。 A、稳定性 B、施工便利性 C、抗震性 D、沉降量 E、增加自重 三、简答题(7×5= 35) 1、试述剪力墙结构连续连杆法的基本假定。 1、剪力墙结构连续连杆法的基本假定:忽略连梁的轴向变形,假定两墙肢的水平位移完全相同;各墙肢截面 的转角和曲率都相等,因此连梁两端转角相等,反弯点在中点;各墙肢截面,各连梁截面及层高等几何尺寸 沿全高相同。

浅析高层建筑结构设计存在的问题及对策

浅析高层建筑结构设计存在的问题及对策 发表时间:2016-05-25T10:16:41.620Z 来源:《工程建设标准化》2016年2月供稿作者:吴志星[导读] (山西平阳重工机械有限责任公司,山西,侯马,043003)众所周知,高层建筑的最大优势就是能够充分提高土地的利用率,这一优势在一定程度上充分缓解了当前我国土地资源短缺的压力。(山西平阳重工机械有限责任公司,山西,侯马,043003) 【摘要】在实行改革开放以后,随着时代的发展和科技的进步,我国的建筑业不仅与时俱进,楼层不断向高处扩展,而且在一定程度上取得了不小的成就,然而在高层建筑结构设计上各种问题频发,这也成为了一个亟待解决的问题。本文通过着重介绍高层建筑结构设计的原则、当前高层建筑结构设计中存在的问题和改进建筑结构设计中常见问题的对策,来强化和确保高层建筑结构设计的不断完善。 【关键词】高层建筑;结构设计;问题;对策 众所周知,高层建筑的最大优势就是能够充分提高土地的利用率,这一优势在一定程度上充分缓解了当前我国土地资源短缺的压力,但是,高层建筑的质量会受到多重因素的影响,一旦产生安全事故,必将对人们的生命和财产带来极大的影响,因此,对建筑的结构设计提出了更高的要求,只有高层建筑的结构设计科学合理,其质量才能有保障,才会有利于社会和谐稳定发展。 一、高层建筑结构的设计原则 1、选择合理的结构方案 只有结构方案经济合理,才能让一个建筑设计合理,可行性强的结构形式和传力简捷、受力明确的结构体系也会促进一个良好设计的形成。因此在进行结构设计时应当具体分析建筑所处的地理环境、材料和设计的需求及施工条件等,充分考虑高层建筑自身的特点,根据实际情况来选择一个合理的结构方案。 2、选择合适的基础方案 在设计过程中要注意最大程度地发挥地基的潜力,在基础设计时要形成详尽的地质勘察报告,如果缺少报告,必须进行现场勘查来制定设计方案,要先通过综合分析工程的地质地貌、施工条件、上部结构类型、相邻建筑物的影响及荷载分布等因素的考虑再进行基础设计,只有这样,才能设计出经济合理的基础方案。 3、进行正确的分析计算 随着科技的发展,计算机技术在结构设计方面已得到广泛应用,种类繁多的计算软件都存在不同程度的缺陷,因此在结构设计的计算过程中会出现不精确的情况,这就要求设计师在使用软件过程中细致认真,对产生的结果认真分析和校对,作出合理判断。 二、当前高层建筑结构设计中存在的问题 1、结构体系选用不科学 由于我国所处地球的板块较为活跃,因此地震频发,对与这些地震多的地区建设高层建筑就应当选用抗震性强的结构体系和建筑材料,一些发达国家通常是使用的钢结构,而我国大多使用的钢筋混凝土结构或者混合结构,但钢框架的刚度较小,钢结构会产生一定程度的负担,也不会起到较好的效果,钢筋混凝土很容易产生弯曲变形而导致侧移,因此在进行结构设计时必须注意使用加强层把侧移量降低或者加大混凝土制土桶刚度。 2、高层建筑普遍超高 高层建筑对抗震能力的要求较高,因此国家严格规定了建筑物的高度,但是实际需求的不断改变使得建筑的高度不断发生改变,因此国家又对A级高度和B级高度进行新的规定和细致划分。即使如此,一些设计师在进行结构设计时往往会忽视高度的问题,对于一些不适合建设高层建筑的地段或条件也会出现为了追求利益的最大化而违反相关规定进行施工,这种情况对整个建筑的成本预计和建设进度都会造成诸多不良影响。 3、结构设计的刚度问题 楼层竖向结构的规则性与平面刚度问题是高层建筑结构设计过程中一个经常遇到的问题,由于在高层建筑的设计过程中每位设计师都有自己的想法和设计理念,因此在设计时就会产生差异,导致结构设计产生矛盾和分歧,在建筑施工过程中很容易出现一味追求独特新颖的外观而忽视抗侧移的刚度对高层建筑能否抗震的影响。 4、材料配备和资源配置不科学 高层建筑的结构特点非常明显,其结构设计的复杂性是由其功能的复杂性决定的,传统的建筑选材多为可燃性材料,这种材料很可能增加高层建筑火灾发生的可能性,对于建筑施工过程中劳动力等资源的配置如果未能提前进行预计和计算,还会对后期的施工造成一定的难度,对于其引发的一系列突发状况也很难及时处理和解决,造成施工进度无法按期完成。 三、改进建筑结构设计中常见问题的对策 1、选用科学的结构体系 受自然灾害的影响,人们对建筑的稳定性能要求逐渐提高,对高层建筑的要求越来越严格,由于高层建筑限制性较大,因此必须对高层建筑结构设计中选用的结构体系进行严格限制,以免在后期的项目施工的设计阶段发生不必要的变动,对计算简图也要慎重选择和使用,根据建筑物的影响因素和自身特点来选用一套科学合理的的结构体系。 2、注重建筑的设计高度 设计师在进行高层建筑的结构设计过程中,要明确意识到有关的高度规范,严格审查设计图纸,确保结构设计与相关的要求和规范相符合,对于建筑施工过程中出现的问题要及时调集有关专家加以具体分析,对高层建筑重新进行设计和评估,以免对建筑的施工进度和质量产生不良影响。国家相关部门也应当加大对高层建筑的审查力度,对不合乎规范的行为进行严加处理,确保高层建筑结构的稳定性和安全性。 3、选择合理的刚度设计

相关主题
文本预览
相关文档 最新文档