当前位置:文档之家› 二叉树定价模型

二叉树定价模型

二叉树定价模型
二叉树定价模型

二项式期权定价模型

1.实验名称:

二项式期权定价模型

2.实验目的:

利用二叉树期权定价模型公式Excel 模板计算期权价格。

3.基本原理

计算到期时资产价值的分布,求出资产的期望值,用适当的贴现率计算现值,得到资产的当前价值。

(1) 计算n 期中上升i 次的概率: ()(1)i i n i

i n P n C p p -=-; (2) 计算在终期时的价格分布: ()0i n i ni S S u d -=

(3) 计算期权的价值: ()0max(,0)i n i ni

Call

S u d K -=-,()0max(,0)i n i ni

Put

K S u d -=-;

(4)计算终期时的期望值:0

()n

n ni i ECall P i Call

==∑,

()n

n ni i EPut P i put ==∑;

(5)计算期权在起初时刻的价值: ()00

(1)max(,0)n

RT

RT

i i n i i n i n i Call e

ECall e

C

p p S u d K ----===--∑

()00

(1)max(,0)n

RT

RT

i

i n i i n i n

i Put e

EPut e

C

p p K S u d ----===--∑。

4. 实验数据域内容

已知股票价格为50,执行价格为50,时间为半年,无风险利率为5%,波动率为20%,

分为10个时间段,利用二叉树定价模型计算看涨看跌期权的价格。

5. 操作过程与结果

(1)定义变量的符号

在单元格B2—B14中分别输入S 、K 、T 、R 、VOL 、n 、dt 、u 、d 、G-factor 、D-factor 、p 分别表示股票价格、期权执行价格、期权有效期、无风险利率、股价波动率、时段数、时段、上升因子、下降因子、增长因子、贴现因子、风险中性概率。如图:

(2)输入变量数据

输入响应变量的数据,如图:

(3) 计算其余变量的值

在B26—B33中依次输入dt、u、d、r、G-factor、D-factor、p、1-p,在C26—C33中依次输入=C20/C23、=EXP(C22*SQRT(C26))、=1/C27、=EXP(C21*C26)、=EXP(C21*C26)、=EXP(-C21*C26)、=(C29-C28)/(C27-C28)、=1-C32。如图:

(4)设置看涨看跌选择窗口

右键点击窗口上端空白处,选中“窗体”,在出现的窗体中选择“组合框”窗体控件,在单元格C26位置上插入一个“组合框”控件。点击右键,出现下拉菜单后选择“设置控件格式”,在“控件”对话框中,进行设置。此控件的数据源区域为“D36:D37”,单元格链接为“C26”。并在单元格D36和D37中分别输入“看涨期权”和“看跌期权”。在单元格B36中输入“期权价格”。

(5)终端股票价格、期权价值中间变量的计算

在B41-B51中输入0-10,在C41输入=$C$18*$C$27^B41*$C$28^($C$23-B41),下拉至C51,在D41中输入=BINOMDIST(B41,$C$23,$C$32,0),下拉至D51,在E41中输入=IF($C$36=1,MAX(C41-$C$19,0),MAX($C$19-C41,0),下拉至E51,。如图:

(6)画出概率分布图

选择插入散点图,选择带平滑线的散点图,横轴为0—10,纵轴为概率分布,如图:

(7)计算期权的价格

在单元格B36中输入

=IF(C36=1,SUMPRODUCT(D41:D51,E41:E51),SUMPRODUCT(D41:D51,E41:E51)),选择看涨期权、看跌期权,相应的期权价值就可以计算出来,如图:

【本文档内容可以自由复制内容或自由编辑修改内容期待你的好评和关注,我们将会做得更好】

基于二叉树模型的期权定价

目录 摘要 (1) ABSTRACT (2) 第一章绪论 (3) 1.1 背景介绍 (3) 1.2 本文的主题 (4) 第二章预备知识 (5) 2.1 期权 (5) 2.2二叉树方法 (6) 2.2.1 方法概述 (6) 2.2.2 二叉树方法的优点和缺点 (9) 2.2.3 风险中性定价 (9) 2.3 Black-Scholes 期权定价模型 (11) 错误!未定义书签。 错误!未定义书签。 错误!未定义书签。 错误!未定义书签。

第三章本论 (14) 3.1期权定价的二叉树模型 (14) ................................................ 错误!未定义书签。 ................................................ 错误!未定义书签。 ................................................ 错误!未定义书签。 ................................................ 错误!未定义书签。 3.2 例子模拟计算和结果分析 (18) 3.3 模型改进——三叉树 (19) 第四章结论...................................... 错误!未定义书签。谢辞及参考文献 (23) 谢辞 (23) 参考文献 (23) 附录 (25) 计算过程中涉及算法 (25)

摘要 Black-Scholes 期权定价模型为期权定价尤其是欧式期权定价提供了良好的解析结果,而Black-Scholes 公式是此模型的核心,但是此公式并不能很好地求解出在很多衍生模型例如亚式期权以及美式期权中的解析解。二叉树方法作为一种数值方法,同时也是图论中一种重要方法,应用于期权定价问题中,它有了更特别的演变。本文利用二叉树方法计算期权定价的数值解,用二叉树方法迭代多次,求出较为准确的期权价格。通过B-S公式得出的结果与二叉树方法得到的结论对比,分析二叉树方法模拟的优点和缺点。同时,我们还要研究二叉树模拟的步数与预测结果和精度间的关系,从而更加深入了解二叉树方法。然而,我们在模型中设立了许多条件,这些都使模型离真实情况越来越远,我们必须不断发展模型,完善模型。三叉树方法正是二叉树方法的合适补充。 关键词:二叉树方法,Black-Scholes 模型,风险中性定价

欧式看涨期权二叉树定价

欧式看涨期权二叉树定价(含m a t l a b代码和结果图)实验概述 本实验首先介绍了二叉树方法的来源和主要理论基础,然后给出期权的二叉树定价方法的基本过程和MATLAB7. 0实现的过程。 19. 2 实验目的 (1)了解二叉树的定价机理; (2)掌握用MATLAB7. 0生成股票价格的二叉树格子方法; (3)掌握欧式期权和美式期权的二叉树定价方法。 19. 3 实验工具 MATLAB 7. 0。 19. 4 理论要点 构造二叉树图(Binomial Tree)是期权定价方法中最为常见的一种。这个树图表示了在期权有效期内股票价格可能遵循的路径。二叉树定价方法与风险中性定价理论是紧密联系的。Cox, Ross & Rubinstein (1979)首次提出了构造离散的风险中性概率可以给期权定价,在此基础上他们给出了二叉树定价方法。 1)一个简单的例子 假设当前(3月份)股票的价格So =50元,月利率是25%。4月份股票价格有两种可能:S高=100元,S低=25元。有一份看涨期权合约,合约约定在4月份可以以50元价格买进一股股票。现在考虑一个投资组合,进行几项操作:以价格C卖出3份看涨期权合约;以50元购入2股股票;以25%的月利率借人40元现金,借期为一个月。 根据上述组合,我们可以得到以下到期收益分布表,如表19. 1所示。 表19.1 投资组合的到期收益分布表 四月份 三月份

S低=25元S高=100元 卖出3份看涨期权合约3C 0 -150 买人两股股票-100 50 200 借人现金40 -50 -50 总计0 0 0 由一价定律3C-100+40=0,可得C= 20元,即为期权的价格。这个例子说明,可以用一个相当简单的方法为期权定价,唯一需要做的是假设对投资者而言不存在套利机会。我们可以通过某种方式构造一个股票和期权的组合,使得在4月份该组合的价值是确定的。于是我们可以说该组合无风险,它的收益率一定等于无风险收益率。二叉树方法正是基于上述思想构造了二项分布下的风险中性概率。 2)二叉树模型 考虑一个不支付红利的股票期权价格估值。我们把期权的有效期分为很多很小的时间间隔Δt。假设在每一个时间段内股票价格从开始的价格S以概率p上升到Su,以概率1-p下降到Sd,其中,u>1,O

二叉树定价模型知识讲解

二叉树定价模型

期权定价的二叉树模型 Cox、Ross和Rubinstein提出了期权定价的另一种常用方法二叉树(binomial tree)模型,它假设标的资产在下一个时间点的价格只有上升和下降两种可能结果,然后通过分叉的树枝来形象描述标的资产和期权价格的演进历程。本章只讨论股票期权定价的二叉树模型,基于其它标的资产如债券、货币、股票指数和期货的期权定价的二叉树方法,请参考有关的书籍和资料。 8.1一步二叉树模型 我们首先通过一个简单的例子介绍二叉树模型。 例8.1 假设一只股票的当前价格是$20,三个月后该股票价格有可能上升到$22,也有可能下降到$18. 股票价格的这种变动过程可通过图8.1直观表示出来。 在上述二叉树中,从左至右的节点(实圆点)表示离散的时间点,由节点产生的分枝(路径)表示可能出现的不同股价。由于从开始至期权到期日只考虑了一个时间步长,图8.1表示的二叉树称为一步(one-step)二叉树。这是最简单的二叉树模型。

一般地,假设一只股票的当前价格是,基于该股票的欧式期权价格为。经过一个时间步(至到期日T)后该股票价格有可能上升到相应的期权价格为;也有可能下降到 相应的期权价格为. 这种过程可通过一步(one-step)二叉树表示出来,如图8.2所示。我们的问题是根据这个二叉树对该欧式股票期权定价。 为了对该欧式股票期权定价,我们采用无套利(no arbitrage)假设,即市场上无套利机会存在。构造一个该股票和期权的组合(portfolio),组合中有股的多头股票和1股空头期权。如果该股票价格上升到,则该组合在期权到期日的价值为;如果该股票价格下降到,则该组合在期 权到期日的价值为。根据无套利假设,该组合在股票上升和下降两种状态下的价值应该相等,即有 由此可得 (8.1) 上式意味着是两个节点之间的期权价格增量与股价增量之比率。在这种情况下,该组合是无风险的。以表示无风险利率,则该组合的现值(the present value)为 ,又注意到该组合的当前价值是,故有 即

金融工程-二叉树模型——期权定价方法试验报告---用于合并

期权定价(二叉树模型)实验报告1204200308 学号:1201 姓 名:郑琪瑶班级:创金 一、实验目的计算出支付连续红利率资产Excel 本实验基于二叉树模型对 期权定价。利用的期权价格,并探究输入参数(如无风险利率、波动率、期限、时间区间划分方从而巩固二叉树模型这种期权定价的数对于期权价格的影响,式、收益率等等)值方法的相关知识。 二、实验原理的红利时,在风险中性条件下,证券价格的当标的资产支付连续收益率为q应该满足以下,因此参数(股票价格上升的概率)、、增长率应该为pq?r u d式子:tq)?(r?dpe)(?pu?1?;同时在一小段时间内股票价格变化的方差 满足下式:2222?]p1?)p)dd?[pu?(?t?pu?(1?;1,将三式联列,可以解考克斯、罗斯和鲁宾斯确定参数的第三个条件是?u d)得(*(r?q)?t??edp?? u?d????t u?e????t?d?e???t?0?三、实验内容 1.假定有一支付连续红利率股票的美式看涨期权,有效期期限为5个月,目前 的股票价格和期权执行价格都为50元,无风险利率为10%,波动率为40%,连续收益率为3%,为了使得估计的期权价格比较准确,把时间区间划分成30步,即N=30,利用excel加载宏可以计算得到相应美式和欧式期权的价格 2.探究基于不同红利支付类型:支付已知收益率和支付已知红利数额,计算出相应的美式和欧式期权价格。 3.以支付已知收益率模式下分析期权价格。使资产连续复利收益率在[1%,10%]变化,保持其余变量不变,分别计算出相应美式f和欧式f期权的价格21 4.以支付已知红利数额模式下分析期权价格。探究下一期的红利支付数额为常数、递增及递减情况下,保持其余变量不变,分别计算出相应美式和欧式期权的价格。 5.根据上述每一步计算得到的当期期权价格的数据绘制折线图,观察折线图,得出结论。 四、实验过程:步骤一:输入已知参数输入参数支付连续收TRSX N 步数无风险利率波动率σ股票价格期限期权执行价格0RC益率9.00% 5 50.00

二叉树期权定价法22222

二叉树期权定价法 摘要上世纪七十年代以来金融衍生品得到了蓬勃的发展,在这之中,期权的地位尤为受到重视,居于核心地位,很多的新创的衍生品,都包含了期权的成分。所以一直以来,期权的定价问题受到了大量经济学家的探索。实物期权的定价模式的种类较多,理论界和实务界尚未形成通用的定价模型,主要估值方式有两种:一是B l a c k-S c h o l e s期权定价模型;二是二叉树期权定价模型。 1973年,布莱克和斯科尔斯(B l a c k a n d C s c h o l e s)提出了 B l a c k-S c h o l e s期权定价公式,对标的资产的价格服从正态分布的期权进行定价。随后,罗斯开始研究标的资产的价格服从非正态分布的期权定价理论。1976年,约翰·考克斯(J o h n C a r r i n g t o n C o x)、斯蒂芬·罗斯(S t e p h e n A.R o s s)在《金融经济学杂志》上发表论文“基于另类随机过程的期权定价”,提出了风险中性定价理论。1979年,约翰·考克斯(J o h n C a r r i n g t o n C o x)、斯蒂芬·罗斯(S t e p h e n A.R o s s)、马克·鲁宾斯坦(M a r k R u b i n s t e i n)在《金融经济学杂志》上发表论文“期权定价:一种简单的方法”,该文提出了一种简单的对离散时间的期权的定价方法,被称为C o x-R o s s-R u b i n s t e i n二项式期权定价模型。 关键词 B l a c k-S c h o l e s期权定价模型虽然有许多优点,但是它的推导过程却是难以为人们所接受;二叉树期权定价模型假设股价波动只有

第九章 期权估价-二叉树期权定价模型

2015年注册会计师资格考试内部资料 财务成本管理 第九章 期权估价 知识点:二叉树期权定价模型 ● 详细描述: 一、单期二叉树模型 关于单期二叉树模型,其计算结果与前面介绍的复制组合原理和风险中性原理是一样的。 以风险中性原理为例: 根据前面推导的结果: 代入(1)式有: 二、两期二叉树模型 如果把单期二叉树模型的到期时间分割成两部分,就形成了两期二叉树模型。由单期模型向两期模型的扩展,不过是单期模型的两次应用。 三、多期二叉树模型

原理从原理上看,与两期模型一样 ,从后向前逐级推进 乘数确定期数增加以后带来的主要问题 是股价上升与下降的百分比如 何确定问题。期数增加以后 ,要调整价格变化的升降幅度 ,以保证年收益率的标准差不 变。把年收益率标准差和升降 百分比联系起来的公式是: u=1+上升百分比= d=1-下 降百分比= 其中:e=自然常 数,约等于2.7183 σ=标的资 产连续复利收益率的标准差 t=以年表示的时间长度(每期 时间长度用年表示) 做题程序: (1)根据标准差和每期时间间隔确定每期股价变动乘数(应用上述的两个公式) (2)建立股票价格二叉树模型 (3)根据股票价格二叉树和执行价格,构建期权价值的二叉树。 构建顺序由后向前,逐级推进。——复制组合定价或者风险中性定价。 (4)确定期权的现值 例题: 1.如果股票目前市价为50元,半年后的股价为51元,假设没有股利分红,则 连续复利年股票投资收益率等于()。 A.4% B.3.96% C.7.92% D.4.12% 正确答案:B 解析:r=ln(51/50)/0.5=3.96%

二叉树定价模型

二项式期权定价模型 1.实验名称: 二项式期权定价模型 2.实验目的: 利用二叉树期权定价模型公式Excel 模板计算期权价格。 3.基本原理 计算到期时资产价值的分布,求出资产的期望值,用适当的贴现率计算现值,得到资产的当前价值。 (1) 计算n 期中上升i 次的概率: ()(1 )i i n i i n P n C p p -=-; (2) 计算在终期时的价格分布: ()0i n i ni S S u d -= (3) 计算期权的价值: ()0max(,0)i n i ni Call S u d K -=-,()0max(,0)i n i ni Put K S u d -=-; (4)计算终期时的期望值:0()n n ni i ECall P i Call == ∑,0()n n ni i EPut P i put ==∑; (5)计算期权在起初时刻的价值: ()00 (1)max(,0)n RT RT i i n i i n i n i Call e ECall e C p p S u d K ----===--∑ ()00(1)max(,0)n RT RT i i n i i n i n i Put e EPut e C p p K S u d ----===--∑。 4. 实验数据域内容 已知股票价格为50,执行价格为50,时间为半年,无风险利率为5%,波动率为20%,分为10个时间段,利用二叉树定价模型计算看涨看跌期权的价格。 5. 操作过程与结果 (1)定义变量的符号 在单元格B2—B14中分别输入S 、K 、T 、R 、VOL 、n 、dt 、u 、d 、G-factor 、D-factor 、p 分别表示股票价格、期权执行价格、期权有效期、无风险利率、股价波动率、时段数、时段、上升因子、下降因子、增长因子、贴现因子、风险中性概率。如图:

金融工程-二叉树模型——期权定价方法实验报告---用于合并

期权定价(二叉树模型)实验报告 班级: 创金1201 姓名: 郑琪瑶 学号: 08 一、实验目的 本实验基于二叉树模型对期权定价。利用Excel 计算出支付连续红利率资产的期权价格,并探究输入参数(如无风险利率、波动率、期限、时间区间划分方式、收益率等等)对于期权价格的影响,从而巩固二叉树模型这种期权定价的数值方法的相关知识。 二、实验原理 当标的资产支付连续收益率为q 的红利时,在风险中性条件下,证券价格的增长率应该为q r -,因此参数p (股票价格上升的概率)、u 、d 应该满足以下式子: d p pu e t q r )1()(-+=?-; 同时在一小段时间内股票价格变化的方差满足下式: 2222])1([)1(d p pu d p pu t -+--+=?σ; 考克斯、罗斯和鲁宾斯确定参数的第三个条件是d u 1 =,将三式联列,可以解 得(*) 三、实验内容 1. 假定有一支付连续红利率股票的美式看涨期权,有效期期限为5个月,目前 的股票价格和期权执行价格都为50元,无风险利率为10%,波动率为40%,连续收益率为3%,为了使得估计的期权价格比较准确,把时间区间划分成30步,即N=30,利用excel 加载宏可以计算得到相应美式和欧式期权的价格 2.探究基于不同红利支付类型:支付已知收益率和支付已知红利数额,计算出相 应的美式和欧式期权价格。 3.以支付已知收益率模式下分析期权价格。使资产连续复利收益率在[1%,10%]变 化,保持其余变量不变,分别计算出相应美式f 1和欧式f 2期权的价格 4.以支付已知红利数额模式下分析期权价格。探究下一期的红利支付数额为常 数、递增及递减情况下, 保持其余变量不变,分别计算出相应美式和欧式期权的价格。 5.根据上述每一步计算得到的当期期权价格的数据绘制折线图,观察折线图,得出结论。 四、实验过程: 步骤一:输入已知参数 步骤二:根据已知参数及式(*)原理,计算如下参数

期权定价

第八章期权定价的二叉树模型 8.1 一步二叉树模型 我们首先通过一个简单的例子介绍二叉树模型。 例8.1 假设一只股票的当前价格是$20,三个月后该股票价格有可能上升到$22,也有可能下降到$18. 股票价格的这种变动过程可通过图8.1直观表示出来。 在上述二叉树中,从左至右的节点(实圆点)表示离散的时间点,由节点产生的分枝(路径)表示可能出现的不同股价。由于从开始至期权到期日只考虑了一个时间步长,图8.1表示的二叉树称为一步(one-step)二叉树。这是最简单的二叉树模型。 一般地,假设一只股票的当前价格是,基于该股票的欧式期权价格为。经过一个时间步(至到期日T)后该股票价 格有可能上升到相应的期权价格为;也有可能下降到相应的期权价格为. 这种过程可通过一步(one-step)二叉树表示出来,如图8.2所示。我们的问题是根据这个二叉树对该欧式股票期权定价。为了对该欧式股票期权定价,我们采用无套利(no arbitrage)假设,即市场上无套利机会存在。构造一个该股票和期权 的组合(portfolio),组合中有股的多头股票和1股空头期权。如果该股票价格上升到,则该组合在期权到期 日的价值为;如果该股票价格下降到,则该组合在期权到期日的价值为。根据无套利假设,该组合在股票上升和下降两种状态下的价值应该相等,即有 由此可得 (8.1) 上式意味着是两个节点之间的期权价格增量与股价增量之比率。在这种情况下,该组合是无风险的。以表示无风险 利率,则该组合的现值(the present value)为,又注意到该组合的当前价值是,故有

即 将(8.1)代入上式,可得基于一步二叉树模型的期权定价公式为 (8.2) (8.3) 需要指出的是,由于我们是在无套利(no arbitrage)假设下讨论欧式股票期权的定价,因此无风险利率应该满足: . 现在回到前面的例子中,假设相应的期权是一个敲定价为$21,到期日为三个月的欧式看涨权,无风险的年利率为12%,求该期权的当前价值。 已知:且在期权到期日, 当时,该看涨权的价值为而当时,该看涨权的价值为 根据(8.3)和(8.2),可得 . 上述期权定价公式(8.2)和(8.3)似乎与股价上升或下降的概率无关,实际上,在我们推导期权价值时它已经隐含在股票价 格中了。不妨令股价上升的概率为,则股价下降的概率就是,在时间的期望股票价格为

第45讲_二叉树期权定价模型

(二)二叉树期权定价模型 1.单期二叉树定价模型 期权价格=×+× U:上行乘数=1+上升百分比 d:下行乘数=1-下降百分比 【理解】 风险中性原理的应用 其中: 上行概率=(1+r-d)/(u-d) 下行概率=(u-1-r)/(u-d) 期权价格=上行概率×C u/(1+r)+下行概率×C d/(1+r) 【教材例7-10】假设ABC公司的股票现在的市价为50元。有1股以该股票为标的资产的看涨期权,执行价格为52.08元,到期时间是6个月。6个月以后股价有两种可能:上升33.33%,或者降低25%。无风险利率为每年4%。 【答案】 U=1+33.33%=1.3333 d=1-25%=0.75 =6.62(元) 【例题?计算题】假设甲公司的股票现在的市价为20元。有1份以该股票为标的资产的看涨期权,执行价格为21元,到期时间是1年。1年以后股价有两种可能:上升40%,或者降低30%。无风险利率为每年4%。 要求:利用单期二叉树定价模型确定期权的价值。 【答案】期权价格=(1+r-d)/(u-d)×C u/(1+r)=(1+4%-0.7)/(1.4-0.7)×7/(1+4%)=3.27(元) 2.两期二叉树模型 (1)基本原理:由单期模型向两期模型的扩展,不过是单期模型的两次应用。 【教材例7-11】继续采用[例7-10]中的数据,把6个月的时间分为两期,每期3个月。变动以后的数据如下:ABC公司的股票现在的市价为50元,看涨期权的执行价格为52.08元,每期股价有两种可能:上升22.56%或下降18.4%;无风险利率为每3个月1%。 【解析】 P=(1+1%-0.816)/(1.2256-0.816)=0.47363 C U=23.02×0.47363/(1+1%)=10.80 C d=0 C0=10.80×0.47363/(1+1%)=5.06 (2)方法: 先利用单期定价模型,根据C uu和C ud计算节点C u的价值,利用C ud和C dd计算C d的价值;然后,再次利用单期定价模型,根据C u和C d计算C0的价值。从后向前推进。 3.多期二叉树模型 (1)原理:从原理上看,与两期模型一样,从后向前逐级推进,只不过多了一个层次。 (2)股价上升与下降的百分比的确定:

二叉树和三叉树的期权定价方法

第七章期权定价的二叉树和三叉树方法在这一章中,我们利用二叉树和三叉树方法为期权定价。在第2.1节中我们已经介绍了利用基础途径的二叉树方法解决期权价格不确定性的模型。二叉树方法依赖于对相关随机过程的离散化并利用计算和内存的结合以满足易于管理的要求。我们也在,我们必须把原来的单步格方法扩展到多步格方法,但是我们必须校对格使它能够反映出相关模型,且这个模型是连续时间、连续状态的随机微分方程。然后我们就可以推广到多步的二叉树格和三叉树格。 在7.1节中,我们从如何利用在离散概率分布的时刻下随机价格波动校准简单的二叉树格。从这点来看,弄清楚网格技术和蒙特卡洛模拟之间的联系是非常重要的,而利用时刻匹配技术缩减方差可以看作一种快捷的抽样排序。然后我们讨论内存效率的实现是如何设计的,美式期权定价是7.2节的主题。同时,还是要注重它和其他技术方法的联系。现在我们要做的本质上是一个非常简单满足动态规划原则的程序,我们将在第10章程序中进一步拓展。在7.3节中,我们把上述方法推广到双标的资产的情形,虽然这是一个最简单的情形,但是我们可以从这个情形中看出内存控制是这一情形的基础。另一种一般化的代表是三叉树格方法,三叉树格方法可以作为一种更普遍的有限差分方法(具体将在,最后,我们在7.5节中具体讨论网格化方法的优势和劣势。 期权定价的二叉树和三叉树格方法 图7.1单时期二叉树格 7.1二叉树定价方法

在,我们已经考虑过单步二叉树方法在无套利情况下的期权定价,这里我们为了方便直接利用图7.1。其主要思想是复制两个资产, 一个是无风险资产,另一个是相关股票。利用这两项资产,我们可 以通过它们的组合塑造任何收益率的资产。如果我们令u和d为任意两个价格的角标,我们可以看到期权的价格应该为f 则, f0=e-rδt[pf u+(1-p)f d](7.1) 在公式7.1中f u 和f d 是标的资产在涨跌两种情况的期权价格,p是 风险中性前提下相关资产升值的概率。 为了寻找一个更好的不确定性模型,我们可以增加分类的情况,复制期权收益,甚至我们可以使用更多的资产,或允许中间日期交易。第二种可能性更为实际,并且也是必不可少的,例如,对于在期权的存续期内可以随时执行的美式期权来说。对其求极限,就会得到连续时间模型,并且其最后收敛于Black—sholes方程。当Black—sholes方程没有解析解的时候,我们必须采取一些离散化的途径,比如说可以通过蒙特卡洛模拟从而估计出风险中性条件下预期收益,或者建立一个自适应网格的有限差分方法去解决相应的PDE模型。就像我们在图7.2中展示的一样,多级二叉树格方法就是一种可以选择的离散化方法。我们也可以考虑利用树图,但是要注意使计算方法易于控制。 二叉树格定价 图7.2新生成的二叉树图 这里我们为了方便令u=1/d。虽然这个不是必须的,但是在后面我们可以看到,这个假设令模型简化了很多即每上一步紧接着下

欧式看涨期权二叉树定价

欧式看涨期权二叉树定价(含matlab代码和结果 图) 实验概述 本实验首先介绍了二叉树方法的来源和主要理论基础,然后给出期权的二叉树定价方法的基本过程和MATLAB7.0实现的过程。 19. 2 实验目的 (1)了解二叉树的定价机理; (2)掌握用MATLAB7. 0生成股票价格的二叉树格子方法; (3)掌握欧式期权和美式期权的二叉树定价方法。 19.3实验工具 MATLAB7. 0。 19. 4理论要点 构造二叉树图(Binomial Tree)是期权定价方法中最为常见的一种。这个树图表示了在期权有效期内股票价格可能遵循的路径。二叉树定价方法与风险中性定价理论是紧密联系的。Cox,Ross&Rubinstein(1979)首次提出了构造离散的风险中性概率可以给期权定价,在此基础上他们给出了二叉树定价方法。 1)一个简单的例子 假设当前(3月份)股票的价格So =50元,月利率是25%。4月份股票 价格有两种可能:S 高=100元,S 低 =25元。有一份看涨期权合约,合约约定在4月份

可以以50元价格买进一股股票。现在考虑一个投资组合,进行几项操作:以价格C卖出3份看涨期权合约;以50元购入2股股票;以25%的月利率借人40元现金,借期为一个月。 根据上述组合,我们可以得到以下到期收益分布表,如表19.1所示。 表19.1投资组合的到期收益分布表 四月份 三月份 =25元 S 低=100元 S 高 卖出3份看涨期权合约3C 0 -150 买人两股股票-10050 200 借人现金40 -50 -50 总计0 00 由一价定律3C-100+40=0,可得C=20元,即为期权的价格。这个例子说明,可以用一个相当简单的方法为期权定价,唯一需要做的是假设对投资者而言不存在套利机会。我们可以通过某种方式构造一个股票和期权的组合,使得在4月份该组合的价值是确定的。于是我们可以说该组合无风险,它的收益率一定等于无风险收益率。二叉树方法正是基于上述思想构造了二项分布下的风险中性概率。 2)二叉树模型 考虑一个不支付红利的股票期权价格估值。我们把期权的有效期分为很多很小的时间间隔Δt。假设在每一个时间段内股票价格从开始的价格S以概率p 上升到Su,以概率1-p下降到Sd,其中,u>1,O

二叉树定价模型

期权定价的二叉树模型 )模型,它假tree二叉树(binomialRoss、和Rubinstein提出了期权定价的另一种常用方法Cox 设标的资产在下一个时间点的价格只有上升和下降两种可能结果,然后通过分叉的树枝来形象描述标的资产和期权价格的演进历程。本章只讨论股票期权定价的二叉树模型,基于其它标的资产如债券、货币、股票指数和期货的期权定价的二叉树方法,请参考有关的书籍和资料。 一步二叉树模型8.1 我们首先通过一个简单的例子介绍二叉树模型。 $18.,也有可能下降到,三个月后该股票价格有可能上升到$228.1假设一只股票的当前价格是$20例直观表示出来。8.1股票价格的这种变动过程可通过图 在上述二叉树中,从左至右的节点(实圆点)表示离散的时间点,由节点产生的分枝(路径)表示可能表示的二叉树称为一步8.1出现的不同股价。由于从开始至期权到期日只考虑了一个时间步长,图

)二叉树。这是最简单的二叉树模型。(one-step 。经过一个时间步(至到期日一般地,假设一只股票的当前价格是,基于该股票的欧式期权价格为 )后该股票价格有可能上升到;也有可能下降到相应的期权价格为T )二叉树表示出来,如图这种过程可通过一步(one-step.相应的期权价格为所示。我们的问题是根据这个二叉树对该欧式股票期权定价。8.2. )假设,即市场上无套利机会存在。构造一arbitrage为了对该欧式股票期权定价,我们采用无套利(no 股空头期权。如果该股票价格上升股的多头股票和1个该股票和期权的组合(portfolio),组合中有 ,则该组合在期权,则该组合在期权到期日的价值为到;如果该股票价格下降到。根据无套利假设,该组合在股票上升和下降两种状态下的价值应该相等,到期日的价值为即有 由此可得 (8.1) 是两个节点之间的期权价格增量与股价增量之比率。在这种情况下,该组合是无风险的。上式意味着 )为value又注意到该组合thepresent以表示无风险利率,则该组合的现值(, 的当前价值是,故有

二叉树期权定价模型

二叉树期权定价模型 [编辑本段] 二叉树期权定价模型概述 Black-Scholes期权定价模型虽然有许多优点, 但是它的推导过程难以为人们所接受。在1979年, 罗斯等人使用一种比较浅显的方法设计出一种期权的定价模型, 称为二项式模型(Binomial Model)或二叉树法(Binomial tree)。 二项期权定价模型由考克斯(J.C.Cox)、罗斯(S.A.Ross)、鲁宾斯坦(M.Rubi nstein)和夏普(Sharpe)等人提出的一种期权定价模型,主要用于计算美式期权的价值。其优点在于比较直观简单,不需要太多数学知识就可以加以应用。 二项期权定价模型假设股价波动只有向上和向下两个方向,且假设在整个考察期内,股价每次向上(或向下)波动的概率和幅度不变。模型将考察的存续期分为若干阶段,根据股价的历史波动率模拟出正股在整个存续期内所有可能的发展路径,并对每一路径上的每一节点计算权证行权收益和用贴现法计算出的权证价格。对于美式权证,由于可以提前行权,每一节点上权证的理论价格应为权证行权收益和贴现计算出的权证价格两者较大者。 [编辑本段] 构建二项式期权定价模型 1973年,布莱克和舒尔斯(Blackand Scholes)提出了Black-Scholes期权定价模型,对标的资产的价格服从正态分布的期权进行定价。随后,罗斯开始研究标的资产的价格服从非正态分布的期权定价理论。1976年,罗斯和约翰·考科斯(John Cox)在《金融经济学杂志》上发表论文“基于另类随机过程的期权定价”,提出了风险中性定价理论。 1979年,罗斯、考科斯和马克·鲁宾斯坦(Mark Rubinstein)在《金融经济学杂志》上发表论文“期权定价:一种简单的方法”,该文提出了一种简单的对离散时间的期权的定价方法,被称为Cox-Ross-Rubinstein二项式期权定价模型。 二项式期权定价模型和布莱克-休尔斯期权定价模型,是两种相互补充的方法。二项式期权定价模型推导比较简单,更适合说明期权定价的基本概念。二项式期权定

_二叉树期权定价模型

财务成本管理(2019)考试辅导 第十三章++产品成本计算 第1页 (二)二叉树期权定价模型 1.单期二叉树定价模型 期权价格=×+× U:上行乘数=1+上升百分比 d:下行乘数=1-下降百分比 【理解】 风险中性原理的应用 其中: 上行概率=(1+r-d )/(u-d ) 下行概率=(u-1-r )/(u-d ) 期权价格=上行概率×C u /(1+r )+下行概率×C d /(1+r ) 【教材例7-10】假设ABC 公司的股票现在的市价为50元。有1股以该股票为标的资产的看涨期权,执行价格为52.08元,到期时间是6个月。6个月以后股价有两种可能:上升33.33%,或者降低25%。无风险利率为每年4%。 【答案】 U=1+33.33%=1.3333 d=1-25%=0.75 =6.62(元) 【例题?计算题】假设甲公司的股票现在的市价为20元。有1份以该股票为标的资产的看涨期权,执行价格为21元,到期时间是1年。1年以后股价有两种可能:上升40%,或者降低30%。无风险利率为每年4%。 要求:利用单期二叉树定价模型确定期权的价值。 【答案】期权价格=(1+r-d )/(u-d )×C u /(1+r )=(1+4%-0.7)/(1.4-0.7)×7/(1+4%)=3.27(元) 2.两期二叉树模型 (1)基本原理:由单期模型向两期模型的扩展,不过是单期模型的两次应用。 【教材例7-11】继续采用[例7-10]中的数据,把6个月的时间分为两期,每期3个月。变动以后的数据如下:ABC 公司的股票现在的市价为50元,看涨期权的执行价格为52.08元,每期股价有两种可能:上升22.56%或下降18.4%;无风险利率为每3个月1%。 【解析】 P=(1+1%-0.816)/(1.2256-0.816)=0.47363 C U =23.02×0.47363/(1+1%)=10.80 C d =0 C 0=10.80×0.47363/(1+1%)=5.06 (2)方法: 先利用单期定价模型,根据C uu 和C ud 计算节点C u 的价值,利用C ud 和C dd 计算C d 的价值;然后,再次利用单期定价模型,根据C u 和C d 计算C 0的价值。从后向前推进。 3.多期二叉树模型 (1)原理:从原理上看,与两期模型一样,从后向前逐级推进,只不过多了一个层次。

欧式看涨期权二叉树定价

欧式看涨期权二叉树定价(含matlab代码和结果图)实验概述 本实验首先介绍了二叉树方法的来源和主要理论基础,然后给出期权的二叉树定价方法的基本过程和MATLAB7. 0实现的过程。 19. 2 实验目的 (1)了解二叉树的定价机理; (2)掌握用MATLAB7. 0生成股票价格的二叉树格子方法; (3)掌握欧式期权和美式期权的二叉树定价方法。 19. 3 实验工具 MATLAB 7. 0。 19. 4 理论要点 构造二叉树图(Binomial Tree)是期权定价方法中最为常见的一种。这个树图表示了在期权有效期内股票价格可能遵循的路径。二叉树定价方法与风险中性定价理论是紧密联系的。Cox, Ross & Rubinstein (1979)首次提出了构造离散的风险中性概率可以给期权定价,在此基础上他们给出了二叉树定价方法。 1)一个简单的例子 假设当前(3月份)股票的价格So =50元,月利率是25%。4月份股票价 格有两种可能:S 高=100元,S 低 =25元。有一份看涨期权合约,合约约定在4月份 可以以50元价格买进一股股票。现在考虑一个投资组合,进行几项操作:以价格C卖出3份看涨期权合约;以50元购入2股股票;以25%的月利率借人40元现金,

借期为一个月。 根据上述组合,我们可以得到以下到期收益分布表,如表19. 1所示。 表19.1 投资组合的到期收益分布表 四月份 三月份 S低=25元S高=100元 卖出3份看涨期权合约3C 0 -150 买人两股股票-100 50 200 借人现金40 -50 -50 总计0 0 0 由一价定律3C-100+40=0,可得C= 20元,即为期权的价格。这个例子说明,可以用一个相当简单的方法为期权定价,唯一需要做的是假设对投资者而言不存在套利机会。我们可以通过某种方式构造一个股票和期权的组合,使得在4月份该组合的价值是确定的。于是我们可以说该组合无风险,它的收益率一定等于无风险收益率。二叉树方法正是基于上述思想构造了二项分布下的风险中性概率。 2)二叉树模型 考虑一个不支付红利的股票期权价格估值。我们把期权的有效期分为很多很小的时间间隔Δt。假设在每一个时间段内股票价格从开始的价格S以概率p 上升到Su,以概率1-p下降到Sd,其中,u>1,O

基于二叉树模型的可转债定价——以广汽转债为例

基于二叉树模型的可转债定价——以广汽转债为例 目 录 一、实验目的 (2) (一)了解可转换债券内涵及可转债市场在国内的发展状况 (2) (二)了解并操作固定收益证券中含权债券的基本定价方法 (2) (三)分析比较计算出来的理论价格 (2) (四)培养无套利思想的分析意识 (2) (五)熟练掌握MATLAB的应用技能,尤其是锻炼编写和调用函数文件的能力 (2) (六)熟练掌握使用国泰安等数据库的使用方法,搜集、整合和分析数据的能力 (3) 二、实验前期准备 (3) (一)基础知识储备 (3) 1.可转债相关概念 (3) 2.可转债发展历史 (5) (二)背景分析准备 (7) 1.宏观环境——大盘指数出现一波小反弹 (7) 2.市场行情——最近一周个券大多表现良好,涨多于跌 (8) 3.市场活跃——一级市场等待审批,发行热情高涨 (8) 4.广汽转债——良好基本面,有望触发强赎 (9) (三)实验数据来源 (9) (四)实验软件——MATLAB2014b (9) (五)广汽转债相关资料准备 (9) 1.公司基本信息 (9) 2.债券基本信息 (12) 三、实验模型的建立 (14) (一)理论基础 (14) (二)模型应用 (16) 四、实验结果分析 (19) 五、附录:参考文献 (24)

一、实验目的 (一)了解可转换债券内涵及可转债市场在国内的发展状况 1.了解可转换债券在我国的发展历史,把握可转换债券的定义、重要构成要素和衡量其特征的相 关比率定义和应用。 2.了解可转换债券相关债转股条款的制定和含义,明白行权的操作规则。 3.了解投资者投资可转债,企业通过发行可转换债券融资的动机,收益和风险。从2012年的20 亿元到2014年的60亿元,广汽集团(601238.SH;02238.HK)两年间先后两次拟发可转债的金额增长了两倍,期间2012年宣布发债后隔一月,称由于宏观环境变化和公司股价状况,将发债计划取消。了解为何广汽集团要选在2014年继续发债。 (二)了解并操作固定收益证券中含权债券的基本定价方法 1.选一家公司发行的可转债(以广汽转债为例),练习掌握用二叉树模型估计可转换债券的理论 价格。 2.理解二叉树模型模拟标的资产价格变化(对应广汽集团股价),体会把握无套利思想,完成对 可转债的定价。 (三)分析比较计算出来的理论价格 1.通过将计算出来的理论价格对比可转债市场价格,标的股票价格,思考可转债定价是否合理(高 估或者低估)。 2.计算纯债溢价率和转股溢价率,分析可转换债券的股性和债性,结合公司基本面对所选可转债 进行进行价值分析,预测未来债券价格走势,理性地做出投资建议。 (四)培养无套利思想的分析意识 1.二叉树模型是通过建立一系列假设,将标的资产的未来价格变化表达出来,基于无套利思想, 用衍生产品对冲掉现货资产价格变动风险,使得整个投资组合等同于无风险组合,求解出对冲所需的衍生品份数,进而利用期望现金流折现的方法得到期权价格。实际上,这和B-S公式一样,都是无套利思想的运用,我们作为金融学的本科生,应该培养无套利定价的意识,将现货和衍生品市场两个市场结合分析,通过从而建立起衍生品定价时,对衍生品市场和标的资产市场的的联合分析能力。 (五)熟练掌握MATLAB的应用技能,尤其是锻炼编写和调用函数文件的能力 1.以后的金融发展有别于传统金融,有竞争力的金融学学生应该具备熟悉使用MATLAB,R等工具

股票期权二叉树定价-excel-VBA程序

Sub 期权定价() Dim i As Long '将输入的参数的值赋给相应的变量 s0 = Worksheets(1).Cells(1, 2) x = Worksheets(1).Cells(2, 2) r = Worksheets(1).Cells(3, 2) s = Worksheets(1).Cells(4, 2) t = Worksheets(1).Cells(5, 2) n = Worksheets(1).Cells(6, 2) '生成表格 Worksheets(1).Cells(1, 4) = "期数" Worksheets(1).Cells(2, 4) = "时间(年)" Worksheets(1).Cells(3, 4) = "上行乘数" Worksheets(1).Cells(4, 4) = "下行乘数" Worksheets(1).Cells(5, 4) = "股票价格" Worksheets(1).Cells(n + 6, 4) = "执行价格" Worksheets(1).Cells(n + 7, 4) = "上行概率" Worksheets(1).Cells(n + 8, 4) = "下行概率" Worksheets(1).Cells(n + 9, 4) = "买入期权价格"

'合并相应单元格 Set rr1 = Range("D5") For i = 1 To n Set rr1 = Union(Range("D" & (5 + i)), rr1) Next rr1.Select With Selection .HorizontalAlignment = xlGeneral .VerticalAlignment = xlBottom .WrapT ext = False .Orientation = 0 .AddIndent = False .IndentLevel = 0 .ShrinkToFit = False .ReadingOrder = xlContext .MergeCells = True End With '设置格式居中 With Selection .HorizontalAlignment = xlCenter .VerticalAlignment = xlCenter .WrapT ext = False

欧式期权二叉树定价MATLAB代码

调用函数代码 function Price=EuroOption(S0,K,T,r,M,type,sigma) dt = T/M; u=exp(sqrt(dt)*sigma); d=1/u; p = (exp(r*dt)-d)/(u-d); S=zeros(M+1,M+1); S(1,1)=S0; for j=1:M for i=0:j S(i+1,j+1)= S0*u^(j-i)*d^i; end end V=zeros(M+1,M+1); for i=0:M switch type case'call' V(i+1,M+1)=max(S(i+1,M+1)-K,0); case'put' V(i+1,M+1)=max(K-S(i+1,M+1),0); case'stra' V(i+1,M+1)=max(S(i+1,M+1)-K,0)+max(K-S(i+1,M +1),0); case'bino' V(i+1,M+1) =(S(i+1,M+1)>K); end end

for j=M-1:-1:0 for i=0:j V(i+1,j+1)=exp(-r*dt)*(p*V(i+1,j+2)+(1-p)*V( i+2,j+2)); end end Price=V(1,1); 数据作图 S0 = 6; K = 5; T = 1; r = 0.05; sigma = 0.20; for M=1:100 type='call'; Price=EuroOption(S0,K,T,r,M,type,sigma); Vec(M)=Price; end for M=1:100 type='put'; Price=EuroOption(S0,K,T,r,M,type,sigma); Vep(M)=Price; end for M=1:100 type='call'; Price=AmOption(S0,K,T,r,M,type,sigma); Vac(M)=Price; end for M=1:100 type= 'put'; Price=AmOption(S0,K,T,r,M,type,sigma);

相关主题
文本预览
相关文档 最新文档