当前位置:文档之家› 最新定积分的近似计算2

最新定积分的近似计算2

最新定积分的近似计算2
最新定积分的近似计算2

定积分的近似计算2

定积分的近似计算

虽然牛顿——莱布尼兹公式解决了定积分的计算问题,但它的使用是有一定局限性的。对于被积分中的不能用初等函数表达的情形或其原函数虽能用初等函数表达但很复杂的情形,我们就有必要考虑近似计算的方法。

定积分的近似计算的基本思想是根据定积分的几何意义找出求曲边梯形面积的近似方法。下面介绍两种常用的方法梯形法及抛物线法。

一梯形法

将积分区间?Skip Record If...?作?Skip Record If...?等分,分点依次为

?Skip Record If...?

相应的函数为

?Skip Record If...? ?Skip Record If...?

曲线?Skip Record If...?上相应的点为

?Skip Record If...?

将曲线的每一段弧?Skip Record If...?用过点?Skip Record If...?(线性函数)来代替,这使得每个?Skip Record If...?上的曲边梯形形成了真正的梯形(图11——25),其面积为

?Skip Record If...?

于是各个小梯形面积之和就是曲边梯形面积的近

似值,即

?Skip Record If...?

亦即 ?Skip Record If...?(2)

称此式为梯形法公式。

在实际应用中,我们还需要知道用这个近似值来代替所求积分时所产生的误差,从而有

?Skip Record If...?

其中?Skip Record If...?

二抛物线法

由梯形法求近似值,当?Skip Record If...?为凹曲线时,它就偏小;当?Skip Record If...?为凸曲线时,它就偏大。如果每段改用与它凸性相接近的抛物线来近似,就可减少上述缺点。下面介绍抛物线法。

将区间?Skip Record If...?作?Skip Record If...?等分(图)分点依次为

?Skip Record If...?

对应的函数值为

?Skip Record If...? ?Skip Record If...?

?Skip Record If...?曲线上相应的点为?Skip Record If...?

现把区间?Skip Record If...?上的曲线段?Skip Record If...?用通过三点?Skip Record If...?的抛物线

?Skip Record If...?

来近似代替,然后求函数?Skip Record If...?从?Skip Record If...?到?Skip Record If...?的定积分:

?Skip Record If...?

?Skip Record If...?

?Skip Record If...?由于?Skip Record If...?,将它代入上式整理后可得

?Skip Record If...? ?Skip Record If...?

同样也有

?Skip Record If...?

………………………………………………..

?Skip Record If...?

将这?Skip Record If...?个积分相加即得原来所要计算的定积分的近似值:

?Skip Record If...?

即 ?Skip Record If...?

这就是抛物线法公式,也就是辛卜生公式。

也有 ?Skip Record If...??Skip Record If...?

其中?Skip Record If...? ?Skip Record If...?

可见?Skip Record If...?越大,近似计算越准确。一般说来,将积分区间

?Skip Record If...?作同样数目等份的情况下,抛物线形公式比梯形公式更精确一些。

1、插值型求积公式:

?Skip Record If...?,其中?Skip Record If...?

余项?Skip Record If...?,?Skip Record If...?

至少具有?Skip Record If...?次代数精度。

2、牛顿—柯特斯公式(等距节点):

?Skip Record If...?,其中?Skip Record If...?

当?Skip Record If...?时,?Skip Record If...?=?Skip Record If...?=?Skip Record If...?,求积公式即为梯形公式。

当?Skip Record If...?时,?Skip Record If...?=?Skip Record If...?,?Skip Record If...?,?Skip Record If...?,求积公式变为辛普森(Simpson)公式,即?Skip Record If...?

?Skip Record If...?

当?Skip Record If...?时,计算不稳定,此时一般不用该公式。

?Skip Record If...?阶的Newton-Cotes公式至少具有?Skip Record If...?次的代数精度;当?Skip Record If...?为偶数时,至少有?Skip Record If...?次代数精度。

3、复化梯形公式:

?Skip Record If...?=?Skip Record If...?,?Skip Record If...?,?Skip Record If...??Skip Record If...?

4、复化辛普森公式:

?Skip Record If...?=?Skip Record If...?

?Skip Record If...?,?Skip Record If...?

5、龙贝格求积公式:

?Skip Record If...?表示二分?Skip Record If...?次后求得的梯形值,?Skip Record If...?表示序列?Skip Record If...?的?Skip Record If...?次加速值。

?Skip Record If...?,通过递推公式?Skip Record If...?,计算?Skip Record If...?。按公式?Skip Record If...?计算加速值,直到?Skip Record If...?,积分值即为

?Skip Record If...?。

6、高斯求积公式:

取?Skip Record If...?,对?Skip Record If...?,使?Skip Record If...?成立,解出

?Skip Record If...?及?Skip Record If...?,?Skip Record If...?

具有?Skip Record If...?次代数精度。

?Skip Record If...?

7、高斯-勒让德求积公式:

在高斯求积公式中,取权函数?Skip Record If...?,区间为?Skip Record If...?,即?Skip Record If...?。

余项?Skip Record If...?,?Skip Record If...?

勒让德多项式的零点就是求积公式的高斯点。

勒让德多项式:?Skip Record If...?,?Skip Record If...?,?Skip Record If...?

两点高斯-勒让德求积公式的形式是:?Skip Record If...?

三点高斯-勒让德求积公式的形式是:?Skip Record If...?

10、高斯-切比雪夫求积公式:

?Skip Record If...?,?Skip Record If...?,且取权函数?Skip Record If...?,即?Skip Record If...?,

此时高斯点是?Skip Record If...?次切比雪夫多项式的零点,即为?Skip Record If...?,?Skip Record If...?,系数?Skip Record If...?。

使用时将?Skip Record If...?个节点公式改为?Skip Record If...?个节点,于是高斯-切比雪夫求积公式写成:

?Skip Record If...?,?Skip Record If...?

余项?Skip Record If...?,?Skip Record If...?

定积分的方法总结

定积分的方法总结 定积分是新课标的新增内容,其中定积分的计算是重点考查的考点之一,下面例析定积分计算的几种常用方法. 一、定义法 例1、求 s i n b a x d x ? , (b a <) 解:因为函数s i n x 在],[b a 上连续,所以函数sin x 在],[b a 上可积,采用特殊的 方法作积分和.取h = n a b -,将],[b a 等分成n 个小区间, 分点坐标依次为 ?=+<<+<+

七大积分总结

七大积分总结 一. 定积分 1. 定积分的定义:设函数f(x)在[a,b]上有界,在区间[a,b]中任意插入n -1个分点: a=x 0

? ??==b a b a b a du u f dt t f dx x f )()()(。 (2) 定义中区间的分法与ξi 的取法是任意的。 (3) 定义中涉及的极限过程中要求λ→0,表示对区间[a,b]无限细分的过程,随λ →0必有n →∞,反之n →∞并不能保证λ→0,定积分的实质是求某种特殊合式的极限: 例:∑?=∞→=n i n n i f dx x f 1 1 0n 1 )()(lim (此特殊合式在计算中可以作为公式使用) 2. 定积分的存在定理 定理一 若函数f(x)在区间[a,b]上连续,则f(x)在[a,b]上可积。 定理二 若函数f(x)在区间[a,b]上有界,且只有有限个间断点,则f(x)在区间上可积。 3. 定积分的几何意义 对于定义在区间[a,b]上连续函数f(x),当f(x)≥0时,定积分 ? b a dx x f )(在几何上表示由曲线y=f(x),x=a,x=b 及x 轴所围成的曲边梯形的面积;当f(x) 小于0时,围成的曲边梯形位于x 轴下方,定积分?b a dx x f )(在几何意义上表示曲边梯形面积的负值。若f(x)在区间上既取得正值又取得负值时,定积分的几何意义是:它是介于x 轴,曲线y=f(x),x=a,x=b 之间的各部分曲边梯形的代数和。 4.定积分的性质 线性性质(性质一、性质二)

定积分总结

定积分讲义总结 内容一 定积分概念 一般地,设函数()f x 在区间[,]a b 上连续,用分点0121i i n a x x x x x x b -=<<<<<<<=L L 将区间[,]a b 等分成n 个小区间,每个小区间长度为x ?(b a x n -?= ),在每个小区间[]1,i i x x -上取一点()1,2,,i i n ξ=L ,作和式:1 1 ()()n n n i i i i b a S f x f n ξξ==-=?=∑∑ 如果x ?无限接近于0(亦即n →+∞)时,上述和式n S 无限趋近于常数S ,那么称该常数S 为函数()f x 在区间[,]a b 上的定积分。记为:()b a S f x dx = ? 其中()f x 成为被积函数,x 叫做积分变量,[,]a b 为积分区间,b 积分上限,a 积分下限。 说明:(1)定积分 ()b a f x dx ? 是一个常数,即n S 无限趋近的常数S (n →+∞时)称为()b a f x dx ?,而不是n S . (2)用定义求定积分的一般方法是:①分割:n 等分区间[],a b ;②近似代替:取点[]1,i i i x x ξ-∈;③求和: 1()n i i b a f n ξ=-∑;④取极限:()1()lim n b i a n i b a f x dx f n ξ→∞=-=∑? 例1.弹簧在拉伸的过程中,力与伸长量成正比,即力()F x kx =(k 为常数,x 是伸长量),求弹簧从平衡位置拉长b 所作的功. 分析:利用“以不变代变”的思想,采用分割、近似代替、求和、取极限的方法求解. 解: 将物体用常力F 沿力的方向移动距离x ,则所作的功为W F x =?. 1.分割 在区间[]0,b 上等间隔地插入1n -个点,将区间[]0,1等分成n 个小区间: 0,b n ??????,2,b b n n ?? ????,…,()1,n b b n -?????? 记第i 个区间为()1,(1,2,,)i b i b i n n n -???=? ? ??L ,其长度为()1i b i b b x n n n -??=-= 把在分段0, b n ? ???? ?,2,b b n n ?? ????,…,()1,n b b n -?????? 上所作的功分别记作:1W ?,2W ?,…,n W ? (2)近似代替 有条件知:()()11i i b i b b W F x k n n n --???=??=?? ? ?? (1,2,,)i n =L (3)求和 ()1 1 1n n n i i i i b b W W k n n ==-=?=??∑∑ =()()22222 110121122n n kb kb kb n n n n -?? ++++-==-?? ?? ??? L

MATLAB实验三-定积分的近似计算

实验三定积分的近似计算 一、问题背景与实验目的 利用牛顿—莱布尼兹公式虽然可以精确地计算定积分的值,但它仅适用于被积函数的原函数能用初等函数表达出来的情形.如果这点办不到或者不容易办到,这就有必要考虑近似计算的方法.在定积分的很多应用问题中,被积函数甚至没有解析表达式,可能只是一条实验记录曲线,或者是一组离散的采样值,这时只能应用近似方法去计算相应的定积分. 本实验将主要研究定积分的三种近似计算算法:矩形法、梯形法、抛物线法.对于定积分的近似数值计算,Matlab有专门函数可用. 二、相关函数(命令)及简介 1.sum(a):求数组a的和. 2.format long:长格式,即屏幕显示15位有效数字. (注:由于本实验要比较近似解法和精确求解间的误差,需要更高的精度).3.double():若输入的是字符则转化为相应的ASCII码;若输入的是整型数值则转化为相应的实型数值. 4.quad():抛物线法求数值积分. 格式: quad(fun,a,b) ,注意此处的fun是函数,并且为数值形式的,所以使用*、/、^等运算时要在其前加上小数点,即 .*、./、.^等.例:Q = quad('1./(x.^3-2*x-5)',0,2); 5.trapz():梯形法求数值积分. 格式:trapz(x,y) 其中x为带有步长的积分区间;y为数值形式的运算(相当于上面介绍的函数fun) 例:计算 0sin()d x x π ? x=0:pi/100:pi;y=sin(x); trapz(x,y) 6.dblquad():抛物线法求二重数值积分. 格式:dblquad(fun,xmin,xmax,ymin,ymax),fun可以用inline定义,也可以通过某个函数文件的句柄传递. 例1:Q1 = dblquad(inline('y*sin(x)'), pi, 2*pi, 0, pi) 顺便计算下面的Q2,通过计算,比较Q1 与Q2结果(或加上手工验算),找出积分变量x、y的上下限的函数代入方法. Q2 = dblquad(inline('y*sin(x)'), 0, pi, pi, 2*pi)例2:Q3 = dblquad(@integrnd, pi, 2*pi, 0, pi) 这时必须存在一个函数文件integrnd.m:

实验二 定积分的近似计算

实验二定积分的近似计算 一、问题背景与实验目的 利用牛顿—莱布尼兹公式虽然可以精确地计算定积分的值,但它仅适用于被积函数的原函数能用初等函数表达出来的情形.如果这点办不到或者不容易办到,这就有必要考虑近似计算的方法.在定积分的很多应用问题中,被积函数甚至没有解析表达式,可能只是一条实验记录曲线,或者是一组离散的采样值,这时只能应用近似方法去计算相应的定积分. 本实验将主要研究定积分的三种近似计算算法:矩形法、梯形法、抛物线法.对于定积分的近似数值计算,Matlab有专门函数可用. 二、相关函数(命令)及简介 1.sum(a):求数组a的和. 2.format long:长格式,即屏幕显示15位有效数字. (注:由于本实验要比较近似解法和精确求解间的误差,需要更高的精度).3.double():若输入的是字符则转化为相应的ASCII码;若输入的是整型数值则转化为相应的实型数值. 4.quad():抛物线法求数值积分. 格式:quad(fun,a,b) ,注意此处的fun是函数,并且为数值形式的,所以使用*、/、^等运算时要在其前加上小数点,即.*、./、.^等. 例:Q = quad('1./(x.^3-2*x-5)',0,2); 5.trapz():梯形法求数值积分. 格式:trapz(x,y) 其中x为带有步长的积分区间;y为数值形式的运算(相当于上面介绍的函数fun) 例:计算 0sin()d x x π ? x=0:pi/100:pi;y=sin(x); trapz(x,y) 6.dblquad():抛物线法求二重数值积分. 格式:dblquad(fun,xmin,xmax,ymin,ymax),fun可以用inline定义,也可以通过某个函数文件的句柄传递. 例1:Q1 = dblquad(inline('y*sin(x)'), pi, 2*pi, 0, pi) 顺便计算下面的Q2,通过计算,比较Q1 与Q2结果(或加上手工验算),找出积分变量x、y的上下限的函数代入方法. Q2 = dblquad(inline('y*sin(x)'), 0, pi, pi, 2*pi) 例2:Q3 = dblquad(@integrnd, pi, 2*pi, 0, pi) 这时必须存在一个函数文件integrnd.m:

定积分计算的总结论文

定积分计算的总结论文公司内部档案编码:[OPPTR-OPPT28-OPPTL98-OPPNN08]

定积分计算的总结 闫佳丽 摘 要:本文主要考虑定积分的计算,对一些常用的方法和技巧进行了归纳和总结.在定积分的计算中,常用的计算方法有四种:(1)定义法、(2)牛顿—莱布尼茨公式、(3)定积分的分部积分法、(4)定积分的换元积分法. 关键词:定义、牛顿—莱布尼茨公式、分部积分、换元. 1前言 17世纪后期,出现了一个崭新的数学分支—数学分析.它在数学领域中占据着主导地位.这种新数学思想的特点是非常成功地运用了无限过程的运算即极限运算.而其中的微分和积分这两个过程,则构成系统微积分的核心.并奠定了全部分析学的基础.而定积分是微积分学中的一个重要组成部分. 2正文 那么,究竟什么是定积分呢我们给定积分下一个定义:设函数()f x 在[],a b 有定义,任给[],a b 一个分法T 和一组{}k ξξ=,有积分和 1 (,)()n k k k T f x σξξ==?∑,若当()0l T →时,积分和(,)T σξ存在有限极限, 设()0()0 1 lim (,)lim ()n k k l T l T k T f x I σξξ→→==?=∑,且数I 与分法T 无关,也与k ξ在[]1,k k x x -的取法无关,即{}0,0,:(),k T l T εδδξξ?>?>?

定积分应用方法总结(经典题型归纳).docx

精品文档 定积分复习重点 定积分的考查频率不是很高,本讲复习主要掌握定积分的概念和几何意义,使 用微积分基本定理计算定积分,使用定积分求曲边图形的面积和解决一些简单的物 理问题等. 1. 定积分的运算性质 (1) b b kf (x)dx k f (x)dx(k 为常数 ). a a (2) b b f 1 ( x)dx b 2 ( x)dx. [ f 1 ( x) f 2 ( x)]dx f a a a b c b 其中 a

[全]高等数学之不定积分的计算方法总结[下载全]

高等数学之不定积分的计算方法总结不定积分中有关有理函数、三角函数有理式、简单无理函数的求法,是考研中重点考察的内容,也是考研中的难点。不定积分是计算定积分和求解一阶线性微分方程的基础,所以拿握不定积分的计算方法很重要。不定积分考查的函数特点是三角函数、简单无理函数、有理函数综合考查,考查方法是换元积分法、分部积分法的综合应用。不定积分的求法的理解和应用要多做习题,尤其是综合性的习题,才能真正掌握知识点,并应用于考研。 不定积分的计算方法主要有以下三种: (1)第一换元积分法,即不定积分的凑微分求积分法; (2)第二换元积分法 (3)分部积分法常见的几种典型类型的换元法:

樂,Q? o 金J犷- / .乍治阳必厶二如皿盒.「宀丄" 名% =a仏 找.』x二a沁沁r 年”十I '九久二严詈严妬5inx八ic5兄厶 整 I—炉 叶严 山二启虫? 常见的几种典型类型的换元法 题型一:利用第一换元积分法求不定积分

分析: 1-3 ? - IK )-忑.旦r x 二)祝成);网><可久切 二2氐化如(長)寸 a 花不直押、朱 J 、 解: 2少弋協“尤十C__

-辿迪牆H JS m 弟 R Eff 洱 ->1和弟r 直 - —7朮呻' g 丄 U P A J 齐—系卩£.§计 一 H a8~t ' J 乂 u D y " ?朮?

p o r t v 卩 J (r 4 5*〉J" 卩?对渎 t-k )+c p T + T d ? g T + c m -辿」

当积分j/O心(X)不好计算容易计算时[使用分部私jf(A-)Jg(.v)二f(x)g(x)- J g(x)df(x).常见能使用分部积分法的类型: ⑴卩"“dx J x n srn xdx J尢"cos皿等,方法是把。',sin-t, cosx 稽是降低X的次数 是化夫In 尢9 arcsine arctanx. 例11: J (1 + 6-r )arctanAz/.r :解:arctan f xdx等,方法是把疋; Jx" arcsm11xdx

大学微积分1方法总结

第一章 函数、极限、连续 注 “★”表示方法常用重要. 一、求函数极限的方法 ★1.极限的四则运算;★2.等价量替换;★3.变量代换;★4.洛比达法则;★5.重要极限;★6.初等函数的连续性;7.导数的定义;8. 利用带有佩亚诺余项的麦克劳林公式;9.夹逼定理;10利用带有拉格朗日余项的泰勒公式;11.拉格朗日定理;★12. 无穷小量乘以有界量仍是无穷小量等. ★二、已知函数极限且函数表达式中含有字母常数,确定字母常数数值的方法 运用无穷小量阶的比较、洛必达法则或带有佩亚诺余项的麦克劳林公式去分析问题,解决问题。 三、无穷小量阶的比较的方法 利用等价无穷小量替换或利用洛必达法则,无穷小量的等价代换或利用带有皮亚诺余项的佩亚诺余项公式展开 四、函数的连续与间断点的讨论的方法 如果是)(x f 初等函数,若)(x f 在0x x =处没有定义,但在0x 一侧或两侧有定义,则0x x =是间断点,再根据在0x x =处左右极限来确定是第几类间断点。如果)(x f 是分段函数,分界点是间断点的怀疑点和所给范围表达式没有定义的点是间断点。

五、求数列极限的方法 ★1.极限的四则运算;★2. 夹逼定理;★3. 单调有界定理; 4. )()(lim )()(lim ∞=?∞=∞ →+∞→A n f A x f n x ;5. 数列的重要极限;6.用定积分的定义求数列极限;7. 利用若∑∞ =1n n a 收敛,则0lim =∞→n n a ;8. 无穷小量乘以有界量 仍是无穷小量;9.等价量替换等. 【评注】1. 数列的项有多项相加或相乘式或∞→n 时,有无穷项相加或相乘,且不能化简,不能利用极限的四则运算, 2.如果数列的项用递推关系式给出的数列的收敛性或证明数列极限存在,并求极限.用单调有界定理 3.对数列极限的未定式不能用洛比达法则。因为数列作为函数不连续,更不可导,故对数列极限不能用洛比达法则. 4.由数列{}n a 中的通项是n 的表达式,即).(n f a n =而)(lim )(lim x f n f x n ∞ →∞→与是特殊与一般的关系,由归结原则知 ★5. 有lim 1011()()n n i i f f x dx n n →∞ ==?∑或1lim 1001()()n n i i f f x dx n n -→∞==?∑ 第二章 一元函数微分学 ★一、求一点导数或给处在一点可导推导某个结论的方法: 利用导数定义,经常用第三种形式 二、研究导函数的连续性的方法:

不定积分解题方法及技巧总结剖析

? 不定积分解题方法总结 摘要:在微分学中,不定积分是定积分、二重积分等的基础,学好不定积分十分重要。然而在学习过程中发现不定积分不像微分那样直观和“有章可循”。本文论述了笔者在学习过程中对不定积分解题方法的归纳和总结。 关键词:不定积分;总结;解题方法 不定积分看似形式多样,变幻莫测,但并不是毫无解题规律可言。本文所总结的是一般规律,并非所有相似题型都适用,具体情况仍需要具体分析。 1.利用基本公式。(这就不多说了~) 2.第一类换元法。(凑微分) 设f(μ)具有原函数F(μ)。则 C x F x d x f dx x x f +==???)]([)()]([)(')]([????? 其中)(x ?可微。 用凑微分法求解不定积分时,首先要认真观察被积函数,寻找导数项内容,同时为下一步积分做准备。当实在看不清楚被积函数特点时,不妨从被积函数中拿出部分算式求导、尝试,或许从中可以得到某种启迪。如例1、例2: 例1:? +-+dx x x x x ) 1(ln )1ln( 【解】) 1(1 111)'ln )1(ln(+- =-+= -+x x x x x x C x x x x d x x dx x x x x +-+-=-+-+-=+-+??2 )ln )1(ln(2 1)ln )1(ln()ln )1(ln()1(ln )1ln(例2:? +dx x x x 2 )ln (ln 1 【解】x x x ln 1)'ln (+= C x x x x x dx dx x x x +-==++??ln 1 )ln (ln )1(ln 122 3.第二类换元法: 设)(t x ?=是单调、可导的函数,并且)(')]([.0)('t t f t ???又设≠具有原函数,则有换元公式 ??=dt t t f dx f )(')]([x)(??

定积分与定积分的近似计算

第六讲 定积分与定积分的近似计算 实验目的 1.通过本实验加深理解积分理论中分割、近似、求和、取极限的思想方法. 2.学习并掌握用matlab 求不定积分、定积分、二重积分、曲线积分的方法. 3.学习matlab 命令sum 、symsum 与int. 4. 了解定积分近似计算的矩形法、梯形法。(***) 实验内容 1. 学习matlab 命令 (1)求和命令sum 调用格式. sum(x),给出向量x 的各个元素的累加和,如果x 是矩阵,则sum(x)是一个元素为x 的每列列和的行向量. 例4.1.x=[1,2,3,4,5,6,7,8,9,10];? sum(x)? ans=55 例4.2.x=[1,2,3;4,5,6;7,8,9]? x= 1 2 3 4 5 6 7 8 9 sum(x)? ans=12 15 18 (2)求和命令symsum 调用格式. symsum(s,n), 求 ∑n s symsum(s,k,m,n),求∑=n m k s 当x 的元素很有规律,比如为表达式是)(k s 的数列时,可用symsum 求得x 的各项和,即 symsum ),1),((n k s =)()2()1(n s s s +++ symsum )()1()(),,),((n s m s m s n m k k s ++++=

例4.3.syms k n ? symsum(k,1,10)? ans=55 symsum(k^2,k,1,n)? ans=1/3*(n+1)^3-1/2*(n+1)^2+1/6*n+1/6 (3)matlab 积分命令int 调用格式 int (函数)(x f ) 计算不定积分 ?dx x f )( int (函数),(y x f ,变量名x ) 计算不定积分?dx y x f ),( int (函数b a x f ,),() 计算定积分 ?b a dx x f )( int (函数),,(y x f 变量名b a x ,,) 计算定积分 ?b a dx y x f ),( 1.计算不定积分 例4.4.计算 xdx x ln 2 ? 解:输入命令: int(x^2*log(x)) 可得结果: ans=1/3*x^3*log(x)-1/9*x^3 注意设置符号变量. 例4.5.计算下列不定积分: 1. dx x a ? -22 2. ?++dx x x 3 131 3. ?xdx x arcsin 2 解:首先建立函数向量. syms x syms a real y=[sqrt(a^2-x^2),(x-1)/(3*x-1)^(1/3),x^2*asin(x)]; 然后对y 积分可得对y 的每个分量积分的结果. int(y,x)? ans = [1/2*x*(a^2-x^2)^(1/2)+1/2*a^2*asin((1/a^2)^(1/2)*x), -1/3*(3*x-1)^(2/3)+1/15*(3*x-1)^(5/3), 1/3*x^3*asin(x)+1/9*x^2*(1-x^2)^(1/2)+2/9*(1-x^2)^(1/2)]

定积分的近似计算

数学实验报告 实验序号:4 日期:2012 年12 月13 日 实验名称定积分的近似计算 问题背景描述: 利用牛顿—莱布尼兹公式虽然可以精确地计算定积分的值,但它仅适用于被积函数的原函数能用初等函数表达出来的情形.如果这点办不到或者不容易办到,这就有必要考虑近似计算的方法.在定积分的很多应用问题中,被积函数甚至没有解析表达式,可能只是一条实验记录曲线,或者是一组离散的采样值,这时只能应用近似方法去计算相应的定积分. 实验目的: 本实验将主要研究定积分的三种近似计算算法:矩形法、梯形法、抛物线法。对于定积分的近似数值计算,Matlab有专门函数可用。

实验原理与数学模型: 1.矩形法 根据定积分的定义,每一个积分和都可以看作是定积分的一个近似值,即 在几何意义上,这是用一系列小矩形面积近似小曲边梯形的结果,所以把这个近似计算方法称为矩形法.不过,只有当积分区间被分割得很细时,矩形法才有一定的精确度. 针对不同的取法,计算结果会有不同。 (1)左点法:对等分区间 , 在区间上取左端点,即取。 (2)右点法:同(1)中划分区间,在区间上取右端点,即取。 (3)中点法:同(1)中划分区间,在区间上取中点,即取。2.梯形法 等分区间 , 相应函数值为().

曲线上相应的点为() 将曲线的每一段弧用过点,的弦(线性函数)来代替,这使得每个 上的曲边梯形成为真正的梯形,其面积为 ,. 于是各个小梯形面积之和就是曲边梯形面积的近似值, , 即, 称此式为梯形公式。 3.抛物线法 将积分区间作等分,分点依次为 ,, 对应函数值为 (), 曲线上相应点为 (). 现把区间上的曲线段用通过三点,,的抛物线

高等数学第五章定积分总结

第五章 定积分 内容:定积分的概念和性质、微积分基本公式、换元积分法、分部积分法、广义积分。 要求:理解定积分的概念和性质。掌握牛顿-莱布尼兹公式、定积分的换元法和分部积分法,理解变上限的定积分作为其上限的函数及其求导定理,理解广义积分的概念和计算方法。 重点:定积分的概念和性质;微积分基本公式;换元积分法、分部积分法。 难点:定积分的概念;变上限积分函数及其导数;换元积分法、分部积分法。 §1.定积分的概念 一、实例分析 1.曲边梯形的面积 设函数)(x f y =∈C[a , b ], 且)(x f y =>0. 由曲线0,,),(====y b x a x x f y 围成的图形称为曲边梯形. 如何定义曲边梯形的面积?(1) 矩形面积=底高. (2) 预备一张细长条的纸, 其面积底高. (3) 预备一张呈曲边梯形状的纸, 将其撕成许多细长条. (4) 启示: 将曲边梯形分割为许多细长条, 分割得越细, 误差越小. y =f (x ) x =a x =b y =f (x ) a=x 0 x 1 x i-1 x i x n =b

第i 个细长条面积)],,[()(11---=?∈??≈?i i i i i i i i i x x x x x x f S ξξ 曲边梯形面积: ∑=?≈ n i i i x f S 1 )(ξ 定积分概念示意图.ppt 定义: ),,2,1,max {()(lim 1 n i x x f S i n i i i Λ=?=?=∑=→λξλ 抛开上述过程的几何意义,将其数学过程定义为定积分. 二、定积分的定义 1. 定义 设)(x f y =在[a , b ]有定义, 且有界. (1) 分割: 用分点b x x x a n =<<<=Λ10把[a , b ]分割成n 个小区间: } ,,2,1,max{,,,2,1],,[11n i x x x x n i x x i i i i i i ΛΛ=?=-=?=--λ记 (2) 取点: 在每个小区间],[1i i x x -上任取一点i , 做乘积: i i x f ?)(ξ. (3) 求和: ∑=?n i i i x f 1 )(ξ (4) 取极限: ∑=→?n i i i x f 1 )(lim ξλ 若极限存在, 则其为)(x f 在[a , b ]上的定积分, 记作: ? b a dx x f )(. 即: ∑? =→?=n i i i b a x f dx x f 1 )(lim )(ξλ [a , b ]: 积分区间;a :积分下限;b :积分上限; ∑=?n i i i x f 1 )(ξ积分和式. 问题: 定积分是极限值, 在求极限的过程中, 谁是常量, 谁是变量?

最新定积分的近似计算2

定积分的近似计算2

定积分的近似计算 虽然牛顿——莱布尼兹公式解决了定积分的计算问题,但它的使用是有一定局限性的。对于被积分中的不能用初等函数表达的情形或其原函数虽能用初等函数表达但很复杂的情形,我们就有必要考虑近似计算的方法。 定积分的近似计算的基本思想是根据定积分的几何意义找出求曲边梯形面积的近似方法。下面介绍两种常用的方法梯形法及抛物线法。 一梯形法 将积分区间?Skip Record If...?作?Skip Record If...?等分,分点依次为 ?Skip Record If...? 相应的函数为 ?Skip Record If...? ?Skip Record If...? 曲线?Skip Record If...?上相应的点为 ?Skip Record If...? 将曲线的每一段弧?Skip Record If...?用过点?Skip Record If...?(线性函数)来代替,这使得每个?Skip Record If...?上的曲边梯形形成了真正的梯形(图11——25),其面积为 ?Skip Record If...? 于是各个小梯形面积之和就是曲边梯形面积的近 似值,即 ?Skip Record If...? 亦即 ?Skip Record If...?(2) 称此式为梯形法公式。 在实际应用中,我们还需要知道用这个近似值来代替所求积分时所产生的误差,从而有 ?Skip Record If...?

其中?Skip Record If...? 二抛物线法 由梯形法求近似值,当?Skip Record If...?为凹曲线时,它就偏小;当?Skip Record If...?为凸曲线时,它就偏大。如果每段改用与它凸性相接近的抛物线来近似,就可减少上述缺点。下面介绍抛物线法。 将区间?Skip Record If...?作?Skip Record If...?等分(图)分点依次为 ?Skip Record If...? 对应的函数值为 ?Skip Record If...? ?Skip Record If...? ?Skip Record If...?曲线上相应的点为?Skip Record If...? 现把区间?Skip Record If...?上的曲线段?Skip Record If...?用通过三点?Skip Record If...?的抛物线 ?Skip Record If...? 来近似代替,然后求函数?Skip Record If...?从?Skip Record If...?到?Skip Record If...?的定积分: ?Skip Record If...? ?Skip Record If...? ?Skip Record If...?由于?Skip Record If...?,将它代入上式整理后可得 ?Skip Record If...? ?Skip Record If...? 同样也有 ?Skip Record If...? ……………………………………………….. ?Skip Record If...? 将这?Skip Record If...?个积分相加即得原来所要计算的定积分的近似值: ?Skip Record If...? 即 ?Skip Record If...?

高中数学常见题型解法归纳 求定积分的方法

高中数学常见题型解法归纳 求定积分的方法 【知识要点】 一、曲边梯形的定义 我们把由直线,,0x a x b y ===和曲线()y f x =所围成的图形称为曲边梯形. 二、曲边梯形的面积的求法 分割→近似代替(以直代曲)→求和→取极限 三、定积分的概念 一般地,设函数()f x 在区间[,]a b 上连续,用分点 0121i i n a x x x x x x b -=<<<<<<<=L L 将区间[,]a b 等分成n 个小区间,每个小区间长度为x D (b a x n -D =),在每个小区间[]1,i i x x -上任取一点()1,2,,i i n x =L ,作和式:1 1 ()()n n n i i i i b a S f x x f n ξ==-= ?=∑∑ 如果x D 无限接近于0(亦即n →+∞)时,上述和式n S 无限趋近于常数S ,那么称该常数S 为函数 ()f x 在区间[,]a b 上的定积分.记为:()b a S f x dx =?, 其中 ? 是积分号,b 是积分上限,a 是积分下限,()f x 是被积函数,x 是积分变量,[,]a b 是积分区间,()f x dx 是被积式. 说明:(1)定积分 ()b a f x dx ? 是一个常数,可以是正数,也可以是负数,也可以是零,即n S 无限趋 近的常数S (n →+∞时)记为 ()b a f x dx ? ,而不是n S . (2)用定义求定积分的一般方法是:①分割:n 等分区间[],a b ;②近似代替:取点[]1,i i i x x ξ-∈;③ 求和:1 ()n i i b a f n ξ=-∑;④取极限:()1()lim n b i a n i b a f x dx f n ξ→∞=-=∑? 四、定积分的性质 根据定积分的定义,不难得出定积分的如下性质: 性质1()()()b b a a kf x dx k f x dx k =??为常数(定积分的线性性质); 性质2 1212[()()]()()b b b a a a f x f x dx f x dx f x dx ±=±? ??(定积分的线性性质);

实验五 定积分的近似计算

实验五 定积分的近似计算 我们已经学习了定积分的基本概念和定积分的计算方法,那里所谓的计算方法,是基于原函数的牛顿-莱布尼兹公式。但在许多实际问题中遇到的定积分,被积函数往往不用算式给出,而通过图形或表格给出;或虽然可用一个算式给出,但是要计算它的原函数却很困难,甚至于原函数可能是非初等函数。本实验的目的,就是为了解决这些问题,介绍定积分的“数值积分”,即定积分的近似计算。 所谓定积分的近似计算,就是找到一个适当的计算公式,利用被积函数在积分区间上若干个点处的函数值,来计算定积分的近似值,并作出误差估计。我们知道,定积分 ? b a dx x f )(在几何上表示曲线)(x f y =,直线b x a x ==,及x 轴所围成的曲边梯形的面积。定积分近似计算的思想,就是将积分区间分割成许多小区间,然后在小区间上近似计算小曲边梯形的面积,最后将小曲边梯形的面积求和,就得到了定积分的近似值。 1、 观察黎曼和式的收敛性 由定积分的定义知道,定积分就是黎曼和式 i n i i x f ?∑=1 )(ξ的极限,因此可以用黎曼和 式来近似计算定积分。为计算方便,这里特殊的,将积分区间等分为n 段,并以小区间中点 处的函数值作近似,于是黎曼和式为:∑=-+-+-n k n a b k a f n a b 1))5.0)1(((, 因而 ? ∑=-+-+-≈b a n k n a b k a f n a b dx x f 1))5.0)1((()(。 例1 计算 dx x ? 3 2 ln 1 的黎曼和。 解:输入命令如下: 2、 梯形法 大家可以看出,用上述方法进行的近似计算,其实是对小曲边梯形的面积用矩形面积来近似,上面取的特殊的黎曼和又称为中点积分公式。如果不用矩形而改用梯形来近似,就可以得到定积分的一个较好的近似方法——梯形积分法。具体方法如下: 将区间],[b a 用b x x x a n ==,,,10 等分为n 个小区间,小区间的长度为 n a b -。设)()(n a b i a f x f y i i -+==),,1,0( n i =,则每个小梯形的面积为n a b y y i i -?++21,从而得到梯形法的公式为:

定积分应用方法总结(经典题型归纳)

定积分复习重点 定积分的考查频率不是很高,本讲复习主要掌握定积分的概念和几何意义,使用微积分基本定理计算定积分,使用定积分求曲边图形的面积和解决一些简单的物理问题等. 1.定积分的运算性质 1212(1)()()(). (2)[()()]()(). (3)()()()(). b b a a b b b a a a b c b a a c kf x dx k f x dx k f x f x dx f x dx f x dx f x dx f x dx f x dx =±=±=+????????为常数其中a。 例题:1.2352 2(+5x )0 x dx -=?(同步训练P32 第3题) 2. a a a (cos -5sin 2)(cos -5sin )24a a a x x x dx x x x dx dx a ---+=+=? ?? 3) (2007枣庄模拟)已知f(x)为偶函数,且60 ()8 f x dx =? ,则6 6 ()f x dx -? 等于( B ) A.0 B.4 C.8 D.16 (同步训练P30 第6题) 4.利用定积分求曲边多边形的面积 在直角坐标系中,要结合具体图形来定: 方法总结:求由两条曲线围成的图形的面积的解题步骤 (1)画出图形,(2)求出交点的横坐标.定出积分的上、下限; (1)(); (2)()(); (3)()()()(); (4)[()()]b a b b a a c b c b a c a c b a S f x dx S f x dx f x dx S f x dx f x dx f x dx f x dx S f x g x dx == =-=+=-=-?? ??????

相关主题
文本预览