当前位置:文档之家› 大工16春《新能源发电》大作业风力发电技术

大工16春《新能源发电》大作业风力发电技术

大工16春《新能源发电》大作业风力发电技术
大工16春《新能源发电》大作业风力发电技术

网络教育学院《新能源发电》课程设计

题目:风力发电技术

学习中心:奥鹏学习中心

层次:专升本

专业:电气工程及其自动化

年级: 2016年春季

学号:

学生:

辅导教师:

完成日期: 2016年03月22日

总则

风力发电就是一种技术最成熟的可再生能源利用方式,发电机就是风力发电机组中将风能转化为电能的重要装置,控制技术就是风力机安全高效运行的关键。

第一章风力发电发展的现状

我国就是世界上风力资源占有率最高的国家,也就是世界上最早利用风能的国家之一,据资料统计,我国10m高度层风能资源总量为3226 GW,其中陆上可开采风能总量为253 GW,加上海上风力资源,我国可利用风力资源近1000 GW。如果风力资源开发率达到60%,仅风能发电一项就可支撑我国目前的全部电力需求。

我国利用风力发电起步较晚,与世界上风能发电发达国家如德国、美国、西班牙等国相比还有很大差距,风力发电就是20世纪80年代才迅速发展起来的,发展初期研制的风机主要为1 kW、10 kW、55 kW、220 kW等多种小型风电机组,后期开始研制开发可充电型风电机组,并在海岛与风场广泛推广应用,目前有的风机已远销海外。至今,我国已经在河北张家口、内蒙古、山东荣城、辽宁营口、黑龙江富锦、新疆达坂城、广东南澳与海南等地建成了多个大型风力发电场,并且计划在江苏南通、灌云及盐城等地兴建GW 级风电场。截止2007年底,我国风机装机容量已达到6、05 GW,年发电量占全国发电量的0、8%左右,比2000年风电发电量增加了近10倍,我国的风力发电量已跃居世界第5位。

第二章比较各种风力发电机的优缺点

一.当前风力发电机有两种形式:

1 水平轴风力发电机(大、中、小型)

2 垂直轴风力发电机(大、中、小型)。

水平轴风力发电机技术发展的比较快,在世界各地人们已经很早就认识了,大型的水平轴风力发电机已经可以做到3-5兆瓦,一般由国有大型企业研发生产,应用技术也趋于成熟。小型的水平轴风力发电机一般就是一些小型民营企业生产,对研发生产的技术要求比较低,其技术水平也就是参差不齐。

小型水平轴风力发电机的额定转速一般在500-800r/min,转速高,产生的噪音大,启动风速一般在3-5m/s,由于转速高,噪音大,故障频繁,容易发生危险,不适宜在有人居住或经过的地方安装。

要求比较高,尤其就是对叶片与发电机的要求。近几年垂直轴风力发电机的技术发展很快,尤其小型的垂直轴风力发电机已经很成熟。

小型的垂直轴风力发电机的额定转速一般在60-200r/min,转速低,产生的噪音很小(可以忽略不计),启动风速一般在1、6-4m/s。

二. 参数对比:

序号性能水平轴风力发电机垂直轴风力发电机

1 发电效率 50-60% 70%以上

2 电磁干扰(碳刷) 有无

3 对风转向机构有无

4 变速齿轮箱 10KW以上有无

5 叶片旋转空间较大较小

6 抗风能力弱强(可抗12-14级台风)

7 噪音 5-60分贝 0-10分贝

8 启动风速高(2、5-5m/s) 低(1、5-3m/s)

9 地面投影对人影响眩晕无影响

10 故障率高低、

11 维修保养复杂简单

12 转速高低

13 对鸟类影响大小

14 电缆绞线问题有无

(或碳刷损坏问题)

15 发电曲线凹陷饱满

第三章介绍相关风力发电控制技术

风力发电机组可以分为两大类:恒速恒频机组与变速恒频机组。风力发电机并入电网运行时,要求风力发电的频率保持恒定为电网频率(在我国,电网频率为50Hz)。恒速恒频指在风力发电中控制发电机的转速不变,从而得到频率恒定的电能;变速恒频指发电机的转速随风速变化而变化,通过一定的控制方法来得到恒频的电能。

一、如今投入实际运行的恒速恒频机组主要分为2类:

1、一类采用鼠笼式异步发电机,如图

2、1所示。并网后,在电机机械特性的稳定区内运行,异步发电机的转子速度需要高于同步转速。当风力机传给发电机的机械功率随

同步转速3%-5%时达到最大值,若超过这个转速,异步发电机会进入不稳定区,产生的电磁转矩反而减小,导致转速迅速升高,引起飞车。另外,异步发电机并网运行后,在向系统输出有功功率的同时,需要从电网吸收无功功率来建立磁场,它不具有调节与维持机端电压的能力。最后,由于转子速度的变化范围比较小,而风速经常变化,显然,风能利用系数Cp不能保持在最佳值。

图2、1采用鼠笼式异步发电机的恒速恒频机组

2、另一类采用绕线式异步感应发电机,如图2、2所示。它的特点就是,采用了外接的可变转子电阻。这种结构最初就是由丹麦的Vestas公司提出来的,又称OptiSlip风力发电系统。通过电力电子变换器调节外接转子电阻的大小,可以改变异步发电机的转差率S。相比鼠笼式异步发电机,转差率S的变化范围变大了,可达0-10%。然而,这种系统仍然需要从电网吸收无功功率,另外,转差功率转换成了外接转子电阻的热能损耗,没有被有效利用。

图2、2采用绕线式异步感应发电机的恒速恒频机组

二、投入实际运行的变速恒频机组也主要分为2类:

1、一类就是绕线转子双馈感应发电机系统,如图

2、3所示。这类系统的特点就是:在绕线式异步发电机的转子上连接了一个交-直-交(AC-DC-AC)的电力电子变流器。该变流器能够实现转子与电网之间的双向能量流动,转子侧变换器控制异步发电机,网侧变换器控制与电网的能量交换。双馈发电机本质上就是同步发电机,所以可以调节双馈发

即其转差率S可以达到-30%~30%。

图2、3绕线转子双馈感应发电机系统

2、另一类就是直驱型风力发电系统,如图2、4、2、5、2、6所示。直驱型风力发电系统中,风轮机与发电机(永磁同步发电机或绕线式感应发电机或绕线式同步发电机)直接相连,无需升速齿轮箱,但就是需要直驱多级发电机,其直径较大。首先将风能转化为频率变化、幅值变化的交流电,经过整流之后变为直流,然后经过三相逆变器变换为三相恒频恒幅交流电连接到电网。通过中间的全功率电力电子变换装置,对系统有功功率与无功功率进行控制,可以实现最大功率跟踪,从而能够实现对风能最高效率的利用。

图2-4直驱型风力发电系统

直驱式永磁同步发电机根据全功率变流器的不同又可分为:

(1)不可控整流+DC/DC升压+PWM电压源型逆变器型

DC/DC环节将整流器输出的直流电压提高并保持稳定在合适的范围内,使得逆变器的输入电压稳定,提高运行效率、减小谐波。全控型器件数量较少,控制电路较简单。

(2)背靠背双PWM变流器型

PWM整流器可同时实现整流与升压,效率较高,通过电流隔离,机侧与网侧可以实现各自的控制策略。但就是,全控型器件数量多,控制电路复杂,增加了变流系统成本。

图2-6直驱型风力发电系统

三、变桨距直驱型风电机组实现功率调节的途径与方法

永磁直驱式风力发电系统的整体控制框图如图3-1所示,控制系统主要分为三部分:主控制系统、变流器控制系统、变桨距控制系统。变速恒频同步直驱风力发电机的运行可分为两个主要方式:最大功率输出运行与额定功率输出运行。主控制器根据风力发电机组的运行工况,通过最大风能捕获算法得到发电机的功率指令来控制变流器的开关动作,从而使风力机捕获最大的风能;当风速超过额定风速时,变桨系统开始动作,避免风速太大而损坏风力机;变流器系统、变桨系统执行主控制器发给它们的控制指令。

图3-1永磁S驱式风力发电系统整体控制框图

从图3-2中可以瞧出,在达到额定风速之前,风力发电机运行在最大功率输出模式,待达到了额定风速之后,风力发电机运行在额定功率输出模式。

图3-2 风力发电机运行曲线

主控制系统的最大风能跟踪算法就是保证风力机稳定运行的核心,它主要实现风力机的变速、变桨控制。在低风速区,为实现最大风能的跟踪,风力机的转速变化与风速变化成正比,以保持最佳叶尖速比,它就是通过机侧变流器的控制来实现的,而此时控制器将叶片攻角置于零度附近,不作变化;当风速超过额定风速时,风力机要限制功率的输出,保持额定功率运行,这一阶段主要通过变桨距角来控制,变桨距机构发挥作用,调整叶片攻角,将发电机的输出功率限制在额定值附近。在这两个阶段之间,一般的风力机还有一个恒速区域,到达这个区域后风力机转速已达到额定速度,但就是输出功率还没有达到额定功率,不同的风力机在这个阶段有不同的控制方案。如图3-3,当发电机没有并入电网的时候(状态A),这个时候整个控制系统通过改变桨距角度来改变叶片的转矩,使得发电机转速上升到转速给定值,发电机并网。并网后,控制系统切换到状态B进行功率控制。

图3-3 变桨距直驱式风力发电机组控制图

通常情况下,风力机从切入风速到额定风速不就是一直保持最桂叶尖速比运行。由于变流器容量与风力机机械强度的约束,风力机设有启动转速与额定转速,在风速不同的情况下,其控制策略完全不同,根据风速的变化进行分区域控制。风力机依据转速的变化来分区域、分阶段控制,以下依据风力机的转速-转矩曲线来说明永磁直驱式风力发电机组的分区控制原理风力机的转速-转矩曲线如图3-4所示。

图 3-4 风力机理想的转速-转矩曲线

风力机的分区域控制可以分成四个典型的控制区,在这四个控制区对应着不同的风速范围,不同的区域的控制方法也不相同。

(1) 在切入风速以上的低风速区域,风力机以最小转速ω1,恒转矩运行在区域Ⅰ;

(2) 在最小转速ω1以上,转速随风速的改变而改变,风力机运行在最佳叶尖速比,这个区域风能利用系数最大,如图3-4所示区域Ⅱ,也即就是最大风能跟踪(MPPT)模式;

(3) 受风力机的机械强度与变流器的电压、容量的限制,风力机运行在转速ω3时,达到区域Ⅱ模式的最大转速,这时风速还没有达到额定风速,但必须保持额定转速运行而不能超过额定转速,这个恒速运行阶段一直到风力机输出额定功率为止,即区域Ⅲ模式;

(4) 风力机运行到H点达到额定功率,当风速超过额定风速后,变桨系统启动,以控制风力机运行在额定功率,即区域Ⅳ模式。

(5)当风力机的转速超过最大安全转速ω5时,要求风力机必须安全停机。

从图2-8的转速-转矩曲线可以瞧出,在风力机控制的前三个阶段,风力机转速控制都就是低于额定风速下的变速控制,也就就是通过控制发电机组的输出转矩来实现风力机的变速控制。在H点,风力机运行到额定转速,风速若继续增大,风力机也自然会增速,为控制风力发电机组的输出功率为额定功率,变桨系统开始动作。为了防止风力机在变速控制与变桨控制之间频繁切换,为变桨控制留了一定转速的余量,即变桨系统的启动控制速度为ω4 。也就就是说风力机转速在ω3以下进行变速控制,而转速在ω4以上时进行变桨控制。一般桨距角随风速变化的情况如图3-4所示:

图3-4桨距角随风速变化的情况

第四章对风力发电技术发展趋势的展望

随着现代工业的飞速发展,人类对能源的需求明显增加,而地球上可利用的常规能源日趋匮乏。据专家预测,煤炭还可开采221年,石油还可开采39年,天然气只能用60年。这种预测也许不很准确,但常规能源必然就是越用越少,总有一天要用尽的。未雨绸缪,我们必须为将来考虑,为子孙后代的能源问题着想,开发利用新能源,实现能源的持续发展,从而保证经济的可持续发展与社会的不断进步,最终实现人El、资源、环境的协调发展,已成为各国政府必须解决的大问题。惟一的出路就就是有计划地利用常规能源,节约能源,开发新能源与可再生能源。

由此可以推测,21世纪风力发电前景非常广阔。科学技术的长足进步,经济的快速发展,使人们的生活水平有了新的飞跃。同时,人口的增加,对能源的需求也越来越大,环境污染越来越严重,人类必须解决人口、资源、环境的可持续发展问题。从能源、电力市场瞧,世界能源、电力市场发展最快的已不再就是石油、煤与天然气,风力发电、太阳能发电等可再生能源异军突起,特别就是风力发电,以其无污染,可再生,技术成熟,近几年以25%的增长速度位居各类能源之首,倍受世人青睐。l999年全世界新增装机容量

36×105kW,1zLl998年增加36%,也创下了风电工业史的纪录。据"绿色与平"组织与欧洲风能协会组织估计,至1J2020年风力发电可提供世界电力需求的l0%,创造l70万个就业机会,降低全球二氧化碳排放量超过l012t,至lJ2040年这个比例可达20%,甚至更高,有望超过水力发电。因此,国际能源专家预言:21世纪就是风力发电的世纪。可以说,绿色能源--风力发电将为人类最终解决能源问题带来新的希望。

相关主题
文本预览
相关文档 最新文档