当前位置:文档之家› 线面垂直和面面垂直典型例题

线面垂直和面面垂直典型例题

线面垂直和面面垂直典型例题
线面垂直和面面垂直典型例题

线面垂直与面面垂直 基础要点

1、若直线a 与平面,αβ所成的角相等,则平面α与β的位置关系是( B ) A 、//αβ

B 、α不一定平行于β

C 、α不平行于β

D 、以上结论都不正确

2、在斜三棱柱111ABC A B C -,90BAC ∠=,又1BC AC ⊥,过1C 作1C H ⊥底面ABC ,垂足为H ,则H 一定在( B ) A 、直线AC 上 B 、直线AB 上

C 、直线BC 上

D 、△ABC 的内部

3、如图示,平面α⊥平面β,,,A B AB αβ∈∈与两平面,αβ所成的角分别为4π和6

π,过A 、B 分别作两平面交线的垂线,垂足为,A B '',则:AB A B ''=( A ) A 、2:1 B 、3:1 C 、3:2 D 、4:3

4、如图示,直三棱柱11ABB DCC -中,190,4ABB AB ∠==,

12,1BC CC ==DC 上有一动点P ,则△1APC 周长的最小值是

5.已知长方体1111D C B A ABCD -中,21==AB A A ,

若棱AB 上存在点P ,使得PC P D ⊥1,则棱AD 长

的取值范围是 。

题型一:直线、平面垂直的应用

1.(2014,江苏卷)如图,在三棱锥P-ABC 中,D ,E ,F 分别为棱PC ,AC ,AB 的中点. 已知,685PA AC PA BC DF ⊥===,,.

求证:(1) PA DEF 平面错误!未找到引用源。;(2) BDE ABC ⊥平面平面 错误!未找到引用源。.

线面垂直

线线垂直

面面垂直

B`

A`

B

A

α

β

A

B

C

D 1

B 1

C B 1

C 1

D 1

A 1

D C

B A

证明: (1) 因为D ,E 分别为棱PC ,AC 的中点, 所以DE ∥PA.

又因为PA ? 平面DEF ,DE ?平面DEF , 所以直线PA ∥平面DEF.

(2) 因为D ,E ,F 分别为棱PC ,AC ,AB 的中点,PA =6,BC =8,所以DE ∥PA ,DE =12PA =3,EF =1

2

BC =4. 又因 DF =5,故DF 2=DE 2+EF 2, 所以∠DEF =90°,即DE 丄EF.

又PA ⊥AC ,DE ∥PA ,所以DE ⊥AC.

因为AC∩EF =E ,AC ?平面ABC ,EF ?平面ABC ,所以DE ⊥平面ABC. 又DE ?平面BDE ,所以平面BDE ⊥平面ABC.

2. (2014,北京卷,文科)如图,在三棱柱111ABC A B C -中,侧棱垂直于底面,AB BC ⊥,12AA AC ==,E 、F 分别为11A C 、BC 的中点. (1)求证:平面ABE ⊥平面11B BCC ;(2)求证:1//C F 平面ABE . 证明:(1)在三棱柱111ABC A B C -中,

11,,BB ABC BB AB ⊥∴⊥底面11,,AB BC AB B BCC ∴⊥∴⊥平面

,AB ABE ?平面11ABE B BCC ∴⊥平面平面.

(2)取AB 的中点G ,连接EG ,FG

E 、

F 分别为11A C 、BC 的中点, 1

,2

FG AC FG AC ∴=

, 111111AC AC AC AC FG EC FG EC =∴=,,,,则四边形1FGEC 为平行四边形, 111,,,C F EG EG ABE C F ABE C F ABE ∴??∴平面平面平面.

3.如图,P 是ABC ?所在平面外的一点,且⊥PA 平面ABC ,平面⊥PAC 平面PBC .求证AC BC ⊥.

分析:已知条件是线面垂直和面面垂直,要证明两条直线垂直,应将两条直线中的一条纳入一个平面中,使另一条直线与该平面垂直,即从线面垂直得到线线垂直..

证明:在平面PAC 内作PC AD ⊥,交PC 于D .因为平面⊥PAC 平面PBC 于PC ,

?AD 平面PAC ,且PC AD ⊥,所以PBC AD 平面⊥.又因为?BC 平面PBC ,于

是有BC AD ⊥①.另外⊥PA 平面ABC ,?BC 平面ABC ,所以BC PA ⊥.由①②及A PA AD = ,可知⊥BC 平面PAC .因为?AC 平面PAC ,所以AC BC ⊥. 说明:在空间图形中,高一级的垂直关系中蕴含着低一级的垂直关系,通过本题可以看到,面面垂直?线面垂直?线线垂直.

4. 过点S 引三条不共面的直线SA 、SB 、SC ,如图,?=∠90BSC ,?=∠=∠60ASB ASC ,若截取a SC SB SA ===

(1)求证:平面ABC ⊥平面BSC ; (2)求S 到平面ABC 的距离.

分析:要证明平面ABC ⊥平面BSC ,根据面面垂直的判定定理,须在平面ABC 或平面BSC 内找到一条与另一个平面垂直的直线.

(1)证明:∵a SC SB SA ===, 又?=∠=∠60ASB ASC ,

∴ASB ?和ASC ?都是等边三角形, ∴a AC AB ==,

取BC 的中点H ,连结AH ,∴BC AH ⊥.

在BSC Rt ?中,a CS BS ==,∴BC SH ⊥,a BC 2=

∴2)22(222

2

2

2

a a a CH AC AH =-=-=,∴2

22a SH =. 在SHA ?中,∴2

22

a AH =,222a SH =,2

2a SA =,

∴2

22HA SH SA +=,∴SH AH ⊥,∴⊥AH 平面SBC .

∵?AH 平面ABC ,∴平面ABC ⊥平面BSC .

或:∵AB AC SA ==,∴顶点A 在平面BSC 内的射影H 为BSC ?的外心,

又BSC ?为?Rt ,∴H 在斜边BC 上,

又BSC ?为等腰直角三角形,∴H 为BC 的中点,

∴⊥AH 平面BSC .∵?AH 平面ABC ,∴平面ABC ⊥平面BSC . (2)解:由前所证:AH SH ⊥,BC SH ⊥,∴⊥SH 平面ABC ,

∴SH 的长即为点S 到平面ABC 的距离,a BC SH 2

2

2==

∴点S 到平面ABC 的距离为

a 2

2

. 5、如图示,ABCD 为长方形,SA 垂直于ABCD 所在平面,过A 且垂直于SC 的平面分别交SB 、SC 、SD 于E 、F 、G ,求证:AE ⊥SB ,AG ⊥SD

6.在四棱锥P-ABCD 中,侧面PCD 是正三角形,且与底面ABCD 垂直,已知底面是面积为32的菱形,?=∠60ADC ,M 是PB 中点。 (1)求证:PA ⊥CD

(2)求证:平面PAB ⊥平面CDM

7.在多面体ABCDE 中,AB=BC=AC=AE=1,CD=2,⊥AE 面ABC ,AE//CD 。 (1)求证:AE//平面BCD ; (2)求证:平面BED ⊥平面BCD

题型二、空间角的问题

1.如图示,在正四棱柱1

1

1A B C D A B C D

-中,D

C

B A S G E

F

M

D C B

A

P

E D

C B A

D

B

C

F

A

11,31AB BB ==+,E 为1BB 上使11B E =的点,平面1AEC 交1DD 于F ,交11A D 的延

长线于G ,求:

(1)异面直线AD 与1C G 所成的角的大小 (2)二面角11A C G A --的正弦值

2.如图,点A 在锐二面角βα--MN 的棱MN 上,在面α内引射线AP ,使AP 与MN 所成的角PAM ∠为

45,与面β所成的角大小为

30,求二面角βα--MN 的大小.

分析:首先根据条件作出二面角的平面角,然后将平面角放入一个可解的三角形中(最好是直角三角形),通过解三角形使问题得解.

解:在射线AP 上取一点B ,作β⊥BH 于H ,连结AH ,则BAH ∠为射线AP 与平面β所成的角,

30=∠∴BAH .再作MN BQ ⊥,交MN 于Q ,

连结HQ ,则HQ 为BQ 在平面β内的射影.由三垂线定理的逆定理,MN HQ ⊥,

BQH ∠∴为二面角βα--MN 的平面角.

设a BQ =,在BAQ Rt ?中,a AB BAM BQA 2,45,90=

∴=∠=∠

,在Rt △

BHQ 中,

,22,,90a BH a BQ BHQ ===∠

2

222sin ===∠a a

BQ BH BQH

,

BQH ∠ 是锐角, 45=∠∴BQH ,即二面角βα--MN 等于 45.

说明:本题综合性较强,在一个图形中出现了两条直线所称的角,斜线与平面所称的角,二面角等空间角,这些空间角都要转化为平面角,而且还要彼此联系相互依存,要根据各个平面角的定义添加适当的辅助线.

3. 正方体1111D C B A ABCD -的棱长为1,P 是AD 的中点.求二面角P BD A --1的大小. 分析:求二面角关键是确定它的平面角,按定义在二面角的棱上任取了点,在二个半平面上分别作棱的垂线,方法虽简便,但因与其他条件没有联系,要求这个平面角一般是很不容易的,所以在解题中不大应用.在解题中应用得较多的是“三垂线定理”的方法,如图考虑到AB 垂直于平面1AD ,1BD 在平面1AD 上的射影就是1AD .再过P 作1AD 的垂线PF ,则PF ⊥面1ABD ,过F 作B D 1的垂线FE ,PEF ∠即为所求二面角的平面角了.

解:过P 作1BD 及1AD 的垂线,垂足分别是E 、F ,连结EF . ∵AB ⊥面1AD ,PF ?面1AD ,

∴PF AB ⊥,又1AD PF ⊥,∴PF ⊥面1ABD .

又∵1BD PE ⊥,∴1BD EF ⊥,∴PEF ∠为所求二面角的平面角. ∵D AD Rt 1?∽PFA ?,∴

1

1AD AP

DD PF =. 而2

1

=

AP ,11=DD ,21=AD ,∴42=PF .

在1PBD ?中,251=

=PB PD .∵1BD PE ⊥,∴2

3

21==BD BE . 在PEB Rt ?中,2222=

-=

BE PB PE ,在PEF Rt ?中,2

1

sin ==∠PE PF PEF ,

∴?=∠30PEF .

4.P A 垂直于矩形ABCD 所在平面,M 、E 、N 分别是AB 、CD 和PC 的中点,

P

(1)求证:MN ∥平面P AD (2)若二面角P -DC -A 为

4

π

,求证:平面MND ⊥平面PDC 5.已知正方体中1111ABCD A B C D -,E 为棱1CC 上的动点, (1)求证:1A E ⊥BD (2)

当E 恰为棱1CC 的中点时,求证:平面1A BD ⊥平面EBD

(3)在棱1CC 上是否存在一个点E ,可以使二面角1A BD E --的大小为45?如果存在,试确定E 在棱1CC 上的位置;如果不存在,请说明理由。

题型三、探索性、开放型问题

1.如图,已知正方形ABCD 的边长为2,中心为O 。设⊥PA 平面ABCD ,EC//PA,且PA=2。问

当CE 为多少时,PO ⊥平面BED 。

2.已知△ABC 中,90,1BCD BC CD ∠===,AB ⊥平面BCD ,60ADB ∠=,E 、F 分别是AC 、AD 上的动点,且

(01)AE AF

AC AD

λλ==<< (1)求证:不论λ为何值,总有平面BEF ⊥平面ABC (2)当λ为何值时,平面BEF ⊥平面ACD ?

E

O B C

D A P

线面垂直与面面垂直典型例题

线面垂直与面面垂直 基础要点 1、若直线αβ所成的角相等,则平面αβ B ) A 、//αβ B 、α不一定平行于β C 、α不平行于β D 、以上结论都不正确 2、在斜三棱柱111ABC A B C -,90BAC ∠=,又1BC AC ⊥,过1C 作1C H ⊥底面ABC ,垂足为H ,则H 一定在( B ) A 、直线AC 上 B 、直线AB 上 C 、直线BC 上 D 、△ABC 的内部 3、如图示,平面α⊥平面β,,,A B AB αβ∈∈与两平面,αβ所成的角分别为4π和6 π ,过A 、B 分别作两平面交线的垂线,垂足为,A B '',则:AB A B ''=( A ) A 、2:1 B 、3:1 C 、3:2 D 、4:3 4、如图示,直三棱柱11ABB DCC -中,190,4ABB AB ∠==, 12,1BC CC ==DC 上有一动点P ,则△1APC 周长的最小值是 5.已知长方体1111D C B A ABCD -中,21==AB A A , 若棱AB 上存在点P ,使得PC P D ⊥1,则棱AD 长 的取值范围是 。 题型一:直线、平面垂直的应用 1.(2014,江苏卷)如图,在三棱锥P-ABC 中,D ,E ,F 分别为 PC ,AC ,AB 的中点. 已知,685PA AC PA BC DF ⊥===,,. 求证:(1) PA DEF 平面;(2) BDE ABC ⊥平面平面 . 证明: (1) 因为D ,E 分别为棱PC ,AC 的中点, 所以DE ∥PA. 又因为PA ? 平面DEF ,DE ?平面DEF , 所以直线PA ∥平面DEF. (2) 因为D ,E ,F 分别为棱PC ,AC ,AB 的中点,PA =6,BC =8,所以DE ∥PA ,DE = 12PA =3,EF =1 2 BC =4. 又因 DF =5,故DF 2=DE 2+EF 2, 所以∠DEF =90°,即DE 丄EF. 又PA ⊥AC ,DE ∥PA ,所以DE ⊥AC. 因为AC∩EF =E ,AC ?平面ABC ,EF ?平面ABC ,所以DE ⊥平面ABC. 线面垂直 线线垂直 面面垂直 B` A` B A α β A B C D 1 B 1 C B 1 1 D A D B A

线面垂直与面面垂直垂直练习题(新)

2.3线面垂直和面面垂直 线面垂直专题练习 一、定理填空: 1.直线和平面垂直 如果一条直线和,就说这条直线和这个平面垂直. 2.线面垂直判定定理和性质定理 线面垂直判定定理: 如果一条直线和一个平面内的两条相交直线都垂直,那么这条直线垂直于这个平面. 判定定理1:如果两条平行线中的一条垂直于一个平面,那么 判定定理2:如果一条直线垂直于两个平行平面中的一个平面,那么. 线面垂直性质定理: 垂直于同一个平面的两条直线互相平行. 性质定理1:垂直于同一条直线的两个平面互相平行。 二、精选习题: 1.设M表示平面,a、b表示直线,给出下列四个命题: ①M b M a b a ⊥ ? ? ? ? ⊥ // ②b a M b M a // ? ? ? ? ⊥ ⊥ ③? ? ? ? ⊥ ⊥ b a M a b∥M④? ? ? ? ⊥b a M a// b⊥M. 其中正确的命题是( ) A.①② B.①②③ C.②③④ D.①②④ 2.如图所示,在正方形ABCD中,E、F分别是AB、BC的中点.现在沿DE、DF及EF把△ADE、△CDF和△BEF折起,使A、B、C三点重合,重合后的点记为P.那么,在四面体P—DEF 中,必有( ) A.DP⊥平面PEF B.DM⊥平面PEF C.PM⊥平面DEF D.PF⊥平面DEF 3.设a、b是异面直线,下列命题正确的是( ) A.过不在a、b上的一点P一定可以作一条直线和a、b都相交 B.过不在a、b上的一点P一定可以作一个平面和a、b都垂直 C.过a一定可以作一个平面与b垂直 D.过a一定可以作一个平面与b平行 4.如果直线l,m与平面α,β,γ满足:l=β∩γ,l∥α,m?α和m⊥γ,那么必有( ) A.α⊥γ且l⊥m B.α⊥γ且m∥β C.m∥β且l⊥m D.α∥β且α⊥γ 5.有三个命题: 第3题图

线面垂直面面垂直知识点总结经典例题及解析高考题练习及答案第次补课

直线、平面垂直的判定与性质 【知识梳理】 一、直线与平面垂直的判定与性质 1、 直线与平面垂直 (1)定义:如果直线l 与平面α内的任意一条直线都垂直,我们就说直线l 与平面α互相垂直,记作l ⊥α,直线l 叫做平面α的垂线,平面α叫做直线l 的垂面。如图,直线与平面垂直时,它们唯一公共点P 叫做垂足。 (2)判定定理:一条直线与一个平面内的两条相交直线都垂直,则该直线与此平面垂直。 结论:如果两条平行直线中的一条垂直于一个平面,那么另一条也垂直于这个平面,记作.//a b b a αα? ?⊥?⊥? (3)性质定理:垂直于同一个平面的两条直线平行。即,//a b a b αα⊥⊥?. 由定义知:直线垂直于平面内的任意直线。 2、 直线与平面所成的角 平面的一条斜线和它在平面上的射影所成的锐角或者直角叫做这条直线和这个平面所成的角。一条直线垂直于平面,该直线与平面所成的角是直角;一条直线和平面平行,或在平面内,则此直线与平面所成的角是0 0的角。 3、 二面角的平面角 从一条直线出发的两个半平面所组成的图形叫做二面角,这条直线叫做二面角的棱,这两个半平面叫做二面角的面。如果记棱为l ,那么两个面分别为αβ、的二面角记作l αβ--.在二面角的棱上任取一点,以该点为垂足,在两个半平面内分别作垂直于棱的射线,则两射线所构成的角叫做叫做二面角的平面角。其作用是衡量二面角的大小;范围:0 0180θ≤≤. 二、平面与平面垂直的判定与性质 1、定义:一般地,两个平面相交,如果它们所成的二面角是直二面角,就说这两个平面垂直. 2、判定:一个平面过另一个平面的垂线,则这两个平面垂直。简述为“线面垂直,则面面垂直”,记作 l l βαβα⊥? ?⊥??? . 3、性质:两个平面垂直,则一个平面内垂直于交线的直线与另一个平面垂直,记作l m m m l αβαββα⊥??=? ?⊥??? ?⊥? I . 【经典例题】 【例1】(2012浙江文)设l 是直线,a,β是两个不同的平面 ( ) A .若l ∥a,l ∥β,则a ∥β B .若l ∥a,l ⊥β,则a ⊥β C .若a ⊥β,l ⊥a,则l ⊥β D .若a ⊥β, l ∥a,则l ⊥β 【答案】B

高中数学立体几何线面垂直的证明

立体几何证明 【知识梳理】 1. 直线与平面平行 判定定理:如果平面外一条直线和这个平面内一条直线平行,那么这条直线和这个平面平行.(“线线平行?线面平行”) 性质定理:如果一条直线和一个平面平行,经过这条直线的平面和这个平面相交,那么这条直线和交线平行.(“线面平行?线线平行”) 2..直线与平面垂直 判定定理一如果一条直线和一个平面内的两条相交直线都垂直,那么这两条直线垂直于这个平面.(“线线垂直?线面垂直”) 判定定理二:如果平行线中一条直线垂直于一个平面,那么另一条也垂直于这个平面. 性质1.如果一条直线垂直于一个平面,那么这条直线垂直于这个平面内的所有直线。 (线面垂直?线线垂直) 性质2:如果两条直线同垂直于一个平面,那么这两条直线平行. 三。平面与平面 空间两个平面的位置关系:相交、平行. 1. 平面与平面平行 判定定理:如果一个平面内有两条相交直线都平行于另一个平面,那么这两个平面平行.(“线面平行?面面平行”) 2. 两个平面垂直 判定定理:如果一条直线与一个平面垂直,那么经过这条直线的平面垂直于这个平面.(“线面垂直?面面垂直”) 性质定理:如果两个平面垂直,那么在一个平面内垂直于它们交线的直线也垂直于另一个平面.(面面垂直?线面垂直)

知识点一 【例题精讲】 1.在棱长为2的正方体1111D C B A ABCD -中,E 、F 分别为1DD 、DB 的中点。 (1)求证:EF//平面11D ABC ;(2)求证: 平面B 11D C C B 1⊥ EF C B 1⊥; (3)求三棱锥EFC B -1的体积V. 2.如图所示, 四棱锥P -ABCD 底面是直角梯形, ,,2,BA AD CD AD CD AB PA ⊥⊥=⊥底面ABCD , E 为PC 的 中点, PA =AD =AB =1. (1)证明: //EB PAD 平面; (2)证明: BE PDC ⊥平面; (3)求三棱锥B -PDC 的体积V . 3、如图所示,在四棱锥P ﹣ABCD 中,PA ⊥底面 ABCD ,AB ⊥AD ,AC ⊥CD ,∠ABC=60°,PA=AB=BC ,E 是PC 的中点,证明: (1)AE ⊥CD (2)PD ⊥平面ABE .

必修二立体几何复习+经典例题

一、判定两线平行的方法 1、平行于同一直线的两条直线互相平行 2、垂直于同一平面的两条直线互相平行 3、如果一条直线和一个平面平行,经过这条直线的平面和这个平面相交,那么这条直线 就和交线平行 4、如果两个平行平面同时和第三个平面相交,那么它们的交线平行 5、在同一平面内的两条直线,可依据平面几何的定理证明 二、判定线面平行的方法 1、据定义:如果一条直线和一个平面没有公共点 2、如果平面外的一条直线和这个平面内的一条直线平行,则这条直线和这个平面平 行 3、两面平行,则其中一个平面内的直线必平行于另一个平面 4、平面外的两条平行直线中的一条平行于平面,则另一条也平行于该平面 5、平面外的一条直线和两个平行平面中的一个平面平行,则也平行于另一个平面 三、判定面面平行的方法 1、定义:没有公共点 2、如果一个平面内有两条相交直线都平行于另一个平面,则两面平行 3 垂直于同一直线的两个平面平行 4、平行于同一平面的两个平面平行 四、面面平行的性质 1、两平行平面没有公共点 2、两平面平行,则一个平面上的任一直线平行于另一平面 3、两平行平面被第三个平面所截,则两交线平行 4、垂直于两平行平面中一个平面的直线,必垂直于另一个平面 五、判定线面垂直的方法 1、定义:如果一条直线和平面内的任何一条直线都垂直,则线面垂直 2、如果一条直线和一个平面内的两条相交线垂直,则线面垂直 3、如果两条平行直线中的一条垂直于一个平面,则另一条也垂直于该平面 4、一条直线垂直于两个平行平面中的一个平面,它也垂直于另一个平面 5、如果两个平面垂直,那么在一个平面内垂直它们交线的直线垂直于另一个平面 6、如果两个相交平面都垂直于另一个平面,那么它们的交线垂直于另一个平面 六、判定两线垂直的方法 1、定义:成90 角 2、直线和平面垂直,则该线与平面内任一直线垂直 3、在平面内的一条直线,如果和这个平面的一条斜线的射影垂直,那么它也和这条斜线 垂直 4、在平面内的一条直线,如果和这个平面的一条斜线垂直,那么它也和这条斜线的射影 垂直 5 、一条直线如果和两条平行直线中的一条垂直,它也和另一条垂直 七、判定面面垂直的方法 1、定义:两面成直二面角, 则两面垂直 2、一个平面经过另一个平面的一条垂线,则这个平面垂直于另一平面 八、面面垂直的性质 1、二面角的平面角为90

立体几何-线面与面面垂直的证明

理科数学复习专题 立体几何 线面垂直与面面垂直专题复习 【知识点】 一.线面垂直 (1)直线与平面垂直的定义: 如果直线l 和平面α内的__________一条直线都垂直,我们就说直线l 与平面α垂直,记作__________. 重要性质:__________________________________________________________ (2)直线与平面垂直的判定方法: ①判定定理:一条直线与一个平面内的两条__________都垂直,那么这条直线就垂直于这个平面.用符号表示为: ②常用结论:如果两条平行直线中的一条垂直于一个平面,那么另一条也垂直于这个平面.用符号可表示为: (3)直线与平面垂直的性质: ①由直线和平面垂直的定义知:直线与平面垂直,则直线垂直于平面内的_______直线. ②性质定理:垂直于同一平面的两条直线平行.用符号可表示为: 二、面面垂直 (1)平面与平面垂直的定义: 两平面相交,如果它们所成的二面角是__________,就说这两个平面互相垂直. (2)平面与平面垂直的判定定理: 如果一个平面经过另一个平面的一条__________,那么这两个平面互相垂直.简述为“线面垂直,则面面垂直”, 用符号可表示为: (3)平面与平面垂直的性质: 如果两个平面互相垂直,那么在一个平面内垂直于它们交线的直线垂直于另一个平面.用符号可表示为: 【题型总结】 题型一 小题:判断正误 1.“直线l 垂直于平面α内的无数条直线”是“l ⊥α”的( ). A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分又不必要条件 2.已知如图,六棱锥P -ABCDEF 的底面是正六边形,PA ⊥平面ABC .则下列结论不正确的是( ). A.CD ∥平面PAF B.DF ⊥平面PAF C.CF ∥平面PAB D .CF ⊥平面PAD 2. 设m ,n, l 是三条不同的直线,,,αβγ是三个不同的平面,判断命题正误: α αααααββααβαβα//n ,,m //,,n ,//,,//,//,,则⑤则④则③则②则①n m n m n m n m m m m m m ⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥ γ αβγβαγαγββααα⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥则,⑩则⑨则,⑧则⑦则⑥,//m ,//,m //,//m ,,m n ,//,n m l l n n l l n n m

线面垂直经典例题及练习题-.

立体几何 1.P 点在则ABC ?所在的平面外,O 点是P 点在平面ABC 内的射影 ,PA 、PB 、PC 两 两垂直,则D 点是则ABC ? ( B ) (A)重心 (B) 垂心 (C)内心 (D)外心 2.与两个相交平面的交线平行的直线和这两个平面的位置关系是 ( A ) (A)都平行 (B) 都相交 (C) 在两个平面内 (D)至少与其中一个平行 3.若两个平面内分别有一条直线,这两条直线互相平行,那么这两平面的位置关系是( A ) (A)平行 (B) 相交 (C)平行或相交 (D)垂直 4.在空间,下述命题正确的是 ( B ) (A)若直线//a 平面M ,直线b a ⊥,则直线⊥b 平面M (B)若平面M //平面N ,则平面M 内任意直线a //平面N (C)若平面M 与N 的交线为a ,平面M 内的直线a b ⊥,则N b ⊥ (D)若平面N 的两条直线都平行平面M ,则平面N //平面M 5.a 、b 表示两条直线,α、β、γ表示三个平面,下列命题中错误的是 (A ) (A),,αα??b a 且ββ//,//b a ,则βα// (B)a 、b 是异面直线,则存在唯一的平面与a 、 b 等距 (C) ,,,b a b a ⊥?⊥βα则βα// (D),,,//,βαβγγα⊥⊥⊥b a 则b a ⊥ 6.直线l //平面α,αβ⊥,则l 与平面β的位置关系是 ( D ) (A) l β? (B) //l β (C) l β与相交 (D ) 以上三种情况均有可能 7.已知直线l ⊥平面α,直线m ?平面β,有以下四个命题:①//l m αβ?⊥② //l m αβ⊥?③//l m αβ?⊥④//l m αβ⊥?,其中正确的是(D ) (A) ①② (B) ②④ (C) ③④ (D) ①③ 8.αβγδ,,,是四个不同的平面,且αγβγαδβδ⊥⊥⊥⊥,,,,则( B ) (A) ////αβγδ或 (B) ////αβγδ且 (C) 四个平面中可能任意两个都不平行 (D) 四个平面中至多有一对平面平行 9.已知平面α和平面β相交,a 是α内的一条直线,则( D ) (A) 在β内一定存在与a 平行的直线 (B) 在β内一定存在与a 垂直的直线 (C) 在β内一定不存在与a 平行的直线 (D) 在β内一定不存在与a 垂直的直线 10.已知PA ⊥正方形ABCD 所在平面,垂足为A ,连PB PC PD AC BD ,,、,,则互 相垂直的平面有( C ) (A) 5对 (B) 6对 (C) 7对 (D) 8对

线面垂直、面面垂直知识点总结、经典例题及解析、高考题练习及答案

直线、平面垂直的判定与性质 【考纲说明】 1、能够认识和理解空间中线面垂直的有关性质和判定定理。 2、能够运用公理、定理和已获得的结论证明一些空间图形的位置关系的简单命题。 【知识梳理】 一、直线与平面垂直的判定与性质 1、 直线与平面垂直 (1)定义:如果直线l 与平面α内的任意一条直线都垂直,我们就说直线l 与平面α互相垂直,记作l ⊥α,直线l 叫做平面α的垂线,平面α叫做直线l 的垂面。如图,直线与平面垂直时,它们唯一公共点P 叫做垂足。 (2)判定定理:一条直线与一个平面内的两条相交直线都垂直,则该直线与此平面垂直。 结论:如果两条平行直线中的一条垂直于一个平面,那么另一条也垂直于这个平面,记作.//a b b a αα? ?⊥?⊥? (3)性质定理:垂直于同一个平面的两条直线平行。即,//a b a b αα⊥⊥?. 由定义知:直线垂直于平面内的任意直线。 2、 直线与平面所成的角 平面的一条斜线和它在平面上的射影所成的锐角叫做这条直线和这个平面所成的角。一条直线垂直于平面,该直线与平面所成的角是直角;一条直线和平面平行,或在平面内,则此直线与平面所成的角是0 0的角。 3、 二面角的平面角 从一条直线出发的两个半平面所组成的图形叫做二面角,这条直线叫做二面角的棱,这两个半平面叫做二面角的面。如果记棱为l ,那么两个面分别为αβ、的二面角记作l αβ--.在二面角的棱上任取一点,以该点为垂足,在两个半平面内分别作垂直于棱的射线,则两射线所构成的角叫做叫做二面角的平面角。其作用是衡量二面角的大小;范围:0 0180θ<<. 二、平面与平面垂直的判定与性质 1、定义:一般地,两个平面相交,如果它们所成的二面角是直二面角,就说这两个平面垂直. 2、判定:一个平面过另一个平面的垂线,则这两个平面垂直。简述为“线面垂直,则面面垂直”,记作 l l βαβα⊥? ?⊥??? .

怎么证明面面垂直

怎么证明面面垂直证明一个面上的一条线垂直另一个面;首先可以转化成 一个平面的垂线在另一个平面内,即一条直线垂直于另一个平面 然后转化成 一条直线垂直于另一个平面内的两条相交直线 也可以运用两个面的法向量互相垂直。 这是解析几何的方法。 证:连接AC,BD.PD垂直面ABCD=>PD垂直AC.ABCD为正方形=>AC垂直BD.而BD是PB 在面ABCD内的射影=>PB垂直AC.PD垂直AC=>AC垂直面PBD.AC属于面ACE=>面PBD 垂直面ACE 2 1利用直角三角形中两锐角互余证明 由直角三角形的定义与三角形的内角和定理可知直角三角形的两个锐角和等于90°,即直角三角形的两个锐角互余。 2勾股定理逆定理 3圆周角定理的推论:直径所对的圆周角是直角,一个三角形的一边中线等于这边的一半,则这个三角形是直角三角形。 二、高中部分 线线垂直分为共面与不共面。不共面时,两直线经过平移后相交成直角,则称两条直线互相垂直。 1向量法两条直线的方向向量数量积为0 2斜率两条直线斜率积为-1 3线面垂直,则这条直线垂直于该平面内的所有直线 一条直线垂直于三角形的两边,那么它也垂直于另外一边 4三垂线定理在平面内的一条直线,如果和穿过这个平面的一条斜线在这个平面内的射影垂直,那么它也和这条斜线垂直。 5三垂线定理逆定理如果平面内一条直线和平面的一条斜线垂直,那么这条直线也垂直于这条斜线在平面内的射影。 3高中立体几何的证明主要是平行关系与垂直关系的证明。方法如下(难以建立坐标系时再考虑): Ⅰ.平行关系: 线线平行:1.在同一平面内无公共点的两条直线平行。2.公理4(平行公理)。3.线面平行的性质。4.面面平行的性质。5.垂直于同一平面的两条直线平行。 线面平行:1.直线与平面无公共点。2.平面外的一条直线与平面内的一条直线平行。3.两平面平行,一个平面内的任一直线与另一平面平行。 面面平行:1.两个平面无公共点。2.一个平面内的两条相交直线分别与另一平面平行。Ⅱ.垂直关系: 线线垂直:1.直线所成角为90°。2.一条直线与一个平面垂直,那么这条直线与平面内的任一直线垂直。 线面垂直:1.一条直线与一个平面内的任一直线垂直。2.一条直线与一个平面内的两条相交直线都垂直。3.面面垂直的性质。4.两条平行直线中的一条垂直与一个平面,那么另一直线也与此平面垂直。5.一条直线垂直与两个平行平面中的一个,那么这条直线也与另一平面垂直。 面面垂直:1.面面所成二面角为直二面角。2.一个平面过另一平面的垂线,那么这两个平面垂直。

面面垂直的判定性质定理例题.docx

面面垂直的判定 1、如图,棱柱ABC A1B1C1的侧面 BCC1 B1是菱形,且 B1C A1B 证明:平面 AB1C平面A1BC1 2、如图 ,AB 是⊙O的直径 ,PA 垂直于⊙ O所在的平面 ,C 是圆周上不同于 A,B 的任意一点 , 求证 : 平面 PAC⊥平面 PBC. 3、如图所示,四棱锥P-ABCD的底面 ABCD是菱形,∠ BCD=60°,E 是 CD的中点, PA ⊥底面 ABCD,求证:平面 PBE⊥平面 PAB;

4、如图,在四面体ABCD中, CB=CD, AD⊥BD,点 E、 F 分别是 AB、BD的中点.求证:(1) 直线 EF∥平面 ACD; (2) 平面 EFC⊥平面 BCD. 5、如图 , 在四棱锥 S-ABCD中, 底面 ABCD是正方形 ,SA⊥底面 ABCD,SA=AB,点 M是 SD 的中点 ,AN⊥SC,且交 SC于点 N. (I) 求证 :SB∥平面 ACM; (II)求证:平面SAC⊥平面AMN.

面面垂直的性质 1、S 是△ ABC所在平面外一点, SA⊥平面 ABC,平面 SAB⊥平面 SBC,求证 AB⊥BC. 2、在四棱锥中,底面ABCD是正方形,侧面VAD是正三角形, 平面 VAD⊥底面 ABCD证明 :AB⊥平面 VAD

3、如图,平行四边形 ABCD 中,DAB 60,AB 2, AD 4 将CBD沿BD折起到 EBD 的位置,使平面 EDB 平面 ABD 。求证: AB DE 4、如图,在四棱锥P ABCD 中,平面 PAD⊥平面 ABCD,AB=AD, ∠BAD=60°, E、F 分别是 AP、AD的中点 求证:(1)直线 EF‖平面 PCD;(2)平面 BEF⊥平面 PAD

如何证明线面垂直

如何证明线面垂直∵PA⊥平面α,直线L∈平面α ∴PA⊥L========================① ∵PB⊥平面β,直线L∈平面β ∴PB⊥L========================② 综合①②得: 直线L⊥平面PAB(垂直于平面两条相交直线的直线垂直于这个平面) ∴L⊥AB(垂直于平面的直线垂直于平面内的任一直线) 线面垂直的判定定理证明,我一直觉得证明过程太过复杂。前年曾经这样证明,今天写在这里。m和n为平面中两条相交直线,通过平移或者说原本就在,使得l经过m、n的交点O,我们只需证明l垂直与平面中的任意一条直线g 即可!在m、n上分别以O点为中点截取AC、BD,则得到平行四边形ABCD。此时不难由三角形全等的知识得到l⊥g。 答案补充 证明:已知直线L1 L22相交于O点且都与直线L垂直,L3是L1 L2所在平面内任意1条不与L1 L2重合或平行的直线(重合或平行直接可得它与L1平行) 在L3上取E、F令OE=OF,分别过E、F作ED、FB交L2于D、B (令OD=OB)则⊿OED ≌⊿ OFB (SAS) 延长DE、BF分别交 L1于A、C 则⊿OEA≌⊿OFC(ASA)(注意角AEO与角CFO的补角相等所以它们相等)。所以OA=OC,所以⊿OAD≌⊿OBC(SAS)所以AD=CB 因为L3垂直于L1 L2所以MA=MC,MD=MB 所以⊿MAD≌⊿MCD(SSS)所以角MAE= 角MCF 所以⊿MAE≌⊿MCF(SAS) 所以ME=MF,所以⊿MOE≌⊿MOF(SSS),所以角MOE=角MOF 又因为角MOE与角MOF互补,所以角MOE=角MOF=90度,即L⊥L3 1利用直角三角形中两锐角互余证明 由直角三角形的定义与三角形的内角和定理可知直角三角形的两个锐角和等于90°,即直角三角形的两个锐角互余。 2勾股定理逆定理 3圆周角定理的推论:直径所对的圆周角是直角,一个三角形的一边中线等于这边的一半,则这个三角形是直角三角形。 二、高中部分 线线垂直分为共面与不共面。不共面时,两直线经过平移后相交成直角,则称两条直线互相垂直。 1向量法两条直线的方向向量数量积为0 2斜率两条直线斜率积为-1 3线面垂直,则这条直线垂直于该平面内的所有直线 一条直线垂直于三角形的两边,那么它也垂直于另外一边 4三垂线定理在平面内的一条直线,如果和穿过这个平面的一条斜线在这个平面内的射影垂直,那么它也和这条斜线垂直。 5三垂线定理逆定理如果平面内一条直线和平面的一条斜线垂直,那么这条直线也垂直于这条斜线在平面内的射影。 2高中立体几何的证明主要是平行关系与垂直关系的证明。方法如下(难以建立坐标系时再考虑): Ⅰ.平行关系: 线线平行:1.在同一平面内无公共点的两条直线平行。2.公理4(平行公理)。3.线面平行的性质。4.面面平行的性质。5.垂直于同一平面的两条直线平行。 线面平行:1.直线与平面无公共点。2.平面外的一条直线与平面内的一条直线平行。3.两平面平行,一个平面内的任一直线与另一平面平行。 面面平行:1.两个平面无公共点。2.一个平面内的两条相交直线分别与另一平面平行。

直线与平面垂直的典型例题

直线与平面垂直的典型例题 例1 判断题:正确的在括号内打“√”号,不正确的打“×”号. (1)一条直线和一个平面平行,它就和这个平面内的任何直线平行.( ) (2)如果一条直线垂直于平面内的无数条直线,那么这条直线和这个平面垂直.( ) (3)垂直于三角形两边的直线必垂直于第三边.( ) (4)过点A 垂直于直线a 的所有直线都在过点A 垂直于α的平面内.( ) (5)如果三条共点直线两两垂直,那么其中一条直线垂直于另两条直线确定的平面.( ) 例2 在正方体1111D C B A ABCD -中,E 是1BB 的中点,O 是底面正方形ABCD 的中心,求证:⊥OE 平面1ACD 例3 如图,在△ABC 中, 90=∠B ,⊥SA 平面ABC ,点A 在SB 和SC 上的射影分别为N M 、,求证:SC MN ⊥

例4如图,AB 为平面α的斜线,B 为斜足,AH 垂直平面α于H 点,BC 为平面α内的直线,θ=∠ABH ,α=∠HBC ,β=∠ABC ,求证:θαβcos cos cos ?= 例5如图,已知正方形ABCD 边长为4,⊥CG 平面ABCD ,2=CG ,F E 、分别是AD AB 、中点,求点B 到平面GEF 的距离 例6 如图所示,直角ABC ?所在平面外一点S ,且SC SB SA ==. (1)求证:点S 与斜边AC 中点D 的连线SD ⊥面ABC ; (2)若直角边BC BA =,求证:BD ⊥面SAC .

例7如图所示,?=∠90BAC .在平面α内,PA 是α的斜线,?=∠=∠60PAC PAB .求PA 与平面α所成的角. 例8如图,ABCD 是正方形,SA 垂直于平面ABCD ,过A 且垂直于SC 的平面交SB 、SC 、SD 分别于点E 、F 、G ,求证:SB AE ⊥,SD AG ⊥. 例9 如图,求证:如果一个角所在平面外一点到角的两边距离相等,那么这一点在平面内的射影在这个角的平分线上.

立体几何线面与面面垂直的证明

理科数学复习专题立体几何 线面垂直与面面垂直专题复习 【知识点】 一.线面垂直 (1)直线与平面垂直的定义: 如果直线I和平面a内的_______________ 一条直线都垂直,我们就说直线I与平面a垂直, 记作 ___________ . 重要性质:______________________________________________________________________ (2)直线与平面垂直的判定方法: ①判定定理:一条直线与一个平面内的两条________________ 都垂直,那么这条直线就垂直于 这个平面.用符号表示为: ②常用结论:如果两条平行直线中的一条垂直于一个平面,那么另一条也垂直于这个平 面.用符号可表示为: (3)直线与平面垂直的性质: ①由直线和平面垂直的定义知:直线与平面垂直,则直线垂直于平面内的_____________ 直线. ②性质定理:垂直于同一平面的两条直线平行.用符号可表示为: 二、面面垂直 (1)平面与平面垂直的定义: 两平面相交,如果它们所成的二面角是_________________ ,就说这两个平面互相垂直. (2)平面与平面垂直的判定定理: 如果一个平面经过另一个平面的一条_________________ ,那么这两个平面互相垂直.简述为 "线面垂直,则面面垂直”,用符号可表示为: (3)平面与平面垂直的性质: 如果两个平面互相垂直,那么在一个平面内垂直于它们交线的直线垂直于另一个平

面.用符号可表示为:【题型总结】

题型一小题:判断正误 1.“直线I垂直于平面a 内的无数条直线”是“ I丄a”的(). A.充分不必要条件 B.必要不充分条件 C.充要条件 D.既不充分又不必要条件 2.已知如图,六棱锥P— ABCDEF勺底面是正六边形,PA丄平面ABC则下列结论不正确的 是(). //平面PAF丄平面PAF //平面PAB D. CF丄平面PAD 2.设m n, 1是三条不同的直线,,,是三个不同的平面,判断命题正误: ①m ,m ,则// ⑥m n,m// ,则n ②m ,// ,则m ⑦m n,n 1,则 m//l ③m ,m//n,则n ⑧, ,则 ④m ,n ,则m//n ⑨m n,n//I,则m 1 ⑤m ,m n,则n// ⑩,// ,则 题型二证明线面垂直 1.如图,四棱锥F- ABCD中,底面ABCD为平行四边形, / DAB= 60°, AB= 2AD PDL底面ABCD (1)证明:BD丄面PAD (2)证明:PAI BD 归纳:①证明异面直线垂直的常用方法:___________________________________ ②找垂线(线线垂直)的方法一:_________________________________________ J*

线线垂直、线面垂直、面面垂直的判定和性质

空间中的垂直关系 1.线面垂直 直线与平面垂直的判定定理:如果 ,那么这条直线垂直于这个平面。 推理模式: 直线与平面垂直的性质定理:如果两条直线同垂直于一个平面,那么这两条直线 。 2.面面垂直 两个平面垂直的定义:相交成 的两个平面叫做互相垂直的平面。 两平面垂直的判定定理:(线面垂直?面面垂直) 如果 ,那么这两个平面互相垂直。 推理模式: 两平面垂直的性质定理:(面面垂直?线面垂直) 若两个平面互相垂直,那么在一个平面内垂直于它们的 的直线垂直于另一个平面。 一般来说,线线垂直或面面垂直都可转化为线面垂直来分析解决,其关系 为:线线垂直???→←???判定性质线面垂直???→←???判定性质 面面垂直.这三者之间的关系非常密切,可以互相转化,从前面推出后面就是判定定理,而从后面推出前面就是性质定理.同学们应当学会灵活应用这些定理证明问题.在空间图形中,高一级的垂直关系中蕴含着低一级的垂直关系,下面举例说明. 例题:1.如图,AB 就是圆O 的直径,C 就是圆周上一点,PA ⊥平面ABC. (1)求证:平面PAC ⊥平面PBC; (2)若D 也就是圆周上一点,且与C 分居直径AB 的两侧,试写出图中所有互相垂直的各对平面.

2、如图,棱柱111ABC A B C -的侧面11BCC B 就是菱形,11B C A B ⊥ 证明:平面1AB C ⊥平面11A BC 3、如图所示,在长方体1111ABCD A B C D -中,AB=AD=1,AA 1=2,M 就是棱CC 1的中点 (Ⅰ)求异面直线A 1M 与C 1D 1所成的角的正切值; (Ⅱ)证明:平面ABM ⊥平面A 1B 1M 1 4、如图,AB 就是圆O的直径,C就是圆周上一点,PA ⊥平面ABC .若AE ⊥PC ,E为垂足,F就是PB 上任意一点,求证:平面AEF ⊥平面PBC .

线面垂直--经典练习题(精选.)

1.如图,在四棱锥P ABCD -中,底面ABCD 是直角梯形,90BCD ∠=?,AB CD ∥,又1AB BC PC ===,2PB =,2CD =,AB PC ⊥. (Ⅰ)求证:PC ⊥平面ABCD ; (Ⅱ)求PA 与平面ABCD 所成角的大小; (Ⅲ)求二面角B PD C --的大小. 2.如图,四棱锥P ABCD -中,PA ⊥平面ABCD ,底面ABCD 为直角梯形,且AB CD ∥,90BAD ∠=?,2PA AD DC ===,4AB =. (Ⅰ)求证:BC PC ⊥; (Ⅱ)求PB 与平面PAC 所成角的正弦值; (Ⅲ)求点A 到平面PBC 的距离. 3.在直四棱柱1111ABCD A B C D -中,AB CD ∥,1AB AD ==,12D D CD ==,AB AD ⊥. (Ⅰ)求证:BC ⊥平面1D DB ; (Ⅱ)求1D B 与平面11D DCC 所成角的大小.

9.如图,在三棱锥P -ABC 中,△PAC 和△PBC 是边长为2的等边三角形,AB =2,O 是AB 中点. (1)在棱PA 上求一点M ,使得OM ∥平面PBC ; (2)求证:平面PAB ⊥平面ABC . 10.如图所示,三棱锥V -ABC 中,AH ⊥侧面VBC ,且H 是△VBC 的垂心,BE 是VC 边上的高. 求证:VC ⊥AB ; 11.如图,在直三棱柱111C B A ABC -中,1AB BB =,1AC ⊥平面D BD A ,1为AC 的中点. (1)求证://1C B 平面BD A 1; (2)求证:⊥11C B 平面11A ABB ; 提示:11A C 中点和1B A 连 D A C B S E F G A 1 B 1 C 1 A B C D

线面、面面平行和垂直的八大定理

线面、面面平行和垂直的八大定理 一、线面平行。 1、判定定理:平面外一条直线与平面内一条直线平行,那么这条直线与这个平 面平行。符合表示: β ββ////a b a b a ??? ????? 2、性质定理:如果一条直线与平面平行,经过这条直线的平面和这个平面相交,那么这条直线和交线平行。 符号表示: b a b a a a ////??? ?????=??βαβαα 二、面面平行。 1、判定定理:如果一个平面内有两条相交直线分别平行于另一个平面内的两条相交直线,那么这两个平面平行。 符号表示: β α//////????? ?????==N n m M b a a m b n 2、性质定理:如果两个平面平行同时与第三个平面相交,那它们的交线平行。 符号表示: d l d l ////??? ???==γβγαβα (更加实用的性质:一个平 面内的任一直线平行另一平面) 三、线面垂直。 1、判定定理:如果一条直线与一个平面内的两条相交直线都垂直,那么这条直 线垂直这个平面。 符号表示: α⊥?????? ??????=⊥⊥a M c b b a c a $:三垂线定理:(经常考到这种逻辑)在平面内的一条直线,如果它和这个平面的一条斜线的射影垂直,那么它也和这条斜线垂直。

符号表示: PA a A oA a po oA a ⊥??? ? ????=⊥⊥??ααα 2、性质定理:垂直同一平面的两条直线互相平行。(更加实用的性质是:一个平面的垂线垂直于该平面内任一直线。) 四、面面垂直。 1、判定定理:经过一个平面的垂线的平面与该平面垂直。 βααβ⊥??⊥a a , 2、性质定理:已知两个平面垂直,在一个平面内垂直于交线的直线垂直于另一个平面。βαβαβα⊥?⊥?=?⊥a b a a b ,,,

线面垂直与面面垂直典型例题

线面垂直与面面垂直 基础要点 1、若直线a 与平面,αβ所成的角相等,则平面α与β的位置关系是( B ) A 、//αβ B 、α不一定平行于β C 、α不平行于β D 、以上结论都不正确 2、在斜三棱柱111ABC A B C -,90BAC ∠=,又1BC AC ⊥,过1C 作1C H ⊥底面ABC ,垂足为H ,则H 一定在( B ) A 、直线AC 上 B 、直线AB 上 C 、直线BC 上 D 、△ABC 的内部 3、如图示,平面α⊥平面β,,,A B AB αβ∈∈与两平面,αβ所成的角分别为4π和6 π,过A 、B 分别作两平面交线的垂线,垂足为,A B '',则:AB A B ''=( A ) A 、2:1 B 、3:1 C 、3:2 D 、4:3 4、如图示,直三棱柱11ABB DCC -中,190,4ABB AB ∠==, 12,1BC CC ==DC 上有一动点P ,则△1APC 周长的最小值是 5.已知长方体1111D C B A ABCD -中,21==AB A A , 若棱AB 上存在点P ,使得PC P D ⊥1,则棱AD 长 的取值范围是 。 题型一:直线、平面垂直的应用 1.(2014,江苏卷)如图,在三棱锥P-ABC 中,D ,E ,F 分别为棱PC ,AC ,AB 的中点. 已知,685PA AC PA BC DF ⊥===,,. 求证:(1) PA DEF 平面错误!未找到引用源。;(2) BDE ABC ⊥平面平面 错误!未找到引用源。. 线面垂直 线线垂直 面面垂直 B` A` B A α β A B C D 1 B 1 C B 1 C 1 D 1 A 1 D C B A

线面垂直习题精选

线面垂直的证明中的找线技巧 ◆ 通过计算,运用勾股定理寻求线线垂直 1 如图1,在正方体1111ABCD A B C D - 中,M 为1CC 的中点,AC 交BD 于点O ,求证:1A O ⊥平面MBD . 证明:连结MO ,1A M ,∵DB ⊥ 1A A ,DB ⊥AC ,1A A AC A =, ∴DB ⊥平面 11A ACC ,而1 AO ?平面11A ACC ∴DB ⊥1A O . 设正方体棱长为a ,则22132A O a =,2 234MO a =. 在Rt △11A C M 中,2 21 94 A M a =.∵22211A O MO A M +=,∴1AO OM ⊥. ∵OM ∩DB =O ,∴ 1A O ⊥平面MBD . 评注:在证明垂直关系时,有时可以利用棱长、角度大小等数据,通过计算来证明. ◆ 利用面面垂直寻求线面垂直 2 如图2,P 是△ABC 所在平面外的一点,且PA ⊥平面ABC ,平面PAC ⊥平面PBC .求证:BC ⊥平面PAC . 证明:在平面PAC 内作AD ⊥PC 交PC 于D . 因为平面PAC ⊥平面PBC ,且两平面交于PC , AD ?平面PAC ,且AD ⊥PC , 由面面垂直的性质,得AD ⊥平面PBC . 又∵BC ?平面PBC , ∴ AD ⊥BC . ∵PA ⊥平面ABC ,BC ?平面ABC ,∴PA ⊥BC . ∵AD ∩PA =A ,∴BC ⊥平面PAC . (另外还可证BC 分别与相交直线AD ,AC 垂直,从而得到BC ⊥平面PAC ). 评注:已知条件是线面垂直和面面垂直,要证明两条直线垂直,应将两条直线中的一条纳入一个平面中,使另一条直线与该平面垂直,即从线面垂直得到线线垂直.在空间图形中,高一级的垂直关系中蕴含着低一级的垂直关系,通过本题可以看到,面面垂直?线面垂直?线线垂直. 一般来说,线线垂直或面面垂直都可转化为线面垂直来分析解决,其关系为:线线垂直???→←???判定性质 线面垂直???→←??? 判定性质 面面垂直.这三者之间的关系非常密切,可以互相转化,从前面推出后面是判定定理,而从后面推出前面是性质定理.同学们应当学会灵活应用这些定理证明 问题.下面举例说明. 3 如图1所示,ABCD 为正方形,SA ⊥平面ABCD ,过 A 且垂直于SC 的平面分别交S B S C S D ,,于 E F G ,,.求证:AE SB ⊥, AG SD ⊥. 证明:∵SA ⊥平面ABCD , ∴SA BC ⊥.∵AB BC ⊥,∴BC ⊥平面SAB .又∵AE ?平面SAB ,∴BC AE ⊥.∵SC ⊥平面AEFG ,∴SC AE ⊥.∴AE ⊥平面SBC .∴AE SB ⊥.同理可证AG SD ⊥. 评注:本题欲证线线垂直,可转化为证线面垂直,在线线垂直与线面垂直的转化中,平面起到了关键作用,同学们应多注意考虑线和线所在平面的特征,从而顺利实现证明所需要的转化. 4 如图2,在三棱锥A-BCD 中,BC =AC ,AD =BD , 作BE ⊥CD ,E为垂足,作AH ⊥BE 于H.求证:AH ⊥平面BCD . 证明:取AB 的中点F,连结CF ,DF . ∵AC BC =,∴CF AB ⊥. ∵AD BD =,∴DF AB ⊥. 又CF DF F =,∴AB ⊥平面CDF . ∵CD ?平面CDF ,∴CD AB ⊥. 又CD BE ⊥,BE AB B =, ∴CD ⊥平面ABE ,CD AH ⊥. ∵AH CD ⊥,AH BE ⊥,CD BE E =, ∴ AH ⊥平面BCD .

实用文档之线面垂直经典例题及练习题-

实用文档之" 立体几何" 1.P 点在则ABC ?所在的平面外,O 点是P 点在平面ABC 内的射影 ,PA 、 PB 、PC 两两垂直,则D 点是则ABC ? ( B ) (A)重心 (B) 垂心 (C)内心 (D)外心 2.与两个相交平面的交线平行的直线和这两个平面的位置关系是 ( A ) (A)都平行 (B) 都相交 (C) 在两个平面内 (D)至少与其中一个平行 3.若两个平面内分别有一条直线,这两条直线互相平行,那么这两平面的位置 关系是( A ) (A)平行 (B) 相交 (C)平行或相交 (D)垂直 4.在空间,下述命题正确的是 ( B ) (A)若直线//a 平面M ,直线b a ⊥,则直线⊥b 平面M (B)若平面M //平面N ,则平面M 内任意直线a //平面N (C)若平面M 与N 的交线为a ,平面M 内的直线a b ⊥,则N b ⊥ (D)若平面N 的两条直线都平行平面M ,则平面N //平面M 5.a 、b 表示两条直线,α、β、γ表示三个平面, 下列命题中错误的是 (A ) (A),,αα??b a 且ββ//,//b a ,则βα// (B)a 、b 是异面直线,则存在唯 一的平面与a 、b 等距 (C) ,,,b a b a ⊥?⊥βα则βα// (D),,,//,βαβγγα⊥⊥⊥b a 则b a ⊥ 6.直线l //平面α,αβ⊥,则l 与平面β的位置关系是 ( D ) (A) l β? (B) //l β (C) l β与相交 (D ) 以上三种情况 均有可能 7.已知直线l ⊥平面α,直线m ?平面β,有以下四个命题:①//l m αβ?⊥②//l m αβ⊥?③//l m αβ?⊥④//l m αβ⊥?,其中正确的是(D ) (A) ①② (B) ②④ (C) ③④ (D) ①③ 8.αβγδ,,,是四个不同的平面,且αγβγαδβδ⊥⊥⊥⊥,,,,则 ( B )

相关主题
文本预览
相关文档 最新文档