当前位置:文档之家› 常微分方程教材

常微分方程教材

常微分方程教材
常微分方程教材

第九章 微分方程

一、教学目标及基本要求

(1) 了解微分方程及其解、通解、初始条件和特解的概念。

(2) 掌握变量可分离的方程和一阶线性方程的解法,会解齐次方程。

(3) 会用降阶法解下列方程:),(),,(),()(y y f y y x f y x f y n '='''=''=。

(4) 理解二阶线性微分方程解的性质以及解的结构定理。

(5) 掌握二阶常系数齐次线性微分方程的解法,并会解某些高于二阶的常系数齐次线性微分方程。

(6) 会求自由项多项式、指数函数、正弦函数、余弦函数,以及它们的和与二阶常系数非齐次线性微分方程的

特解和通解。

(7) 会用微分方程解决一些简单的应用问题。

二、本章教学内容的重点和难点

1、理解和熟悉微分方程的一些基本概念;

2、掌握一阶和高阶微分方程的各种初等积分法;

3、熟悉线性方程的基础理论,掌握常系数二阶线性齐次与非齐次方程的解法;

4、会列微分方程及其始值问题去解决实际问题。

三、本章教学内容的深化和拓宽:

1、分离变量法的理论根据;

2、常用的变量代换;

3、怎样列微分方程解应用题;

4、黎卡提方程;

5、全微分方程的推广;

6、二阶齐次方程;

7、高阶微分方程的补充;

8、求线性齐次方程的另一个线性无关的解;

9、求线性非齐次方程的一个特解;

10、常数变易法。

本章的思考题和习题

解下列方程(第1-6题)

1、2)0(,)1(==+'+y x y y x

2、()[]f dx x f e e x f x

x x ,)(02?+=可微 3、212

22sin 22sin 1X e y x y y x ++='?+ 4、0)3(24=+-xydx dy x y

5、21)0(,1)0(,022-

='=='+''y y y x y 6、2y y y x y '-'+'=

7、已知可微函数)(x f 满足

?-=+x x f f x f x x f dx x f 12)()1(,1)()()(和求; 8、已知)(,,1)(2

1)(10x f f x f da ax f 求可微+=

?; 9、求与曲线族C y x =+2232相交成ο45角的曲线; 10、一容器的容积为100L ,盛满盐水,含10kg 的盐,现以每分钟3L 的速度向容器内注入淡水冲淡盐水,又以同样的速度将盐水抽入原先盛满淡水的同样大小的另一容器内,多余的水便从容器内流出,问经过多少时间,两容器内的含盐量相等?

§9.1 微分方程的基本概念

一、内容要点:

先从实例引入建立几个微分方程的模型,引入微分方程的一系列概念;

常微分方程:常微分方程的阶数、解、通解、全部解、特解、积分曲线族的定义;

二、教学要求和注意点

了解微分方程与微分方程的阶、解、通解、初始条件和特解以及积分曲线

说明1:一个微分方程加上初始条件和初值问题的解是对某实际问题两种等价的描述形式。前者强调的是运动的过程,是系统的机理;后者强调的则是运动的结果,是系统的输出。

说明2:可分离变量的微分方程虽然简单,但它是求解各种微分方程的基础,要求学生必须熟练掌握。

定义1:称含有导数或微分的方程为微分方程,并称方程种最高阶导数的阶数为方程的阶数。

如: 12=+'+''xy y y 二阶方程;02

=+'xy y 一阶方程;x y ='''三阶方程,等等

讲方程,都是为了解方程,前两个方程不好解,第三个方程好解。解之,x y =''',方程两边三次积分,得方程的解322142

1241C x C x C x y +++=

(321,,C C C 为任意常数)。当4241x y =时,也满足方程。可见 3221421241C x C x C x y +++=包括了所有的解的形式。则称它为通解。 定义2:称满足微分方程的函数为方程的解。若方程的解种含有相互独立的任意常数,常数的个数恰好等于方程的阶数,则称此解为方程的通解;称不含任意常数的解为方程的特解。

注1:通解与特解只是方程的两类解,一阶方程的解要么是通解,要么是特解

注2:一阶方程的几种形式:一般形式:0),,(='y y x F ,从这个方程种有可能解出y ',也有可能解不出来;一阶显式方程:),(y x f y =';对称形式:)

,(),(y x Q y x P dx dy =或0=+Qdy Pdx 注3:在一阶方程种,x 和y 的关系是等价的.因此,有时可将x 看成函数,y 看做变量。

§9.2 可分离变量的微分方程

一、内容要点:

可分离变量的方程及其他可化为变量可分离的方程的定义及解法。

本单元的讲课提纲:

然后再讲具体的类型与解法—可分离变量的方程与分离变量法。重点是微分方程的阶、通解与特解等概念,分离变量法。难点是利用微分方程建立数学模型关键是判别可分离变量方程的方法,以及具体积分方法。

二、教学要求和注意点

掌握可分离变量微分方程的解法

注意问题:?dx x )(φ通常只表示一个原函数,积分常数C 有时写成C C ln ,ln

定义1:称能改写为形式:dx x g dy y f )()(=的一阶方程为可分离变量方程。

注:不是所有的方程都能这样,故可分离变量方程为一阶线性方程的特殊情况。

定理1:若)()(y f y F =',)()(x g x G =,则dx x g dy y f )()(=的通解为C x G y F +=)()(

证: (1)先证C x G y F +=)()(是方程的解。

两边对x 求导,得)()(x g dx

dy y f =,即dx x g dy y f )()(= 故C x G y F +=)()(是方程的解

(2)设)(x y ?=是方程的任一解,则dx x g dx x x f )()()]([='??

两边关于x 积分,得 ??='dx x g dx x x f )()()]([??

又 )(x F 是)(x f 的一个原函数,)(x G 是)(x g 的一个原函数

则C x G x F +=)()]([?,即)(x y ?=在C x G y F +=)()(中

所以, C x G y F +=)()(为dx x g dy y f )()(=的通解。

注1:可分离变量方程的解法:先分离变量,再两边积分,即得通解。

注2:用来确定通解中的任意常数的条件,称为方程的初始条件。

【例1】 求0sin cos cos sin =-ydy x ydx x 的通解,并求满足初始条件4)0(π=

y 的特解。 解:方程可变为dy y

y dx x x cos sin cos sin =,两边积分,得C y x ln cos ln cos ln --=- 即 x C y cos cos =为方程的通解。 又4)0(π

=y ,代入,得 0cos 4cos C =π

22=

∴C 即满足初始条件的特解为 x y cos 22cos =

【例2】 求y x e

y +='的通解。 解:由y x y x e e e y =='+,分离变量,得dx e e

dy x y =,两边积分,得 c e e x y +=--,即为方程的隐式通解。

二、可化为齐次方程的方程

经?

??+=+=k Y y h X x 变换将行如111c y b x a c by ax dx dy ++++=方程化为齐次方程。 【例3】 求1

1++--=y x y x dx dy 的通解。 解:令?

??+=+=k Y y h X x ,则)1()1(++++--+-=k h Y X k h Y X dX dY 令???=++=--0101k h k h ???-==?10k h 即 ???-==1

Y y X x 方程变为:Y

X Y X dX dY +-= ,令X Y u = 代入,得 X

dX du u u u -=--+2211,积分,得 2221CX u u =--,由 X Y u =代回,得 通解为: 221121Cx x y x y =??

? ??+-+- (其中C 为任意常数) §9.3 齐次方程

内容要点:

齐次方程的定义及求解公式,可化为齐次方程的定义以及解法

本单元的讲课提纲

齐次方程的判别和解法不算困难,难在寻找相应的变量代换的问题,变量代换法比较灵活,可多举一些各类型的例题,让学生多见识一些变量代换,以便学生活跃思路,积累经验。重点是齐次方程与变量代换法,难点是寻找变量代换。

作业:同步训练习题

一、齐次方程

定义1:称能改写成形式:??

? ??=x y f dx dy 的微分方程为一阶齐次方程。 我们下面来看看齐次方程解的情形: 令x

y u =,即ux y =,代入方程,得 )(u f dx

du x u =+,分离变量,得x dx u f u du =-)( 两边积分,解出u ,再将x y u =

回代,即得通解。 【例1】 求 0)(22=-++xdy dx y x y 的通解。 解:原方程可化为21??

? ??++=x y x y dx dy ,令x y u =,即ux y =,代入方程,得 21u u dx

du x u ++=+,化简 x dx u du -=+21 积分,得 x

c u u =++21,将x y u =回代,得通解为c y x y =++22 二、可化为齐次方程的方程

经???+=+=k

Y y h X x 变换将行如111c y b x a c by ax dx dy ++++=方程化为齐次方程。 【例4】 求

11++--=y x y x dx dy 的通解。 解:令???+=+=k

Y y h X x ,则)1()1(++++--+-=k h Y X k h Y X dX dY 令???=++=--0101k h k h ???-==?1

0k h 即 ???-==1Y y X x 方程变为:Y

X Y X dX dY +-= ,令X Y u = 代入,得 X

dX du u u u -=--+2211,积分,得 2221CX u u =--,由 X Y u =代回,得 通解为: 221121Cx x y x y =??

? ??+-+- (其中C 为任意常数)

§9.4 一阶线性微分方程

一、内容要点:

一阶线性微分方程的形式及求解公式,伯努利方程的形式及解法

本单元的讲课提纲

(1)讲线性非齐次的一阶方程的解法时,要交待变易常数的想法并加强练习,这对今后讲二阶线性方程和线性方程组的常数变易法是有益的。

(2)导出线性非齐次一阶方程的求通解公式以后,可顺利导出满足条件00)(y x y =的特解公式,还应指出两点:第一,当C x Q x P ∈),(),(时,线性方程的解总可通过两次积分求得,第二,揭示通解结构。重点是解线性非齐次方程

的公式法与常数变易法。难点是伯努利方程。关键是套求解公式或常数变易法及凑微分或令=-n y

1z 解伯努利方程。 二、教学要求和注意点

1、知道解一阶线性微分方程的常数变易法,并掌握一阶非齐次线性方程的通解公式。

2、 知道一阶非齐次线性方程的通解为对应的齐次方程的通解和非齐次方程的一个特解之和

3、齐次方程与线性齐次方程的作用

一、 一阶线性微分方程

定义1:称可转化为形式:)()(x Q y x P dx

dy =+ (1)的方程为一阶线性方程;若0)(=x Q ,则(1)式称为一阶线性齐次方程;0)(≠x Q ,(1)式称为一阶线性非齐次方程。

下面我们来看看方程(1)的解的情形:先看齐次方程:0)(=+y x P dx

dy (2) 显然是可分离变量方程。 得dx x P y

dy )(-=,两边积分,得 ?=-dx x P ce y )( (3)为一阶线性齐次方程(2)的通解。 下面我们求(1)的解,由方程(1)和(2)形式的相似性,那它们的解也具有某种相似性。我们用一种常数变

易法来求(1)的解:假设?=-dx x P e x c y )()(为非齐次方程(1)的解,代入方程,得

?'-dx x P e x c )()(?--dx x P e x c x P )()()()()()()(x Q e x c x P dx x P =?+-

则)()()(x Q e x c dx x P =?'-, )()()(x Q e x c dx x P ?='

积分,得 C dx e x Q x c dx x P +?=?)()()(

则 ???

? ??

+?=-?dx x P dx x P e C dx e x Q y )()()( (4)即为方程(1)的通解。 【例1】求x ytgx y sec =-'的通解。

解:由于x ytgx y sec =-'为一阶线性非齐次方程,且x x Q tgx x P sec )(,)(=-=,代入(4),得其通解为

???

? ??+?=?-tgxdx tgxdx e C dx xe y sec =x C x sec )(+ [例2] 求2

2y x y dx dy -=的通解。 解: 若将y 看成函数,x 作为变量,此方程不是一阶线性方程。故将x 看成函数,y 作为变量,则原方程化为:

y y x dy dx 22-= 进一步化简,y x y dy dx -=+2,为一阶线性方程,y y Q y

y P -==)(,2)(

代入(4),得方程的通解为 )ln (y C y x -=。

二、 贝努力方程―可化为一阶线性方程的方程

定义2:称形如:n y x Q y x P dx

dy )()(=+的方程为一阶贝努力方程。 下面我们看看贝努力方程的解的情形:将方程变形为 )()(1x Q y x P dx

dy y n n =+--,令n y z -=1,则方程化为 )()1()()1(x Q n z x P n dx

dz -=-+,为一阶线性方程,故可用上述方法求解,最后将n y z -=1代回,即得通解。 【例3】求0ln 2=-+'x y y y x 的通解。

解:将方程变形,得 x

x y x y y ln 112=+'--,为贝努力方程。令1-=y z ,代入 x

x z x dx dz ln 1-=-,利用(4),得 Cx x z ++=1ln ,又1-=y z , 所以 1

ln 1++=cx x y 为原方程的通解。

§9.5 全微分方程

一、内容要点:

全微分方程的定义及其条件,解的表达式常见的积分因子。

本单元的讲课提纲

1、全微分方程的解法关键在于首先将方程写成

0),(),(=+dy y x Q dx y x P 验证x

Q y P ??=??如果成立,则可把上式写成0=+=Qdy Pdx du 解为C y x U =),(,求),(y x U 有下列三种方法: 1)线积分法 2)偏积分法 3)分组观察凑全微分法

2、若0),(),(=+dy y x Q dx y x P 中

x Q y P ??=??,则可以寻求一个积分因子),(y x μ,使得)()(Q x

P y μμ??=??,即存在),(y x U 使得o Qdy Pdx dU =+=)(μ从而C y x U =),(是通解。

二、教学要求和注意点

判断和求解全微分方程的方法;寻找积分因子的分组观察法;

定义1:如果存在可微函数),(y x u ,使dy y x Q dx y x P du ),(),(+=,则称0),(),(=+dy y x Q dx y x P 微全微分方程。 命题:(1)0=+Qdy Pdx 为全微分方程?y

P x Q ??=?? (2)0=+Qdy Pdx 的通解为 C y x u =),(,其中??+=y

y x

x dy y x Q dx y x P y x u 00),(),(),(0。 【例1】求0)12(2=++dy y

x xydx 的通解。 解:令y x Q xy P 12,2+==,由于y

P x Q ??=??,故方程为全微分方程 所以??+=y y x

x dy y x Q dx y x P y x u 00),(),(),(0=??++y x dy y x xdx 120)12( C y y x =+=ln 2

2 二、可化为全微分方程的方程―积分因子

定义2:设0=+Qdy Pdx 不是全微分方程,如果存在可微函数),(y x u 使0=+uQdy uPdx 为全微分方程,则称),(y x u 为原方程的积分因子。

注:积分因子不唯一,而且一般也没有什么固定的方法求解积分因子,故只有多积累才能有效的解题。

【例2】(1)0=-ydx xdy ; (2)0)(222=+++dx x y x ydy xdx

解:(1)01)(2=-x ydx xdy ?012=-dx x y dy x ?0=??

? ??x y d ?c x y = (2) 01])([222

22=++++y x dx x y x ydy xdx ?0222=+++dx x y x ydy xdx ? 0)31()]ln(21[322=++x d y x d ?

c x y x =++3223

1)ln(21

§9.6 可降阶的高阶微分方程

一、内容要点:

可降阶的高阶微分方程的三种类型:),()(x f y n = ,0),,(='''y y x F 0),,(='''y y y F ,找出解的表达式及解法。 本单元的讲课提纲:

1、关于高阶微分方程的解法

求解的思路是通过变量代换把高阶方程的求解化为较低阶方程求解,教材介绍了三种可降阶方程的类型,对于不属于这三类方程的特殊高阶方程有时也能通过换元或者全微分等手段变成这三种类型进行求解。

2、)()(x f y n =

只需逐步积分即可求解,在求积分过程中每次都需增加一个常数,最后的解应包含n 个常数。

3、可降阶的二阶微分方程

通常的二阶微分方程为0),,(='''y y y F ,有四个变数,仅当缺少y x 或

时一定可以降阶求解。

二、教学要求和注意点

解方程),(y y f y '=''中令dy dp p y =''的作用,dy

dp p y =''的导出过程 说明1:求解全微分方程可暂不引入偏导数概念,对x 求导时把y 看成常数即可,对积分因子只须介绍用目测可以解决

的简单情形;对于全微分的原函数概念可在格林公式以后介绍。

说明2:高阶线性微分方程的应用背景非常广泛,要针对不同的专业选择不同的问题引入课题,这样能使学生对微分方

程的学习产生兴趣。

定义1:称二阶及二阶以上的微分方程为高阶微分方程。

一、)()(x f y n =―连续积分n 次即得其通解。

【例1】x e y =''

连续积分两次,得,21c x c e y x

++= 二、),(y x f y '=''―跟标准形式相比,缺少y 。

令y p '=,则y p ''=',则),(p x f p =',设其通解为),(c x p ?=

则 ),(c x y ?=',两边积分即得通解。

【例2】求2x y y ='+''的通解。

解:令令y p '=,则y p ''=',则 2

x p p =+' (一阶线性方程) 利用(4),得通解: x

e c x x p -++-=1222 又y p '=,所以通解212323

1c e c x x x y x +-+-=- 三、),(y y f y '=''―缺少x

令y p '=,则dy dp p dx dy dy y d y ='='',代入,得),(p y f dy

dp p = 设其通解为),(c y p ?=,则),(c y y ?=',即

dx c y dy =),(?,积分即得。 【例3】32y y ='',1)0()0(='=y y 求特解。

解:令y p '=,则dy dp p y ='',从而 32y dy

dp p =,dy y pdp 32= 积分,得 2

2121142c y p += 由1)0()0(='=y y ,得01=c 所以 2y p ±= 由1)0(='y 知dx

dy y p ==2 所以 21c x y +=- 由1)0(=y 知12-=c x

y -=∴11 【例5】 求2)(1y y '+=''的通解。

解:此题既缺少x ,又缺少y 。从理论上,按以上两种方法都能算出结果,但可能难度有差别。

此题课堂上当场做,检查学生的能力。

§9.7 高阶线性微分方程

一、内容要点:

二阶线性微分方程的解的结构,高阶线性微分方程的解的结构,常数变易法,函数组线性无关的充分必要条件。 本单元的教学提纲

1、关于二阶线性微分方程的解的结构

①齐次线性方程和非齐次线性方程都有解的可加性。

②非齐次线性方程的通解可表示为一个特解与相应齐次线性方程的通解之和。

③线性方程的通解包括了该方程的所有解。

2、关于二阶线性方程只须知道齐次方程的一个特解,则利用常数变易法可求出它的全部解。

3、对于二阶非齐次线性方程而言,若相应的二阶齐次线性方程的通解为)()(2211x y C x y C +,也可用常数变易法找出其特解。

本单元的作业:

二、教学要求和注意点

二阶线性齐次方程中,通解中所含特解的线性无关性

一、 函数的线性相关与线性无关

定义1:设)(,),(),(21x y x y x y n Λ是定义在区间I 上的函数,如果存在不全为零的数n k k k Λ,,21,使得

02211≡+++n n y k y k y k Λ则称)(,),(),(21x y x y x y n Λ在区间I 上线性相关。否则,称)(,),(),(21x y x y x y n Λ在区间I

上线性无关。

命题1:设)(),(21x y x y 是定义在I 上的函数,则)(),(21x y x y 线性无关?)

()(21x y x y 不恒为常数。 注1:若)(),(21x y x y 线性无关,则)()(2211x y k x y k +无法合并成)(x ky ,但当)(),(21x y x y 线性相关可以合并。

二、 二阶线性微分方程及其解的结构

定义2:称形如:)()()(x f y x Q y x P y =+'+''的方程为二阶线性非齐次方程。若0)(=x f ,则方程为齐次的,若0)(≠x f ,则称方程为非齐次的。

定理1:设)(),(21x y x y 是0)()(=+'+''y x Q y x P y 的两个线性无关的解,则)()(2211x y c x y c +为方程的通解。 定理2:设*y 是)()()(x f y x Q y x P y =+'+''的特解。)()(2211x y c x y c +是对应的齐次方程的通解,则

=y *y )()(2211x y c x y c ++是)()()(x f y x Q y x P y =+'+''的通解。

定理3:设?1y ,?2y 分别是)()()(1x f y x Q y x P y =+'+''与)()()(2x f y x Q y x P y =+'+'',则?1y +?

2y 是 )()()()(21x f x f y x Q y x P y +=+'+''的解。

【例1】设x x x x x x x e e xe y e xe y e xe y ---+=+=+=23221,,是某二阶线性非齐次方程的解,求该方程的通解。

解:211y y Y -=,312y y Y -=,又x x x

x e

e e e Y Y ---+=2221不恒为常数 所以,21,Y Y 线性无关。故通解为x x x x x e xe e e c e

c y 2221)(++-+=--

§9.8 常系数齐次线性微分方程

内容要点:

二阶常系数齐次线性方程的定义,特征方程、通解、n 阶常系数齐次线性方程的定义,特征方程、通解。 本单元的讲课提纲

高阶微分方程一般都很难求得通解,只有常系数线性微分方程的解法已经完全解决,一般形式可写成

0)1(1)(=+++-y p y p y n n n Λ

其中n p p Λ,1是常数,由于假设rx e y =为它的解,经求导代入方程消去rx e 后得到的相应的特征方程

011=+++-n n n p r p r Λ

这是n 次方程,它一定有n 个根n r r ,,1Λ,其中i r 可以是k 重实根,也可以是k 重共轭复根βαi ±,每一个i r 都对应齐次方程的一个特解,共得到n 个线性无关的特解,利用线性微分方程解的结构,可构成n 个任意常数的通解。 本单元的作业:

说明1: 把求解常系数线性齐次微分方程的问题化成求解多项式代数方程的问题,这不仅仅是一种普通的求方程解的技巧,在线性控制系统中系统和不同的环节都可以用常系数线性微分方程来描述,用拉普拉斯变换导出它的传递函数也是一个多项式代数方程,这说明常系数线性齐次微分方程和多项式代数方程之间有着本质上的联系。通过对多项式代数方程的分析,可以得到控制系统的特性。

说明2:用特征方程求解常系数线性齐次微分方程要求熟练

一、

二阶常系数线性齐次方程的解 二、 定义:称形如0=+'+''qy y p y (1),其中q p ,为常数的方程为二阶常系数线性齐次方程.\

下面我们来讨论其解的结构.

命题1: rx e 是0=+'+''qy y p y 的解?r 是02=++q pr r 的解,并称02

=++q pr r (2)是(1)的特征方程. (i) 当特征方程(2)有两个不同的实根21,r r 时,则x r e y 11=,x r e y 22=时方程(1)的两个解,且

2

1y y 不恒为常数,从而方程(1)的通解为x r x r e c e c y 2121+=. (ii) 当r r r ==21时,则x r e y 11=是(1)的一个解.现在求另一个线性无关的解2y .设)(2x u e

y rx =,代入(1)得 0)]()2([2=+++'++''q pr r u p r u e rx ,0,022

=++=+q pr r p r 所以0=''u 则x c c x u 21)(+= 取x x u =)(,则rx

xe y =2 通解为: rx

rx xe c e c y 21+= (iii) 当i r βα±=2,1,则x r e y 11=,x

r e y 22=,应用欧拉公式,得 )sin (cos 1x i x e y x ββα+=, )sin (cos 2x i x e y x ββα-=

构造 x e y y Y x βαcos )(21211=+= x e y y i

Y x βαcos )(21212=-=

显然21,Y Y 线性无关,故通解为: )sin cos (21x c x c e y x

ββα+= [例1] 求通解 (1) 02=+'+''y y y (2) 032=-'+''y y (3) 0=+''y y

解: (1) 特征方程为 0122

=++r r 则121-==r r 从而通解为 x x xe c e c y --+=21

(2) 特征方程为0322

=-+r r 则1,321=-=r r 从而通解为 x x e c e c y 231+=-

(3) 特征方程为012=+r 则i r ±=2,1

从而通解为 x c x c y sin cos 21+=

二.n 阶常系数线性齐次方程

01)1(1)(=+'+++--y a y a y

a y n n n n Λ (1) 特征方程为0111=++++--n n n n a r a r a r Λ (2)

(i) 当(2)中有单根时,(1)的通解中含:rx

ce ; (ii) 当(2)中有k 重根时,(1)的通解中含: rx k k e x c x c c )(121-+++Λ

(iii)

当(2)中有一对单复根时, i r βα±=2,1,(1)的通解中含: )sin cos (21x c x c e x ββα+ (iv) 当(2)中有k 重单复根时,(1)中的通解含有:

x e x c x c c rx k k βcos )(121-+++Λ+x e x c x c c rx k k βsin )(121-+++Λ

[例2] 求022)4(=''+'''-y y y 通解.

解: 特征方程为022234=+-r r r 则021==r r ,i r ±=14,3

则y 的通解为)sin cos (4321x c x c e x c c y x +++=

§9.9 常系数非齐次线性微分方程

一、内容要点:

二阶常系数非齐次线性方程的定义及在自由项为两种特殊形式时用待定系数法寻找特解。

本单元的讲课提纲

非齐次常系数方程的通解可表示为相应的齐次方程通解与非齐次方程一个特解之和,从而关键在于寻求特解,当自由项为x m e x P λ)(时,可通过待定系数法求特解,应熟练掌握,若自由项可写成若干个项相加,应用线性方程解的结构定理。但自由项不是本节的两种形式,可用常数变易法求特解。

二、教学要求和注意点

常系数非齐次线性微分方程中自由项的局限性。

说明1:非齐次常系数线性微分方程的解法主要是求它的特解;方程的右边项应理解为系统的输入,用实例说明系统的

输入对输出的影响。

说明2:微分方程的幂级数解法可归入幂级数部分介绍

定义:称形式为:0)(≠=+'+''x f qy y p y (2)方程,为二阶常系数线性非齐次方程.

下面讨论它的解的结构.

一、)()(x P e x f m x λ=型

设方程(2)的特解结构为:)(x Q e y x

λ=? (1) 当λ不是特征根时,)(x Q 可设为)()(x Q x Q m =,即为一m 次多项式。

(2) 当λ是特征单根时,)(x Q 可设为)()(x xQ x Q m =,即为一m +1次多项式。

(3) 当λ是特征重根时,)(x Q 可设为)()(2x Q x x Q m =,即为一m +2次多项式。

【例1】 求2

x y y ='+''的通解。 解:特征方程为 02=+r r 则1,021-==r r ,则齐次方程的通解为x e c c y -+=21

由于λ=0是特征单根,则设特解为)()(2

2c bx ax x x xQ y ++==? 代入方程,比较系数得 2

22)26(3x c b x b a ax =++++ 所以 2,1,3

1=-==c b a 故 特解 )231

(2

+-=?x x x y 所以通解为:x e c c y -+=21)23

1(2+-+x x x

二、]sin )(cos )([)(x x R x x P e x f n L x ωωλ+=

令},{n L Max m =,则特解设为]sin )(cos )([x x S x x R e x y m m x k ωωλ+=?

其中若i ωλ+不是特征方程的根,0=k ;若i ωλ+是特征方程的根,1=k 。

【例2】 求x e y y y x

sin 52=+'-''的一个特解。 解:特征方程:0522=+-r r ,则i r 212,1±=

又i ωλ+=i +1不是特征方程的根,0=k

从而特解设为)sin cos (x B x A e y x

+=?,代入方程比较系数,得 x x B x A sin sin 3cos 3=+ 所以31,0==B A ∴x e y x sin 31=?

常微分方程教学大纲

《常微分方程》课程教学大纲 课程代码: 090131009 课程英文名称:Ordinary Differential Equations 课程总学时:48 讲课:48 实验:0 上机:0 适用专业:信息与计算科学 大纲编写(修订)时间:2017.11 一、大纲使用说明 (一)课程的地位及教学目标 本课程是信息与计算科学专业的一门专业基础课,通过本课程的学习,可以使学生获得关于常微分方程的基本理论知识,掌握普通的线性微分方程的求解办法,为对非线性微分方程的求解打下一定的基础,同时,使学生能够简单地利用数学手段去研究自然现象和社会现象,或解决工程技术问题, 是进一步学习偏微分方程、微分几何、泛函分析等后继课程的基础。 通过本课程的学习,学生将达到以下要求: 1. 掌握一阶线性微分方程的初等解法及理论、高阶线性微分方程的解法及理论,线性微分方程组理论,着重培养学生解决问题的基本技能。 2. 熟悉和掌握本课程所涉及的现代数学中的重要思想方法,提高其抽象思维、逻辑推理和代数运算的能力。 (二)知识、能力及技能方面的基本要求 1.基本知识:要求学生掌握一阶微分方程的初等解法;一阶微分方程解的存在唯一性定理、解对初值的连续性和可微性定理及解的延拓;高阶微分方程理论、常系数线性微分方程的解法、以及高阶微分方程的降阶和幂级数解法;求矩阵指数,求解常系数线性微分方程组;非线性微分方程的稳定性、V函数方法。 2.基本理论和方法:掌握一阶和高阶线性微分方程以及方程组的求解方法,理解解的存在唯一性定理及解的延拓、解对初值的连续依赖定理等理论,并能应用到具体的证明题中。了解非线性微分方程的基本理论,会对稳定性等做出讨论。培养学生逻辑推理能力和抽象思维能力;对微分方程的建模、求解的分析能力;利用微分方程理论解决实际问题的能力。 3.基本技能:使学生获得求解一阶和高阶微分方程、线性微分方程组的运算技能。 (三)实施说明 1.教学方法:课堂讲授中要重点对基本概念、基本方法和解题思路的讲解;采用启发式教学,培养学生思考问题、分析问题和解决问题的能力;引导和鼓励学生通过实践和自学获取知识,培养学生的自学能力;讲课要联系实际并注重培养学生的创新能力。 2.教学手段:本课程属于专业基础课,在教学中采用多媒体教学系统等先进教学手段,以确保在有限的学时内,全面、高质量地完成课程教学任务。 (四)对先修课的要求 本课程的教学必须在完成先修课程之后进行。本课程主要的先修课程有数学分析3、高等代数2。 (五)对习题课、实践环节的要求 1. 至少两章安排一次习题课,总学时在6学时左右。 2. 习题课的教学内容要配合主讲课程的教学进度,由老师和同学在课堂上通过讲、练结合的方式进行。主讲教师通过批改学生的作业,将作业情况反馈给学生,要补充有一定难度和综合度的练习题,以拓宽同学们的思路。

常微分方程和偏微分方程的数值解法教学大纲

上海交通大学致远学院 《常微分方程和偏微分方程的数值解法》教学大纲 一、课程基本信息 课程名称(中文):常微分方程和偏微分方程的数值解法 课程名称(英文):Numerical Methods for Ordinary and Partial Differential Equations 课程代码:MA300 学分 / 学时:4学分 / 68学时 适用专业:致远学院与数学系相关专业 先修课程:偏微分方程,数值分析 后续课程:相关课程 开课单位:理学院数学系计算与运筹教研室 Office hours: 每周二19:00—21:00,地点:数学楼1204 二、课程性质和任务 本课程是致远学院和数学系应用数学和计算数学方向的一门重要专业基础课程,其主要任务是通过数学建模、算法设计、理论分析和上机实算“四位一体”的教学方法,使学生掌握常微分方程与偏微分方程数值解的基本方法、基本原理和基本理论,进一步提升同学们利用计算机解决实际问题的能力。在常微分方程部分,将着重介绍常微分方程初值问题的单步法,含各类Euler方法和Runge-Kutta方法,以及线性多步法。将简介常微分方程组和高阶常微分方程的数值方法。在偏微分方程部分,将系统介绍求解椭圆、双曲、抛物型方程的差分方法的构造方法和理论分析技巧,对于椭圆型方程的边值问题将介绍相应变分原理与有限元方法。将在课堂上实时演示讲授的核心算法的计算效果,以强调其直观效果与应用性。本课程重视实践环节建设,学生要做一定数量的大作业。 三、教学内容和基本要求 第一部分:常微分方程数值解法 1 引论 1.1回顾:一阶常微分方程初值问题及解的存在唯一性定理

常微分方程简明教程-王玉文等编-习题解答-(1)

1.4习题答案 1. (1) 12150, (2) 2.52. 2(1) 0,200P P = =, (2) 0200P <<, (3) 200P >. 3.(1) 0,50,200P P P = = =, (2) 50200P <<, (3) 050,200P P << >. 4.解: 因为当 0dy dt =时, ()y t 将保持不变; 当0dy dt >时, ()y t 将增加; 当0dy dt <时, ()y t 将减少. 由3220dy y y y dt =--知, (1) 当3 2 200y y y --=, 即0,4,5y y y = =-=时, ()y t 将保持不变. (2) 当3 2 200y y y -->, 即40y -<< 或5y > 时, ()y t 将增加. (3) 当3 2 200y y y --<, 即4y <- 或05y << 时, ()y t 将减少. 5. 7071. 6.解: (1) 设 ()N t 为在时刻t 的放射性同位素质量. 则模型为dN kN dt =-, 0k >为比例系数, 方程的解为 ()kt N t ce -=, 由0t = 时, (0)50N =, 得(0)50N c ==,于是 ()50kt N t e -=, 又因为 2t = 时, (2)50(110%)45N =?-=, 得 24550k e -=, 110 ln 0.05329 k =≈, 因此 0.053()50t N t e -=. (2) 当 4t = 时, 0.0534 (4)5040.5N e -?== (3) 质量减半时 ()25N t =, 得1 0.053ln 2 t -=, 13t ≈. 7. (1) ln 20.000125730≈, (2) ln 2 0.866438 ≈, (3) 一样. 8.(1) 1065, (2) 17669, (3) 32600, (4) 168 9. 解: (1) (1)10dS S k S dt N =--. (2) 1 (1)3dS S k S S dt N =--. (3) (1)dS S k S dt N =--其中 l 是捕获量与总量平方根的比例系数. 10.(1) 趋向于2000, (2) 鱼的数量递减趋于0. 11.2()23y t t =+. 12.()ln ,0g t t t t =- >.

常微分方程教学设计

常微分方程教学设计 第一讲基本概念定义1如果在一个(或者一组m(有限个))方程中,未知的(unknown)量是一个(或一组m有限个))函数,并且在方程中含有未知函数只关于某一个自变量(independentvariable)的导数或微分,则称这方程为常微分方程(ordinarydifferentialequation)(或者常微分方程组(ODE’s)),简称常微分方程(组)为微分方程(DE)(组(DE’s))或方程(组).(提示)常微分方程之例:若x是自变量t的未知函数,其他的量都是已知的,则下列方程(一阶线性齐次方程)(正规形式),(一阶线性非齐次方程)(正规形式),(二阶线性齐次方程),(二阶线性非齐次方程),(Riccati 方程)(一阶非线性方程)都是常微分方程,微分方程中可以不出现未知函数x本身,但必须实质上含有未知函数x的导数.注意,在本教程中不讨论延迟(retarded)常微分方程:常微分方程组之例:记vector),是自变量t的函数,用个变量为m维列矢量(column,其中,,简记的已知函数,(以后都这样表示,不要误解为矢量x的是常微分方程组.函数),则矢量(vector)方程n阶微分方程可以通过变换组:定义2微分方程中实质上含有的未知函数x的最高阶导数的阶数称为这微分方程关于x的阶.微分方程组中各个未知函数的最高阶导数的阶数之和称为微分方程组的阶(计算阶数时把未知函数本身认为是未知函数的零阶导数).(提示)方程组的

阶:例中的方程组是n阶方程组.注意:但是如果我们把例2中的方程组看成是一个矢量x的方程,而且其中关于x的每个分量的阶都是一阶的,因此也可称它(关于x是一阶的).n 阶微分方程的一般形式为:,其中函数F在其变量的某一区域(domain)中有定义,并且一定含有未知函数x对自变量t 的n阶导数.定义3假设有在区间I上有直到n阶的连续导数的函数:以是由隐式或参数形式决定的)在区间I上满足恒等式,(可我们就说该函数是在区间I上方程的解(solution).称区间I是解的定义区间.微分方程的解根据函数的形式可分为显式(explicit)解,隐式(implicit)解和参数形式解.(提示)n阶微分方程的解可由对方程逐次进行n 次积分得到:,其中是的n次累次积分.为n个任意独立的实常数,2例:一阶方程义区间是:当时为的通解可以写成;当时为,其中c是非零实常数.定.严格而言不能写成的形式,因为后者的定义域不是一个区间.但是可以写成在不同区间上的两个通解:,和和.如果把这些解写成形式.则称为隐式解,这种隐式解也称为方程的积分.定义4微分方程的解,或隐式解在t-x平面上的几何图形是一条曲线,称为微分方程的积分曲线(integralcurve).如果在积分曲线上函数积分(integral)定义5已就最高阶导数解出的微分方程等于常数,则也称为微分方程的一个常微分方程之例:若x 是自变量t的未知函数,其他的量都是已知的,则下列方程

偏微分方程课程教学大纲

《概率论与数理统计选讲》课程教学大纲 适用专业:数学与应用数学 执笔: 审定: 批准执行: 南京财经大学应用数学系

《概率论与数理统计选讲》教学大纲 课程代码:120012 英文名:Selected Topics in Probability and Mathematical Statistics 课程类别:专业限定选修课 适用专业:数学与应用数学 前置课:数学分析,高等代数,概率论,数理统计,常微分方程 学分:3学分 课时:54课时 主讲老师:万树文等 选定教材:茆诗松等,概率论与数理统计教程(第二版) 北京:高等教育出版社,2011 课程概述: 《概率论与数理统计选讲》课程主要是针对数学与应用数学专业的重要专业课概率论和数理统计进行全面复习。复习的主要内容有随机事件和概率,随机变量及其分布,多维随机变量及其分布,大数定律与中心极限定理,统计量及其分布,参数估计,假设检验等。 教学目的: 通过本课程的学习,使学生进一步了解概率论与数理统计的基本原理和方法,强化学生解决问题的能力,更熟练地掌握概率论与数理统计各种问题的解决,为学生的考研和深造提供帮助。 教学方法: 以课堂讲述为主,适当辅以多媒体教学,安排课堂讨论和习题课,课后学生做练习题。

每讲教学要求及教学要点 第一讲概率的定义与性质 课时分配:3课时 教学要求: 掌握概率的不同定义与计算 教学内容: 概率的公理化定义,古典概型,几何概型以及相关计算 第二讲概率的基本公式与计算 课时分配:3课时 教学要求: 掌握概率论的一些基本公式与计算 教学内容: 概率的加法公式,概率的乘法公式,条件概率,事件之间的关系和运算 第三讲全概率和贝叶斯公式 课时分配:3课时 教学要求: 掌握全概率和贝叶斯公式 教学内容: 全概率和贝叶斯公式以及相关的不同难度的题型分析 第四讲随机变量的概念与分类 课时分配:3课时 教学要求: 掌握变量的准确定义和分类 教学内容: 变量的定义,变量的分类,变量的概率分布,变量的分布函数与性质

常微分方程课程教学大纲

常微分方程课程教学大纲 一、课程说明 1、课程性质 本课程及大纲适用于数学与应用数学、数学教育专业、信息与计算科学等专业,为4学分,总学时为68学时,包括讲课及习题课。 常微分方程是数学各专业必修的基础课之一,它是数学分析,高等代数和解析几何的应用和发展。微分方程是数学理论联系实际的重要渠道之一,也是其它数学分支的一个综合应用场所,我们所研究的方程多数是由其它学科(如物理、气象、生态学、经济学)推导而来,通过本课程的学习不仅使学生了解到微分方程和其它数学分支的联系及其在其它自然科学学科中的应用,使学生进一步了解到数学的重要性和广泛的应用背景,提高应用能力,而且为后继的数学和应用数学各课程准备解决问题的方法和工具,更是通向物理,力学,经济等学科和工程技术的桥梁。 通过对微分方程发展史的回顾,让学生从一个侧面了解人类对自然界的认识过程和科学研究的探索过程,逐步培养学生的活学活用能力和创造发展的能力。 通过本课程的学习,使学生熟练掌握各类方程的判别与求解,掌握基本理论的基本思想和证明方法,了解定性和稳定性的初步理论和方法。并简要介绍一些其它学科需要我们解决而目前我们尚不能解决的问题,为其它后续课程留下引子,并通过一些例子让学生知道目前这个学科的最新研究动态。 2、教学目的要求 目的是要学习和逐步掌握常微分方程的基本理论和方法,学习建立和解决确定性数学模型的思想方法,把数学理论和方法运用到解决实际问题中去。 本课程要求学生能熟练掌握各类微分方程的基本解法,理解和掌握常微分方程的基本理论:存在唯一性定理和线性常微分方程的基本理论。了解常微分方程稳定性理论和定性理论初步。 3、先行或后继课程 先行课程:数学分析、高等代数、解析几何,普通物理等。 后继课程:数理方程、微分几何、泛函分析等。 微分方程的发展也离不开实变函数论、复变函数论、拓扑学与代数几何的支援。 4、教学时数分配表

常微分方程课程教学大纲知识分享

常微分方程课程教学 大纲

常微分方程课程教学大纲 英文名称:Ordinary differential equation 课程类 型: 专业基础课 理论学时:64实验学 时: 学分: 4 开课学 期: 第3学期 适用对象:数学与应用数学专业本科生考核方 式: 考试 先修课 程: 数学分析、高等代数与解析几何 一、课程简介 常微分方程是数学系本科生的必修课.通过本课程的学习,利用数学分析、高等代数的一些工具,牢固掌握微分方程学科最基本的内容,如一阶常微分方程、高阶微分方程与线性微分方程组的基本理论与解法,初步掌握其在实际问题中的应用及微分方程定性和稳定性理论的基本概念和重要结果,一般了解一阶线性偏微分方程. 二、课程教学目标 本门课程的主要任务是:通过各个教学环节逐步培养学生的抽象思维能力、逻辑推理能力、空间想象能力和自学能力,还要特别注意培养学生的熟练运算能力和综合运用所学知识去分析解决问题的能力;使学生掌握常微分方程的基本概念、基本理论和基本运算技能,为学习后继课程和进一步获得数学知识奠定必要的数学基础. 三、教学内容及要求 第一章绪论 主要内容: 1、常微分方程基本概念; 2、导出微分方程的实例; 3、微分方程的几何意义。 基本要求和教学重点:

1、了解常微分方程的基本概念; 2、领会常微分方程所讨论问题的基本内容; 3、了解常微分方程的实际背景及应用。 第二章初等积分法 主要内容: 1、变量分离方程; 2、齐次方程; 3、一阶线性方程与常数变易法; 4、全微分方程与积分因子; 5、一阶隐式微分方程。 基本要求和教学重点: 1、熟练地掌握一阶方程各种类型的初等解法. 2、学会根据所给方程的特点,引进适当的变换,增强解题能力; 3、能够合理的处理某些一阶微分方程的求解问题。 第三章一阶微分方程的解的存在定理主要内容: 1、解的存在性与唯一性定理 2、解的延拓 3、解对初值和参数的连续依赖性 4、解对初值和参数的可微性 基本要求和教学重点: 1、熟悉和理解定理证明方法; 2、掌握逐步逼近法。 第四章高阶线性微分方程 主要内容: 1、高阶线性微分方程的一般理论; 2、高阶常系数线性齐次方程的解法; 3、高阶常系数线性非齐次方程的解法; 4、变系数线性微分方程。 5、幂级数解法 基本要求和教学重点: 1、理解和掌握关于线性方程解的基本性质;

《常微分方程》课程建设规划

《常微分方程》课程建设规划 安阳师范学院数学系分析与方程教研室 一.课程简介 常微分方程是伴随着微积分的产生和发展而成长起来的一门历史悠久的学科,是研究自然科学和社会科学中的事物、物体和现象运动、演化和变化规律的最为基本的数学理论和方法。早在十七世纪至十八世纪,它就作为Newton 力学的得力助手,在天体力学和其它机械力学领域内显示了巨大的功能;这只要举出科学史上一件大事为证就够了:在海王星被实际观测到之前,这颗行星的存在就被天文学家用微分方程的方法推算出来了。时至今日,微分方程仍然是最有生命力的数学分支之一。 二.课程发展历史沿革 自数学系创立到开始招收本科生以来,就一直开设常微分方程。它是数学与应用数学和信息与计算科学专业学生一门重要的专业基础课,而且也是物理、经济、工程等学科不可缺少的基础课程之一,比如它是数学物理方程、动力系统定性理论、微分方程数值解、生物数学、数学模型、数理经济、经济数学以及自动控制、生物学、经济学等许多后续课程的基础。从数学的角度看,常微分方程分为经典和现代两部分内容,经典部分:以数学分析、高等代数为工具,以求微分方程的解为主要目的;现代部分:主要是用泛函分析、拓扑学等知识来研究解的性质。常微分方程对先修课程(数学分析与高等代数等)及后继课程(微分方程数值解法、偏微分方程、微分几何、泛函分析等)起到承前启后的作用,是数学理论中不可缺少的一个环节,也是学生学习本学科近代知识的基础,对培养学生分析问题和解决问题的能力有重要作用。因此,院系领导一向对这门课程的建设都十分重视,组织了很强的教学队伍来进行教学,系主任袁付顺教授等老师都担任过该课程的教学工作。他们治学严谨、敬业重教,为该课程小组树立了优良的教学传统。正是有了这种传统,该课程小组中的每位任课教师在教学中历来兢兢业业、认真踏实。教学中不仅注重基本概念、基本理论、基本方法、基本技巧及习题课的教学,而且善于结合这门课程具有广泛的实际背景和应用的特点,重视培养学生独立思考和解决实际问题的能力。比如教导和启发学生如何从力学中的一个实际问题抽象出具体的常微分方程,然后利用常微分方程的理论再去解决这一实际问题。更为重要的是,这种教学作风为培养学生树立良好的职业道德也起到了示范和熏陶的作用。 常微分方程课每周4 课时,总课时数为72学时。数学与应用数学和信息与计算科学两个专业都使用王高雄、周之铭等主编的教材《常微分方程》(第二版、高教出版社),根据不

常微分方程教材

第九章 微分方程 一、教学目标及基本要求 (1) 了解微分方程及其解、通解、初始条件和特解的概念。 (2) 掌握变量可分离的方程和一阶线性方程的解法,会解齐次方程。 (3) 会用降阶法解下列方程:),(),,(),()(y y f y y x f y x f y n '='''=''=。 (4) 理解二阶线性微分方程解的性质以及解的结构定理。 (5) 掌握二阶常系数齐次线性微分方程的解法,并会解某些高于二阶的常系数齐次线性微分方程。 (6) 会求自由项多项式、指数函数、正弦函数、余弦函数,以及它们的和与二阶常系数非齐次线性微分方程的 特解和通解。 (7) 会用微分方程解决一些简单的应用问题。 二、本章教学内容的重点和难点 1、理解和熟悉微分方程的一些基本概念; 2、掌握一阶和高阶微分方程的各种初等积分法; 3、熟悉线性方程的基础理论,掌握常系数二阶线性齐次与非齐次方程的解法; 4、会列微分方程及其始值问题去解决实际问题。 三、本章教学内容的深化和拓宽: 1、分离变量法的理论根据; 2、常用的变量代换; 3、怎样列微分方程解应用题; 4、黎卡提方程; 5、全微分方程的推广; 6、二阶齐次方程; 7、高阶微分方程的补充; 8、求线性齐次方程的另一个线性无关的解; 9、求线性非齐次方程的一个特解; 10、常数变易法。 本章的思考题和习题 解下列方程(第1-6题) 1、2)0(,)1(==+'+y x y y x 2、()[]f dx x f e e x f x x x ,)(02?+=可微 3、212 22sin 22sin 1X e y x y y x ++='?+ 4、0)3(24=+-xydx dy x y 5、21)0(,1)0(,022- ='=='+''y y y x y 6、2y y y x y '-'+'= 7、已知可微函数)(x f 满足 ?-=+x x f f x f x x f dx x f 12)()1(,1)()()(和求; 8、已知)(,,1)(2 1)(10x f f x f da ax f 求可微+= ?; 9、求与曲线族C y x =+2232相交成ο45角的曲线; 10、一容器的容积为100L ,盛满盐水,含10kg 的盐,现以每分钟3L 的速度向容器内注入淡水冲淡盐水,又以同样的速度将盐水抽入原先盛满淡水的同样大小的另一容器内,多余的水便从容器内流出,问经过多少时间,两容器内的含盐量相等?

数学物理方法 课程教学大纲

数学物理方法课程教学大纲 一、课程说明 (一)课程名称:数学物理方法 所属专业:物理、应用物理专业 课程性质:数学、物理学 学分:5 (二)课程简介、目标与任务 这门课主要讲授物理中常用的数学方法,主要内容包括线性空间和线性算符、复变函数、积分变换和δ-函数、数学物理方程和特殊函数等,适当介绍近年来的新发展、新应用。本门课程是物理系学生建立物理直观的数学基础,其中很多内容是为后续物理课程如量子力学、电动力学等服务,是其必需的数学基础。 这门课中的一些数学手段将在今后的基础研究和工程应用中发挥重要的作用,往往构成了相应领域的数学基础。一般来讲,因为同样的方程有同样的解,掌握和运用这些数学方法所体现的物理内容将更深入,更本质。 (三)先修课程要求,与先修课与后续相关课程之间的逻辑关系和内容衔接 本课程以普通物理、高等数学和部分线性代数知识为基础,为后继的基础课程和专业课程研究有关的数学问题作准备,也为今后工作中遇到的数学物理问题求解提供基础。 (四)教材:《数学物理方法》杨孔庆编 参考书:1. 《数学物理方法》柯朗、希尔伯特著 2. 《特殊函数概论》王竹溪、郭敦仁编著 3. 《物理中的数学方法》李政道著 4. 《数学物理方法》梁昆淼编 5. 《数学物理方法》郭敦仁编 6. 《数学物理方法》吴崇试编 二、课程内容与安排 第一部分线性空间及线性算子 第一章R3空间的向量分析 第一节向量的概念 第二节R3空间的向量代数

第三节R3空间的向量分析 第四节R3空间的向量分析的一些重要公式 第二章R3空间曲线坐标系中的向量分析 第一节R3空间中的曲线坐标系 第二节曲线坐标系中的度量 第三节曲线坐标系中标量场梯度的表达式 第四节曲线坐标系中向量场散度的表达式 第五节曲线坐标系中向量场旋度的表达式 第六节曲线坐标系中Laplace(拉普拉斯)算符▽2的表达式第三章线性空间 第一节线性空间的定义 第二节线性空间的内积 第三节Hilbert(希尔伯特)空间 第四节线性算符 第五节线性算符的本征值和本征向量 第二部分复变函数 第四章复变函数的概念 第一节映射 第二节复数 第三节复变函数 第五章解析函数 第一节复变函数的导数 第二节复变函数的解析性 第三节复势 第四节解析函数变换 第六章复变函数积分 第一节复变函数的积分 第二节Cauchy(柯西)积分定理 第三节Cauchy(柯西)积分公式 第四节解析函数高阶导数的积分表达式 第七章复变函数的级数展开

常微分方程第三版答案教学文稿

常微分方程第三版答 案

习题1.2 1. dx dy =2xy,并满足初始条件:x=0,y=1的特解。 解: y dy =2xdx 两边积分有:ln|y|=x 2+c y=e 2 x +e c =cex 2另外y=0也是原方程的解,c=0时,y=0 原方程的通解为y= cex 2,x=0 y=1时 c=1 特解为y= e 2 x . 2. y 2dx+(x+1)dy=0 并求满足初始条件:x=0,y=1的特解。 解:y 2dx=-(x+1)dy 2y dy dy=-1 1+x dx 两边积分: - y 1 =-ln|x+1|+ln|c| y=|)1(|ln 1+x c 另外y=0,x=-1也是原方程的解 x=0,y=1时 c=e 特解:y= | )1(|ln 1 +x c 3.dx dy =y x xy y 321++ 解:原方程为:dx dy =y y 21+3 1 x x + y y 21+dy=3 1 x x +dx 两边积分:x(1+x 2)(1+y 2)=cx 2 4. (1+x)ydx+(1-y)xdy=0 解:原方程为: y y -1dy=-x x 1 +dx 两边积分:ln|xy|+x-y=c 另外 x=0,y=0也是原方程的解。

5.(y+x )dy+(x-y)dx=0 解:原方程为: dx dy =-y x y x +- 令 x y =u 则dx dy =u+x dx du 代入有: -1 12++u u du=x 1dx ln(u 2+1)x 2=c-2arctgu 即 ln(y 2+x 2)=c-2arctg 2 x y . 6. x dx dy -y+22y x -=0 解:原方程为: dx dy =x y +x x | |-2)(1x y - 则令 x y =u dx dy =u+ x dx du 2 11u - du=sgnx x 1 dx arcsin x y =sgnx ln|x|+c 7. tgydx-ctgxdy=0 解:原方程为: tgy dy =ctgx dx 两边积分:ln|siny|=-ln|cosx|-ln|c| siny= x c cos 1=x c cos 另外y=0也是原方程的解,而c=0时,y=0. 所以原方程的通解为sinycosx=c. 8 dx dy +y e x y 32 +=0 解:原方程为:dx dy =y e y 2 e x 3 2 e x 3-3e 2 y -=c.

《复变函数》教学大纲

《复变函数》教学大纲 说明 1.本大纲适用数学与应用数学本科教学 2.学科性质: 复变函数论是成人高等师范数学专业基础课程之一,它在微分方程、概率论、力学等学科中都有应用,复变函数论方法是工程、科技的常用方法之一。复变函数论主要研究解析函数。解析函数定义的几种等价形式,表现了解析函数这一概念在不同方面的特性。复变函数论的基本理论以柯西定理为主要定理,柯西公式为重要公式,留数基本定理是柯西定理的推广。保形映照是复变函数几何理论的基本概念。;留数理论和保形映照也为实际应用提供了特有的复变函数论方法。 3.教学目的: 复变函数论是微积分学在复数域上的推广和发展,通过复变函数论的学习能使学生对微积分学的某些内容加深理解,提高认识。复变函数论在联系和指导中学数学教学方面也有重要的作用,学生通过复变函数论的学习对中学数学的某些知识有比较透彻的理解与认识,从而增加做好中学数学教育工作的能力。 4.教学基本要求: 通过本课程的学习,要求学生达到: 1.握基本概念和基本理论; 2.熟练的引进基本计算(复数、判断可导性及解析性、复积分、函数 的展式、孤立奇点的判断、留数的计算及应用、求线性映照及简单映 照等); 2.固和加深理解微积分学的有关知识。 5.教学时数分配: 本课程共讲授72学时(包括习题课),学时分配如下表: 教学时数分配表

以上是二年制脱产数学本科的教学时数。函授面授学时不低于脱产的40%,可安排28~30学时。 教学内容 第一章复数与复变函数 复变函数的自变量和因变量都是复数,因此,复数和平面点集是研究复变函数的基础。复变函数及其极限理论与微积分学的相应内容类似,但因复变函数是研究平面上的问题,因此有其新的含义与特点。 (一)教学内容

《常微分方程》课程大纲

《常微分方程》课程大纲 一、课程简介 课程名称:常微分方程学时/学分:3/54 先修课程:数学分析,高等代数,空间解析几何,或线性代数(行列式,矩阵与线性方程组,线性空间F n,欧氏空间R n,特征值与矩阵的对角化), 高等数学(多元微积分,无穷级数)。 面向对象:本科二年级或以上学生 教学目标:围绕基本概念与基本理论、具体求解和实际应用三条主线开展教学活动,通过该课程的教学,希望学生正确理解常微分方程的基本概念,掌握基本理论和主要方法,具有一定的解题能力和处理相关应用问题的思维方式,如定性分析解的性态和定量近似求解等思想,并希望学生初步了解常微分方程的近代发展,为学习动力系统学科的近代内容和后续课程打下基础。 二、教学内容和要求 常微分方程的教学内容分为七部分,对不同的内容提出不同的教学要求。(数字表示供参考的相应的学时数,第一个数为课堂教学时数,第二个数为习题课时数) 第一章基本概念(2,0) (一)本章教学目的与要求: 要求学生正确掌握微分方程,通解,线性与非线性,积分曲线,线素场(方

向场),定解问题等基本概念。本章教学重点解释常微分方程解的几何意义。 (二)教学内容: 1.由实际问题:质点运动即距离与时间关系(牛顿第二运动定律),放射性元素衰变过程,人口总数发展趋势估计等,通过建立数学模型,导出微分方程。 2.基本概念(常微分方程,偏微分方程,阶,线性,非线性,解,定解问题,特解,通解等)。 3.一阶微分方程组的几何定义,线素场(方向场),积分曲线。 4.常微分方程所讨论的基本问题。 第二章初等积分法(4,2) (一)本章教学目的与要求: 要求学生熟练掌握分离变量法,常数变易法,初等变换法,积分因子法等初等解法。 本章教学重点对经典的几类方程介绍基本解法,勾通初等积分法与微积分学基本定理的关系。并通过习题课进行初步解题训练,提高解题技巧。 (二)教学内容: 1. 恰当方程(积分因子法); 2. 分离变量法 3. 一阶线性微分方程(常数变易法) 4. 初等变换法(齐次方程,伯努利方程,黎卡提方程)

常微分方程教学大纲试用

《常微分方程与泛函分析》 课程教学大纲 课程编号:72073 制定单位:统计学院 制定人(执笔人):徐慧植 审核人:刘庆 制定(或修订)时间:2016年 8 月 31 日 江西财经大学教务处

《微分方程与泛函分析》课程教学大纲 一、课程总述 本课程大纲是以2015年统计学本科专业人才培养方案为依据编制的。 课程名称 微分方程与泛函分析 课程代码 72073 英文名称 Differential equation and functional analysis 课程性质 主干 先修课程 数学分析、高等代数 总学时数 48 周学时数 3 开课学院 统计学院 任课教师 徐慧植 编 写 人 徐慧植 编写时间 2016.08.31 课程负责人 刘庆 大纲主审人 刘庆 使用教材 王高雄,周之铭,朱思铭,王寿松编,常微分方程,高等教育出版社 教学参考资料 [1]张棣主编,常微分方程,西北大学出版社 [2]叶彦谦编,常微分方程讲义,高等教育出版社 [3]王柔坏,伍卓群编,常微分方程讲义,人民教育出版社 [4]东北师范大学数学系微分方程教研室编,常微分方程,高等教育出版社 课程教学目的 通过该课程的学习,要使学生系统地获得常微分方程的基本知识、基本理论,培养和训练学生运算技能及解决问题的能力;要求学生具有熟练的计算推导能力,逻辑推理能力,空间想象能力及综合运用所学知识分析和解决问题的能力;同时为学习后继课程奠定必要的基础。 课程教学要求 通过该课程的学习,要使学生系统地获得常微分方程的基本知识、 基本理论,掌握一阶、二阶微分方程胡解法及其应用。 本课程的重点和难点 一阶微分方程解的存在定、高阶微分方程、线性微分方程组 课程考试 院考,闭卷,平时成绩20%,期末成绩80%

常微分方程期末复习提要(1)

常微分方程期末复习提要 中央电大 顾静相 常微分方程是广播电视大学本科开放教育数学与应用数学专业的统设必修课程.本课程的主要任务是要使学生掌握常微分方程的基本理论和方法,增强运用数学手段解决实际问题的能力.本课程计划学时为54,3学分,主要讲授初等积分法、基本定理、线性微分方程组、线性微分方程、定性理论简介等内容。本课程的文字教材是由潘家齐教授主编、中央电大出版社出版的主辅合一型教材《常微分方程》.现已编制了28学时的IP 课件供学生在网上学习. 一、复习要求和重点 第一章 初等积分法 1.了解常微分方程、常微分方程的解的概念,掌握常微分方程类型的判别方法. 常微分方程与解的基本概念主要有:常微分方程,方程的阶,线性方程与非线性方程,解,通解,特解,初值问题。 2.了解变量分离方程的类型,熟练掌握变量分离方程解法. (1)显式变量可分离方程为: )()(d d y g x f x y = ; 当0≠g 时,通过积分??+=C x x f y g y d )()(d 求出通解。 (2)微分形式变量可分离方程为: y y N x M x y N x M d )()(d )()(2211=; 当0)()(21≠x M y N 时,通过积分 ??+=C x x M x M y y N y N d ) ()(d )()(2112求出通解。 3.了解齐次方程的类型,熟练掌握齐次方程(即第一类可化为变量可分离的方程)的解法. 第一类可化为变量可分离方程的一阶齐次微分方程为: )(d d x y g x y = ; 令x y u =,代入方程得x u u g x u -=)(d d ,当0)(≠-u u g 时,分离变量并积分,得?=-u u g u x C )(d 1e ,即)(e u C x ?=,用x y u =回代,得通解)(e x y C x ?=. 4.了解一阶线性方程的类型,熟练掌握常数变易法,掌握伯努利方程的解法. (1)一阶线性齐次微分方程为: 0)(d d =+y x p x y 通解为:?=-x x p C y d )(e 。 (2)一阶线性非齐次微分方程为: )()(d d x f y x p x y =+; 用常数变易法可以求出线性非齐次方程的通解:??+?=-]d e )([e d )(d )(x x f C y x x p x x p 。 (3)伯努利方程为:)1,0()()(d d ≠=+n y x f y x p x y n ,

编译原理简明教程答案.doc

编译原理简明教程答案 【篇一:8000 份课程课后习题答案与大家分享~~】 > 还有很多,可以去课后答案网 (/bbs )查找。 ################## 【公共基础课-答案】 #################### 新视野大学英语读写教程答案(全) 【khdaw 】 /bbs/viewthread.php?tid=108fromuid=1429267 概率论与数理统 计教程(茆诗松著) 高等教育出版社课后答案 /bbs/viewthread.php?tid=234fromuid=1429267 高等数学(第五 版)含上下册高等教育出版社课后答案 d.php?tid=29fromuid=1429267 新视野英语听力原文及答案课后答 案 【khdaw 】 /bbs/viewthread.php?tid=586fromuid=1429267 线性代数(同济 大学应用数学系著) 高等教育出版社课后答案 /bbs/viewthread.php?tid=31fromuid=1429267 21 世纪大学英语 第3 册(1-4)答案 【khdaw 】 /bbs/viewthread.php?tid=285fromuid=1429267 概率与数理统计 第二,三版(浙江大学盛骤谢式千潘承毅著) 高等教育出版社课后答案 d.php?tid=32fromuid=1429267 复变函数全解及导学[西安交大第四版] 【khdaw 】 /bbs/viewthread.php?tid=142fromuid=1429267 大学英语精读第 三版2 册课后习题答案 /bbs/viewthread.php?tid=411fromuid=1429267 线性代数(第二版) 习题答案 /bbs/viewthread.php?tid=97fromuid=1429267 21 世纪(第三册) 课后答案及课文翻译(5-8)【khdaw 】 /bbs/viewthread.php?tid=365fromuid=1429267 大学英语精读第 2 册课文翻译(上外)

常微分方程课程教学大纲

常微分方程课程教学大纲 英文名称:Ordinary differential equation 课程类型:专业基础课 理论学时:64实验学时:0 学分: 4 开课学期:第3学期 适用对象:数学与应用数学专业本科生考核方式:考试 先修课程:数学分析、高等代数与解析几何 一、课程简介 常微分方程是数学系本科生的必修课.通过本课程的学习,利用数学分析、高等代数的一些工具,牢固掌握微分方程学科最基本的内容,如一阶常微分方程、高阶微分方程与线性微分方程组的基本理论与解法,初步掌握其在实际问题中的应用及微分方程定性和稳定性理论的基本概念和重要结果,一般了解一阶线性偏微分方程. 二、课程教学目标 本门课程的主要任务是:通过各个教学环节逐步培养学生的抽象思维能力、逻辑推理能力、空间想象能力和自学能力,还要特别注意培养学生的熟练运算能力和综合运用所学知识去分析解决问题的能力;使学生掌握常微分方程的基本概念、基本理论和基本运算技能,为学习后继课程和进一步获得数学知识奠定必要的数学基础. 三、教学内容及要求 第一章绪论 主要内容: 1、常微分方程基本概念; 2、导出微分方程的实例; 3、微分方程的几何意义。

基本要求和教学重点: 1、了解常微分方程的基本概念; 2、领会常微分方程所讨论问题的基本内容; 3、了解常微分方程的实际背景及应用。 第二章初等积分法 主要内容: 1、变量分离方程; 2、齐次方程; 3、一阶线性方程与常数变易法; 4、全微分方程与积分因子; 5、一阶隐式微分方程。 基本要求和教学重点: 1、熟练地掌握一阶方程各种类型的初等解法. 2、学会根据所给方程的特点,引进适当的变换,增强解题能力; 3、能够合理的处理某些一阶微分方程的求解问题。 第三章一阶微分方程的解的存在定理主要内容: 1、解的存在性与唯一性定理 2、解的延拓 3、解对初值和参数的连续依赖性 4、解对初值和参数的可微性 基本要求和教学重点: 1、熟悉和理解定理证明方法; 2、掌握逐步逼近法。

微分几何教学大纲

《微分几何》课程教学大纲 课程名称:《微分几何》 课程编码:074112303 适用专业及层次:数学与应用数学(本科) 课程总学时:72学时 课程总学分:4 一、课程的性质、目的与任务等。 1、微分几何简介及性质 微分几何是高等院校数学和数学教育各专业主要专业课程之一,是运用微积分的理论研究空间的几何性质的数学分支学科。古典微分几何研究三维空间中的曲线和曲面,而现代微分几何开始研究更一般的空间----流形。微分几何与拓扑学等其他数学分支有紧密的联系,对物理学的发展也有重要影响,爱因斯坦的广义相对论就以微分几何中的黎曼几何作为其重要的数学基础。本课程的前导课程为解析几何、高等代数、数学分析和常微分方程。 2、教学目的: 通过本课程的教学,使学生掌握三维欧氏空间中的曲线和曲面的局部微分理论和方法,分析和解决初等微分几何问题,并为进一步学习微分几何的近代内容打下良好的基础。 3、教学内容与任务: 本课程主要应用向量分析的方法,研究一般曲线和曲面的局部理论,同时还采用了张量的符号讨论曲面论的基本定理和曲面的内蕴几何内容,并且讨论了属于整体微分几何的高斯崩尼(Gauss-Bonnet)公式。重点让学生把握理解本教材的前二章。 二、教学内容、讲授大纲与各章的基本要求 第一章曲线论 教学要点: 本章主要研究内容为向量分析,曲线的切线,法平面,曲线的弧长参数表示,空间曲线的基本三棱形,曲率和挠率的概念和计算,曲线论的基本公式和基本定理,从而对

空间曲线在一点邻近的形状进行研究,同时对特殊曲线特别是一般螺线和贝特朗曲线进行研究。通过本章的教学,使学生理解和熟记有关概念,掌握理论体系和思想方法,能够证明和计算有关问题 教学时数:22学时。 教学内容: 第一节向量函数 1.1 向量函数的极限 1.2 向量函数的连续性 1.3 向量函数的微商 1.4 向量函数的泰勒(TayLor)公式 1.5 向量函数的积分 第二节曲线的概念 2.1 曲线的概念 2.2 光滑曲线、曲线的正常点 2.3 曲线的切线和法面 2.4 曲线的弧长、自然参数 第三节空间曲线 3.1 空间曲线的密切平面 3.2 空间曲线的基本三棱形 3.3 空间曲线的曲率、挠率和伏雷内(Frenet)公式 3.4 空间曲线在一点邻近的结构 3.5 空间曲线论的基本定理 3.6 一般螺线 考核要求: 1、理解向量函数的极限、连续性、微商、泰勒(TayLor)公式和积分等概念,能

常微分方程 课程论文

《常微分方程》读书笔记 数学与应用数学(师范)2班 李霞 200902114078 本课程作为一门的专业课程,综合性强、内容多、难度大,学者在学习过程中应注意,学习前,应仔细阅读课程大纲,熟悉课程的基本要求,使以后的学习紧紧围绕课程的基本要求。在阅读某一章教材内容前,应先认真阅读大纲中该章的考核知识点,注意对各知识点的能力层次要求,认真学习各章节例题,熟悉各种类型习题解法。学完教材的每一章节内容后,应完成教材的习题,进一步理解和巩固所学的知识,增强解题能力。在学习常微分方程时,还需要掌握高等代数,近世代数,数学分析,线性代数,数值积分等基础知识。 微分方程差不多是和微积分同时先后产生的,苏格兰数学家耐普尔创立对数的时候,就讨论过微分方程的近似解。牛顿在建立微积分的同时,对简单的微分方程用级数来求解。后来瑞士数学家雅各布·贝努利、欧拉、法国数学家克雷洛、达朗贝尔、拉格朗日等人又不断地研究和丰富了微分方程的理论。 常微分方程的形成与发展是和力学、天文学、物理学,以及其他科学技术的发展密切相关的。数学的其他分支的新发展,如复变函数、李群、组合拓扑学等,都对常微分方程的发展产生了深刻的影响,当前计算机的发展更是为常微分方程的应用及理论研究提供了非常有力的工具。 一、一阶微分方程的初等解法 1.1 变量可分离的微分方程 形如 ()()dy f x y dx ?=的方程,称为变量分离方程,() f x ,()y ?分别是x ,y 的 连续函数.这是一类最简单的一阶函数.如果()0y ?≠,我们可将(1)改写成 ()()dy f x dx y ?=,这样变量就分离开来了.两边积分,得到()() dy f x dx c y ?= +? ? , c 为任意常数.由该式所确定的函数关系式(,)y y x c =就是常微分方程的解. 例1:求解 2dy xy dx =的通解。 解: 12dy xdx y =→12dy xdx y = ??→2 1ln y x c =+→通解:2 2 1 x c x y e ce +=±= 1.2 齐次型微分方程 (变量代换的思想) 一阶微分方程可以化成 dy y f dx x ?? = ??? 的形式。 求解: dy y f dx x ?? = ??? y u x = → y ux =,

相关主题
文本预览
相关文档 最新文档