当前位置:文档之家› 拉曼光谱仪器测试原理与仪器使用指南

拉曼光谱仪器测试原理与仪器使用指南

拉曼光谱仪器测试原理与仪器使用指南
拉曼光谱仪器测试原理与仪器使用指南

拉曼光谱仪器测试原理与仪器使用指南

基于印度科学家 C.V.拉曼(Raman)发现拉曼散射效应:不同的入射光频率的散射光谱进行分析所得到的分子振动、转动的信息,并应用于分子结构分析研究的一种分析方法,称为拉曼光谱(Raman spectra)。其中,拉曼光谱是一种散射光谱。

1激光拉曼光谱基本原理

激光入射到样品,产生散射光:散射光为弹性散射,频率不发生改变为瑞丽(Rayleigh)散射;散射光为非弹性散射,频率发生改变为拉曼(Raman)散射。如图:Rayleigh散射(左):弹性碰撞;无能量交换,仅改变方向;Raman散射(右):非弹性碰撞;方向改变且有能量交换。其中,E0基态,E1振动激发态;E0+ hν0 ,E1+ hν0 激发虚态;获得能量后,跃迁到激发虚态。

(图片来自百度)

Raman散射:两种跃迁能量差:△E=h(V0 -△V),产生stokes线;强;基态分子多;△E=h(V0 +△V),产生反stokes线;弱。Raman位移:Raman散射光与入射光频率差△n。

(图片来自百度)

斯托克斯线(Stokes):基态分子跃迁到虚能级后不会到原处基态,而落到另一较高能级发射光子,发射的新光子能量hv'显然小于入射光子能量hv,△V 就是拉曼散射光谱的频率位移。反斯托克斯线(anti-Stokes):发射光子频率高于原入射光子频率。

拉曼位移(Raman shift):△V 即散射光频率与激发光频之差。拉曼位移△V 只取决于散射分子的结构,而与V0无关,所以拉曼光谱可以作为分子振动能级的指纹光谱。与入射光波长无光,适用于分子结构分析。

2 拉曼光谱仪

散射光相对于入射光频率位移与散射光强度形成的光谱称为拉曼光谱。拉曼光谱仪一般由光源、外光路、色散系统、及信息处理与显示系统五部分组成。拉曼光谱仪分为激光Raman光谱仪(laser Raman spectroscopy)和傅立叶变换-拉曼光谱仪(FT-Ramanspectroscopy)。

1)、激发光源:常用的有Ar离子激光器,Kr离子激光器,He-Ne激光器,Nd-YAG激光器,二极管激光器等。拉曼激发光源波长:325nm(UV),488nm(蓝绿),514nm(绿),633nm(红),785nm(红),1064nm(IR)。

2)、样品装置:样品放置方式,包括直接的光学界面,显微镜,光纤维探针和样品。

3)、滤光器:激光波长的散射光(瑞利光)要比拉曼信号强几个数量级,必须在进入检测器前滤除,另外,为防止样品不被外辐射源照射,需要设置适宜的滤波器或者物理屏障。

4)、单色器和迈克尔逊干涉仪:有单光栅、双光栅或三光栅,一般使用平面全息光栅干涉器一般与FTIR上使用的相同,为多层镀硅的CaF2或镀Fe2O3的CaF2分束器。也有用石英分束器及扩展范围的KBr分束器。

5)、检测器:传统的采用光电倍增管,目前多采用CCD探测器,FTRaman 常用的检测器为Ge或InGaAs检测器。

激光Raman光谱仪(laser Raman spectroscopy):激光光源:He-Ne激光器,波长632.8nm;Ar激光器,波长514.5 nm,488.0nm;散射强度∝1/λ;单色器:光栅,多单色器;检测器:光电倍增管,光子计数器。

(图片来自百度)

激光拉曼光谱因与红外光谱有着相同的波长范围且操作相对简单,因此备受重视。所具有的优点如下:光源频率可调、分辨性好,分辨率高、谱峰常为尖峰,样品用量少(常规用量2~2.5 ug,微量操作时用量为0.06 ug)、只有少量的倍频及组频、样品测试范围广涵盖水溶液样品。

激光拉曼光谱仪中的激光易激发出荧光,从而影响测定结果。为了避免弊端,研制了新型的傅里叶变换近红外激光拉曼光谱仪和共焦激光光谱仪。

傅立叶变换-拉曼光谱仪(FT-Ramanspectroscopy):光源:Nd-YAG 钇铝石榴石激光器(1.064μm);检测器:高灵敏度的铟镓砷探头。激光光源、试样室、迈克尔逊干涉仪、特殊滤光器、检测器组成。

(图片来自百度)

优点:避免了荧光干扰;精度高;消除了瑞利谱线;测试速度快。

3 拉曼光谱仪在分析中的作用

1)、同种分非极性键S-S、C=C、N=N、C≡C表现拉曼谱带强,谱带强度:单键<双键<三键;C=N、C=S、S-H拉曼谱带强,X=Y=Z、C=N=C、O=C=O对称伸缩为强谱带,红外中表现相反。

2)、C-C伸缩振动在拉曼光谱中是强谱带;环状化合物的对称呼吸振动常常是最强的拉曼谱带。醇和烷烃的拉曼光谱是相似的:(1)、C-O键与C-C键的力常数或键的强度没有很大差别;(2)、羟基和甲基的质量仅相差2单位;(3)、与C-H和N-H谱带比较,O-H拉曼谱带较弱。

3)、用通常的拉曼光谱可以进行半导体、陶瓷等无机材料的分析:如剩余应力分析、晶体结构解析等。拉曼光谱还是合成高分子、生物大分子分析的重要手段。如分子取向、蛋白质的巯基、卟啉环等的分析。

4 拉曼光谱仪与红外光谱仪区别

拉曼光谱与红外光区别

(图片来自百度)

拉曼光谱仪优缺点:

拉曼光谱仪优点:提供快速、简单、可重复、且更重要的是无损伤的定性定量分析,它无需样品准备,样品可直接通过光纤探头或者通过玻璃、石英、和光纤测量;水的拉曼散射很微弱,拉曼光谱是研究水溶液中的生物样品和化学化合物的理想工具;拉曼一次可以同时覆盖50-4000波数的区间,可对有机物及无机物进行分析,相反,若让红外光谱覆盖相同的区间则必须改变光栅、光束分离器、滤波器和检测器。

化学结构分析中,独立的拉曼区间的强度可以和功能集团的数量相关;因为激光束的直径在它的聚焦部位通常只有0.2-2毫米,常规拉曼光谱只需要少量的样品就可以得到。。这是拉曼光谱相对常规红外光谱一个很大的优势。而且,拉曼显微镜物镜可将激光束进一步聚焦至20微米甚至更小,可分析更小面积的样品;共振拉曼效应可以用来有选择性地增强大生物分子特个发色基团的振动,这些发色基团的拉曼光强能被选择性地增强1000到10000倍。

拉曼光谱不足之处:(1)、拉曼散射面积;(2)、不同振动峰重叠和拉曼散射强度容易受光学系统参数等因素的影响; (3)、荧光现象对傅立叶变换拉曼光谱分析的干扰;(4)、在进行傅立叶变换光谱分析时,常出现曲线的非线性的问题;(5)、任何一物质的引入都会对被测体体系带来某种程度的污染,这等于引入了一些误差的可能性,会对分析的结果产生一定的影响。

肺功能仪检测原理与常用仪器

肺功能仪检测原理与常用仪器 1 肺功能试验的临床意义 肺功能检查是临床上胸肺疾病及呼吸生理的重要检查内容。对于早期检出肺、气道病变,鉴别呼吸困难的原因,诊断病变部位,评估疾病的病情严重度及其预后,评定药物或其它治疗方法疗效,评估肺功能对手术的耐受力或劳动强度耐受力及对危重病人的监护等,肺功能检查均是必不可少的。其结果判断参考同种人群肺功能正常值。 肺功能检查通常包括通气功能、换气功能、呼吸调节功能及肺循环功能。检查项目繁多、临床上最为常用的是通气功能检查,它可对大多数胸肺疾病作出诊断;其它检查如弥散功能测定、闭合气量测定、气道阻力测定、膈肌功能测定、运动心肺功能试验、气道反应性测定等,可对通气功能检查作不同程度的补充。此外,血气分析亦是肺功能检查的一部分。 随着电子计算机技术的发展及临床对肺功能评估认识的不断深入,肺功能检测已成为临床肺部疾病三大诊断之一(另二者为病因诊断和病理诊断)。 2 肺功能仪的组成部分 肺功能的试验仪器主要由肺量计、气体分析仪及压力计组成,通过它们的组合,可测出肺功能的大多数指标,如肺容量、通气、弥散、呼吸肌肉力量、氧耗量、二氧化碳产生量等,其中肺量计在肺功能检测中最为常用。 2.1 肺量计: 肺量计是指用于测定肺容量的容量或流量计的仪器。按物理学定律,设某一瞬间的体积流量为Q,一定时间t内流过的流体的体积为V,则V=∫Qdt或Q=dV/dt;而体积流量是流体流速(V)与流经截面积(A)体的流速及吸/呼气体时间可求出吸/呼气容量;反之亦然。 2.1.1 容量测定型肺量计 容量测定型肺量计先测定流体的体积,而后得出流量。 2.1.1.1 水封式肺量计(water-sealed spirometer): 这种肺量计结构简单、测量准确,但测量指标较少,不易于自动转换为流速参数,其容量所测为室温容量(A TPS状态),应将其矫正为体温容积(BTPS状态)。目前已较少使用,仅在一些基层医院或生理实验室中尚有使用,如Collins肺量计。其构造如图1,钠石灰是CO2吸收剂,鼓风机用于减少机器的阻力,容量的变化记录于记纹鼓,这种设备的死腔量较大,一般为6L~8L。 由水将浮筒内外分隔,带有单向阀的管道与盛有CO2吸收剂的容器相连,浮筒内与病者以密封闭回路方式相连。浮筒经一滑轮悬拉,连至另一端与记录笔相连,记录笔可将浮筒位置的改变记录于记纹鼓上。当病人从浮筒中吸气或呼气时记录笔垂直上下移动,移动的幅度取决于吸/呼气的容量大小。 记纹鼓与一电机相连,电机转动时记纹鼓转动的速度恒定,并可选择不同速度,由描记笔水平记录。此为描记图的时间轴,而描记笔的垂直运动为插记图的容量轴,测试中描记出时间—容量曲线,从中可求出多个容量及流速参数。 2.1.1.2 干式滚桶式肺量计(dry-rolling seal spirometer): 见图2。病人呼出的气体使活塞移动,活塞由滚桶隔样的密封器与圆桶密封。电压计检测活塞的移动,活塞移动时产生的电压信号可反映移动量的大小,间接反映呼吸气体容量。活塞面常较大,以减少活塞运动时的机械阻力。Gould 9000,FUDAC 50,ERS-1000,Ohio 800系列等肺量计属此类型。使用此类型肺功能仪时,病人呼吸为密封式,易发生交叉感染。 2.1.2. 流速测定型肺量计 流速式流量计则先测出流经截面积一定的管路的流体速度,然后求出流量,也称为间接

拉曼光谱的原理及应用.doc

拉曼光谱的原理及应用 拉曼光谱由于近几年来以下几项技术的集中发展而有了更广泛的应用。这些技术是:CCD检测系统在近红外区域的高灵敏性,体积小而功率大的二极管激光器,与激发激光及信号过滤整合的光纤探头。这些产品连同高口径短焦距的分光光度计,提供了低荧光本底而高质量的拉曼光谱以及体积小、容易使用的拉曼光谱仪。 (一)含义 光照射到物质上发生弹性散射和非弹性散射. 弹性散射的散射光是与激发光波长相同的成分.非弹性散射的散射光有比激发光波长长的和短的成分, 统称为拉曼效应 当用波长比试样粒径小得多的单色光照射气体、液体或透明试样时,大部分的光会按原来的方向透射,而一小部分则按不同的角度散射开来,产生散射光。在垂直方向观察时,除了与原入射光有相同频率的瑞利散射外,还有一系列对称分布着若干条很弱的与入射光频率发生位移的拉曼谱线,这种现象称为拉曼效应。由于拉曼谱线的数目,位移的大小,谱线的长度直接与试样分子振动或转动能级有关。因此,与红外吸收光谱类似,对拉曼光谱的研究,也可以得到有关分子振动或转动的信息。目前拉曼光谱分析技术已广泛应用于物质的鉴定,分子结构的研究谱线特征 (二)拉曼散射光谱具有以下明显的特征: a.拉曼散射谱线的波数虽然随入射光的波数而不同,但对同一样品,同一拉曼谱线的位移与入射光的波长无关,只和样品的振动转动能级有关; b. 在以波数为变量的拉曼光谱图上,斯托克斯线和反斯托克斯线对称地分布在瑞利散射线两侧, 这是由于在上述两种情况下分别相应于得到或失去了一个振动量子的能量。 c. 一般情况下,斯托克斯线比反斯托克斯线的强度大。这是由于Boltzmann分布,处于振动基态上的粒子数远大于处于振动激发态上的粒子数。 (三)拉曼光谱技术的优越性 提供快速、简单、可重复、且更重要的是无损伤的定性定量分析,它无需样品准备,样品可直接通过光纤探头或者通过玻璃、石英、和光纤测量。此外 1 由于水的拉曼散射很微弱,拉曼光谱是研究水溶液中的生物样品和化学化合物的理想工具。 2 拉曼一次可以同时覆盖50-4000波数的区间,可对有机物及无机物进行分析。相反,若让红外光谱覆盖相同的区间则必须改变光栅、光束分离器、滤波器和检测器 3 拉曼光谱谱峰清晰尖锐,更适合定量研究、数据库搜索、以及运用差异分析进行定性研究。在化学结构分析中,独立的拉曼区间的强度可以和功能集团的数量相关。 4 因为激光束的直径在它的聚焦部位通常只有0.2-2毫米,常规拉曼光谱只需要少量的样品就可以得到。这是拉曼光谱相对常规红外光谱一个很大的优势。而且,拉曼显微镜物镜可将激光束进一步聚焦至20微米甚至更小,可分析更小面积的样品。 5 共振拉曼效应可以用来有选择性地增强大生物分子特个发色基团的振动,这些发色基团的拉曼光强能被选择性地增强1000到10000倍。(四)几种重要的拉曼光谱分析技术 1、单道检测的拉曼光谱分析技术 2、以CCD为代表的多通道探测器用于拉曼光谱的检测仪的分析技术 3、采用傅立叶变换技术的FT-Raman光谱分析技术 4、共振拉曼光谱分析技术 5、表面增强拉曼效应分析技术 (五) 拉曼频移,拉曼光谱与分子极化率的关系 1、拉曼频移:散射光频与激发光频之差,取决于分子振动能级的改变,所以它是特征的,与入射光的波长无关,适应于分子结构的分析 2、拉曼光谱与分子极化率的关系 分子在静电场E中,极化感应偶极矩P为静电场E与极化率的乘积 诱导偶极矩与外电场的强度之比为分子的极化率 分子中两原子距离最大时,极化率也最大 拉曼散射强度与极化率成正比例 (六)应用激光光源的拉曼光谱法 应用激光具有单色性好、方向性强、亮度高、相干性好等特性,与表面增强拉曼效应相结合,便产生了表面增强拉曼光谱。其灵敏度比常规拉曼光谱可提高104~107倍,加之活性载体表面选择吸附分子对荧光发射的抑制,使分析的信噪比大大提高。已应用于生物、药物及环境分析中痕量物质的检测。共振拉曼光谱是建立在共振拉曼效应基础上的另一种激光拉曼光谱法。共振拉曼效应产生于激发光频率与待测分子的某个电子吸收峰接近或重合时,这一分子的某个或几个特征拉曼谱带强度可达到正常拉曼谱带的104~106倍,有利于低浓度和微量样品的检测。已用于无机、有

拉曼光谱原理及应用简介

拉曼光谱原理及应用简介 当用波长比试样粒径小得多的单色光照射气体、液体或透明试样时,大部分的光会按原来的发现透射,而一小部分则按不同的角度散射开来,产生散射光。在垂直方向观察时,除了与原入射光有相同频率的瑞利散射外,还有一系列对称分布着若干条很弱的与入射光频率发生位移的拉曼谱线,这种现象称为拉曼效应。由于拉曼谱线的数目,位移的大小,谱线的长度直接与试样分子振动或转动能级有关。因此,与红外吸收光谱类似,对拉曼光谱的研究,也可以得到有关分子振动或转动的信息。目前拉曼光谱分析技术已广泛应用于物质的鉴定,分子结构的研究。 应用激光光源的拉曼光谱法。应用激光具有单色性好、方向性强、亮度高、相干性好等特性,与表面增强拉曼效应相结合,便产生了表面增强拉曼光谱。其灵敏度比常规拉曼光谱可提高104~107倍,加之活性载体表面选择吸附分子对荧光发射的抑制,使分析的信噪比大大提高。已应用于生物、药物及环境分析中痕量物质的检测。共振拉曼光谱是建立在共振拉曼效应基础上的另一种激光拉曼光谱法。共振拉曼效应产生于激发光频率与待测分子的某个电子吸收峰接近或重合时,这一分子的某个或几个特征拉曼谱带强度可达到正常拉曼谱带的104~106倍,有利于低浓度和微量样品的检测。已用于无机、有机、生物大分子、离子乃至活体组成的测定和研究。激光拉曼光谱与傅里叶变换红外光谱相配合,已成为分子结构研究的主要手段。

1. 激光拉曼光谱法的原理是拉曼散射效应 拉曼散射:当激发光的光子与作为散射中心的分子相互作用时,大部分光子只是发生改变方向的散射,而光的频率并没有改变,大约有占总散射光的10-10-10-6的散射,不光改变了传播方向,也改变了频率。这种频率变化了的散射就称为拉曼散射。对于拉曼散射来说,分子由基态E0被激发至振动激发态E1,光子失去的能量与分子得到的能量相等为△E反映了指定能级的变化。因此,与之相对应的光子频率也是具有特征性的,根据光子频率变化就可以判断出分子中所含有的化学键或基团。这就是拉曼光谱可以作为分子结构的分析工具的理论工具。 2. 拉曼光谱仪的主要部件有: 激光光源、样品室、分光系统、光电检测器、记录仪和计算机。 3. 应用 激光拉曼光谱法的应用有以下几种:在有机化学上的应用,在高聚物上的应用,在生物方面上的应用,在表面和薄膜方面的应用。 有机化学:拉曼光谱在有机化学方面主要是用作结构鉴定的手段,拉曼位移的大小、强度及拉曼峰形状是判断化学键、官能团的重要依据。利用偏振特性,拉曼光谱还可以作为顺反式结构判断的依据。 高聚物:拉曼光谱可以提供关于碳链或环的结构信息。在确定异构体(单休异构、位置异构、几何异构和空间立现异构等)的研究中

高光谱成像检测技术

高光谱成像检测技术 一、高光谱成像技术的简介 高光谱成像技术是近二十年来发展起来的基于非常多窄波段的影像数据技术,其最突出的应用是遥感探测领域,并在越来越多的民用领域有着更大的应用前景。它集中了光学、光电子学、电子学、信息处理、计算机科学等领域的先进技术,是传统的二维成像技术和光谱技术有机的结合在一起的一门新兴技术。 高光谱成像技术的定义是在多光谱成像的基础上,在从紫外到近红外(200-2500nm)的光谱范围内,利用成像光谱仪,在光谱覆盖范围内的数十或数百条光谱波段对目标物体连续成像。在获得物体空间特征成像的同时,也获得了被测物体的光谱信息。 高光谱成像技术具有超多波段(上百个波段)、高的光谱分辨率(几个nm)、波段窄(≤10-2λ)、光谱范围广(200-2500nm)和图谱合一等特点。优势在于采集到的图像信息量丰富,识别度较高和数据描述模型多。由于物体的反射光谱具有“指纹”效应,不同物不同谱,同物一定同谱的原理来分辨不同的物质信息。 二、高光谱成像系统的组成和成像原理 高光谱成像技术的硬件组成主要包括光源、光谱相机(成像光谱仪+CCD)、装备有图像采集卡的计算机。光谱范围覆盖了200-400nm、400-1000nm、900-1700 nm、1000-2500 nm。 CCD 光源光栅光谱仪成像镜头

光谱相机的主要组成部分有:准直镜、光栅光谱仪、聚焦透镜、面阵CCD。 高光谱成像仪的扫描过程:面阵CCD探测器在光学焦面的垂直方向上做横向排列完成横向扫描(X方向),横向排列的平行光垂直入射到透射光栅上时,形成光栅光谱。这是一列像元经过高光谱成像仪在CCD上得到的数据。它的横向是X方向上的像素点,即扫描的一列像元;它的纵向是各像元所对应的光谱信息。 同时,在检测系统输送带前进的过程中,排列的探测器扫出一条带状轨迹从而完成纵向扫描(Y方向)。

实验一 常用仪器的使用

实验一 常用仪器的使用 一、实验目的 (1) 了解双踪示波器、函数信号发生器、数字万用表的原理框图和主要技术指标。 (2) 掌握用双踪示波器测量信号的幅度、频率和相位。 (3) 掌握万用表的正确使用方法。 二、实验仪器 (1) 双踪示波器; (2) 低频信号发生器; (3) 数字式(或指针式)万用表。 三、实验原理 在电子技术实验里,测试和定量分析电路的静态和动态的工作状况时,最常用的电子仪器有:示波器、低频信号发生器、直流稳压电源、晶体管毫伏表、数字式(或指针式)万用表等。它们之间的连接方式如下图所示。 输出信号 图1-1电子技术实验中测量仪器、仪表连接框图 示波器:用来观察电路中各点的波形,以监视电路是否正常工作,同时还用于测量波形的周期、幅度、相位差及观察电路的特性曲线等。 函数信号发生器:为电路提供各种频率和幅度的输入信号。 直流稳压电源:为电路提供电源。 数字式(或指针式)万用表:用于测量电路的静态工作点和直流信号的值等。 四、实验内容及步骤: 熟悉仪器(仪器使用简单步骤见附录) 1.学会正确使用函数信号发生器 2.学会正确使用数字示波器 3.熟悉并学会使用数字式万用表 4.熟悉模拟电路实验箱 五、实验步骤

1、使用函数信号发生器输出频率的调节方法 (1)使用Sine按键,波形图标变为正弦信号,并在状态区左侧出现“Sine”字样。按Sine → 频率/周期→ 频率,设置频率参数值。配合面上的“频率调节”旋钮可使信号发生器输出频率在1HZ~10MHZ的范围改变。 屏幕中显示的频率为上电时的默认值,或者是预先选定的频率。在更改参数时,如果当前频率值对于新波形是有效的,则继续使用当前值。若要设置波形周期,则再次按频率/ 周期软键,以切换到周期软键(当前选项为反色显示)。 使用数字键盘,输入所需的频率值。直接输入所选参数值,然后选择频率所需单位,按下对应于所需单位的软键。也可以使用左右键选择需要修改的参数值的数位,使用旋钮改变该数位值的大小。 (2)根据手册通过设置频率/周期、幅值/高电平、偏移/低电平、相位,可以得到不同参数值的正弦波。 2、双踪示波器的使用 (1)使用前的检查与校准 (2)交流信号电压幅值的测量 使低频信号发生器信号频率为1kHz、信号幅度为5V,适当选择示波器灵敏度选择开关“V/div”的位置,使示波器屏上能观察到完整、稳定的正弦波,则此时上纵向坐标表示每格的电压伏特数,根据被测波形在纵向高度所占格数便可读出电压的数值,置于表1-1 中要求的位置并测出其结果记入表中。 注意:若使用10:1 探头电缆时,应将探头本身的衰减量考虑进去。 (3) 交流信号频率值的测量 将示波器扫描速率中的“微调”置于校准位置,在预先校正好的条件下,此时扫描速率开关“t/div”的刻度值表示屏幕横向坐标每格所表示的时间值。根据被测信号波形在横向所占的格数直接读出信号的周期,若要测量频率只需将被测的周期求倒数即为频率值。按表1-5 所示频率,由信号发生器输出信号,用示波器测出其周期,再计算频率,并将所测结果与已知频率比较。

高光谱成像检测技术.

高光谱成像检测技术 、高光谱成像技术的简介 高光谱成像技术是近二十年来发展起来的基于非常多窄波段的影像数据技术, 其最突出的应用是遥感探测领域, 并在越来越多的民用领域有着更大的应用前景。 它集中了光学、光电子学、电子学、信息处理、计算机科学等领域的先进传统的二维成像技术和光谱技术有机的结合在一起的一门新兴技术。 技术,是高光谱成像 技术的定义是在多光谱成像的基础上,在从紫外到近红外(200-2500nm 的光谱范围内,利用成像光谱仪,在光谱覆盖范围内的数十或数百条光谱波段对目标物体连续成 像。在获得物体空间特征成像的同时, 也获得了被测物体的光谱信息。 高光谱成像技术具有超多波段(上百个波段、高的光谱分辨率(几个nm 、波 段窄(<1-2入光谱范围广(200-2500nm和图谱合一等特点。优势在于采集到的图像信息量丰富, 识别度较高和数据描述模型多。由于物体的反射光谱具有“指纹” 效应, 不同物不同谱, 同物一定同谱的原理来分辨不同的物质信息。、高光谱成像系统的组成和成像原理 高光谱成像技术的硬件组成主要包括光源、光谱相机(成像光谱仪+CCD 、装备有图像采集 卡的计算机。光谱范围覆盖了200-400nm 、400-1000nm 、900-1700 nm 、1000-2500 nm。

CC D 朮源「一光栅壯谱以 —a I \、 「维电移台 . 样品 A CCD。 光谱相机的主要组成部分有:准直镜、光栅光谱仪、聚焦透镜、面阵

高光谱成像仪的扫描过程:面阵CCD探测器在光学焦面的垂直方向上做横向排列完成横向扫描(X方向,横向排列的平行光垂直入射到透射光栅上时,形成光栅光谱。这是一列像元经过高光谱成像仪在CCD上得到的数据。它的横向是X方 向上的像素点,即扫描的一列像元;它的纵向是各像元所对应的光谱信息。 同时,在检测系统输送带前进的过程中,排列的探测器扫出一条带状轨迹从而完成纵向扫描(丫方向。 1\ 综合横纵扫描信息就可以得到样品的三维高光谱图像数据。

拉曼光谱原理及应用简介

拉曼光谱由于近几年来以下几项技术的集中发展而有了更广泛的应用。这些技术是:CCD检测系统在近红外区域的高灵敏性,体积小而功率大的二极管激光器,与激发激光及信号过滤整合的光纤探头。这些产品连同高口径短焦距的分光光度计,提供了低荧光本底而高质量的拉曼光谱以及体积小、容易使用的拉曼光谱仪。(一)含义 光照射到物质上发生弹性散射和非弹性散射.弹性散射的散射光是与激发光波长相 同的成分.非弹性散射的散射光有比激发光波长长的和短的成分,统称为拉曼效应 当用波长比试样粒径小得多的单色光照射气体、液体或透明试样时,大部分的光会按原来的方向透射,而一小部分则按不同的角度散射开来,产生散射光。在垂直方向观察时,除了与原入射光有相同频率的瑞利散射外,还有一系列对称分布着若干条很弱的与入射光频率发生位移的拉曼谱线,这种现象称为拉曼效应。由于拉曼谱线的数目,位移的大小,谱线的长度直接与试样分子振动或转动能级有关。因此,与红外吸收光谱类似,对拉曼光谱的研究,也可以得到有关分子振动或转动的信息。目前拉曼光谱分析技术已广泛应用于物质的鉴定,分子结构的研究谱线特征 (二)拉曼散射光谱具有以下明显的特征: a.拉曼散射谱线的波数虽然随入射光的波数而不同,但对同一样品,同一拉曼谱线的位移与入射光的波长无关,只和样品的振动转动能级有关; b.在以波数为变量的拉曼光谱图上,斯托克斯线和反斯托克斯线对称地分布在瑞利散射线两侧,这是由于在上述两种情况下分别相应于得到或失去了一个振动量子的 能量。

c.一般情况下,斯托克斯线比反斯托克斯线的强度大。这是由于Boltzmann分布,处于振动基态上的粒子数远大于处于振动激发态上的粒子数。 (三)拉曼光谱技术的优越性 提供快速、简单、可重复、且更重要的是无损伤的定性定量分析,它无需样品准备,样品可直接通过光纤探头或者通过玻璃、石英、和光纤测量。此外 1由于水的拉曼散射很微弱,拉曼光谱是研究水溶液中的生物样品和化学化合物的理想工具。 2拉曼一次可以同时覆盖50-4000波数的区间,可对有机物及无机物进行分析。相反,若让红外光谱覆盖相同的区间则必须改变光栅、光束分离器、滤波器和检测器3拉曼光谱谱峰清晰尖锐,更适合定量研究、数据库搜索、以及运用差异分析进行定性研究。在化学结构分析中,独立的拉曼区间的强度可以和功能集团的数量相关。4因为激光束的直径在它的聚焦部位通常只有0.2-2毫米,常规拉曼光谱只需要少量的样品就可以得到。这是拉曼光谱相对常规红外光谱一个很大的优势。而且,拉曼显微镜物镜可将激光束进一步聚焦至20微米甚至更小,可分析更小面积的样品。5共振拉曼效应可以用来有选择性地增强大生物分子特个发色基团的振动,这些发色基团的拉曼光强能被选择性地增强1000到10000倍。 (四)几种重要的拉曼光谱分析技术 1、单道检测的拉曼光谱分析技术

各种仪器测试原理

各种仪器分析的基本原理及谱图表示方法!!(补图中......) 化学专业学生必备:各种仪器分析的基本原理及谱图表示方法!! 紫外吸收光谱UV 分析原理:吸收紫外光能量,引起分子中电子能级的跃迁 谱图的表示方法:相对吸收光能量随吸收光波长的变化 提供的信息:吸收峰的位置、强度和形状,提供分子中不同电子结构的信息 荧光光谱法FS 分析原理:被电磁辐射激发后,从最低单线激发态回到单线基态,发射荧光 谱图的表示方法:发射的荧光能量随光波长的变化 提供的信息:荧光效率和寿命,提供分子中不同电子结构的信息

红外吸收光谱法IR 分析原理:吸收红外光能量,引起具有偶极矩变化的分子的振动、转动能级跃迁 谱图的表示方法:相对透射光能量随透射光频率变化 提供的信息:峰的位置、强度和形状,提供功能团或化学键的特征振动频率 拉曼光谱法Ram 分析原理:吸收光能后,引起具有极化率变化的分子振动,产生拉曼散射 谱图的表示方法:散射光能量随拉曼位移的变化 提供的信息:峰的位置、强度和形状,提供功能团或化学键的特征振动频率 核磁共振波谱法NMR 分析原理:在外磁场中,具有核磁矩的原子核,吸收射频能量,产生核自旋能级的跃迁 谱图的表示方法:吸收光能量随化学位移的变化 提供的信息:峰的化学位移、强度、裂分数和偶合常数,提供核的数目、所处化学环境和几何构型的信息 电子顺磁共振波谱法ESR 分析原理:在外磁场中,分子中未成对电子吸收射频能量,产生电子自旋能级跃迁 谱图的表示方法:吸收光能量或微分能量随磁场强度变化 提供的信息:谱线位置、强度、裂分数目和超精细分裂常数,提供未成对电子密度、分子键特性及几何构型信质谱分析法MS 分析原理:分子在真空中被电子轰击,形成离子,通过电磁场按不同m/e分离 谱图的表示方法:以棒图形式表示离子的相对峰度随m/e的变化 提供的信息:分子离子及碎片离子的质量数及其相对峰度,提供分子量,元素组成及结构的信息 气相色谱法GC 分析原理:样品中各组分在流动相和固定相之间,由于分配系数不同而分离 谱图的表示方法:柱后流出物浓度随保留值的变化 提供的信息:峰的保留值与组分热力学参数有关,是定性依据;峰面积与组分含量有关 反气相色谱法IGC 分析原理:探针分子保留值的变化取决于它和作为固定相的聚合物样品之间的相互作用力 谱图的表示方法:探针分子比保留体积的对数值随柱温倒数的变化曲线 提供的信息:探针分子保留值与温度的关系提供聚合物的热力学参数 裂解气相色谱法PGC

激光拉曼光谱的原理和应用及拉曼问答总结(整理完毕)

激光拉曼光谱的原理和应用 当用波长比试样粒径小得多的单色光照射气体、液体或透明试样时,大部分的光会暗原来的发现透射,而一小部分则按不同的角度散射开来,产生散射光。在垂直方向观察时,除了与原入射光有相同频率的瑞利散射外,还有一系列对称分布着若干条很弱的与入射光频率发生位移的拉曼谱线,这种现象称为拉曼效应。由于拉曼谱线的数目,位移的大小,谱线的长度直接与试样分子振动或转动能级有关。因此,与红外吸收光谱类似,对拉曼光谱的研究,也可以得到有关分子振动或转动的信息。目前拉曼光谱分析技术已广泛应用于物质的鉴定,分子结构的研究 推荐激光拉曼光谱法是以拉曼散射为理论基础的一种光谱分析方法。 激光拉曼光谱法的原理是拉曼散射效应。 拉曼散射:当激发光的光子与作为散射中心的分子相互作用时,大部分光子只是发生改变方向的散射,而光的频率并没有改变,大约有占总散射光的10-10-10-6的散射,不公改变了传播方向,也改变了频率。这种频率变化了的散射就称为拉曼散射。 对于拉曼散射来说,分子由基态E0被激发至振动激发态E1,光子失去的能量与分子得到的能量相等为△E反映了指定能级的变化。因此,与之相对应的光子频率也是具有特征性的,根据光子频率变化就可以判断出分子中所含有的化学键或基团。 这就是拉曼光谱可以作为分子结构的分析工具的理论工具。 拉曼光谱仪的主要部件有: 激光光源、样品室、分光系统、光电检测器、记录仪和计算机。 应用 激光拉曼光谱法的应用有以下几种:在有机化学上的应用,在高聚物上的应用,在生物方面上的应用,在表面和薄膜方面的应用。 有机化学 拉曼光谱在有机化学方面主要是用作结构鉴定的手段,拉曼位移的大小、强度及拉曼峰形状是碇化学键、官能团的重要依据。利用偏振特性,拉曼光谱还可以作为顺反式结构判断的依据。 高聚物 拉曼光谱可以提供关于碳链或环的结构信息。在确定异构体(单休异构、位置异构、几何异构和空间立现异构等)的研究中拉曼光谱可以发挥其独特作用。电活性聚合物如聚毗咯、聚噻吩等的研究常利用拉曼光谱为工具,在高聚物的工业生产方面,如对受挤压线性聚乙烯的形态、高强度纤维中紧束分子的观测,以及聚乙烯磨损碎片结晶度的测量等研究中都彩了拉曼光谱。 生物 拉曼光谱是研究生物大分子的有力手段,由于水的拉曼光谱很弱、谱图又很简单,故拉曼光谱可以在接近自然状态、活性状态下来研究生物大分子的结构及其变化。拉曼光谱在蛋白质

Raman_拉曼光谱原理及应用

拉曼光谱学 ——原理及应用HORIBA Jobin Yvon北京办事处

报告内容 ?1-什么是拉曼光谱? –简单介绍 ?2-拉曼光谱仪工作原理介绍 ?3-拉曼光谱在材料研究中的应用介绍?4-HORIBA Jobin Yvon拉曼光谱仪简介

1928年,印度科学家C.V Raman in首先在CCL 4光谱 中发现了当光与分子相互作用后,一部分光的波长 会发生改变(颜色发生变化),通过对于这些颜色 发生变化的散射光的研究,可以得到分子结构的信 息,因此这种效应命名为Raman效应。 时间 和发现人? Provided by Prof. D. Mukherjee, Director of Indian Association for the Cultivation of Science

λlaser λscatter >λlaser 瑞利散射λscatter = λlaser 拉曼散射 光散射的过程:激光入射到样品,产生散射光。 散射光弹性散射(频率不发生改变-瑞利散射) 非弹性散射(频率发生改变-拉曼散射)

2 0004 000 6 0008 00010 000I n t e n s i t y (c n t )400600Raman Shift (cm -1) 520不同材料的拉曼光 谱有各自的不同于其它材料的特征的光谱-特征谱 z 为表征和鉴别材料提 供了指纹谱 z 深入开展光谱学和材 料物性研究打下基础 1332 1580 20000 15000 10000 5000 100012001400160018002000 Wavenumber (cm-1)?组分信息?结构信息

测量仪器的原理及制作

测量仪器的原理及制作 1、前言 在物理实验和生产实际中。往往需要高精度的测量。环境温度对测量的影响是一个重要的因素。因此要求我们必须对环境温度进行精密的测量。对测量仪器也应有如下的要求,即制造成本低。测量精度高。湿度传感器探头,不锈钢电热管,PT100 传感器,流体电磁阀,铸铝加热器,加热圈 线形度好,应用范围广。便于安装和调试。目前市场上有多种传感器可以用来实现温度的测量。常用的有石英温度计、光纤传感温度计、热敏电阻温度计等在上述几种器件中,石英温度计灵敏度最高,目前可达到℃数量级然而,这些传感器的价格一般都比较贵。线性度难以达到精密测量的要求。 我们所知道红外光的特性:单色性好,抗干扰,比较适合高精度的测量。我们所要设计的仪器结构简单.容易制作,便于安装,可进行高精度的温度测量,该温度测量可直接输出到微机或pc 机进行后期的数据处理,十分方便易行。2、仪器的原理和用途 我们采用微品玻璃陶瓷材料制成一个圆筒,这种微晶玻璃陶瓷材料具有真空性好、耐高低温、绝缘和耐酸碱腐蚀等性能,其基本性能指标如下:使用温度- 273℃~1000℃体积电阻率1.08x1014Ω-cm,热膨胀系数为 αl=8.6x10-6/℃,微品玻璃陶瓷抗热冲击性能非常好,从800℃急冷至0℃不破碎,200℃急冷到0℃强度不变化。在筒内的一端固定一根长L=10cm 的薄有机玻璃圆筒,在筒内另一端固定一个红外位移传感器,并且让有机玻璃棒的自由端将红外接收管的接收面遮住一半,使其工作在线性度最好的区域。由于有机玻璃的热膨胀系数为α2=1.7x10-4/℃,两者相差达2 个数量级,

拉曼光谱的原理

1. 拉曼光谱的原理 .喇曼效应 喇曼效应起源于分子振动(和点阵振动)与转动,因此从喇曼光谱中可以得到分子(点阵振动能级)与转动能级结构的知识。用虚的上能级概念可以说明了喇曼效应: 设散射物分子原来处于基电子态,振动能级如图所示。当受到入射光照射时,激发光与此分子的作用引起的极化可以看作为虚的吸收,表述为到虚态(Virtual state),虚能级上的电子立即跃迁到下能级而发光,即为散射光。设仍回到初始的电子态,则有如图所示的三种情况。因而散射光中既有与入射光频率相同的谱线,也有与入射光频率不同的谱线,前者称为瑞利线,后者称为喇曼线。在喇曼线中,又把频率小于入射光频率的谱线称为斯托克斯线,而把频率大于入射光频率的谱线称为反斯托克斯线。 . 瑞利散射与拉曼散射 当一束激发光的光子与作为散射中心的分子发生相互作用时,大部分光子仅是改变了方向,发生散射,而光的频率仍与激发光源一致,这种散射称为瑞利散射。但也存在很微量的光子不仅改变了光的传播方向,而且也改变了光波的频率,这种散射称为拉曼散射。其散射光的强度约占总散射光强度的10-6~10-10。拉曼散射的产生原因是光子与分子之间发生了能量交换改变了光子的能量。 . 拉曼散射的产生 光子和样品分子之间的作用可以从能级之间的跃迁来分析。样品分子处于电子能级和振动能级的基态,入射光子的能量远大于振动能级跃迁所需要的能量,但又不足以将分子激发到电子能级激发态。这样,样品分子吸收光子后到达一种准激发状态,又称为虚能态。样品分子在准激发态时是不稳定的,它将回到电子能级的基态。若分子回到电子能级基态中的振动能级基态,则光子的能量未发生改变,发生瑞利散射。如果样品分子回到电子能级基态中的较高振动能级即某些振动激发态,则散射的光子能量小于入射光子的能量,其波长大于入射光。这时散射光谱的瑞利散射谱线较低频率侧将出现一根拉曼散射光的谱线,称为Stokes 线。如果样品分子在与入射光子作用前的瞬间不是处于电子能级基态的最低振动能级,而是处于电子能级基态中的某个振动能级激发态,则入射光光子作用使之

高光谱成像国内外研究与应用

前言 随着科学技术的发展,人们的感官得到了延伸,认识事物的能力也不断的提高,其中光谱成像和雷达成像成为其中的佼佼者,高谱和图像使人们能够在大千世界更好的认识到事物。高光谱成像技术作为一项优点显著,实用的成像技术,从20世纪80年代开始得到了世界各国的重视,经过深入的研究和发展如今已经被广泛地应用于各个领域。 高光谱遥感是当前遥感技术的前沿领域,它利用很多很窄的电磁波波段从感兴趣的物体获得有关数据,它包含了丰富的空间、辐射和光谱三重信息。高光谱遥感的出现是遥感界的一场革命,它使本来在宽波段遥感中不可探测的物质,在高光谱遥感中能被探测。 高光谱成像技术是基于非常多窄波段的影像数据技术,其中最突出的应用是在遥感探测领域,并在民用领域有着更大的应用前景。 本文通过分析介绍高光谱图像的成像原理,探讨了高光谱图像在国内外发展现状及其应用。

1.高光谱图像成像原理及特点 1.1高光谱遥感基本概念 高光谱遥感是通过高光谱传感器探测物体反射的电磁波而获得地物目标的空间和频谱数据,成立于20世纪初期的测谱学就是它的基础。高光谱遥感的出现使得许多使用宽波段无法探查到的物体,更加容易被探测到,所以高光谱遥感的出现时成功的是革命性的。 1.2高光谱图像成像原理 光源相机(成像光谱仪+ccd)装备有图像采集卡的计算机是高光谱成像技术的硬件组成,其光谱的覆盖范围为200-400nm,400-1000nm,900-1700nm,1000-2500nm。其中光谱相机的主要组成部分为准直镜,光栅光谱仪,聚焦透镜以及面阵ccd。 其扫描过程是当ccd探测器在光学焦面的垂直方向上做横向扫描(x),当横向的平行光垂直入射到投身光栅是就形成了光栅光谱,这是象元经过高光谱仪在ccd上得出的数据,它的横向式x方向上的像素点也就是扫描的象元,它的总想是各象元对应的信息。在检测系统输送前进是排列的他测器完成纵向扫面(y)。综合扫描信息即可得到物体的三围高光谱数据。 1.3高光谱遥感的特点 (1)波段多且宽度窄能够使得高光谱遥感探测到别的宽波段无法探测到的物体。 (2)光谱响应范围更广和光谱分辨率高使得它能够更加精细的发硬出被探测物的微小特征。 (3)它可以提供空间域和光谱域信息也就是“谱像合一”。 (4)数据量大和信息冗余多,由于高光谱数据的波段多,其数据量大,而且和相邻波段的相关性比较高就使得信息冗余度增加很多。 (5)高光谱遥感的数据描述模型多能够分析的更灵活。经常使用的3种模型有:图像,光谱和特征模型。 1.4高光谱的优势 随着高光谱成像的光谱分辨率的提高,其探测能力也有所增强。因此,与全色和多光谱成像相比较,高光谱成像有以下显著优著: (1)有着近似连续的地物光谱信息。高光谱影像在经过光谱反射率重建后,能获取与被探测物近似的连续的光谱反射率曲线,与它的实测值相匹配,将实验室中被探测物光谱分析模型应用到成像过程中。 (2)对于地表覆盖的探测和识别能力极大提高。高光谱数据能够探测具有诊断性光谱

各种检测仪器的简单介绍

[转] 各种仪器分析的基本原理及谱图表示方法!!(补图中......) 2013-11-28 19:05阅读(2)转载自古道尘 ?赞(2478) ?评论(1) ?已成功转载 ?分享(9714) ?复制地址 ?收藏夹按钮收藏收藏 ?更多 已经是第一篇| 下一篇:院士大牛们一年N... 化学专业学生必备:各种仪器分析的基本原理及谱图表示方法!! 紫外吸收光谱 UV 分析原理:吸收紫外光能量,引起分子中电子能级的跃迁 谱图的表示方法:相对吸收光能量随吸收光波长的变化 提供的信息:吸收峰的位置、强度和形状,提供分子中不同电子结构的信息 荧光光谱法 FS 分析原理:被电磁辐射激发后,从最低单线激发态回到单线基态,发射荧光 谱图的表示方法:发射的荧光能量随光波长的变化 提供的信息:荧光效率和寿命,提供分子中不同电子结构的信息

红外吸收光谱法 IR 分析原理:吸收红外光能量,引起具有偶极矩变化的分子的振动、转动能级跃迁 谱图的表示方法:相对透射光能量随透射光频率变化 提供的信息:峰的位置、强度和形状,提供功能团或化学键的特征振动频率拉曼光谱法 Ram 分析原理:吸收光能后,引起具有极化率变化的分子振动,产生拉曼散射谱图的表示方法:散射光能量随拉曼位移的变化 提供的信息:峰的位置、强度和形状,提供功能团或化学键的特征振动频率核磁共振波谱法 NMR 分析原理:在外磁场中,具有核磁矩的原子核,吸收射频能量,产生核自旋能级的跃迁 谱图的表示方法:吸收光能量随化学位移的变化

提供的信息:峰的化学位移、强度、裂分数和偶合常数,提供核的数目、所处化学环境和几何构型的信息 电子顺磁共振波谱法 ESR 分析原理:在外磁场中,分子中未成对电子吸收射频能量,产生电子自旋能级跃迁 谱图的表示方法:吸收光能量或微分能量随磁场强度变化 提供的信息:谱线位置、强度、裂分数目和超精细分裂常数,提供未成对电子密度、分子键特性及几何构型信息 质谱分析法 MS 分析原理:分子在真空中被电子轰击,形成离子,通过电磁场按不同m/e分离 谱图的表示方法:以棒图形式表示离子的相对峰度随m/e的变化 提供的信息:分子离子及碎片离子的质量数及其相对峰度,提供分子量,元素组成及结构的信息 气相色谱法 GC 分析原理:样品中各组分在流动相和固定相之间,由于分配系数不同而分离谱图的表示方法:柱后流出物浓度随保留值的变化 提供的信息:峰的保留值与组分热力学参数有关,是定性依据;峰面积与组分含量有关 反气相色谱法 IGC 分析原理:探针分子保留值的变化取决于它和作为固定相的聚合物样品之间的相互作用力 谱图的表示方法:探针分子比保留体积的对数值随柱温倒数的变化曲线 提供的信息:探针分子保留值与温度的关系提供聚合物的热力学参数 裂解气相色谱法 PGC 分析原理:高分子材料在一定条件下瞬间裂解,可获得具有一定特征的碎片谱图的表示方法:柱后流出物浓度随保留值的变化 提供的信息:谱图的指纹性或特征碎片峰,表征聚合物的化学结构和几何构型 凝胶色谱法 GPC 分析原理:样品通过凝胶柱时,按分子的流体力学体积不同进行分离,大分子先流出 谱图的表示方法:柱后流出物浓度随保留值的变化 提供的信息:高聚物的平均分子量及其分布 热重法 TG 分析原理:在控温环境中,样品重量随温度或时间变化 谱图的表示方法:样品的重量分数随温度或时间的变化曲线 提供的信息:曲线陡降处为样品失重区,平台区为样品的热稳定区 热差分析 DTA 分析原理:样品与参比物处于同一控温环境中,由于二者导热系数不同产生温差,记录温度随环境温度或时间的变化 谱图的表示方法:温差随环境温度或时间的变化曲线 提供的信息:提供聚合物热转变温度及各种热效应的信息

(完整版)电子测量仪器的分类及应用

电子测量仪器的分类及应用 电子测量仪器按其工作原理与用途,大致划为以下几类。 1.多用电表 模拟式电压表、模拟多用表(即指针式万用表VOM)、数字电压表、数字多用表(即数字万用表DMM)都属此类。这是经常使用仪表。它可以用来测量交流/直流电压、交流/直流电流、电阻阻值、电容器容量、电感量、音频电平、频率、晶体管NPN或PNP电流放大倍数β值等。 2.示波器 示波器是一种测量电压波形的电子仪器,它可以把被测电压信号随时间变化的规律,用图形显示出来。使用示波器不仅可以直观而形象地观察被测物理量的变化全貌,而且可以通过它显示的波形,测量电压和电流,进行频率和相位的比较,以及描绘特性曲线等。 3.信号发生器 信号发生器(包括函数发生器)为检修、调试电子设备和仪器时提供信号源。它是一种能够产生一定波形、频率和幅度的振荡器。例如:产生正弦波、方波、三角波、斜波和矩形脉冲波等。 4.晶体管特性图示仪 晶体管特性图示仪是一种专用示波器,它能直接观察各种晶体管特性曲线及曲性簇。例如:晶体管共射、共基和共集三种接法的输入、输出特性及反馈特性;二极管的正向、反向特性;稳压管的稳压或齐纳特性;它可以测量晶体管的击穿电压、饱和电流、自或a参数等。 5.兆欧表 兆欧表(俗称摇表)是一种检查电气设备、测量高电阻的简便直读式仪表,通常用来测量电路、电机绕组、电缆等绝缘电阻。兆欧表大多采用手摇发电机供电,故称摇表。由于它的刻度是以兆欧(MΩ)为单位,故称兆欧表。 6.红外测试仪 红外测试仪是一种非接触式测温仪器,它包括光学系统、电子线路,在将信息进行调制、线性化处理后达到指示、显示及控制的目的。目前已应用的红外测温仪有光子测温和热测温仪两种,主要用于电热炉、农作物、铁路钢轨、深埋地下超高压电缆接头、消防、气体分析、激光接收等温度测量及控制场合。 7.集成电路测试仪 该类仪器可对TI1、PM0S、CM0S数字集成电路功能和参数测试,还可判断抹去字的芯片型号及对集成电路在线功能测试、在线状态测试。

机器视觉之高光谱成像技术分析

高光谱成像技术 高光谱成像技术起源于地质矿物识别填图研究,逐渐扩展为植被生态、海洋海岸水色、冰雪、土壤以及大气的研究中。对空间探测、军事安全、国土资源、科学研究等领域都具有非常重要的意义。 所谓高光谱图像就是在光谱维度上进行了细致的分割,不仅仅是传统所谓的黑、白或者R、G、B的区别,而是在光谱维度上也有N个通道,例如:我们可以把400nm-1000nm分为300个通道。因此,通过高光谱设备获取到的是一个数据立方,不仅有图像的信息,并且在光谱维度上进行展开,结果不仅可以获得图像上每个点的光谱数据,还可以获得任一个谱段的影像信息。 目前高光谱成像技术发展迅速,常见的包括光栅分光、声光可调谐滤波分光、棱镜分光、芯片镀膜等。 原理: 光栅分光原理: 在经典物理学中,光波穿过狭缝、小孔或者圆盘之类的障碍物时,不同波长的光会发生不同程度的弯散传播,再通过光栅进行衍射分光,形成一条条谱带。也就是说:空间中的一维信息通过镜头和狭缝后,不同波长的光按照不同程度的弯散传播,这一维图像上的每个点,再通过光栅进行衍射分光,形成一个谱带,照射到探测器上,探测器上的每个像素位置和强度表征光谱和强度。一个点对应一个谱段,一条线就对应一个谱面,因此探测器每次成像是空间一条线上的光谱信息,为了获得空间二维图像再通过机械推扫,完成整个平面的图像和光谱数据采集。 经过狭缝的光由于不同波长照射到不同的探测器像元上,光能量很低,因此需要选择高灵敏相机,同时需要加光源。例如系统如下:

声光可调谐滤波分光(AOTF)原理: AOTF由声光介质、换能器和声终端三部分组成。射频驱动信号通过换能器在声光介质内激励出超声波。改变射频驱动信号的频率,可以改变AOTF衍射光的波长,从而实现电调谐波长的扫描。 最常用的AOTF晶体材料为TeO2即非共线晶体,也就是说光波通过晶体之后以不同的出射角传播。如上图所示:在晶体前端有一个换能器,作用于不同的驱动频率,产生不同频率的振动即声波。不同的驱动频率对应于不同振动的声波,声波通过晶体TeO2之后,使晶体中晶格产生了布拉格衍射,晶格更像一种滤波器,使晶体只能通过一种波长的光。光进入晶体之后发生衍射,产生衍射光和零级光。 l AOTF系统组成: AOTF系统组成:成像物镜+准直镜+偏振片+晶体+偏振片+物镜+detector,入射光经过物镜会聚之后进入准平行镜(把所有的入射光变成平行光),准平行光进入偏振片通过同一方向的传播的光,平行光进入晶体之后,平行于光轴的光按照原来方向前行,非平行光进行衍射,分成两束相互垂直o光和e光(入射光的波长不同经过晶体之后的o光与e光的角度也不同,因此在改变波长的过程中,图像会出现漂移);o 光和e光及0级光分别会聚在不同的面上。

《智能仪器原理及应用》测试题

《智能仪器原理及应用》测试题 一、填空题(每空1分共25分) 1、模拟量输入通道包括、。 2、为了将A/D转换器中的运算放大器和比较器的漂移电压降低,常采用技术。 3、克服键抖动常采用的措施、。 4、总线收发器的作用。 5、最基本的平均滤波程序是,改进型 有、、。 6、多斜式积分器有,其优点是,还有一种 是,其作用是。 7、在通用计算机上添加几种带共性的基本仪器硬件模块,通过软件来组合成各种功能的仪器 或系统的仪器称为或。 8、ADC0809,假定REF+=+5V,VREF-接地,则模拟输入为1V时,转换成的数字量为, 若REF+=+2.5V,VREF-接地则模拟输入为1V时,转换成的数字量为 9、数字存储示波器可预置四种触发方 式、、、。 10、智能仪器自检方式有三种、、。 二、简答(每题5分共35分) 1、简述自由轴法测量原理。 2、系统误差的处理方法。 3、简述三线挂钩过程及作用。 4、智能仪器的设计要点。

5、若示波器屏幕的坐标刻度为8×10div,采用10位A/D,2K存储器,则该示波器 的垂直与水平分辨率各为多少? 6、简述线路反转法原理。 7、简述D/A双极性输出电路原理 三、综合 1、(20分)在一自动控制系统中,有温度、压力、流量三个待测量,试设计一测量电路,要 求使用8位A/D,4位LED及相关逻辑电路。 (1)画出硬件连接图 (2)写出器件型号(CPU、A/D) (3)根据连接图,写出三通道的地址。 (4)简述测量过程。 2、(20分)下图为某一通用计数器框图 (1)要测量10Hz的信号,试计算应选用的时标及闸门时间。 (2)简述测量过程 (3)其最大计数误差是多少? (4)为减小误差,应采用什么方法?

相关主题
文本预览
相关文档 最新文档